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ABSTRACT 

Semiconductor industries are not only technology-intensive, but also highly 

energy-intensive. A wafer fab consumes about 300-400 kWh/day. To supply this amount 

of electricity, the amount of carbon dioxide released is approximately 180–360 metric tons 

per day. This emission causes climate change and also rise in energy costs. Thus, it is 

important to take measures to reduce energy consumption. 

The scientific merit of this research is to develop two methods designed to estimate 

the electric energy consumption and production of a semiconductor wafer fab. The broader 

impact of the research is that the methods can be extended to other manufacturing 

industries, even though they are framed in this study in the context of the semiconductor 

manufacturing industry. The first method, referred to as kWh-WIP, is capacity model that 

estimates electricity consumption by using WIP lot information. The second method 

referred here as kWh-Tool is a capacity model that estimates electricity consumption by 

using tool-level utilization. A relation is established between the two levels of detail models 

by comparing them with respect to annual electricity consumption and carbon emissions. 

Power consumption of tools and tool-process mapping are obtained by intensive research 

and surveying with the professionals from the semiconductor manufacturing industry. The 

Measurement and Improvement of Manufacturing Capacity data set is used as the basis for 

the capacity simulations of this thesis work. The dataset represents 200mm wafer fab 

processes. The average Electrical Utilization Index (EUI) and Production Efficiency Index 

(PEI) computed with kWh-Tool methodology across all nine 200 mm fab considered in 
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this study was 0.145kWh/UOP and 1.987 kWh/cm2 respectively. The average annual 

power consumption is 44,745,707 kWh. Annual Power Consumption values calculated in 

kWh-WIP and kWh-Tool methodologies are closer with a variation of less than 3%. The 

PEI values for different fab type computed from the kWh-Tool methodology is similar to 

the Optimal theoretical value of 1.231 (kWh/cm2). 
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1. INTRODUCTION 

1.1 Problem Description 

Semiconductors are an essential part of many commonly used electronic devices, 

such as PCs, mobile phones, radios, tablets, and many more. Semiconductor manufacturing 

deals with producing integrated circuits (ICs) on silicon wafers, thin discs made from 

silicon and gallium arsenide. The semiconductor industry is a vast and highly competitive 

industry. The industry is characterized by large fluctuations in product supply and demand, 

depending heavily on the strength of the global economy. Worldwide semiconductor sales 

reached $408.69 billion in 2017 according to the figures from World Semiconductor Trade 

Statistics (WSTS) [1]. 

 

Figure 1 Global Semiconductor Sales from 1987 to 2017 [1] 
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Figure 1 shows the global semiconductor industry sales each year. The 

Semiconductor Industry Association reports that the global semiconductor industry sales 

reached $412 billion in 2017, which is an increase of 21.6% compared to the previous year. 

2017 had the industry’s highest-ever annual sales. Intel is the largest semiconductor chip 

manufacturer with revenues of 54 billion U.S. dollars in 2016 [1]. 

ICs are manufactured through a series of steps namely wafer fabrication, sort, 

assembly, and final test. The wafer fabrication part of the overall manufacturing process is 

carried out in semiconductor wafer fabrication facilities (wafer fabs). In this process, 

electronic circuits are built layer-by-layer onto the wafers – a process that might take a total 

processing time of several weeks depending on the product complexity. Wafer fabrication 

can be produced with in-house facilities or may be outsourced to subcontractors. Once they 

are processed in the wafer fab, wafers are sorted for any defects using electrical tests, after 

which the probed wafers are transferred to assembly facilities where dices of appropriate 

quality are packaged. These again are sent for testing to ensure that only high-quality 

products are delivered to the customers. Wafer fab and sorting are often referred to as the 

front-end, while assembly and test are called the back-end. All these processes utilize a 

large amount of electricity, particularly those done at the wafer fab. 

A modern wafer fabrication facility consumes about 300-400 kWh/day on average, 

which can power approximately around 10,000 homes per day. Wafer fabrication processes 

are highly energy-intensive with annual energy utility bills of up to $10–20 million for a 

single wafer fab [2]. To supply this amount of electricity, the amount of carbon dioxide 

released by fossil fuel-fired power plants is estimated to be 180–360 metric tons per day. 

This estimation is made based on the factor that 0.6–0.9 Kg CO2 is released when 1 kWh 
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electricity is produced from a fossil fuel-fired power plant [3]. Climate change is a 

universally recognized 21st-century global environmental challenge. The impact of energy 

consumption on climate change and the rising cost of energy has become an extremely 

important issue faced by the semiconductor manufacturing industry today. Thus, chip 

manufacturers are increasingly driving efforts to reduce greenhouse gas emissions of their 

manufacturing facilities. 

Energy efficiency has not been the high priority for management concern because 

energy costs were about 1-2 percent of total production costs, including buildings, 

capitalized land and equipment. This traditional way of viewing the fab’s electricity 

consumption is now changing [2]. It is important to evaluate energy consumption in a 

semiconductor wafer fab because electricity is becoming one of the most expensive 

operational expenses. Energy costs can account for 5-30% of fab operating expenses, 

depending on the electricity prices. 30-40% percent of the fab’s electricity consumption is 

from the wafer processing tools, whereas 50% of this consumption is due to the sub-fab 

systems, such as the air conditioning units, cleanroom heating, and ventilation [2].  

Capacity planning involves determining the various facilities’ resources required, 

with the focus in computing the number of tools that are required to maximize throughput 

(TH) with minimal work-in-process (WIP) and cycle time (CT). Jimenez et al. (2008) [4] 

reported several approaches for conducting capacity analysis for semiconductor 

manufacturing. These papers lack modeling components to enable the study of 

sustainability issues, such as carbon emissions and electricity consumption. Many papers 

with several mathematical models on environmental references and standards are available, 

but these models are unable to estimate electricity consumption. Estimation of energy 
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consumption is very important in order to reduce the CO2 emissions by burning fossil fuels. 

This helps in reducing global warming. The cost of energy consumption can be reduced by 

incorporating renewable energy constraints into the capacity planning model. This also 

reduces the carbon dioxide emission and helps us to achieve sustainability. Renewable 

technology in the distributed generation system is quite appealing because they harness 

renewable sources for energy production, resulting in zero carbon emission. 

1.2 Research Objective 

This research proposes two capacity modeling methods to estimate electricity 

consumption and carbon dioxide emissions using key performance indicators, such as WIP, 

CT, and TH. The first method, called kWh-WIP, represents a capacity model for power 

consumption estimation using WIP lot data. The second method, called kWh-Tool, 

represents a capacity model for power consumption estimation using tool-level utilization 

data. 

The research objectives are as follows: 

1.  To describe two simulation modeling methods that estimates annual electricity 

consumption and carbon dioxide emissions for a semiconductor wafer fab. 

2.   To compare the predictive accuracy of the simulation modeling methods performing 

under different scenarios varying the wafer starts per year and product mix levels. 

3. To propose modeling guidelines and identify the obstacles of simulating the capacity 

model for predicting the fab’s electricity consumption. 
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1.3 Thesis Outline 

This thesis is organized as follows: Chapter 2 provides a detailed literature review 

based on previous work done in capacity modeling for production planning and capacity 

analysis in semiconductor manufacturing, with a focus on sustainability. Chapter 3 explains 

the methodology and describes the designed simulation model. Chapter 4 presents the 

designed simulation experiments and discusses the simulation results. Chapter 5 concludes 

this research and discusses future work. 
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2. LITERATURE REVIEW 

2.1 Semiconductor Manufacturing 

Semiconductor manufacturing consists of front-end operations, where the surface 

of raw silicon wafers is modified to create a pattern of integrated circuits, and of back-end 

operations, where wafers are cut into individual microchips (dies), put in a package, and 

tested. It has become standard to term the fabrication and sort phases as the “front-end” 

and final test phases being called the “back-end.” 

 

Figure 2 Semiconductor Manufacturing [5] 

The mass production of integrated circuits (ICs) can be divided into four different 

phases: fabrication, sort (probe), assembly, and final test [6]. Figure 2 displays an example 

of a semiconductor supply chain network. Fabrication is the process of transforming a pure 

silicon (or gallium arsenide) wafer into a wafer with completed ICs. This process requires 

300 to 700 different process steps; this is the most complex portion of the entire process. 

The formation of one layer of the wafer can include cleaning, oxidation/diffusion, film 

deposition, photolithography, planarization, etching, ion implantation, and inspection; 

there may be up to 40 layers per wafer to build the completed ICs. Additionally, re-entrant 

flows exist, as the equipment used for these steps are expensive; the same wafer may be 

processed on the same machine multiple times (and competes for the machine’s capacity 

with other wafers being produced) [7]. 



 

7 
 

After a wafer completes fabrication, it proceeds to the sort (or probe) phase. The 

individual ICs on each wafer are tested for basic functionality. An electronic map is 

generated for each wafer, indicating those ICs on the wafer that failed. As in the fabrication 

phase, there is uncertainty in the number of ICs that survive sort. After sort is complete, 

wafers go to die bank (i.e., the completed wafer WIP) where they wait for the assembly 

and final test phases. 

In the assembly phase, the wafer is cut into individual ICs or known as dies, and 

the failed ICs are discarded (scrapped). Functional ICs are then packaged wherein 

connections are made between the chip and the lead frame, and then the whole circuit is 

encapsulated for protection. The packaged ICs then move to the final test phase. At this 

point, the ICs are tested, rated (binned), and ultimately date-stamped for inclusion in 

finished goods inventory. These last two phases are still complex, but not to the extent of 

the first two; assembly and final test deal with millions of devices versus the thousands of 

wafers handled in fabrication and sort. 

2.2 Electricity Consumption 

Semiconductor manufacturing facilities, also known as wafer fabs, consume a large 

amount of electricity in daily operation as discussed above. The semiconductor 

manufacturing industry is confronted with two major facility challenges like many other 

industries, i.e., energy conservation and reduction of greenhouse gas emissions. ITRS has 

set aggressive goals for the industry about energy conservation in the next 10–20 years. 

More specifically, the wafer fab’s energy consumption is expected to decrease from the 

current 1.9 kWh/cm2 to 1.2 kWh/cm2 by 2016 [8]. ITRS plans to achieve the goal by 
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implementing sustainable facilities and deploying green and cost-effective manufacturing 

processes. 

Current approaches to sustainable manufacturing processes usually focus on energy 

conservation by improving equipment or tool efficiency. Although energy conservation is 

an effective method to improve the performance of wafer fabs, the following concerns are 

expressed by ITRS [2]:  

1) The increase in the wafer size from 300 to 450 mm requires more energy per wafer;  

2) The industry will potentially build new facilities or expand existing capacities to meet 

the market demand; and  

3) The fabs carbon dioxide footprint from conventional power plants is difficult to 

quantify, and the criteria for controlling emission need to be defined.  

Wafer fabs are highly energy-intensive and it consumes about 300–400 MWh per 

day [8], and 15-30 MW of daily load. This can power up to 10,000 homes in the U.S. In 

order to supply this amount of electricity, power plants are used but this emits 180–360 

metric tons of carbon dioxide per day [3]. This value is calculated by assuming 0.6–0.9 Kg 

CO2 released when 1 kWh electricity is produced [3]. A wafer fab typically contains 

hundreds of highly automated processing tools along with dozens of utility support 

systems, such as chillers, recirculating air fans, nitrogen plants, and exhaust air systems. 

The overall utility bill ranges from $12-$25 million. The three major factors dominating 

energy consumption in wafer fabs results are highlighted below [2]: 

 40% of energy is used to power the processing tools. 

 57% of energy powers the cleanrooms and recirculation air fans. 
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 The remaining energy is used to supply ultra-pure water and pure gases to certain 

manufacturing processes. 

 

Figure 3 Power Consumption of Semiconductor Fabrication Plant [2]

Power 
Manufacturing 

Equipment, 44%

Utilities 
Manufacturing 

Equipment, 40%

Infrastructure, 
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Power consumption of semiconductor 
fabrication plant
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2.3 Factors Affecting Energy Consumption in Wafer Fab 

Hua et al. (2007) presented the factors affecting energy conservation in the wafer 

fab. Semiconductor wafer fab consumes a tremendous amount of electricity. Most fabs 

have cooling capacities over 10,000 RT (Refrigeration Tons), which is much larger than 

common commercial buildings. The energy allocation of the facility systems in a fab is 

affected by the following factors [9]: 

a. Fans consume high power to re-circulate filtered airflow in order to maintain a clean 

environment. 

b. Significant power is required to maintain stable cleanroom temperature and humidity 

(e.g., 24 ± 0.5 8oC and 40 ± 5%RH). 

c. Heat produced by the manufacturing process tools increases the load of the cooling 

system. 

d. Pumps and compressors consume significant electricity to produce ultra-pure water 

(UPW) and gases. 

e. Treatment and processing of exhaust air require significant power. Energy is also used 

to pre-treat large volumes of outside air to compensate for the exhaust air in order to 

keep the cleanroom under positive pressure. 

So, benchmarking is an important step in implementing energy conservation in a 

semiconductor fab. A semiconductor cleanroom facility system is complicated, usually 

comprised of several sub-systems, such as a chilled water system, a make-up system, an 

exhaust air system, a compressed air system, a process cooling water (PCW) system, a 

nitrogen system, a vacuum system, and an ultra-pure water (UPW) system. It is a daunting 

task to allocate energy consumption and determine an optimum benchmark.  
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Hu et al. (2010) researched on characterizing the energy use in 300mm DRAM 

(Dynamic Random-Access Memory) wafer fabrication plants in Taiwan by performing 

surveys and on-site measurements. The objective of this paper is to characterize the electric 

energy consumption and production of 300mm DRAM fabs by using various performance 

metrics. These performance metrics include the EUI (Electrical Utilization Index) and PEI 

(Production Efficiency Index).  The results show that the EUI and PEI values are 0.0272 

kWh/UOP and 0.743 kWh/cm2, respectively. Using EUI in assessing the energy efficiency 

of the fab production provides more consistent comparisons than just using PEI [10].  

Many of the actions undertaken to improve the energy efficiency of a 

manufacturing company are aimed at getting energy-consuming devices to operate more 

efficiently or at conserving energy within a plant. Such actions could include optimizing 

boiler efficiency, installing energy-efficient equipment, retrofitting fixed-speed motors 

with variable speed drives, or improving insulation in plant and buildings. While these 

device-oriented energy efficiency measures can achieve considerable savings, greater 

energy savings may be achieved in many instances by improving the efficiency of 

manufacturing processes. 

The simplest and most valuable measure of energy efficiency achievements in a 

manufacturing plant is unit consumption or energy used per unit produced. Unit 

consumption provides the best indicator of how effectively the energy consumed by a plant 

is being used and can be tracked over time to measure energy efficiency improvements. If 

we define energy used per unit produced as a measure of energy efficiency in a 

manufacturing plant, then there are two complementary approaches to increase the energy 

efficiency of a plant: reducing energy consumption and increasing productivity. Factors 
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that reduce the productivity of a plant also reduce its energy efficiency. The greatest source 

of energy waste in any manufacturing plant could be an inefficient manufacturing process, 

a poorly planned production schedule, or poor product quality. An energy management 

policy that focuses only on improving the energy efficiency of energy-consuming devices 

or on energy conservation will not recognize or address these problems and will, therefore, 

have limited success. An effective energy management system should also incorporate 

energy-saving opportunities that can be realized by improving the overall production 

efficiency of a plant [11]. 

The cost of energy consumption can be reduced by incorporating renewable energy 

constraints into the capacity planning model. This also reduces the carbon dioxide 

emissions and helps us to achieve sustainability. Renewable technology like wind and solar 

generation system is quite appealing because they harness renewable sources for energy 

production, resulting in zero carbon emission. 

2.4 Simulation Models with Renewable Energy Integration  

Long-term environmental sustainability can be achieved by incorporating 

renewable energy in the semiconductor wafer fab. Recently distributed generation (DG) 

emerged as a new system for energy production and consumption. DG units are installed 

in the consumer site where large electricity is needed. This technology is also an integral 

part of the smart grid with the goal of reducing the greenhouse gas emissions by adapting 

onsite renewable power generation. It includes wind turbines (WT), solar photovoltaics 

(PV), micro-turbines, diesel engines and fuel cells of which the capacity is usually less than 

10 MW [3]. The advantages of using DG technology are: 
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 Since DG systems are installed on the site, it reduces the transmission bottleneck. 

 There is no carbon emission. 

 It refines the electricity supply reliability. 

 Cost reduction in the utility bills. 

Santana-Viera et al. (2015) proposed a distributed generation (DG) system 

comprising WT and solar PV units to power the wafer fab along with the main grid. The 

major challenge in deploying renewable DG technology is the power volatility. To design 

a robust DG system, both the power volatility and the load uncertainty must be 

appropriately quantified and incorporated into the design model. The purpose of the DG 

planning is to determine the generator type, capacity, and placement such that the overall 

system cost is minimized, or the energy yield is maximized [12]. 

The main obstacle to deploying wind and solar-based DG technologies is the high 

installation cost coupled with the intermittent power. Therefore, to reliably operate a 

renewable DG system, both the power intermittency and the payback period must be 

appropriately analyzed and incorporated into planning models. Several manufacturing and 

service industries have adopted onsite renewable energy to power their facilities along with 

the main grid. There is a lack of research activities targeting the modeling and 

implementation of wind–solar-based DG systems in a large manufacturing or public 

service settings. 

Many papers leverage probability theories and analytics tools to model the random 

power generation and to optimize the capacity of onsite renewable DG systems. These 

papers, optimization models are formulated to determine the capacity of WT and PV units 
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such that the anticipated cost savings are maximized by considering the stochastic nature 

of wind speed and weather conditions.  

A significant amount of electricity is required to support the operation of any large 

manufacturing facilities. Semiconductor manufacturing facilities, also known as wafer 

fabs, consume an enormous amount of electricity in daily operation. Integrating renewable 

energy into the wafer fabs alleviates the greenhouse gas emissions, reduces the utility bills 

and improves the energy security. A grid-connected DG system comprising of wind 

turbines, solar photovoltaics, a net metering module, and a substation is used. A 

quantitative approach is developed to guide the wafer fab to choose the energy technology 

and the generation capacity, aiming to minimize the system cost while mitigating the 

carbon footprint.  

Villarreal et al. (2013) proposed the integration of renewable energy into the 

modern semiconductor industry. This paper presents a stochastic programming model to 

aid the planning and operation of distributed generation system in the presence of power 

volatility and load uncertainty. The proposed distributed generation (DG) system 

comprises WT and solar PV units to power the wafer fab along with the main grid [2]. 

Ziarnetzky et al. (2017) developed a model considering the elements of a 

sustainable and distributed generation system into a mid-term production planning 

formulation for a wafer fab. The major daily energy supply of the wafer fab is from the 

WTs and solar PVs. The surplus energy is returned to the main grid. Production-related 

costs, the cost for energy from the substation, and penalty costs when there is a lack of the 

renewable energy penetration were considered, and they could be reduced by offering 

renewable surplus energy to the main grid. A simulated environment was created to run 
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the obtained production plans to compute the expected profit in the face of machine 

breakdowns, wind power volatility, and uncertain power output of the solar PVs. This 

approach helps to determine an appropriate number of WTs and solar PVs for a given 

demand scenario. The results showed that it is reasonable to combine production-related 

planning and decisions with respect to the design of a DG system [6]. 

 

Figure 4 A Grid-Connected Solar PV and Wind Turbine System [5] 

2.5 Carbon Emission and Carbon Tax  

A carbon tax is defined as a fee imposed on greenhouse gas emissions generated by 

burning fuels. This tax puts a price on each ton of GHG emitted; this results in a powerful 

market response across the entire economy reducing emissions. These taxes can be a 

retrogressive tax; this may affect the low-income groups disproportionately directly or 

indirectly. Several countries have imposed carbon taxes or energy taxes. By increasing fuel 

efficiency, reducing fuel consumption, businesses and individuals, using cleaner fuels and 

adopting new technology can reduce the amount paid on the carbon tax [13]. 

In recent years, the global green tax landscape is evolving rapidly and becoming 

more complex, as governments widely use taxation as a tool to achieve green policy goals 
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and make firms operate more sustainably. A number of pollution taxes are levied, and 

subsidies are offered around the world. In September 2012, the Japanese government 

introduced a new tax to curb greenhouse gas emissions [13]. France foisted a general tax 

for polluting activities names as “pay as you pollute.” In the US, there are a large number 

of sub-national state-based tax incentives related to pollution control and ecosystem 

protection [13]. The carbon tax provides economic and social benefits. It aims to reduce 

the harmful and unfavorable emissions of CO2 in the atmosphere, thus slowing down 

climate change and its negative effects on the human health and environment. It is a cost-

effective method of reducing the GHG (Green House Gases) emissions.  

Strand et al. (2015) analyzed the policy bloc of fossil fuel importers that prefers the 

tax to the cap. It executes an optimal climate policy, faces a fringe of other fuel importers 

and an exporter bloc. It purchases offset from the (non-policy) fringe. Since the tax reduces 

the price of fuel export and buys more when the policy bloc is larger, offsets are more 

favorable to the policy bloc under a tax when compared to the cap [14]. 

By taking into consideration the operational costs and social costs Hung et al. 

(2014) proposed a strategic decision-making model. These costs are caused by the CO2 

emission from a SCM for SSCM. Under different scenarios, the operational costs and 

carbon dioxide emissions were evaluated in the manufacturing SCM. The results showed 

that the amount of carbon dioxide emission came down with increasing social cost rate of 

carbon dioxide emissions. Lastly, it is concluded that the effective approach to reducing 

carbon dioxide emissions is to force the enterprises to bear the costs of carbon emissions 

resulting from their economic activities [15]. 

Jin et al. (2014) investigated on carbon emission tax, inflexible cap, and cap-and-
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trade. Redesign of the supply chains and choices of transportation (truck, rail, or waterway) 

may influence a company. This paper mainly focuses on the optimization of the models for 

major retailers, who make a huge contribution to freight movement, to design their supply 

chains under various carbon policies. The policymakers can predict the impact of policies 

on overall emissions in the freight transportation sector using the results. The model, when 

incorporated into the integrated assessment models, can be effective in climate change 

analyses. Besides the impact of the policy parameters on carbon emissions and logistics 

cost is studied using a sensitivity analysis [16]. 

Du et al. (2009) emphasized on the influence of emission cap-and-trade mechanism 

in an emission-dependent supply chain. The emission dependent supply chain comprises 

of the emission permit supplier and the emission-dependent firm. Emission cap/quota 

imposed by the government and permits purchased via emission trading were taken into 

focus. Extra permits need to be purchased if the quota is inadequate to satisfy the target 

production. The unique Nash equilibrium derivation is presented, and a game-theoretical 

analytical model is proposed in this paper. Optimal decisions are made by the emission 

permit supplier on permit pricing and the emission-dependent firm on production quantity. 

The paper concludes that the governmental environment policy, several exogenous factors, 

the market risk, etc. affect the players' bargaining power [17]. 

Based on the economic order quantity (EOQ) model, Bian et al. (2015) examined 

the production lot sizing issues of a firm under two regulations, i.e., cap-and-trade and the 

carbon tax. This paper investigates the impacts of production and regulation parameters on 

the optimal lot size and emissions. It shows that under the cap-and-trade regulation, the 

firm's decision of the optimal emissions, as well as permits trading, depending on the 
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differentiated permits trading prices. The results show that, under the cap-and-trade 

regulation, the firm may buy some permits for production, or sell some surplus permits, or 

buy and sell no permits at all, depending on the value of the first cap [18]. 

Rapine et al. (2013) proposed a new model with environmental constraints, i.e., 

carbon emission constraints in multi-sourcing lot sizing problems. The constraints 

illustrated in this paper aims to reduce the carbon emission per unit of product supplied. A 

mode corresponds to the combination of a transportation mode and a production facility. It 

is characterized by its unitary carbon emission and economic costs. This paper suggested 

four types of constraints in the single-item capacitated lot sizing problem and required 

analysis is done [19]. 

Chi and Lan (2017) proposed four master planning models. These models include 

pollution taxes, progressive pollution taxes, and subsidies into capacity allocation to 

evaluate the problem of anthropogenic PFC (Perfluorinated Carbon) emissions. Reducing 

global warming is the need of the hour with the continued development of manufacturing 

industries along with increasing greenhouse gas emissions. For a successful environmental 

plan to be implemented, subsidies and/or progressive taxes for foundry plant should be 

introduced. The first step in this process is to set emission limits and also to consider master 

planning taxation [20]. 

Song et al. (2016) studied the emission-dependent firms in the cap-and-trade system 

and worked on the effects of carbon footprint and low-carbon preference on the production 

decision. The total “cap” is used to attain environmental goals that allow the “trade” to 

achieve effective scheduling through market regulation. By analyzing the impact of the 

carbon footprint and low carbon need in the market supply and demand a production 
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optimization model is designed [21]. 

Benjaafar et al. (2013) proposed carbon incorporation into the operational model. 

The authors emphasized the impact of operational decisions on carbon emissions and the 

degree to which adjustments to operations can alleviate emissions. The results showed that 

operational changes lead to significant emission control, and thereby, there was no increase 

in the cost. The results also highlight an option of reducing the cost of emissions to leverage 

collaboration across the supply chain [22]. 

Du et al. (2015) proposed a carbon emission dependent supply chain model. The 

requisite for production is an emission-dependent supply chain comprising of one single 

emission permit supplier and one single emission manufacturer in the cap-and-trade 

system, where emission permit becomes essential for production. Government allocates 

the emission cap of the emission-dependent manufacturer as a kind of environmental policy 

and investigates its influence on decision-making within the concerned emission-

dependent supply chain. It also considers the distribution fairness in social welfare. It 

proves that the manufacturer’s profit increases with the emission cap. In certain conditions, 

there is an option for the manufacturer and permit the supplier to coordinate the supply 

chain to get more profit [23]. 

A two-stage game theory model to analyze the impact of carbon tariff and tax was 

put forth by Tian et al. (2015). This article focuses on the optimal carbon tax policy 

imposed by countries and the impact of this policy on firms’ optimal production decisions. 

This article presented a different perspective in investigating the effect of the carbon tax 

and tariff. The study considers two consuming markets and the strategic game between the 

two countries. The results show that the environmental damage level significantly affects 
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the demand in an unstable market [24]. 

He et al. (2016) studied the joint production and pricing problem in a semiconductor 

manufacturing firm with cap-and-trade and carbon tax regulations on multiple products. 

The effects of the two regulations are compared to the total carbon emissions, social 

welfare, and the firm's profit. The demands for these products are independent, and the 

firm faces a price-sensitive demand. Firstly, the optimal number of products to be produced 

under cap-and-trade regulation (carbon tax regulation) is determined by the emission 

trading prices along with the cap (tax rate). Secondly, the optimal cap (tax rate) is 

decreasing (increasing) or constant in the environmental damage coefficient is found. 

Finally, it is discovered that social welfare subjected to carbon tax regulation is not less 

than that subjected to cap-and-trade regulation. Even though there is neither one regulation 

always producing more profit and having advantages in suppressing carbon emissions than 

the other one [25]. 

Wang and Liang (2015) performed a study that aims to assess the impacts of taxing 

carbon on China’s primary income distribution from an economy-wide perspective. The 

results show that carbon taxing would reduce labor remuneration and its share of the 

primary distribution and capital income and increase the net product tax and its share. This 

result indicates that taxing carbon will benefit the government but deteriorates China’s 

primary income distribution status, and damage both households and enterprises. The 

carbon tax would perform differently under different labor scenarios and different critical 

elastic values. This paper concludes that during the transition period the complex features 

of China’s labor market and the development of production technology should be taken 

into consideration when introducing a carbon tax [26]. 
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2.6 Production Planning of the Supply Chain Model  

The purpose of production planning is to match the output of production facilities 

to external demand in a manner that optimizes some performance measure for the firm. 

The production planning decision is the quantity and the timing of material released into 

the plant so that output emerges to meet the customer’s demand in a timely fashion. This 

requires knowledge of the time elapsing between the releases of work into the plant cycle, 

the time of the production process and its emergence as a finished product that can be used 

to meet demand. However, queuing models have shown that average cycle times depend 

on resource utilization, which is determined by the release decisions made by the planning 

models. 

Uzsoy et al. (1992) published a paper describing the characteristics of 

semiconductor manufacturing environments and reviewed research on system performance 

evaluation and production planning. They focused on the characteristics of the 

semiconductor manufacturing process that make production planning and scheduling 

difficult. The production planning and system performance evaluation were studied. The 

paper classifies the research by the solution technique used and further analyses its 

advantages and disadvantages [27]. 

Karabuk et al. (1999) focused on the strategic capacity planning problem by 

considering operational planning decisions as the short-term recourse of the capacity plan. 

This study is performed at a major US semiconductor manufacturer company on real 

planning scenarios. The main property of the semiconductor capacity planning is that the 

product demands, and manufacturing capacity is uncertain. The high demand 

microelectronic chip will become outdated with the invention of the next-generation chip; 
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this requires an improved manufacturing process. This can create high variability in the 

outcomes and causes uncertainty in the throughput and in the capacity estimations. This 

paper concluded that different scenarios should be considered during long-term capacity 

planning [28]. 

To meet supply to demand in an ideal manner, the cycle time that elapses between 

the material being introduced into the plant and its emergence as a finished product should 

be recognized. Production planning models that aim at determining optimal release 

schedules for production facilities face a fundamental circularity.  

Toktay et al. (1994) addressed the capacity allocation problem in a semiconductor 

wafer fabrication facility emerging as a subproblem of an artificial intelligence-based 

scheduling system. Differences in machine capabilities, setup considerations, and tooling 

constraints are considered. The example analyzed in this paper has seven repeated 

lithography and etching processes, and four diffusion times. The main objective of this 

paper is to focus on minimizing deviation and maximizing throughput from the 

predetermined production goals. The problem formulations are concluded as a maximum 

flow problem on a bipartite network with integer side constraints and to develop efficient 

heuristics to obtain optimal solutions in very less computation time [29]. 

Swaminathan (2000) described a model under uncertainty in demand for the tool 

capacity planning problem. Technology and products are changing rapidly, combined with 

long procurement lead times for tools made it extremely difficult to procure tools 

efficiently. The paper provides two heuristics analysis to overcome this problem; one based 

on the tool cost data and the other based on a greedy approach to procuring tools. This 

heuristic analysis is used to find an efficient tool procurement plan and test their quality by 
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using lower bounds on the formulation [30]. 

Liu et al. (2011) presented a complete framework for strategic capacity expansion 

of semiconductor manufacturing production equipment. This approach is applied to the 

wafer fabrication facility model. It integrates computer simulation, queue analysis and 

adaptive statistical methods to generate many good reconfiguration alternatives. The 

outcome of this method presented is a number of good system configurations. The overall 

performance and each configuration are distinguished by their Cycle time CT-Throughput 

TH profiles. The CT-TH profiles define the complete performance of the system at 

different demand scenarios. This study can be used in capacity expansion decisions to 

evaluate the alternative configurations [31]. 

Stray et al. (2006) developed a model for global logistics and resource optimization 

in a semiconductor manufacturing operation. It aimed at resource allocation and strategic 

decisions for long-term planning in the industry. Various parameters, such as product 

manufacturing area, the opening of new facilities, adding new tools, and subcontract, were 

decided. This paper discusses the problem i.e., the allocation of products to wafer 

fabrication facilities and routing the wafers with the integrated circuits for testing. The 

processed wafers are cut into individual chips and put in a package. A package is a frame 

that is designed to protect the chip and provide a connection between the chip and the 

excess testing and classification which are later routed to the final test facilities. This paper 

demonstrated a mixed-integer programming (MIP) model that maximizes sales revenue 

subtracting the production, transportation, and acquisition costs of a semiconductor 

manufacturing firm subjected to demand and capacity constraints. Decision variables 

include what to produce, where to produce, production quantity, what facilities should be 
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built/closed, and what equipment should be purchased/sold [32]. 

Catay et al. (2006) studied the strategic level investment decisions for obtaining an 

overall level of capacity planning and new equipment. The problem of wafer production 

planning within a single facility over multiple time periods is observed. This problem is 

addressed by using the multi-period MIP model. The demand forecast values of each wafer 

type for each period are known. This model minimizes the machine tool operating costs, 

inventory holding costs, and new tool acquisition costs. Lagrangian based relaxation 

heuristic is used to find the effective plans for procuring tools [33]. 

Mönch and Ziarnetzky (2016) presented a production planning formulation in a 

simplified semiconductor supply chain based on clearing functions. The semiconductor 

supply chain comprises of a single front-end and back-end facility. The objective function 

described in this paper is based on cost. The parameter of this model is the minimum 

utilization of expensive bottleneck machines in the front-end facility, the less expensive 

capacity of the back-end facility can be increased to reduce the cycle time in the backend 

facility. The release schedules obtained from the planning formulations are evaluated using 

discrete-event simulation. To determine proper capacity expansion levels for the back end 

and appropriate minimum utilization levels for the front-end bottleneck machines. The 

results of the experiments indicate that the profit can be increased by maintaining the 

maximum possible cycle time [34]. 

2.7 Modeling Sustainability for Production Planning 

Production planning with the consideration of environmental cost impacts has 

become a growing segment of the overall effort to gain competitive excellence in the 

market. There is an increasing awareness of the environmental costs, such as pollution 
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charges and resource conservation fees, which must be considered in the production 

planning scheme in an uncertain environment. Many production planning and control may 

not be able to address the upcoming issues of potential costs for pollution charges and 

resource conservation fees.  

The concept of sustainable development supposes the realization of the objectives 

connected to the economic growth and the environment. Reiborn et al. (1999) proposed 

that in the long run, the investments in the systems for environmental management are less 

than the benefits of the firms. The importance of the problems connected with 

environmental protection and pollution prevention is a stimulus for research in 

mathematical modeling of production processes [35]. 

Rădulescu et al. (2009) formulated several optimal production planning models 

considering various environmental constraints. This paper presented two stochastic 

programming problems, a maximum expected return problem, and a minimum pollution 

risk problem. This paper formulated a multi-objective programming approach with suitable 

constraints on pollutant emissions for production processes. Each model had two 

optimization problems, namely, minimum pollution risk and maximum expected return. 

This model is investigated by considering various cases of contamination levels, i.e., 

desired, critical and acceptable levels of textile plant emissions [36]. 

Environmental issues play an essential role in the normal activities of business 

firms. Decisions on production planning, allocation, location, logistics and inventory 

control will change due to consumer pressures or legal requirements to reduce waste and 

emissions. Therefore, there is a need to adopt OR tools such as production planning 

algorithms, location models and routing heuristics to deal adequately with a new situation 
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requiring ‘green supply chain modeling.’ The production-distribution-consumption 

process is a source of well-known Operational Research applications such as network 

optimization and routing, production planning and scheduling, inventory control, etc. 

These applications can be examined to see how environmental issues can be effectively 

integrated and how this integration influences model structure and solution methods. Pirila 

et al. (1994) studied emission-oriented production planning in the Finnish pulp and paper 

industry. Their production planning model is a large multiple-period linear programming. 

Integration of environmental impacts within this model leads to alternative strategies, 

including process choices, recovery of waste products, etc. [37]. Haasis (1994) studied 

production planning and control of less emitting production systems. The methodologies 

used are based on dynamic programming, priority-based heuristics and neural networks 

(machine learning) [38]. 

 Golari et al. (2017) presented a multi-period, production-inventory planning model 

in a multi-plant manufacturing system powered with onsite and grid renewable energy. The 

model is to determine the stock level, the production quantity, and the renewable energy 

supply in each period such that the production cost (including energy) is minimized. Three 

steps are used to tackle decision problems. First, a deterministic planning model to attain 

the desired green energy penetration level is presented. Next, the deterministic model is 

extended to a multistage stochastic optimization model considering the uncertainties of 

renewables. Finally, an efficient modified Benders decomposition algorithm is developed 

to search for the optimal production schedule. Numerical experiments are presented to 

validate and verify the model integrity. The paper also discusses and justifies the potential 

of realizing high-level renewables penetration in large manufacturing system [39]. 
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 Chaabane and Geramianfar’s (2015) multi-objective decision-making framework 

for sustainable supply chain optimization network consists of production plants, 

distribution centers and retailers (customers). A multi-product and multi-period planning 

model are described, and the sustainability was evaluated based on three performances: 

cost, GHG emissions, and service level. This model was tested on a Frozen Food industry. 

Preliminary results showed that the three objectives are conflicting. They proposed that 

just in time distribution might increase total cost but reduce GHG emissions due to the best 

control of inventories at distribution centers and retailers. The decision-making model 

helps to identify the trade-off between the three conflicting objectives and take the best 

decisions to achieve sustainability objectives of the supply chain [40]. 

Zhang and Xu (2013) researched on multi-item production planning problem with 

carbon cap and trade mechanism where a firm uses a standard capacity and carbon emission 

quota to produce multiple products. This analysis satisfies the stochastic independent 

demands, and on a trading market of carbon emission, the firm can buy or sell the right for 

carbon emissions. A profit-maximization model that analyses the carbon trading decisions 

and policy of production is designed. This paper presents an efficient solution with linear 

computational complexity for solving the optimal solution [41]. 

Helmrich et al. (2015) considered a generalization of the lot-sizing problem with 

the emission capacity constraint. There are emissions associated with production, setting 

up the production process and keeping inventory. This paper describes that NP-hard is lot-

sizing with an emission capacity constraint. The algorithm mentioned in this journal can 

handle a fixed-plus-linear cost structure, more general concave cost, and emission 

functions. Initially, a Lagrangian heuristic is demonstrated to provide a feasible solution 
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and the lower bound for the problem. A pseudo-polynomial algorithm is presented to fulfill 

the costs and emissions. This analysis can also be used to identify the complete set of Pareto 

optimal solutions of the bi-objective lot-sizing problem [42]. 

Ziarnetzky et al. (2017) developed a model considering the elements of a 

sustainable and distributed generation system into a mid-term production planning 

formulation for a wafer fab. The generation system included the Wind turbines (WTs), 

solar photovoltaics (PVs), a substation with grid access, and a net metering system. The 

major daily energy supply of the wafer fab is from the WTs and solar PVs. Surplus energy 

is then returned to the main grid. Production-related costs, the cost for energy from the 

substation, and penalty costs when there is a lack of the renewable energy penetration were 

considered, and they could be reduced by offering renewable surplus energy to the main 

grid. A simulated environment was created to run the obtained production plans to compute 

the expected profit in the face of machine breakdowns, wind power volatility, and uncertain 

power output of the solar PVs. This approach helps to determine an appropriate number of 

WTs and solar PVs for a given demand scenario. The results showed that it is reasonable 

to combine production-related decisions and decisions for the design of a DG system [6]. 

From the above literature review, the increased market requirement has resulted in 

the increase of total energy consumption for the semiconductor wafer fab. The energy use 

required for operating semiconductor wafer fab and their processes is very high. This is 

also one of the major concerns to production power reliability, cost-cutting efforts, and to 

reduce the environmental impact. It is important to develop optimization model on energy 

use and assess energy saving potentials in a long run. In the next chapter, different methods 

are presented to calculate the energy consumption in a semiconductor wafer fab by 
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considering various performance metrics. This energy consumption allows us to calculate 

the total amount of carbon dioxide released into the air. MIMAC model is used for the 

simulation.
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3. METHODOLOGY 

This chapter presents two modeling methods to characterize a wafer fab’s electrical 

energy consumption using various performance metrics produced by the traditional 

capacity simulation model. The first modeling method, an abstract modeling approach 

called the kWh-WIP, estimates the electricity consumption using throughput, cycle time, 

work-in-process and production efficiency index. The second modeling method, a more 

detailed modeling approach called the kWh-Tool, estimates the electricity consumption 

using tool utilization.  

The MIMAC data set is used as the basis for the capacity simulations of this thesis 

work. The dataset represents 200mm wafer fab processes. The increase in demand for 

analog, RF chips and MEMS causes a shortage for the capacity and equipment in 200mm 

fab. This situation raises the need for energy efficiency and capacity planning for the 

200mm fabs to meet their demand. The MIMAC simulation model and the methodologies 

to analyze the energy consumption and performance metrics for both levels of details are 

discussed in detail in this chapter.  
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3.1 List of Variables and Parameters 

 Variables:  

Variables Description Units 

TĤ Average wafer starts per year or demand of the fab pieces 

WIP̂ Average WIP lots at the end of period T lots 

CT̂ Average Cycle Time during period T minutes 

UOP̂ Average Units of Production millions 

L̂ Annual Electricity Consumption of the fab kWh 

PEÎ Computed PEI from simulation results kWh/cm2 

EUÎ  Computed EUI from simulation results kWh/UOP 

eup,î  Electricity Consumption of Tool i at Up State in period T kWh 

edown,î  Electricity Consumption of Tool i at Down State in period T kWh 

eidle,î Electricity Consumption of Tool i at Idle State in period T kWh 

Sup,i
̂  Average Up percent for tool i in period T % 

Sdown,i
̂  Average Down percent for tool i in period T % 

Sidle,î Average Idle percent for tool i in period T % 

Lup̂ Total Power Consumption during Up time kWh 

Ldown̂ Total Power Consumption during Down time kWh 

LIdlê Total Power Consumption during Idle time kWh 

FCE Annual Fab Carbon Emissions MTons/year 

 

 Parameters:  

Parameters Description Value Units 
A Wafer Area 314.22 cm2 

M Wafer Mask Layers 8.5 - 10 nos. 

PEI Theoretical PEI 1.312 kWh/cm2 

WLSPY Wafer Lot Starts per year Lots * 52 lots 

WSPY or TH Wafer Starts per year WSPLY * 48 pieces 

T Length of Simulation Run 8,760 hours 

CO2 Range of Carbon Dioxide Emissions 0.6 -0.9 kg/kWh 
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3.2 Capacity Performance Measures 

 Cycle Time (CT):  

Cycle time can be defined as the average time from release of the job at the 

beginning of the routing until it reaches an inventory point at the end of the routing or time 

that part spends as a work in progress [31]. It can also be defined as the time taken to 

complete the production of one unit from the beginning to end.  

 Throughput (TH): 

For a production line, throughput is defined as the average quantity of good parts 

produced per unit time [31]. 

 Work-in-Process (WIP):  

Work-in-Process is defined as the inventory between the start and end points of a 

product routing. It can be used as one parameter to calculate and measure efficiency [31]. 

 Little’s Law: 

Little’s law describes the essential relationships among WIP, CT, and TH. The 

power of Little’s law lies in its ability to influence team behavior with its underlying 

constraints [31]. It helps the user to use a given scale to benchmark actual production 

systems. For instance, to increase the throughput of a production line limit the WIP in the 

system or speed up the process to once again limit the WIP. The fundamental relationship 

between WIP, CT, and TH over the long-term is: 

WIP = TH × CT (1) 
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 Units of Production (in millions): 

The units of production (UOP) of a fab are defined as: 

UOP = TH × A × M (2) 

The number of mask layers is used to represent the complexity of production. 

Number of masks is directly proportional to the number of processes required to produce 

a wafer. Considering the throughput or wafer starts (TH), wafer surface area (A), and an 

average number of mask layers (M), Units of Production (UOP) gives a good estimate of 

the total production capability of a wafer fab [45]. 

3.3 Electricity Consumption Metrics 

The characterization of power consumption of a wafer fab is defined by the 

following performance metrics. 

1. Production Efficiency Index (PEI) 

2. Electrical Utilization Index (EUI) 

The performance metrics can also be used to track the efficiency trends associated 

with products that are evolving. These efficiency indicators are largely defined using 

normalization methods, i.e., dividing electric power consumption of the wafer plants or 

tools by a unit measuring the scales of wafer production (e.g., number of units or wafer 

area).  
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 Production Efficiency Index: 

Production Efficiency Index (PEI with a unit of kWh/cm2) is defined as a fab’s total 

annual electricity consumption divided by its total wafer surface area produced. It 

represents the energy efficiency of a fab without including the complexity of the wafer 

production, but the physical scales of wafer area are processed. 

PEI =  
L

TH  ×  A
 

(3) 

 Electrical Utilization Index:  

Electrical Utilization Index (EUI with a unit of kWh/UOP) is defined as a fab’s total 

annual electric power consumption divided by its annual UOP. EUI quantifies the energy 

efficiency of how a fab uses electric power consumption for wafer production, which 

considers the wafer process complexity. 

EUI =  
L

UOP
  (4) 

3.4 Comparison of PEI and EUI 

PEI and EUI are defined to quantify and compare the energy efficiency of the fabs. 

The efficiency trends associated with products evolving over time can be tracked by using 

the above-mentioned performance metrics. These performance indicators are normalized 

based on dividing electric power consumption of the wafer plants or tools by the number 

of units or wafer area. Notably, PEI is similar to EUI except that the number of mask layers 

is not considered. The mask layers define the complexity of the processes. The number of 

mask layers is proportional to the number of processes required to produce a wafer. 

Therefore, PEI index does not represent the complexity of the product, only the quantity of 

wafer area [45]. 
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3.5 Capacity Model for Electrical Power Consumption Estimation using WIP Lot 

Data (kWh-WIP) 

The model presented by formulas in Equations (1) -(7) calculates power 

consumption by using WIP-lot data, UOP and PEI values. 

 

 kWh-WIP Model: 

UOP̂ =  
WIP̂

CT̂
× A × M 

(5) 

 

L̂ (kWh) = PEI × TĤ × A (6) 

 

L ̂(MW) =  
L̂(kWh)

T
 

(7) 

where T is the number of hours in the simulation run.  

In Equation (5), WIP̂ represents the average number of lots that are being processed 

during a simulation run. This is a critical input for energy consumption calculations. Using 

Little’s Law in Equation (1), average cycle time gives average throughput. Therefore, the 

units of production for this particular fab model is computed based on the wafer area and 

the number of mask layers in this process. With electric energy consumption guidelines for 

WIP and the selected optimal PEI value, the computed throughput TĤ, and wafer area 

energy consumption of the fab is calculated. The total annual power consumption of the 

fab L̂ (kWh) is computed from equation (6). Equation (7) represents the load of the fab in 

MW. This value is obtained from computed load L̂ (kWh) divided by the simulation period 
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in hours. Furthermore, other performance parameters like EUI is computed with the 

theoretical PEI and wafer mask layers (M). 

3.6 Capacity Model for Electrical Power Consumption Estimation using Tool-level 

Utilization (kWh-Tool) 

This method in Equations (8) -(13) estimates the energy consumption of a wafer 

fab by analyzing the energy utilization of each station-process.  

 kWh-Tool Model: 

Lup̂ = ∑ ∑ eup,î × Sup,i
̂

72

𝑖𝑇

 

(8) 

 

Lidlê = ∑ ∑ eidle,î × Sidle,î

72

𝑖𝑇

 

(9) 

  

Ldown̂ = ∑ ∑ edown,î × Sdown,i
̂

72

𝑖𝑇

 

(10) 

                                    

L̂ =  L𝑢𝑝̂ + L𝑑𝑜𝑤𝑛̂ + L𝑖𝑑𝑙𝑒̂ (11) 

Where L̂ is the annual power consumption of the fab  

                                                            

PEI ̂ =
L̂

TH × M
 

(12) 

Where TH is the throughput or the wafer starts per year of the fab.  
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EUI ̂ =  
PEI ̂

M
 

(13) 

where M is the wafer mask layers. 

This project considers three states: 

 Idle State: The percent of the time when the station is available and awaiting a 

process to start. 

 Down State: The percent of the time when the station is unavailable for processing 

or requires repair or maintenance. 

 Uptime State: The percent of the time spent in processing and sum of all the other 

states except idle and down. 

This research assumes that these states do not consume an equal amount of power. 

In other words, each station consumes different percent of power at different states, highest 

being processing. As per our analysis, the Uptime State consumes 100%, Idle State 

consumes 90%, and Down State consumes 75% of the station energy allocation [43] [44]. 

After running the simulation model for a definite period, the average state (Down, 

Idle, and Up) % values are recorded over period T. With equations (8), (9) and (10), the 

recorded average states (%) for a tool ‘i’ is multiplied with the power consumption 

allocation of tool ‘i’ for that particular state.  eup,î  , edown,î  , and eidle,î are the energy 

consumption of tool ‘i’ at states up, down and idle respectively. Lup̂, Ldown̂, and Lidlê is the 

sum of energy consumption for all tools in up, down and idle states respectively. 

Equation (11) represents the overall power consumption calculation, with L̂ 

denoting the overall fab load per year and corresponding load for different tool states. 

Equation (12) defines the Performance Efficiency Index (PEÎ) calculation for kWh-Tool 
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methodology. In this equation, ‘TH’ is the capacity or defined as wafer starts per year of 

the fab, and ‘M’ is wafer masks layers. With the annual power consumption of the fab and 

the wafer area with demand, the PEI metric is computed. Further, Electrical Utilization 

Index EUÎ  is defined in equation (13), with (PEÎ) divided by the number of mask layers. 

The goal is to show the relationship between theoretical PEI and computed PEÎ; to validate 

the kWh-Tool methodology. 

3.7 Carbon Dioxide Emission Calculation 

In order to supply the calculated amount of electricity, the amount of carbon dioxide 

released by fossil fuel-fired power plants, etc. is estimated to be 180–360 metric tons per 

day. This estimation is made based on the factor that 0.6–0.9 Kg is released when 1 kWh 

electricity is produced from a fossil fuel-fired power plant [2]. Assuming the carbon 

emission to be 0.6-0.9 kg for 1 kWh of electric energy, equation (14) calculates the annual 

carbon emission is calculated for every fab type expressed in terms of metric tons per year.  

FCE (
𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑜𝑛𝑠 

𝑦𝑒𝑎𝑟
) =  CO2 × L̂ 

(14) 

 

Where, FCE is the amount of carbon emissions recorded by the fab in a year (in 

metric tons per year) and   

CO2 emission range vs. power consumption is set between = 0.6 − 0.9 Kg/kWh 

3.8 Description of Simulation Model 

The MIMAC was a joint project of JESSI/MST and SEMATECH to identify and 

measure the effects and interactions of major factors that cause a loss in fab efficiency 

(Fowler and Robinson, 1995) [46]. This research uses the MIMAC reference model to 
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analyze the electricity utilization in a 200mm semiconductor wafer fab. Inputs and outputs 

for the model are shown in Figure 5. 

 

 

 

 

 

 

Figure 5 Inputs and Outputs for the MIMAC Model 

Nine different fab scenarios are identified based on wafer starts per year and 

product mixes with the MIMAC dataset. The demand for the fab is represented by wafer 

starts per year. The product mixes correspond to the ratio of production between Part A vs. 

Part B. The technology usage and MIMAC simulation model set up is discussed in section 

3.10.  

The MIMAC dataset comprises 71 station families and 220 stations. These station 

families include Lithography, Annealing, ECP, CMP, Etching, Deposition, Photo-resist 

strip, wafer clean and implant. Table 1 summarizes the station family to process mapping. 

Figure 6 depicts the number of stations per station family. 

Inputs 

Tools 

Routing 

Part 

Options 

Order 

Setup 

 

MIMAC     

AutoSched 

Outputs 

Cycle Time  

WIP lots 

Processing % 

Down % 

Idle % 

Station Use 
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Table 1 Station Family –Process Mapping 

 

 

1. Implant  2. Deposition 3. Etching 

 GENUS 

 HIGH_CURREN

T_IMP 

 IMPLANT_OX 

 MED_CURRENT

_IMP 

 POLY_DOPE 

 VARIAN 

 BPSG 

 DELAMINATOR 

 LAMINATOR 

 LTO 

 OXIDE_1 

 SILICIDE_TOOL 

 AME_8310 

 AME_8330 

 E_SINK 

 MATRIX 

 OXIDE_LAM 

 POLY_LAM 

 RAINBOW_4500 

4. ECP 5. Wafer Clean 6. Lithography 

 ANELVA 

 BARRIER_OX 

 CD_MACH 

 DRIVE_OX 

 FIELD_OX 

 FINAL_VISUAL 

 GATE 

 INTERGATE 

 LASER_SCRIBE 

 LEITZ_ETCH 

 LEITZ_LITHO 

 NANOSPEC 

 NITRIDE 

 PEAK 

 POLY_DEP 

 PROMETRIX 

 QUAESTAR 

 DIFF_SINK1 

 DIFF_SINK2 

 DIFF_SINK3 

 DIFF_SINK4 

 DIFF_SINK5 

 DIFF_SINK6 

 DIFF_SINK7 

 DIFF_SINK8 

 FSI 

 METAL_SINK 

 SINK_22_BOE 

 SINK_22_CAROS 

 SINK_24_BOE 

 SINK_24_CAROS 

 ULTRASONIC_C

LEAN 

 ULTRASONIC_T

OOL 

 ALIGNER 

 CRIT_COAT 

 CRIT_DEV 

 NONCRIT_COAT 

 NONCRIT_DEV 

 SECOND_MASK 

 STEPPER 

 VAPOR_PRIME_O

VEN 

 NEW_STEPPER 

7. Annealing 8. Photo-Resist Strip 9. CMP 

 ALLOY 

 REFLOW 

 UV_BAKE 

 UV_BAKE_BAC

KEND 

 VWR_OVEN 

 BRANSON 

 STRIPPER 

 BACKGRIND 
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Figure 6 Number of tools in each process 

 The MIMAC model mimics the real-world production line, so it incorporates 

variability and uncertainty factors of the stations, such as the breakdowns, setups, 

preventive maintenance, among others. These states are represented in percentages and 

include Processing, Down, Idle, Setup, Aborted, Preventive Maintenance, etc. 

Precise mapping of the station’s electricity consumption is required to generate 

results with minimal or no discrepancy. The electric consumption per station mapping is 

done thoroughly based on Krishnan et al. [47]. The station family’s power consumption 

value is divided by the number of stations to compute a single station’s power consumption. 

Figure 7 shows the electricity demands distribution based on the research in Krishnan et 

al. [47]. 

It can be seen that process tool accounts almost 61%, and the facility system 

accounts for the remaining 39% of the total power consumption in the fabs. Strip, ECP, 
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and CMP are the top 3 major processes that require more electricity. All deposition 

processes use plasma to clean residues from chamber walls in between deposition steps. 

Electricity consumption at the facility is driven by clean-room air cooling and airflow 

(which includes purification), followed by process cooling water (PCW) pumping and 

cooling, and ultrapure water (UPW) purification systems. 39% of facilities include PCW, 

UPW, cleanroom air cooling, burn box, fluoride treat, AWN, cleanroom airflow, and 

lightning.  

 

Figure 7 Fab Electricity Consumption [47] 

Each station is then associated with the corresponding power consumption values 

at different states (Up, Down & Idle). As discussed earlier, each of these stations consumes 

power depending on the type of state it is present. For example, a station at upstate 

consumes 100% of station power, at idle state consumes 90% of station power and at 

downstate consumes 75% of station power.  
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3.9 Selection of Optimal PEI value 

Hu et al. [12] characterized the energy consumption for several wafer fabs with 

different UOPs. The MIMAC simulation analyzed in this paper is similar to the fab 

performance metrics considered for a 200mm wafer fab and 9 different fab profiles. This 

paper thus assumes that the PEI for the MIMAC model is 1.213 kWh/cm2, as in the 

150/200mm wafer fab study in Taiwan 1999. 

Table 2 Wafer Fab Production and Energy Indices [9] 

 300mm 150/200 mm 150/200mm 200mm 300mm 

Fab location/year 
Taiwan 

2007 
Taiwan 1999 

Worldwide 

1999 

Worldwid

e 2007 

Worldwide 

2007 

Total number of 

fabs 
4 9 14 5 5 

Annual UOP 

value (in millions) 
14,552 313 299 4178 5666 

EUI (kWh/UOP) 0.027 0.058 0.0609 0.0477 0.0461 

PEI (kWh/cm2) 0.743 1.213 1.15 1.295 2.133 

 

3.10 Simulation Process 

As discussed in section 3.5, the MIMAC dataset is built on AutoSched discrete 

event simulation platform. AutoSched is a finite capacity planning and scheduling tool that 

helps to increase throughput, reduce the in-process inventory and increase equipment and 

personnel utilization. It uses AutoMOD system simulation as a foundation because this 

provides 3D graphics, discrete event simulation environment, and material handling.  
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In a model, information about the factory operations is divided into three general 

categories; resources, products, and demand. Resources consist of the items used to 

manufacture the desired parts. The primary resources considered in the model include 

stations and operators. As explained in the previous sections, the model incorporates 71 

station family and 220 stations/tools in the production lines. The processing times at the 

work centers/stations are deterministic and depend on the number of wafer in a lot. Goods 

manufactured by the factory are called as products, and lots consisting of 48 wafers are the 

moving entities in the designed wafer fab. Even though traditional wafer fabrication 

facilities use 25 wafers per lot, the MIMAC data set is designed with 48 wafers in a lot. 

This increase in lot size would accommodate the growing demand and satisfy the need to 

increase the capacity of fab.  Essential information about the products is incorporated into 

the model such as parts, route, and bill of materials. The parts file describes the type of 

product manufactured. The routing methodology includes the station routing logic that 

particular part type follows. And the bill of materials describes the consumption of sub-

parts.  

Some of the semiconductor manufacturing characteristics such as unreliable, 

parallel stations, reentrant flows, sequence set-up times, batch processing are considered. 

In this model, batch processing is termed as a group of lots that are processed at the same 

time on a single machine. The batch processing stations have a minimum and maximum 

batch sizes where only lots of the same product and at the same operation can be batched 

together. Two products (Part A and Part B) are modeled with 200 operations completion. 

The model contains over 200 stations in a production line, which are structured in and 

around 70 work centers. A rapid material transfer between the stations with successive 
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operations is assumed. Also, the stations follow a First-In-First-Out (FIFO) dispatching 

rule. The Mean Time Between Failures (MTBF) of the stations are considered as an 

individual or unrelated event, therefore breakdowns are modeled with an exponential 

distribution.  

Demand information is incorporated in the model in terms of orders and describes 

a group of lots. The demand information or wafer starts per year of the fab is represented 

as repeats value and product mixes. The repeats value in minutes is obtained based on 

product mix and demand plan. This value is fed as an input to the model. The simulation 

length and replications are defined based on the snap length and number of snaps in the 

model.  

The performance reports include the parameters recorded from the simulation 

model execution. The parameters include station utilization (Idle%, Downtime%, 

Processing%, etc.), average lots per week, average cycle times. The results from the 

simulation model are used with the equations described in earlier sections to compute the 

annual power consumption and other performance metrics using kWh-WIP and kWh-Tool 

methodologies. Figure 8 illustrates the overview of the computational process. 
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Figure 8 Simulation Process 
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4. RESULTS AND DISCUSSIONS 

In this chapter, simulation results and computed performance metrics for both 

methodologies are discussed and compared by performing Design of Experiments. The 

results from the simulation are used to compute the annual power consumption and carbon 

dioxide emissions. Different fab profiles are generated based on factors, such as wafer 

starts per year and product mix, and the proposed methodologies are applied to each of 

them. 

4.1 Design of Experiments 

The design of experiments considered two factors, namely Wafer Starts per Year 

and Product Mix.  

 Wafer lots starts per year: This factor describes the fab’s capacity and the annual 

demand and its units are expressed in pieces.  

 Product Mix: This factor represents the ratio of Part A vs. Part B manufactured for a 

particular demand. The simulation model is built based on a manufacturing line that 

handles two types of parts or wafers. Each type of wafer has a particular set of processes 

and routing defined in the model. Varying this factor changes the number of processing 

steps that will be required to complete the required product demand, thus increasing 

the total cycle time.  
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Total of nine scenarios or fabs were identified based on wafer lots starts per year 

and product mixes. Table 3 shows the scenarios concerning the different factor 

combinations considered. 

Table 3 Fab Profile Definition  

Fab Scenario WLSPY (Lots) 

Product Mix 

Part A Part B 

A1 2610 50% 50% 

A2 2610 100% 0% 

A3 2610 25% 75% 

B1 2755 50% 50% 

B2 2755 100% 0% 

B3 2755 25% 75% 

C1 2900 50% 50% 

C2 2900 100% 0% 

C3 2900 25% 75% 

 

The notations A, B, and C represent three types of wafer lot starts per year namely 

2610, 2755 and 2910 respectively. Further, the notations 1, 2, and 3 represent product 

mixes 50-50%, 100%-0%, and 25%-75% product mixes respectively.  
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4.2 Design of Simulation Experiment 

Scenarios are differentiated in the simulation model by a repeats factor represented 

in minutes. The repeats are calculated based on wafer lots per year (demand), and the 

product mixes are fed as input to the simulation model. The repeats represent the inter-

arrival times between the parts that are introduced into the system. As mentioned, these 

repeats or inter-arrival are calculated based on the demand plan scenario. Table 4 below 

represents the repeats value for part A and Part B based on a wafer lot starts per year and 

product mix. 

Table 4 Repeats Calculation for Each Scenario or Fab Type 

WLPY WLSPY Product Mix: 

50%-50% 

Product Mix: 

 100%-0% 

Product Mix: 

 25%-75% 

RPT_A 

(mins) 

RPT_B 

(mins) 

RPT_A 

(mins) 

RPT_B 

(mins) 

RPT_A  

(mins) 

RPT_B 

(mins) 

2755 132240 381.56 381.56 190.78 5,080,320 763.12 254.37 

2610 125280 402.76 402.76 201.38 5,080,320 805.52 268.51 

2900 139200 362.48 362.48 181.24 5,080,320 724.97 241.66 

 

The length of each simulation replication is one week, and the model is replicated 

250 times. The replications are independent to each another. A higher repeats value is 

considered for a scenario with a product mix of 0%. In other words, a value close to twice 

the length of the simulation run is considered to ensure that the product is never released. 

For instance, the total length of the simulation is 250 weeks, and it corresponds to 

2,520,000 minutes. The repeats value for a product mix of 0% would be twice of this, as 

seen in the above table. 
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4.3 Results for the kWh-WIP 

As discussed in the earlier chapter, the Capacity Model for Power Consumption 

Estimation using WIP-Lot Data (kWh-WIP) method is used to represent energy 

consumption of a wafer fab by analyzing the energy utilization of each process in a 

semiconductor wafer fab. The WIP lot results obtained from the simulation model are 

analyzed based on the performance indices. The length of simulation is one week, and each 

scenario or fab type is run for 248 weeks or snaps. Figure 9 captures WIP lots recorded for 

each simulation replication for all the fab types. 

 

Figure 9 WIP lots recorded across scenario runs for every fab type 
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The above figure shows the WIP lots recorded between each replication for all fabs 

considered. The lines with non-increasing trend represent stable simulations, thus, for the 

considered WLSPY and product mix, the scenario is feasible. One of the Fab C3 records a 

higher or increasing line, which denotes that the simulation runs are unstable, and the 

bottleneck utilization recorded is over 100%.  

With the equations established and explained in Chapter 3, as part of this proposed 

methodology power consumption and other performance metrics are calculated. In the 

below pages, Tables 5 describes the power calculation for the methodology and Tables 6 

and 7 defines the EUI and PEI calculation for this methodology. A cycle time factor is 

established to convert WIP lots per week to WIP lots starts per year. The cycle time 

recorded in minutes as an average of all 248 replications is defined as the time taken to 

produce the desired lots per week.  



 
 

Table 5 Power Consumption Calculation for the kWh-WIP method 

 

 
Fab A1 Fab A2 Fab A3 Fab B1 Fab B2 Fab B3 Fab C1 Fab C2 Fab C3 

Weeks 
248 248 248 248 248 248 248 248 248 

IS 

SIMULATION 

RUN STABLE 

(Y/N)? 

Y Y Y Y Y Y Y Y N 

WIP Lots per 

Week 
162.0 133.4 185.4 174.5 141.1 329.9 196.0 150.8 892.7 

Avg. CT (mins) 
3.2 2.7 3.7 3.3 2.7 6.3 3.39 2.62 15.5 

CT in weeks 
50.3 49.4 50.1 53.0 52.4 52.8 57.8 57.6 57.7 

Throughput 
2615.3 2568.9 2605.9 2758.1 2727.1 2744.8 3007.2 2993.4 3002.5 

Wafers per Lot 

(pieces) 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 

Mask Layers 
8.5 7.0 9.3 8.5 7.0 9.3 8.5 7.0 9.3 

Wafer Area (cm2) 
314.2 314.2 314.2 314.2 314.2 314.2 314.2 314.2 314.2 

WSPY 
125536.5 123306.6 125083.6 132390.3 130899.1 131750.3 144343.4 143685.5 144122.3 

UOP (in Millions)  
335.2M 271.1M 363.4M 353.5M 287.8M 382.8M 385.4M 316M 418.8M 

5
2
 



 

 
 

Table 6 PEI Analysis for the kWh-WIP method 

 
Fab 

A1 

Fab 

A2 

Fab 

A3 

Fab 

B1 

Fab 

B2 

Fab 

B3 

Fab 

C1 

Fab 

C2 

Fab 

C3 

Theoretical 

PEI 
1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.213 

Total 

Consumption 

(MWh) 

47,838 46,989 47,666 50,450 49,882 50,206 55,005 54,755 54,921 

Load (MW) 5.5 5.4 5.4 5.8 5.7 5.7 6.3 6.3 6.3 

 

Table 7 EUI Analysis for the kWh-WIP method 

 Fab 

A1 

Fab 

A2 
Fab A3 

Fab 

B1 

Fab 

B2 

Fab 

B3 

Fab 

C1 

Fab 

C2 

Fab 

C3 

EUI 
0.143 0.173 0.131 0.143 0.173 0.131 0.143 0.173 0.131 

Total Power 

Consumption 

(MWh) 

47,838 46,989 47,666 50,450 49,882 50,206 55,005 54,755 54,921 

Load (MW) 
5.5 5.4 5.4 5.8 5.7 5.7 6.3 6.3 6.3 

5
3
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4.4 Results for the kWh-Tool 

This methodology analyzes the tool-process utilization and aims to compute the annual 

power consumption and performance metrics of the fabs. Tool-level energy consumption is 

estimated based on tool-process mapping and the optimal PEI value selection. Like the kWh-WIP 

method, this method also aims to calculate annual power consumption and performance metrics 

for the identified nine fab types.  

The study assumes three states namely, Up State, Down state and Idle State in the 

percentage of the time. Apart from the above-mentioned equipment states, the simulation model 

also records states such as starving, blocked, and collecting. To simplify the constraints, this study 

assumes these states to be a part of uptime states. Overall, the three states add up to a total of 100%. 

Efficiency factors of the tools/stations are difficult to obtain or estimate. Upon intensive research, 

the efficiency factors are assumed for each state of the tools. For example, Uptime consumes 

100%, idle state consumes 90% and down state consumes 75% of the total tool power consumption 

value respectively.  

The tables summarizing the detailed simulation results by tool level are shown in Appendix 

A, Tables A1-A9. The model displays the station-process state utilization percentage recorded over 

a period of one week (as one replication length is one week, and the model is run for 248 weeks). 

The values are represented in percentage and is the average of 248 replications or weeks. 
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4.5 Comparison between kWh-WIP vs. kWh-Tool 

With the equations established and explained in Chapter 3 as a part of this proposed 

methodology, power consumption and other performance metrics are calculated. Table 8 compares 

the fab profiles with computed annual power consumption and performance metrics values using 

the kWh-WIP and the kWh-Tool simulation methods. Table 9 summarizes the annual power 

consumption values of these two methods, and figure 10 depicts the same results. The findings are 

summarized below: 

 The annual power consumption values calculated from kWh-WIP is slightly higher 

compared to kWh-Tool. 

 Power consumption calculation in both methodologies increases with wafer starts per year. 

This is a factor for the validation of the simulation model and methodology. 

 In both the methodologies, the product mixes 50%-50% and 25%-75% have higher power 

consumption values compared to the product mix 100%-0%.  This gives us an estimate that 

stations or processes involved with part B manufacturing consume higher power. 

 kWh-WIP gives higher estimates of power consumption for the 50%-50% product mixes 

when compared to the other fab type with similar wafer starts per year i.e. the energy 

consumption decreases when the product mix is changed from 50%-50% for a particular 

WSPY fab type. However, the same behavior is not observed consistently with kWh-Tool 

as the value tends to slightly increase for 25%-75% product mix. An exception to this is 

Fabs C1, C2 and C3 with the product mix 50%-50%, where a higher value is observed 

compared to others. This inconsistency is due to the energy efficiency and power 

consumption estimate of tools.



 

 
 

 

Table 8 Fab Profile Comparison 

 

 

 

Fab 

Wafer 

Diameter 

(mm) 

Wafer 

Lots 

Starts 

Per 

Year 

Wafer 

Starts 

per 

year 

Wafe

r 

mask 

layer

s 

Wafer 

Area 

(cm2) 

kWh-WIP kWh-Tool 

Wafer 

Starts 

per year 

UOP  

Annual 

Power 

Consumption 

(kWh) 

PEI EUI 

Annual 

Power 

Consumption 

(kWh) 

PEI EUI 

A1 200 2610 125280 8.5 314.16 125536 335,226,757 47,838,942 1.21 0.14 46,522,160 1.18 0.13 

A2 200 2610 125280 7.0 314.16 123307 271,165,485 46,989,215 1.21 0.17 46,466,684 1.18 0.16 

A3 200 2610 125280 9.3 314.16 125084 363,489,595 47,666,369 1.21 0.13 46,539,040 1.18 0.12 

B1 200 2755 132240 8.5 314.16 132390 353,528,845 50,450,764 1.21 0.14 49,156,794 1.18 0.13 

B2 200 2755 132240 7.0 314.16 130899 287,862,066 49,882,500 1.21 0.17 49,091,887 1.18 0.16 

B3 200 2755 132240 9.3 314.16 131750 382,862,880 50,206,893 1.21 0.13 49,166,772 1.18 0.12 

C1 200 2900 139200 8.5 314.16 144343 385,447,835 55,005,802 1.21 0.14 53,913,742 1.23 0.13 

C2 200 2900 139200 7.0 314.16 143685 315,980,892 54,755,103 1.21 0.17 53,838,833 1.23 0.16 

C3 200 2900 139200 9.3 314.16 144122 418,815,661 54,921,577 1.21 0.13 53,863,411 1.23 0.12 

5
6
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Table 9 Annual Power Consumption values for kWh-WIP and kWh-Tool 

 

Fab PC (kWh) - kWh-WIP PC (kWh) - kWh-Tool 

Fab A1 46,522,160 47,838,942 

Fab A2 46,466,684 46,989,215 

Fab A3 46,539,040 47,666,369 

Fab B1 49,156,794 50,450,764 

Fab B2 49,091,887 49,882,500 

Fab B3 49,166,772 50,206,893 

Fab C1 53,913,742 55,005,802 

Fab C2 53,838,833 54,755,103 

Fab C3 53,863,411 54,921,577 

 

 

 

Figure 10 Annual Power Consumption for kWh-WIP and kWh-Tool 
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4.6 Error % 

Table 10 summarizes the difference in annual power consumption values between 

both the methodologies expressed in terms of error percentage. 

Table 10 Annual Power Consumption Error % between kWh-WIP and kWh-Tool  

 

 

  

 

As observed, the error estimate is less than 3% across all fab types. Below are the 

reasons identified: 

 Tool Level Power Consumption Estimate: This study included a tool process 

mapping based on intensive research and surveying. As the tool level estimates are 

difficult to obtain, the study assumed values based on strong research. Yet, there could 

be discrepancies between the simulation model tool set up and the literature available. 

 Efficiency Factors of the Station: Efficiency of each tool in the model can also be an 

important factor contributing to the variation in power consumption values. The 

efficiency factors include the tools energy consumption in different states. Tools 

consume electricity differently based on the states. For example, down and idle 

consume lower than processing state. Upon intensive research on semiconductor tool 

efficiency, this study assumed down state consuming 75% and idle state consuming 

90% of the tool electricity allocation. On the other hand, supplemental states such as 

 Error % 

Fab A1 2.75% 

Fab A2 1.11% 

Fab A3 2.37% 

Fab B1 2.56% 

Fab B2 1.58% 

Fab B3 2.07% 

Fab C1 1.99% 

Fab C2 1.67% 

Fab C3 1.93% 
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blocked, starved, collecting, etc. were assumed to be consuming the same percentage 

of electricity as the up state.  

4.7 Insights of kWh-WIP 

 kWh-WIP is based on little’s law principle. The average throughput time through a 

production system is directly proportional to average inventory based on Factory 

Physics and dynamics [31]. 

Work in Progress (WIP) = Cycle Time (CT) ∗ Throughput (TH) 

 This gives us an estimate of the number of wafer starts per year, to compute the 

power consumption. 

 An optimal Production Efficiency Index (PEI) value is required to estimate an 

accurate power consumption. On the other hand, a bad PEI value could lead to an 

inaccurate estimate of the fab’s power consumption. 

4.8 Insights of kWh-Tool 

 kWh-Tool methodology has a more in-depth level of detail incorporated in 

calculating the power consumption.  

 This methodology not only incorporates the flow of wafers in the system but also 

considers tool utilization, which is the finest level of detail in estimating the power 

consumption. 

 But there are quite a few challenges associated with this methodology. As discussed 

earlier, this methodology requires tool level energy consumption data which is 
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difficult to obtain. Also, energy efficiency factors have to be associated with the 

equipment for different states recorded by the simulation model. 

4.9 EUI Comparison   

 

Figure 11 kWh-WIP EUI vs. kWh-Tool EUI comparison 

Figure 11 shows that the EUI values for each method. Part of establishing the 

relationship between these two methodologies, the study aims to have similar EUI values. 

The EUI values associated with kWh-WIP are calculated from the assumed theoretical PEI 

and the mask layers for a particular fab type. With the power consumption calculation from 

kWh-Tool and by obtaining relevant PEI results in an EUI value closer to the kWh-WIP 

EUI. However, the slight variation is due to the computed PEI which is influenced by the 

variation in the annual power consumption values. As mentioned earlier, these values 
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depend upon mask layers which are represented by the product mixes. Thus, similar product 

mixes have similar EUI values in both the methodologies.   

4.10 Bottleneck Station Utilization Study 

Another goal of this study is to analyze the bottleneck station and the associated 

process in each fab type. The AutoSched reports for every scenario of wafer starts per year 

and product mix are analyzed to identify the bottleneck station in the processes. The station 

with lowest idle percentage is inferred as the bottleneck of the line. The lowest idle 

percentage could be due to higher station cycle times or low station availability. Below 

table summarizes the details of the bottleneck station.  

Table 11 Bottleneck Station-Process and Utilization percentage for each fab type  

Fab Utilization (%) Station Family Process 

Fab A1 
80.04% OXIDE_1 Deposition 

Fab A2 
77.80% OXIDE_1 Deposition 

Fab A3 
81.98% OXIDE_1 Deposition 

Fab B1 
90.15% STEPPER Lithography 

Fab B2 
86.54% STEPPER Lithography 

Fab B3 
94.50% STEPPER Lithography 

Fab C1 
99.35% STEPPER Lithography 

Fab C2 
94.81% STEPPER Lithography 

Fab C3 
99.46% STEPPER Lithography 
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Figure 12 Bottleneck Station Utilization for each fab type 

 The bottleneck station utilization increases with the capacity of the fab or the wafer 

starts per year 

 Fabs A1, A2 and A3 records station family OXIDE_1 corresponding to the 

Deposition process, while the remaining fabs record STEPPER associated with 

Lithography process as bottlenecks. 

 Lithography and Deposition are the critical processes in semiconductor wafer 

fabrication. With a higher utilization recorded from these stations, they also 

correspond to higher consumption of energy and emission of carbon dioxide. 

 Optimization projects could be directed towards these bottleneck stations and 

process to achieve energy efficiency and reduction in carbon emissions.  
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4.11 CO2 Emission Calculation 

The final part of this research aims to estimate and study the carbon dioxide 

emissions from the semiconductor fabs. As wafer fabrication is an energy-intensive 

process, the fabs consume a lot of electricity. In order to supply the calculated amount of 

electricity, the amount of carbon dioxide released by fossil fuel-fired power plants, etc. is 

estimated to be 180–360 metric tons per day. This estimation is made based on the factor 

that 0.6–0.9 Kg is released when 1 kWh electricity is produced from a fossil fuel-fired 

power plant [2]. Assuming the carbon emission to be 0.6-0.9 kg for 1kWh of power, the 

annual carbon emission is calculated for every fab type expressed in terms of metric tons 

per year. 

The carbon dioxide emission calculations are computed based on the annual power 

value obtained from the kWh-WIP methodology. The reason behind the preference of 

kWh-WIP over kWh-Tool is due to the variation explained earlier. Furthermore, kWh-WIP 

is a quick and accurate estimate of power consumption with minimal challenges.  
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Table 12 Carbon Dioxide Calculation for Fabs based on kWh-WIP 

Fab 
0.6 Kg/kWh 

CO2 Emissions (MTons/year) 

0.9 Kg/kWh 

CO2 Emissions (MTons/year) 

Fab A1 28,703 43,055 

Fab A2 28,194 42,290 

Fab A3 28,600 42,900 

Fab B1 30,270 45,406 

Fab B2 29,930 44,894 

Fab B3 30,124 45,186 

Fab C1 33,003 49,505 

Fab C2 32,853 49,280 

Fab C3 32,953 49,429 

 

 

Figure 13 Carbon Emissions per year visualization for the different fab types 
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As shown in Figure 13 and the results in Table 12, the carbon dioxide emissions 

increase with higher fab demand or wafer starts per year. With the computed annual power 

consumption, the carbon dioxide emissions would lie in between the lines for a particular 

fab type.  
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Semiconductor industries are highly energy-intensive. As wafer fab consumes 

about 300-400 MWh/day if electricity is generated by burning fossil fuels. The amount of 

carbon dioxide released is approximately 180–360 metric tons per day. This emission 

causes climate change, depletion of natural resources, and payment of energy cost. This 

project characterized annual power consumption for nine 200 mm Minifabs, including the 

energy used by overall fab, tools/stations, and processes through field data collection and 

performance analysis. 

 We have compared energy performance and wafer production facility that makes 

wafers in production mixes and wafer starts per year based on additional literature research, 

additional data compiling and surveying with the professionals from the semiconductor 

manufacturing industry. The average Electrical Utilization Index (EUI) and Production 

Efficiency Index (PEI) computed with kWh-Tool methodology across all nine 200 mm 

fabs considered in this study is 0.145 kWh/UOP and 1.987 kWh/cm2, respectively. The 

average annual power consumption is 44,745,707 kWh. Annual power consumption values 

calculated in kWh-WIP and kWh-Tool methodologies are closer with a variation of less 

than 3%. The PEI values for different fab type computed from the kWh-Tool methodology 

is similar to the optimal theoretical value of 1.231 (kWh/cm2). EUI values computed in 

kWh-WIP comply with the ones from kWh-Tool. Carbon dioxide calculations are done for 

kWh-WIP and it provides a ballpark estimate of emissions for a 200mm fab with assumed 

demand plans and product mix. This study suggests that using EUI in calculating energy 
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efficiency levels of MIMAC production can provide more consistent comparisons than 

using PEI alone.  

5.2 Managerial Decision Making and Impact 

The results discussed earlier calls for a rethinking of how we conceptualize and 

benchmark efficiency improvements in rapidly evolving sectors of the semiconductor 

industry. A high wafer fab load, i.e. a large number of WIP lots, results in significant energy 

and manufacturing costs. The simulation model obtains optimal release schedules to drive 

production-related and energy decisions. This analysis would drive optimization projects 

on higher energy consumption process and tools that would reduce the overall energy cost 

of the fab. Improving tool/station's energy efficiency will consume lower electric power 

and eventually result in reduced carbon emissions. As discussed in Chapter 2, a tax is 

enforced on the manufacturing facilities when it exceeds the carbon emissions limit set 

under regulations. On the other hand, if a fab is sustainable and is able to restrict the carbon 

emissions below the limits, carbon credits are awarded. These credits can be traded and 

could result in the overall reduction in operating and overhead costs of the fab. It also 

provides an opportunity for economic optimization and a sustainable facility design.   

Environmental sustainability-based business practices provide a marketing strategy 

for businesses to gain a competitive advantage in the market. Sustainable organizations are 

effective in engaging with external stakeholders and employees [48]. Further, 

semiconductor companies are pushing towards standards such as U.S Green Building 

Council’s LEED (Leadership in Energy and Environmental Design) which are aimed at 

reducing resource use, designing sustainable facilities and a high-performance work 

environment [49].
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5.3 Future Work 

 More accurate inputs to the kWh-Tool methodology: 

As discussed in the chapter before, the variation in annual power consumption and 

the corresponding error percentage are caused due to energy efficiency factors and data 

related to tool level energy consumption. With further research and availability of real-time 

industry-based data, we can infeed these factors with higher precision to obtain more 

accurate power consumption estimates. Further, this would make the capacity model more 

robust, and the relationship between each methodology can be established with no errors. 

 Considering Different Fab Types: 

This study considers a 200mm wafer fab production and a set of demand plans or 

wafer starts per year and product mixes. Scenarios were created based on this to represent 

each fab type. However, the fab scenario consideration can be expanded more, with the 

inclusion of 300mm or 450mm fabs and create additional fab profiles based on different 

product mixes and wafer starts of the fab. The corresponding studies and comparisons 

would be interesting to review and could open up for fab profile optimization. 

 Estimate Fixed and Variable Load of the fab: 

Another interesting way to estimate the power consumption is by calculating the 

fixed and variable loads of the fab. Based on PEI, the minimum unit consumption per wafer 

is estimated, and the minimum units of production vs. actual production can be compared. 

This comparison would show the gap in the production or lost capacity. The gap can be 

associated with inefficiencies at the stations, downtimes, queues, etc. By establishing this 

relationship, we can access the amount of electricity consumption lost by these 
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inefficiencies. This drives optimization projects and direct cost savings for the 

semiconductor industries.  

 Probability Distribution Methodology for Power Consumption Estimate: 

Intensive research lead to the identification of another level of detail or 

methodology to estimate the annual power consumption of the fab using probability 

distribution. This would be a superficial level of detail compared to the two methodologies 

proposed in this thesis. It would be interesting to establish and observe the relationship 

among all three methodologies. The below diagram depicts the methodologies and the 

anticipated interactions.  

 

Figure 14 Methodologies and Anticipated Interactions in this study 
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APPENDIX SECTION 

A. Simulation Results for Tool Utilization for Different Fabs 

 FAB A1: 

Table A1 Simulation Results for Tool Utilization for FAB A1 

Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

ALIGNER Lithography 59.65 3.05 37.30 

ALLOY Annealing 65.72 3.10 31.18 

ALPHASTEP ECP 98.70 0.01 1.29 

AME_8310 Etching 57.10 3.58 39.32 

AME_8330 Etching 68.12 3.01 28.87 

ANELVA ECP 68.93 7.33 23.74 

BACKGRIND CMP 87.20 3.00 9.79 

BARRIER_OX ECP 34.93 5.81 59.26 

BPSG Deposition 48.83 5.11 46.06 

BRANSON 
Photo-Resist 

Strip 
93.92 0.26 5.82 

CD_MACH ECP 87.09 1.01 11.90 

CRIT_COAT Lithography 59.84 3.24 36.92 

CRIT_DEV Lithography 47.66 3.51 48.83 

DELAMINATOR Deposition 56.46 9.99 33.56 

DIFF_SINK1 Wafer Clean 83.50 1.74 14.76 

DIFF_SINK2 Wafer Clean 51.42 4.94 43.64 

DIFF_SINK3 Wafer Clean 91.76 0.88 7.36 

DIFF_SINK4 Wafer Clean 75.17 2.79 22.05 

DIFF_SINK5 Wafer Clean 75.74 2.32 21.93 

DIFF_SINK6 Wafer Clean 85.49 1.64 12.87 

DIFF_SINK7 Wafer Clean 95.24 0.37 4.39 

DIFF_SINK8 Wafer Clean 79.98 2.53 17.48 

DRIVE_OX ECP 43.27 6.02 50.71 

E_SINK Etching 46.92 0.64 52.43 

FIELD_OX ECP 86.28 1.08 12.64 

FINAL_VISUAL ECP 68.69 2.73 28.59 

FSI Wafer Clean 49.69 8.91 41.41 

GATE ECP 65.18 2.65 32.17 

GENUS Implant 60.84 12.86 26.30 

HIGH_CURRENT_IMP Implant 37.11 13.21 49.68 

IMPLANT_OX Implant 34.85 5.89 59.26 

INTERGATE ECP 22.92 7.02 70.05 

LAMINATOR Deposition 80.50 4.78 14.73 

LASER_SCRIBE ECP 84.45 1.36 14.20 
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Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

LEITZ_ETCH ECP 43.36 2.84 53.80 

LEITZ_LITHO ECP 42.22 3.28 54.50 

LTO Deposition 28.98 6.90 64.12 

MATRIX Etching 51.35 2.61 46.04 

MED_CURRENT_IMP Implant 29.60 14.85 55.55 

METAL_SINK Wafer Clean 96.58 0.02 3.40 

NANOSPEC ECP 89.89 1.42 8.69 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 43.69 4.67 51.64 

NONCRIT_DEV Lithography 63.39 3.74 32.87 

OXIDE_1 Deposition 54.70 2.54 42.77 

OXIDE_LAM Etching 71.03 3.12 25.85 

PEAK ECP 85.46 1.05 13.50 

POLY_DEP ECP 65.97 4.20 29.83 

POLY_DOPE Implant 28.68 6.70 64.62 

POLY_LAM Etching 45.52 4.31 50.17 

PROMETRIX ECP 69.07 2.36 28.57 

QUAESTAR ECP 80.41 4.91 14.69 

RAINBOW_4500 Etching 66.40 2.44 31.15 

REFLOW Annealing 56.60 3.53 39.87 

SECOND_MASK Lithography 47.47 3.81 48.72 

SILICIDE_TOOL Deposition 60.34 3.35 36.31 

SINK_22_BOE Wafer Clean 99.49 0.01 0.50 

SINK_22_CAROS Wafer Clean 65.89 0.40 33.71 

SINK_24_BOE Wafer Clean 63.48 0.49 36.04 

SINK_24_CAROS Wafer Clean 74.14 0.52 25.34 

STEPPER Lithography 67.30 0.46 32.23 

STRIPPER 
Photo-Resist 

Strip 
5.19 13.98 80.83 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 94.03 0.63 5.35 

UV_BAKE Annealing 98.05 0.01 1.94 

UV_BAKE_BACKEND Annealing 66.05 2.29 31.66 

VAPOR_PRIME_OVEN Lithography 72.98 1.68 25.34 

VARIAN Implant 54.29 3.03 42.68 

VWR_OVEN Annealing 66.55 9.74 23.70 

WET_PROBE ECP 68.74 0.69 30.57 

NEW_STEPPER Lithography 62.57 3.26 34.16 
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 FAB A2: 

Table A2 Simulation Results for Tool Utilization for FAB A2 

Tools PROCESS 

Utilization (%) 

Idle 

(%) 

Down 

(%) 

Up Time 

(%) 

ALIGNER Lithography 57.77 3.21 39.02 

ALLOY Annealing 63.97 3.35 32.68 

ALPHASTEP ECP 97.39 0.01 2.59 

AME_8310 Etching 56.73 3.62 39.65 

AME_8330 Etching 67.80 3.07 29.13 

ANELVA ECP 68.58 7.46 23.96 

BACKGRIND CMP 87.06 3.07 9.87 

BARRIER_OX ECP 43.25 4.95 51.80 

BPSG Deposition 49.13 5.07 45.80 

BRANSON 
Photo-Resist 

Strip 
87.71 0.53 11.76 

CD_MACH ECP 86.45 1.01 12.55 

CRIT_COAT Lithography 63.02 2.95 34.03 

CRIT_DEV Lithography 51.98 3.21 44.81 

DELAMINATOR Deposition 55.93 10.24 33.83 

DIFF_SINK1 Wafer Clean 83.43 1.74 14.82 

DIFF_SINK2 Wafer Clean 52.97 4.83 42.20 

DIFF_SINK3 Wafer Clean 91.73 0.88 7.39 

DIFF_SINK4 Wafer Clean 75.08 2.79 22.14 

DIFF_SINK5 Wafer Clean 75.59 2.32 22.09 

DIFF_SINK6 Wafer Clean 87.60 1.32 11.08 

DIFF_SINK7 Wafer Clean 96.77 0.29 2.95 

DIFF_SINK8 Wafer Clean 79.83 2.53 17.64 

DRIVE_OX ECP 61.09 4.15 34.76 

E_SINK Etching 53.97 0.61 45.42 

FIELD_OX ECP 72.44 2.31 25.25 

FINAL_VISUAL ECP 68.36 2.81 28.82 

FSI Wafer Clean 66.42 6.67 26.91 

GATE ECP 62.21 3.00 34.80 

GENUS Implant 74.43 8.76 16.81 

HIGH_CURRENT_IMP Implant 40.51 12.60 46.90 

IMPLANT_OX Implant 33.62 6.10 60.28 

INTERGATE ECP 33.05 6.20 60.75 

LAMINATOR Deposition 80.35 4.80 14.85 

LASER_SCRIBE ECP 84.38 1.37 14.25 

LEITZ_ETCH ECP 49.40 2.50 48.10 

LEITZ_LITHO ECP 43.74 3.20 53.06 
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Tools PROCESS 

Utilization (%) 

Idle 

(%) 

Down 

(%) 

Up Time 

(%) 

LTO Deposition 31.74 6.61 61.65 

MATRIX Etching 53.91 2.50 43.58 

MED_CURRENT_IMP Implant 35.12 13.76 51.12 

METAL_SINK Wafer Clean 96.55 0.02 3.43 

NANOSPEC ECP 92.43 1.16 6.41 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 51.80 4.07 44.13 

NONCRIT_DEV Lithography 61.66 3.91 34.43 

OXIDE_1 Deposition 52.54 2.66 44.80 

OXIDE_LAM Etching 51.46 5.16 43.38 

PEAK ECP 87.70 0.87 11.43 

POLY_DEP ECP 65.61 4.24 30.14 

POLY_DOPE Implant 33.86 6.31 59.84 

POLY_LAM Etching 42.56 4.72 52.72 

PROMETRIX ECP 70.37 2.25 27.38 

QUAESTAR ECP 86.95 3.20 9.85 

RAINBOW_4500 Etching 64.30 2.52 33.18 

REFLOW Annealing 70.68 2.47 26.85 

SECOND_MASK Lithography 44.87 4.03 51.10 

SILICIDE_TOOL Deposition 63.79 2.98 33.23 

SINK_22_BOE Wafer Clean 99.76 0.01 0.23 

SINK_22_CAROS Wafer Clean 64.51 0.41 35.07 

SINK_24_BOE Wafer Clean 65.34 0.46 34.19 

SINK_24_CAROS Wafer Clean 67.09 0.59 32.32 

STEPPER Lithography 66.05 0.47 33.48 

STRIPPER 
Photo-Resist 

Strip 
14.36 12.65 72.98 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.98 0.63 5.39 

UV_BAKE Annealing 98.04 0.01 1.95 

UV_BAKE_BACKEND Annealing 65.81 2.32 31.87 

VAPOR_PRIME_OVEN Lithography 72.77 1.68 25.55 

VARIAN Implant 55.42 2.94 41.64 

VWR_OVEN Annealing 66.18 9.90 23.93 

WET_PROBE ECP 62.18 0.79 37.04 

NEW_STEPPER Lithography 62.23 3.33 34.44 
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 FAB A3: 

Table A3 Simulation Results for Tool Utilization for FAB A3 

Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

ALIGNER Lithography 54.40 3.39 42.20 

ALLOY Annealing 60.99 3.67 35.33 

ALPHASTEP ECP 94.71 0.07 5.22 

AME_8310 Etching 56.48 3.63 39.89 

AME_8330 Etching 67.61 3.08 29.31 

ANELVA ECP 68.44 7.47 24.09 

BACKGRIND CMP 86.99 3.08 9.94 

BARRIER_OX ECP 64.46 3.00 32.54 

BPSG Deposition 50.84 4.88 44.27 

BRANSON 
Photo-Resist 

Strip 
75.33 0.98 23.69 

CD_MACH ECP 85.41 1.01 13.58 

CRIT_COAT Lithography 69.60 2.44 27.96 

CRIT_DEV Lithography 60.99 2.60 36.41 

DELAMINATOR Deposition 55.65 10.29 34.05 

DIFF_SINK1 Wafer Clean 83.35 1.74 14.90 

DIFF_SINK2 Wafer Clean 56.44 4.39 39.17 

DIFF_SINK3 Wafer Clean 91.70 0.88 7.42 

DIFF_SINK4 Wafer Clean 74.98 2.79 22.23 

DIFF_SINK5 Wafer Clean 75.47 2.32 22.21 

DIFF_SINK6 Wafer Clean 91.73 0.86 7.41 

DIFF_SINK7 Wafer Clean 100.00 0.00 0.00 

DIFF_SINK8 Wafer Clean 79.73 2.53 17.74 

DRIVE_OX ECP 99.88 0.00 0.11 

E_SINK Etching 67.65 0.49 31.86 

FIELD_OX ECP 45.95 5.24 48.82 

FINAL_VISUAL ECP 68.14 2.86 29.00 

FSI Wafer Clean 99.98 0.00 0.02 

GATE ECP 56.11 3.93 39.95 

GENUS Implant 99.99 0.00 0.01 

HIGH_CURRENT_IMP Implant 48.32 10.82 40.86 

IMPLANT_OX Implant 33.03 6.28 60.69 

INTERGATE ECP 62.58 3.41 34.01 

LAMINATOR Deposition 80.26 4.80 14.94 

LASER_SCRIBE ECP 84.31 1.37 14.32 

LEITZ_ETCH ECP 62.00 1.82 36.18 

LEITZ_LITHO ECP 47.23 2.98 49.79 

LTO Deposition 39.11 5.73 55.16 

MATRIX Etching 59.72 2.14 38.15 
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Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

MED_CURRENT_IMP Implant 49.04 11.09 39.87 

METAL_SINK Wafer Clean 96.53 0.02 3.45 

NANOSPEC ECP 98.02 0.24 1.74 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 72.39 2.40 25.21 

NONCRIT_DEV Lithography 58.40 4.27 37.33 

OXIDE_1 Deposition 48.58 2.86 48.56 

OXIDE_LAM Etching 22.03 8.48 69.49 

PEAK ECP 92.23 0.60 7.17 

POLY_DEP ECP 65.38 4.27 30.35 

POLY_DOPE Implant 46.72 5.30 47.98 

POLY_LAM Etching 38.58 5.19 56.24 

PROMETRIX ECP 73.16 2.05 24.79 

QUAESTAR ECP 99.99 0.00 0.01 

RAINBOW_4500 Etching 60.19 2.75 37.07 

REFLOW Annealing 100.00 0.00 0.00 

SECOND_MASK Lithography 40.00 4.64 55.35 

SILICIDE_TOOL Deposition 71.05 2.10 26.86 

SINK_22_BOE Wafer Clean 100.00 0.00 0.00 

SINK_22_CAROS Wafer Clean 61.97 0.46 37.57 

SINK_24_BOE Wafer Clean 69.68 0.35 29.96 

SINK_24_CAROS Wafer Clean 52.80 0.85 46.36 

STEPPER Lithography 64.43 0.47 35.10 

STRIPPER 
Photo-Resist 

Strip 
33.38 9.97 56.66 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.95 0.63 5.43 

UV_BAKE Annealing 98.03 0.01 1.97 

UV_BAKE_BACKEND Annealing 65.58 2.39 32.03 

VAPOR_PRIME_OVEN Lithography 72.60 1.68 25.72 

VARIAN Implant 57.81 2.81 39.39 

VWR_OVEN Annealing 65.98 9.95 24.07 

WET_PROBE ECP 49.09 0.98 49.93 

NEW_STEPPER Lithography 61.99 3.35 34.66 
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 FAB B1: 

Table A4 Simulation Results for Tool Utilization for FAB B1 

Tools PROCESS 

Utilization (%) 

Idle 

(%) 
Down (%) 

Up Time 

(%) 

ALIGNER Lithography 57.69 3.27 39.04 

ALLOY Annealing 63.97 3.23 32.80 

ALPHASTEP ECP 98.63 0.01 1.36 

AME_8310 Etching 55.24 3.70 41.06 

AME_8330 Etching 66.68 3.15 30.17 

ANELVA ECP 67.37 7.73 24.90 

BACKGRIND CMP 86.55 3.22 10.23 

BARRIER_OX ECP 32.17 6.02 61.81 

BPSG Deposition 47.23 5.23 47.54 

BRANSON 
Photo-Resist 

Strip 
93.55 0.29 6.16 

CD_MACH ECP 86.73 1.05 12.21 

CRIT_COAT Lithography 57.90 3.36 38.74 

CRIT_DEV Lithography 45.13 3.68 51.19 

DELAMINATOR Deposition 54.44 10.51 35.05 

DIFF_SINK1 Wafer Clean 82.64 1.83 15.53 

DIFF_SINK2 Wafer Clean 48.93 5.14 45.92 

DIFF_SINK3 Wafer Clean 91.30 0.97 7.73 

DIFF_SINK4 Wafer Clean 73.99 2.91 23.10 

DIFF_SINK5 Wafer Clean 74.64 2.38 22.98 

DIFF_SINK6 Wafer Clean 84.72 1.80 13.47 

DIFF_SINK7 Wafer Clean 95.03 0.37 4.59 

DIFF_SINK8 Wafer Clean 79.14 2.54 18.32 

DRIVE_OX ECP 40.50 6.40 53.11 

E_SINK Etching 43.55 0.68 55.77 

FIELD_OX ECP 85.60 1.10 13.30 

FINAL_VISUAL ECP 67.16 3.00 29.84 

FSI Wafer Clean 47.74 9.16 43.10 

GATE ECP 63.67 2.81 33.51 

GENUS Implant 59.01 13.56 27.43 

HIGH_CURRENT_IMP Implant 34.43 13.84 51.73 

IMPLANT_OX Implant 32.33 6.24 61.43 

INTERGATE ECP 20.78 7.30 71.92 

LAMINATOR Deposition 79.76 4.86 15.38 

LASER_SCRIBE ECP 83.60 1.43 14.97 

LEITZ_ETCH ECP 40.69 2.96 56.35 

LEITZ_LITHO ECP 39.53 3.38 57.10 

LTO Deposition 27.12 7.08 65.80 

MATRIX Etching 49.09 2.74 48.17 
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Tools PROCESS 

Utilization (%) 

Idle 

(%) 
Down (%) 

Up Time 

(%) 

MED_CURRENT_IMP Implant 26.87 15.61 57.52 

METAL_SINK Wafer Clean 96.42 0.02 3.56 

NANOSPEC ECP 89.43 1.45 9.12 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 41.09 4.85 54.05 

NONCRIT_DEV Lithography 61.69 3.90 34.41 

OXIDE_1 Deposition 52.57 2.66 44.77 

OXIDE_LAM Etching 69.45 3.26 27.29 

PEAK ECP 84.77 1.13 14.11 

POLY_DEP ECP 64.41 4.37 31.22 

POLY_DOPE Implant 26.51 6.88 66.61 

POLY_LAM Etching 43.63 4.51 51.86 

PROMETRIX ECP 67.53 2.48 29.99 

QUAESTAR ECP 79.67 4.97 15.36 

RAINBOW_4500 Etching 64.88 2.50 32.62 

REFLOW Annealing 54.66 3.63 41.71 

SECOND_MASK Lithography 45.67 3.91 50.42 

SILICIDE_TOOL Deposition 58.50 3.50 37.99 

SINK_22_BOE Wafer Clean 99.42 0.01 0.57 

SINK_22_CAROS Wafer Clean 64.05 0.41 35.54 

SINK_24_BOE Wafer Clean 61.40 0.58 38.02 

SINK_24_CAROS Wafer Clean 72.67 0.54 26.79 

STEPPER Lithography 65.34 0.49 34.16 

STRIPPER 
Photo-Resist 

Strip 
0.64 14.63 84.73 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.76 0.65 5.58 

UV_BAKE Annealing 97.97 0.01 2.02 

UV_BAKE_BACKEND Annealing 64.37 2.47 33.17 

VAPOR_PRIME_OVEN Lithography 71.82 1.71 26.47 

VARIAN Implant 52.10 3.14 44.76 

VWR_OVEN Annealing 65.03 10.17 24.80 

WET_PROBE ECP 67.26 0.71 32.03 

NEW_STEPPER Lithography 60.95 3.38 35.67 

 

 



 

78 
 

 FAB B2: 

Table A5 Simulation Results for Tool Utilization for FAB B2 

Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

ALIGNER Lithography 55.53 3.37 41.10 

ALLOY Annealing 61.90 3.47 34.63 

ALPHASTEP ECP 97.25 0.01 2.74 

AME_8310 Etching 54.52 3.74 41.73 

AME_8330 Etching 66.11 3.24 30.65 

ANELVA ECP 67.03 7.77 25.20 

BACKGRIND CMP 86.35 3.26 10.40 

BARRIER_OX ECP 40.71 5.22 54.07 

BPSG Deposition 46.71 5.23 48.05 

BRANSON 
Photo-Resist 

Strip 
86.96 0.58 12.46 

CD_MACH ECP 85.88 1.06 13.06 

CRIT_COAT Lithography 61.04 3.12 35.83 

CRIT_DEV Lithography 49.43 3.38 47.19 

DELAMINATOR Deposition 53.71 10.67 35.62 

DIFF_SINK1 Wafer Clean 82.51 1.87 15.62 

DIFF_SINK2 Wafer Clean 50.57 4.96 44.47 

DIFF_SINK3 Wafer Clean 91.24 0.97 7.79 

DIFF_SINK4 Wafer Clean 73.78 2.91 23.31 

DIFF_SINK5 Wafer Clean 74.33 2.42 23.25 

DIFF_SINK6 Wafer Clean 86.91 1.42 11.67 

DIFF_SINK7 Wafer Clean 96.60 0.29 3.10 

DIFF_SINK8 Wafer Clean 78.86 2.57 18.57 

DRIVE_OX ECP 59.05 4.40 36.55 

E_SINK Etching 51.08 0.62 48.29 

FIELD_OX ECP 70.86 2.49 26.65 

FINAL_VISUAL ECP 66.57 3.10 30.32 

FSI Wafer Clean 64.46 7.11 28.43 

GATE ECP 60.05 3.24 36.71 

GENUS Implant 73.12 9.13 17.75 

HIGH_CURRENT_IMP Implant 37.80 13.00 49.19 

IMPLANT_OX Implant 31.35 6.37 62.28 

INTERGATE ECP 29.78 6.59 63.63 

LAMINATOR Deposition 79.47 4.90 15.64 

LASER_SCRIBE ECP 83.55 1.43 15.02 

LEITZ_ETCH ECP 46.71 2.65 50.64 

LEITZ_LITHO ECP 40.77 3.34 55.89 

LTO Deposition 29.06 6.85 64.09 

MATRIX Etching 51.53 2.61 45.86 
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Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

MED_CURRENT_IMP Implant 32.45 14.37 53.18 

METAL_SINK Wafer Clean 96.37 0.02 3.62 

NANOSPEC ECP 92.07 1.18 6.74 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 49.54 4.13 46.33 

NONCRIT_DEV Lithography 59.60 4.14 36.26 

OXIDE_1 Deposition 50.03 2.78 47.19 

OXIDE_LAM Etching 48.88 5.46 45.66 

PEAK ECP 87.07 0.90 12.03 

POLY_DEP ECP 63.88 4.42 31.70 

POLY_DOPE Implant 31.70 6.48 61.82 

POLY_LAM Etching 40.67 4.89 54.44 

PROMETRIX ECP 68.78 2.37 28.84 

QUAESTAR ECP 86.19 3.46 10.36 

RAINBOW_4500 Etching 62.51 2.55 34.94 

REFLOW Annealing 69.26 2.54 28.20 

SECOND_MASK Lithography 42.28 4.22 53.50 

SILICIDE_TOOL Deposition 62.09 3.00 34.91 

SINK_22_BOE Wafer Clean 99.76 0.01 0.23 

SINK_22_CAROS Wafer Clean 62.33 0.45 37.22 

SINK_24_BOE Wafer Clean 63.05 0.49 36.46 

SINK_24_CAROS Wafer Clean 65.10 0.65 34.25 

STEPPER Lithography 63.96 0.49 35.55 

STRIPPER 
Photo-Resist 

Strip 
9.84 13.30 76.85 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.67 0.66 5.68 

UV_BAKE Annealing 97.94 0.01 2.06 

UV_BAKE_BACKEND Annealing 63.97 2.48 33.55 

VAPOR_PRIME_OVEN Lithography 71.34 1.76 26.90 

VARIAN Implant 53.04 3.08 43.88 

VWR_OVEN Annealing 64.56 10.26 25.18 

WET_PROBE ECP 60.09 0.80 39.11 

NEW_STEPPER Lithography 60.32 3.45 36.23 
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 FAB B3: 

Table A6 Simulation Results for Tool Utilization for FAB B3 

Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

ALIGNER Lithography 52.00 3.47 44.54 

ALLOY Annealing 58.81 3.90 37.29 

ALPHASTEP ECP 94.42 0.07 5.50 

AME_8310 Etching 54.16 3.74 42.10 

AME_8330 Etching 65.83 3.25 30.92 

ANELVA ECP 66.76 7.82 25.42 

BACKGRIND CMP 86.26 3.26 10.48 

BARRIER_OX ECP 62.85 3.19 33.96 

BPSG Deposition 49.20 5.05 45.75 

BRANSON 
Photo-Resist 

Strip 
73.92 0.99 25.09 

CD_MACH ECP 84.63 1.08 14.29 

CRIT_COAT Lithography 67.86 2.64 29.50 

CRIT_DEV Lithography 58.84 2.76 38.41 

DELAMINATOR Deposition 53.27 10.81 35.92 

DIFF_SINK1 Wafer Clean 82.42 1.87 15.72 

DIFF_SINK2 Wafer Clean 54.00 4.68 41.32 

DIFF_SINK3 Wafer Clean 91.17 0.99 7.83 

DIFF_SINK4 Wafer Clean 73.60 2.93 23.47 

DIFF_SINK5 Wafer Clean 74.11 2.45 23.44 

DIFF_SINK6 Wafer Clean 91.29 0.88 7.83 

DIFF_SINK7 Wafer Clean 100.00 0.00 0.00 

DIFF_SINK8 Wafer Clean 78.70 2.58 18.72 

DRIVE_OX ECP 99.88 0.00 0.11 

E_SINK Etching 65.39 0.52 34.09 

FIELD_OX ECP 43.73 5.46 50.81 

FINAL_VISUAL ECP 66.26 3.14 30.59 

FSI Wafer Clean 99.99 0.00 0.01 

GATE ECP 54.27 4.10 41.63 

GENUS Implant 100.00 0.00 0.00 

HIGH_CURRENT_IMP Implant 45.67 11.45 42.88 

IMPLANT_OX Implant 31.16 6.44 62.40 

INTERGATE ECP 61.04 3.49 35.47 

LAMINATOR Deposition 79.31 4.93 15.77 

LASER_SCRIBE ECP 83.47 1.43 15.10 

LEITZ_ETCH ECP 59.89 1.92 38.18 

LEITZ_LITHO ECP 44.29 3.18 52.54 
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Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 

Up Time 

(%) 

LTO Deposition 37.35 5.83 56.82 

MATRIX Etching 57.51 2.26 40.24 

MED_CURRENT_IMP Implant 46.36 11.76 41.88 

METAL_SINK Wafer Clean 96.34 0.02 3.64 

NANOSPEC ECP 97.92 0.24 1.84 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 71.02 2.50 26.47 

NONCRIT_DEV Lithography 56.06 4.54 39.40 

OXIDE_1 Deposition 45.72 3.02 51.25 

OXIDE_LAM Etching 20.14 8.60 71.26 

PEAK ECP 91.81 0.62 7.57 

POLY_DEP ECP 63.56 4.44 32.00 

POLY_DOPE Implant 45.07 5.42 49.52 

POLY_LAM Etching 36.73 5.35 57.92 

PROMETRIX ECP 71.70 2.14 26.16 

QUAESTAR ECP 100.00 0.00 0.00 

RAINBOW_4500 Etching 58.04 2.86 39.11 

REFLOW Annealing 99.99 0.00 0.01 

SECOND_MASK Lithography 38.41 4.74 56.85 

SILICIDE_TOOL Deposition 69.64 2.17 28.18 

SINK_22_BOE Wafer Clean 100.00 0.00 0.00 

SINK_22_CAROS Wafer Clean 59.51 0.55 39.94 

SINK_24_BOE Wafer Clean 67.45 0.40 32.15 

SINK_24_CAROS Wafer Clean 49.68 0.86 49.46 

STEPPER Lithography 61.73 0.49 37.78 

STRIPPER 
Photo-Resist 

Strip 
29.73 10.49 59.78 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.62 0.66 5.72 

UV_BAKE Annealing 97.92 0.01 2.07 

UV_BAKE_BACKEND Annealing 63.73 2.49 33.77 

VAPOR_PRIME_OVEN Lithography 71.11 1.77 27.12 

VARIAN Implant 55.51 2.94 41.55 

VWR_OVEN Annealing 64.24 10.36 25.39 

WET_PROBE ECP 46.26 0.99 52.75 

NEW_STEPPER Lithography 59.93 3.51 36.56 
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 FAB C1: 

Table A7 Simulation Results for Tool Utilization for FAB C1 

Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 
Up Time (%) 

ALIGNER Lithography 58.54 3.12 38.35 

ALLOY Annealing 65.22 3.12 31.67 

ALPHASTEP ECP 98.58 0.01 1.41 

AME_8310 Etching 56.85 3.60 39.55 

AME_8330 Etching 67.87 3.07 29.06 

ANELVA ECP 68.31 7.51 24.18 

BACKGRIND CMP 87.08 3.07 9.85 

BARRIER_OX ECP 30.83 6.16 63.02 

BPSG Deposition 48.50 5.11 46.39 

BRANSON 
Photo-Resist 

Strip 
93.40 0.31 6.29 

CD_MACH ECP 86.65 1.06 12.28 

CRIT_COAT Lithography 57.36 3.44 39.19 

CRIT_DEV Lithography 45.03 3.68 51.29 

DELAMINATOR Deposition 56.12 10.15 33.73 

DIFF_SINK1 Wafer Clean 82.08 1.87 16.05 

DIFF_SINK2 Wafer Clean 47.21 5.26 47.53 

DIFF_SINK3 Wafer Clean 91.17 0.99 7.84 

DIFF_SINK4 Wafer Clean 73.88 2.91 23.21 

DIFF_SINK5 Wafer Clean 74.92 2.36 22.72 

DIFF_SINK6 Wafer Clean 84.70 1.81 13.50 

DIFF_SINK7 Wafer Clean 95.15 0.37 4.48 

DIFF_SINK8 Wafer Clean 79.52 2.53 17.94 

DRIVE_OX ECP 38.63 6.59 54.78 

E_SINK Etching 41.99 0.68 57.32 

FIELD_OX ECP 85.25 1.14 13.60 

FINAL_VISUAL ECP 68.45 2.81 28.73 

FSI Wafer Clean 47.75 9.09 43.16 

GATE ECP 62.89 2.86 34.25 

GENUS Implant 58.98 13.47 27.55 

HIGH_CURRENT_IMP Implant 35.65 13.50 50.85 

IMPLANT_OX Implant 33.43 6.02 60.55 

INTERGATE ECP 20.65 7.31 72.04 

LAMINATOR Deposition 80.41 4.78 14.82 

LASER_SCRIBE ECP 82.79 1.48 15.72 

LEITZ_ETCH ECP 41.15 2.94 55.90 
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Tools PROCESS 

Utilization (%) 

Idle (%) 
Down 

(%) 
Up Time (%) 

LEITZ_LITHO ECP 39.85 3.38 56.77 

LTO Deposition 28.71 6.90 64.39 

MATRIX Etching 50.34 2.68 46.98 

MED_CURRENT_IMP Implant 26.91 15.57 57.51 

METAL_SINK Wafer Clean 96.51 0.02 3.47 

NANOSPEC ECP 89.42 1.45 9.13 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 40.01 4.97 55.02 

NONCRIT_DEV Lithography 62.33 3.85 33.82 

OXIDE_1 Deposition 53.39 2.61 44.00 

OXIDE_LAM Etching 68.65 3.30 28.05 

PEAK ECP 84.95 1.10 13.95 

POLY_DEP ECP 65.30 4.30 30.40 

POLY_DOPE Implant 26.58 6.87 66.55 

POLY_LAM Etching 43.03 4.58 52.39 

PROMETRIX ECP 67.32 2.50 30.18 

QUAESTAR ECP 79.72 4.97 15.31 

RAINBOW_4500 Etching 65.16 2.50 32.33 

REFLOW Annealing 56.13 3.55 40.31 

SECOND_MASK Lithography 46.79 3.82 49.39 

SILICIDE_TOOL Deposition 58.67 3.49 37.85 

SINK_22_BOE Wafer Clean 99.48 0.01 0.51 

SINK_22_CAROS Wafer Clean 64.64 0.41 34.95 

SINK_24_BOE Wafer Clean 61.71 0.55 37.74 

SINK_24_CAROS Wafer Clean 72.67 0.54 26.80 

STEPPER Lithography 64.81 0.49 34.69 

STRIPPER 
Photo-Resist 

Strip 
0.52 14.64 84.84 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 94.00 0.63 5.37 

UV_BAKE Annealing 98.04 0.01 1.95 

UV_BAKE_BACKEND Annealing 65.02 2.40 32.58 

VAPOR_PRIME_OVEN Lithography 72.85 1.68 25.47 

VARIAN Implant 52.18 3.14 44.68 

VWR_OVEN Annealing 65.86 9.99 24.16 

WET_PROBE ECP 68.02 0.71 31.27 

NEW_STEPPER Lithography 62.34 3.32 34.33 
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 FAB C2:  

Table A8 Simulation Results for Tool Utilization for FAB C2 

Tools PROCESS 
Utilization (%) 

Idle (%) Down (%) Up Time (%) 

ALIGNER Lithography 53.24 3.64 43.12 

ALLOY Annealing 60.03 3.56 36.41 

ALPHASTEP ECP 97.12 0.01 2.87 

AME_8310 Etching 52.32 3.92 43.75 

AME_8330 Etching 64.45 3.42 32.13 

ANELVA ECP 65.53 8.05 26.43 

BACKGRIND CMP 85.70 3.40 10.90 

BARRIER_OX ECP 38.30 5.40 56.30 

BPSG Deposition 44.88 5.40 49.72 

BRANSON 
Photo-Resist 

Strip 
86.32 0.60 13.08 

CD_MACH ECP 85.52 1.09 13.39 

CRIT_COAT Lithography 59.18 3.23 37.59 

CRIT_DEV Lithography 46.95 3.55 49.50 

DELAMINATOR Deposition 51.48 11.18 37.34 

DIFF_SINK1 Wafer Clean 81.75 1.87 16.38 

DIFF_SINK2 Wafer Clean 48.10 5.25 46.66 

DIFF_SINK3 Wafer Clean 90.84 0.99 8.16 

DIFF_SINK4 Wafer Clean 72.44 3.10 24.46 

DIFF_SINK5 Wafer Clean 72.90 2.68 24.42 

DIFF_SINK6 Wafer Clean 86.27 1.50 12.24 

DIFF_SINK7 Wafer Clean 96.40 0.34 3.26 

DIFF_SINK8 Wafer Clean 77.85 2.67 19.48 

DRIVE_OX ECP 57.13 4.56 38.32 

E_SINK Etching 48.34 0.64 51.01 

FIELD_OX ECP 69.33 2.68 28.00 

FINAL_VISUAL ECP 64.97 3.22 31.80 

FSI Wafer Clean 62.46 7.46 30.08 

GATE ECP 58.50 3.46 38.03 

GENUS Implant 71.64 9.54 18.82 

HIGH_CURRENT_IMP Implant 34.86 13.68 51.45 

IMPLANT_OX Implant 29.32 6.49 64.19 

INTERGATE ECP 27.92 6.71 65.37 

LAMINATOR Deposition 78.41 5.21 16.39 

LASER_SCRIBE ECP 82.77 1.48 15.75 

LEITZ_ETCH ECP 44.06 2.81 53.13 

LEITZ_LITHO ECP 37.94 3.44 58.62 

LTO Deposition 27.08 6.91 66.01 

MATRIX Etching 49.14 2.74 48.11 

MED_CURRENT_IMP Implant 29.83 15.04 55.13 

METAL_SINK Wafer Clean 96.19 0.02 3.79 
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Tools PROCESS 
Utilization (%) 

Idle (%) Down (%) Up Time (%) 

NANOSPEC ECP 91.69 1.23 7.08 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 47.55 4.32 48.13 

NONCRIT_DEV Lithography 57.57 4.37 38.06 

OXIDE_1 Deposition 47.57 2.92 49.50 

OXIDE_LAM Etching 46.59 5.69 47.71 

PEAK ECP 86.41 0.96 12.63 

POLY_DEP ECP 62.18 4.59 33.24 

POLY_DOPE Implant 29.19 6.69 64.12 

POLY_LAM Etching 38.73 5.09 56.18 

PROMETRIX ECP 67.24 2.50 30.26 

QUAESTAR ECP 85.42 3.71 10.88 

RAINBOW_4500 Etching 60.66 2.67 36.66 

REFLOW Annealing 67.75 2.66 29.58 

SECOND_MASK Lithography 40.25 4.34 55.40 

SILICIDE_TOOL Deposition 60.33 3.21 36.46 

SINK_22_BOE Wafer Clean 99.67 0.01 0.32 

SINK_22_CAROS Wafer Clean 60.25 0.46 39.29 

SINK_24_BOE Wafer Clean 60.93 0.55 38.51 

SINK_24_CAROS Wafer Clean 63.03 0.66 36.31 

STEPPER Lithography 61.81 0.51 37.69 

STRIPPER 
Photo-Resist 

Strip 
5.48 13.90 80.61 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.38 0.67 5.95 

UV_BAKE Annealing 97.84 0.01 2.16 

UV_BAKE_BACKEND Annealing 62.08 2.66 35.25 

VAPOR_PRIME_OVEN Lithography 69.98 1.83 28.20 

VARIAN Implant 50.83 3.17 46.00 

VWR_OVEN Annealing 62.62 10.98 26.39 

WET_PROBE ECP 58.11 0.83 41.05 

NEW_STEPPER Lithography 58.36 3.63 38.00 
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 FAB C3:  

Table A9 Simulation Results for Tool Utilization for FAB C3 

Tools PROCESS 

Utilization (%) 

Idle 

(%) 
Down (%) Up Time (%) 

ALIGNER Lithography 49.24 3.83 46.93 

ALLOY Annealing 56.60 4.04 39.36 

ALPHASTEP ECP 94.11 0.09 5.80 

AME_8310 Etching 51.63 4.02 44.36 

AME_8330 Etching 63.96 3.46 32.58 

ANELVA ECP 65.13 8.08 26.79 

BACKGRIND CMP 85.54 3.41 11.05 

BARRIER_OX ECP 61.12 3.29 35.59 

BPSG Deposition 46.90 5.23 47.87 

BRANSON 
Photo-Resist 

Strip 
72.45 1.04 26.51 

CD_MACH ECP 84.03 1.09 14.88 

CRIT_COAT Lithography 66.18 2.72 31.10 

CRIT_DEV Lithography 56.63 2.88 40.48 

DELAMINATOR Deposition 50.89 11.25 37.87 

DIFF_SINK1 Wafer Clean 81.56 1.87 16.57 

DIFF_SINK2 Wafer Clean 51.53 4.94 43.53 

DIFF_SINK3 Wafer Clean 90.75 0.99 8.25 

DIFF_SINK4 Wafer Clean 72.16 3.10 24.74 

DIFF_SINK5 Wafer Clean 72.61 2.69 24.70 

DIFF_SINK6 Wafer Clean 90.79 0.96 8.25 

DIFF_SINK7 Wafer Clean 100.00 0.00 0.00 

DIFF_SINK8 Wafer Clean 77.60 2.67 19.73 

DRIVE_OX ECP 99.88 0.00 0.11 

E_SINK Etching 63.34 0.54 36.12 

FIELD_OX ECP 41.26 5.65 53.08 

FINAL_VISUAL ECP 64.48 3.27 32.25 

FSI Wafer Clean 99.99 0.00 0.01 

GATE ECP 52.34 4.25 43.40 

GENUS Implant 100.00 0.00 0.00 

HIGH_CURRENT_IMP Implant 42.87 12.00 45.13 

IMPLANT_OX Implant 28.77 6.60 64.63 

INTERGATE ECP 59.03 3.75 37.22 

LAMINATOR Deposition 78.14 5.24 16.62 

LASER_SCRIBE ECP 82.58 1.50 15.92 

LEITZ_ETCH ECP 57.71 2.05 40.24 

LEITZ_LITHO ECP 41.33 3.30 55.37 
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Tools PROCESS 

Utilization (%) 

Idle 

(%) 
Down (%) Up Time (%) 

LTO Deposition 34.77 6.08 59.14 

MATRIX Etching 55.16 2.42 42.41 

MED_CURRENT_IMP Implant 43.64 12.44 43.91 

METAL_SINK Wafer Clean 96.14 0.02 3.84 

NANOSPEC ECP 97.61 0.45 1.93 

NITRIDE ECP 99.98 0.00 0.02 

NONCRIT_COAT Lithography 69.54 2.64 27.82 

NONCRIT_DEV Lithography 53.73 4.75 41.52 

OXIDE_1 Deposition 42.81 3.18 54.01 

OXIDE_LAM Etching 17.75 8.84 73.41 

PEAK ECP 91.36 0.66 7.98 

POLY_DEP ECP 61.62 4.65 33.73 

POLY_DOPE Implant 42.43 5.66 51.92 

POLY_LAM Etching 34.07 5.58 60.35 

PROMETRIX ECP 70.16 2.27 27.57 

QUAESTAR ECP 100.00 0.00 0.00 

RAINBOW_4500 Etching 55.81 2.98 41.21 

REFLOW Annealing 100.00 0.00 0.00 

SECOND_MASK Lithography 36.02 4.85 59.12 

SILICIDE_TOOL Deposition 68.14 2.25 29.61 

SINK_22_BOE Wafer Clean 100.00 0.00 0.00 

SINK_22_CAROS Wafer Clean 57.18 0.57 42.25 

SINK_24_BOE Wafer Clean 65.34 0.42 34.24 

SINK_24_CAROS Wafer Clean 46.18 0.89 52.93 

STEPPER Lithography 58.81 0.51 40.69 

STRIPPER 
Photo-Resist 

Strip 
26.04 10.95 63.00 

ULTRASONIC_CLEAN Wafer Clean 100.00 0.00 0.00 

ULTRASONIC_TOOL Wafer Clean 93.30 0.67 6.03 

UV_BAKE Annealing 97.81 0.01 2.19 

UV_BAKE_BACKEND Annealing 61.59 2.74 35.67 

VAPOR_PRIME_OVEN Lithography 69.56 1.84 28.60 

VARIAN Implant 53.13 3.08 43.79 

VWR_OVEN Annealing 62.08 11.16 26.76 

WET_PROBE ECP 43.27 1.06 55.67 

NEW_STEPPER Lithography 57.71 3.75 38.54 
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