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BIPOLYNOMIAL FRACTIONAL DIRICHLET-LAPLACE

PROBLEM

DARIUSZ IDCZAK

Abstract. In the article, we derive the existence of solutions for a nonlin-
ear non-autonomous partial elliptic system on an open bounded domain with

Dirichlet boundary conditions. This problem contains fractional powers of the

weak Dirichlet-Laplace operator in the Stone-von Neumann operator calculus
sense. We apply a direct variational method and some results based on the

dual least action principle. Both methods give strong solutions of the problem

under consideration.

1. Introduction

In this article, we study strong solutions to the problem

k∑
i,j=0

αiαj [(−∆)ω]βi+βju(x)− au(x) = DuF (x, u(x)), x ∈ Ω a.e., (1.1)

where Ω ⊂ RN is a bounded open set, a ∈ R, αi > 0 for i = 0, . . . , k (k ∈ N ∪ {0})
and 0 ≤ β0 < β1 < · · · < βk, [(−∆)ω]γ with a real γ ≥ 0 is a γ-power (in the
sense of Stone-von Neumann operator calculus) of a self-adjoint extension (−∆)ω :
D((−∆)ω) ⊂ L2 → L2 of the Dirichlet-Laplace operator (−∆) : C∞c ⊂ L2 → L2.
We name this extension the weak Dirichlet-Laplace operator. Moreover, F : Ω ×
R → R, DuF is the partial derivative of F with respect to u, C∞c = C∞c (Ω,R),
L2 = L2(Ω,R) are real spaces of smooth functions with compact supports and
square integrable functions, respectively.

Particular cases of the above problem are: the classical Dirichlet-Laplace problem

[(−∆)ω]u(x)− au(x) = DuF (x, u(x)), x ∈ Ω a.e.; (1.2)

the biharmonic equation (see [17])

[(−∆)ω]2u(x) = DuF (x, u(x)), x ∈ Ω a.e.; (1.3)

and the standard fractional problem

[(−∆)ω]βu(x) = DuF (x, u(x)), x ∈ Ω a.e., (1.4)

In recent years, fractional Laplacians (including biharmonic case) have been ex-
tensively studied because of their numerous applications. The authors use different
approaches to such operators: via Riesz type potential [10, 11, 12, 13, 14, 24], via
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Fourrier transform [7, 10, 13], and a distributional approach [14]. Definition of
the fractional Dirichlet-Laplacian adopted in our paper comes from the Stone-von
Neumann operator calculus and is based on the spectral integral representation
theorem for a self-adjoint operator in Hilbert space. It reduces to a series form
which is taken by some authors as a starting point (see [5, 6, 9]). Our approach
allows us to obtain useful properties of fractional operators in an effortless way. Let
us point out that in all above mentioned papers one considers powers γ ∈ (0, 1).
The Stone-von Neumann approach allows us to consider any nonnegative powers.

The aim of our paper is to obtain existence results for problem (1.1). First,
in the case of a = 0, we apply a direct variational method. Such a method was
used by other authors (see e.g. [5, 6]) but to problems containing only a single
fractional Dirichlet-Laplacian. An important issue of our study is the equivalence
of the solutions obtained with the aid of this variational method and the strong
solutions, that, to the best of our knowledge, was not noticed up to now. Next, in
the general case of any a ∈ R (including resonance equation) we apply some results
due to Mawhin and Willem ([20, 25]; see also [21]) obtained with the aid of the
dual least action principle.

This article consists of three parts. In the first part, we give some basics from
the spectral theory of self-adjoint operators in real Hilbert space and Stone-von
Neumann operator calculus. In the second part, we investigate selected properties
of the powers of the weak Dirichlet-Laplace operator including a connection between
weak and strong solutions of equation (1.1). In the third part, we derive existence
results for problem (1.1).

2. Self-adjoint operators in real Hilbert space

This subsection contains the results from the theory of self-adjoint operators in
real Hilbert space. Results presented in this section comes from [2, 22] where they
are derived in the case of complex Hilbert space but their proofs can be moved
without any or with small changes to the case of real Hilbert space (one can also
consult the book [18]).

Let H be a real Hilbert space and E : B → Π(H) where Π(H) is the set of all
projections of H on closed linear subspaces and B - the σ-algebra of Borel subsets
of R, a spectral measure. If b : R → R is a bounded Borel measurable function,
defined E - a.e., then, for any x ∈ H such that∫ ∞

−∞
|b(λ)|2‖E(dλ)x‖2 <∞, (2.1)

we define the value
( ∫∞
−∞ b(λ)E(dλ)

)
x of the operator

∫∞
−∞ b(λ)E(dλ) by(∫ ∞

−∞
b(λ)E(dλ)

)
x = lim

∫ ∞
−∞

bn(λ)E(dλ)x

where

bn : R 3 λ 7→

{
b(λ) if |b(λ)| ≤ n
0 if |b(λ)| > n

for n ∈ N and the integrals
∫∞
−∞ bn(λ)E(dλ)x (with respect to the vector measure

B 3 P → E(P )x ∈ H) are defined in a standard way, with the aid of the sequence
of simple functions converging E(dλ)x - a.e. to b (see [15]).
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Let us point out that the set D of all points x with property (2.1) is dense linear
subspace of H and the operator

∫∞
−∞ b(λ)E(dλ) : D ⊂ H → H is self-adjoint.

Remark 2.1. To integrate a Borel measurable function b : B → R where B is a
Borel set containing the support of the measure E (the complement of the sum of
all open subsets of R with zero spectral measure), it is sufficient to extend b on R to
a whichever Borel measurable function (putting, for example, b(λ) = 0 for λ /∈ B).

Remark 2.2. If b : R → R is Borel measurable and σ ∈ B, then by the integral∫
σ
b(λ)E(dλ) we mean the integral

∫∞
−∞ χσ(λ)b(λ)E(dλ) where χσ is the character-

istic function of the set σ.

The next theorem plays the fundamental role in the spectral theory of self-adjoint
operators (below, Λ is the support of a spectral measure E and σ(A) denotes the
spectrum of an operator A : D(A) ⊂ H → H).

Theorem 2.3. If A : D(A) ⊂ H → H is self-adjoint and the resolvent set ρ(A) is
non-empty, then there exists a unique spectral measure E with the closed support
Λ = σ(A), such that

A =

∫ ∞
−∞

λE(dλ) =

∫
σ(A)

λE(dλ).

The basic notion in the Stone-von Neumann operator calculus is a function of a
self-adjoint operator. Namely, if A : D(A) ⊂ H → H is self-adjoint and E is the
spectral measure determined according to the above theorem, then, for any Borel
measurable function b : R→ R, one defines the operator b(A) by

b(A) =

∫ ∞
−∞

b(λ)E(dλ) =

∫
σ(A)

b(λ)E(dλ).

It is known that the spectrum σ(b(A)) of b(A) is given by

σ(b(A)) = b(σ(A)) (2.2)

provided that b is continuous (it is sufficient to assume that b is continuous on
σ(A)). We have the following results.

Proposition 2.4. If E is the spectral measure for a self-adjoint operator A :
D(A) ⊂ H → H with non-empty resolvent set, then

αkA
k + · · ·+ α1A+ α0I =

∫ ∞
−∞

(αkλ
k + · · ·+ α1λ

1 + α0)E(dλ)

and, for any Borel measurable function b : R→ R,

(b(A))n = bn(A)

with any fixed positive integer n ≥ 2.

Now, let β > 0 and σ(A) ⊂ [0,∞). According to the Remark 2.1 by Aβ we mean
the operator

Aβ =

∫ ∞
−∞

b(λ)E(dλ)

where

b : R 3 λ→

{
λβ , λ ≥ 0

0, λ < 0 .
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Proposition 2.5. If E is the spectral measure for a self-adjoint operator A :
D(A) ⊂ H → H with σ(A) ⊂ [0,∞), then

αkA
βk + · · ·+ α1A

β1 + α0A
β0 =

∫ ∞
−∞

w(λ)E(dλ).

where

w : R 3 λ→

{
αkλ

βk + · · ·+ α1λ
β1 + α0λ

β0 , λ ≥ 0

0, λ < 0,
(2.3)

and 0 ≤ β0 < β1 < · · · < βk. Moreover,

Aβ2 ◦Aβ1 = Aβ2+β1 (2.4)

for β2, β1 > 0.

Proposition 2.6. If E is the spectral measure for a self-adjoint operator A :
D(A) ⊂ H → H and b : R → R is a Borel measurable function such that b(λ) 6= 0
a.e. with respect to E, then there exists the inverse operator [b(A)]−1 and

[b(A)]−1 =

∫ ∞
−∞

1

b(λ)
E(dλ).

3. Weak Dirichlet-Laplace operator

In this section we shall present definition and selected properties of the weak
Dirichlet-Laplace operator. The last three subsections contain, to the best of our
knowledge, the original results not presented up to now.

3.1. Friedrich’s extension. Let Ω ⊂ RN be an open bounded set. We shall say
that u : Ω→ R has a (weak) Dirichlet-Laplacian (see [3]) if u ∈ H1

0 and there exists
a function g ∈ L2 such that∫

Ω

∇u(x)∇v(x)dx =

∫
Ω

g(x)v(x)dx

for any v ∈ H1
0 . The function g will be called the weak Dirichlet-Laplacian and

denoted by (−∆)ωu.
Applying the Fridrich’s procedure of extension of a densely defined symmetric

and positive-definite operator T0 : D(T0) ⊂ H → H to a self-adjoint one S :
D(S) ⊂ H → H where H is a real Hilbert space (see [18]), in the case of the
classical Dirichlet-Laplace operator

T0 = −∆ : D(T0) = C∞c ⊂ L2 → L2,

we state that the domain D(S) coincides with the set of all functions u : Ω → R
possessing the weak Dirichlet-Laplacian (−∆)ωu and

Su = (−∆)ωu

for u ∈ D(S).
Clearly, −∆ ⊂ (−∆)ω where −∆ : H1

0 ∩H2 ⊂ L2 → L2 is the strong Dirichlet-
Laplace operator, i.e.

H1
0 ∩H2 ⊂ D((−∆)ω)

and (−∆)ωu = (−∆)u for u ∈ H1
0 ∩H2.

Finally, we obtain the following result.
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Theorem 3.1. The operator

(−∆)ω : D((−∆)ω) ⊂ L2 → L2

is bijective, self-adjoint and T0 ⊂ (−∆) ⊂ (−∆)ω.

Remark 3.2. If N = 1 and Ω = (0, π), then (−∆) = (−∆)ω because (−∆) is
self-adjoint and, consequently, no proper self-adjoint extension of it exists. Using
the results from [16, 17] one can show that if Ω ⊂ RN is an open bounded set of
class C1,1 or Ω ⊂ R2 is an open bounded convex polygon, then (−∆)ω = (−∆).
Such an equality in the case of Ω ⊂ RN being of class C2 has been derived in [1].

3.2. Spectrum of (−∆)ω. Let Ω ⊂ RN be an open bounded set. It is known (see
[3]) that the spectrum of (−∆)ω consists of denumerable number the eigenvalues λj
such that 0 < λ1 ≤ λ2 ≤ · · · ≤ λj →∞ (similarly, as in [3], we count the eigenvalues
of (−∆)ω according to their multiplicity, i.e. each λj is repeated kj times where
kj is the multiplicity of λj) and there exists a system {ej} of eigenfunctions of the
operator (−∆)ω, corresponding to λj , which is a Hilbertian basis in L2. In [8] it is
proved that one can choose ej ∈ H1

0 ∩ C∞. Thus, for any u ∈ L2 there exist real
numbers aj , j ∈ N, such that

u(t) =
∑

ajej(t) in L2 and ‖u‖2L2 =
∑
|aj |2.

3.3. Hilbert space D([(−∆)ω]β). Let us fix a number β > 0, an open bounded
set Ω ⊂ RN and consider the operator

[(−∆)ω]β : D([(−∆)ω]β) ⊂ L2 → L2

given by

([(−∆)ω]βu)(t) =
((∫

σ((−∆)ω)

λβE(dλ)
)
u
)

(t) =
(∑

λβj ajej

)
(t)

where

D([(−∆)ω]β) = {u(t) ∈ L2;

∫
σ((−∆)ω)

|λβ |2‖E(dλ)u‖2 =
∑

((λj)
β)2a2

j <∞,

where aj ’s are such that

u(t) =
(∫

σ((−∆)ω)

1E(dλ)u)(t) = (
∑

ajej)(t)},

E is the spectral measure given by (−∆)ω and the convergence of the series is
in L2. Of course, [(−∆)ω]β is self-adjoint, the spectrum σ([(−∆)ω]β) consists of

eigenvalues λβj , j ∈ N, and eigenspaces corresponding to λβj ’s are the same as

eigenspaces for (−∆)ω, corresponding to λj ’s.
It is clear that if 0 < β1 < β2, then

D([(−∆)ω]β2) ⊂ D([(−∆)ω]β1). (3.1)

In D([(−∆)ω]β), we define the scalar product

〈u, v〉β = 〈u, v〉L2 + 〈[(−∆)ω]βu, [(−∆)ω]βv〉L2 ,

and the corresponding norm

‖u‖β = (‖u‖2L2 + ‖[(−∆)ω]βu‖2L2)1/2.

Since [(−∆)ω]β is closed (being self-adjoint operator), therefore it is easy to see
that D([(−∆)ω]β) with the scalar product 〈·, ·〉β is Hilbert space.
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Let us also observe that the scalar product

〈u, v〉∼β = 〈[(−∆)ω]βu, [(−∆)ω]βv〉L2

determines the equivalent norm

‖u‖∼β = ‖[(−∆)ω]βu‖L2 .

More precisely,
‖u‖2L2 ≤Mβ‖u‖2∼β (3.2)

where Mβ = 1 when the set {λj ; λj < 1} is empty and Mβ = 1
λ1

2β > 1 in the

opposite case and, consequently,

‖u‖∼β ≤ ‖u‖β ≤
√
Mβ + 1‖u‖∼β .

3.4. Equivalence of weak and strong solutions. Let E be the spectral measure
for a self-adjoint operator A : D(A) ⊂ H → H with non-empty resolvent set and
b : R → R - a Borel measurable function, defined E - a.e. Fact that the operator
b(A) is self-adjoint means that its domain satisfies the equality

D(b(A)) =
{
u ∈ L2 : there exists z ∈ L2 such that∫

Ω

u(t)b(A)v(t)dt =

∫
Ω

z(t)v(t)dt for all v ∈ D(b(A))
} (3.3)

and
b(A)u = z for u ∈ D(b(A)) . (3.4)

From Proposition 2.4 it follows that

b(A)(b(A)u) = b2(A)u. (3.5)

In particular, u ∈ D(b2(A)) if and only if u ∈ D(b(A)) and b(A)u ∈ D(b(A)). Using
this fact and (3.3), (3.4), we obtain the following result.

Theorem 3.3. For g ∈ L2, we have that u ∈ D(b2(A)) and

b2(A)u = g (3.6)

if and only if u ∈ D(b(A)) and∫
Ω

b(A)u(t)b(A)v(t)dt =

∫
Ω

g(t)v(t)dt (3.7)

for any v ∈ D(b(A)).

Consequently, if A : D(A) ⊂ H → H is self-adjoint with σ(A) ⊂ [0,∞), w is
given by (2.3), then we have the following corollary.

Corollary 3.4. Assume g ∈ L2. Then u ∈ D(w2(A)) and w2(A)u = g if and only
if u ∈ D(w(A)) and ∫

Ω

w(A)u(t)w(A)v(t)dt =

∫
Ω

g(t)v(t)dt

for any v ∈ D(w(A)).

Clearly w2(A) =
∑k
i,j=0 αiαjA

βi+βj . Moreover if the numbers β0, β1, . . . , βk are

non-negative integers, then we can omit the assumption σ(A) ⊂ [0,∞) and consider
the function

w(λ) = αkλ
βk + · · ·+ α1λ

β1 + α0λ
β0 , λ ∈ R .
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Remark 3.5. The above theorem states that u is the strong solution to problem
(3.6) if and only if it is the weak one (in a sense). Consequently, it can be obtained
with the aid of a variational method (see Section 4). Let us observe that in the case
of A = (−∆)ω, w(λ) = λ1/2 and Ω ⊂ RN being an open bounded set, the unique
strong solution of problem

(−∆)ωu = g

(in fact, weak solution to the equation (−∆)u = g) is a function u ∈ H1
0 such that∫

Ω

∇u(t)∇v(t)dt =

∫
Ω

g(t)v(t)dt

for any v ∈ H1
0 . From the above theorem it follows that u ∈ D([(−∆)ω]1/2) and∫

Ω

[(−∆)ω]1/2u(t)[(−∆)ω]
1
2 v(t)dt =

∫
Ω

g(t)v(t)dt

If additionally Ω ⊂ RN is of class C1,1 or convex polygon in R2, then the unique
function u ∈ H1

0 such that∫
Ω

∇u(t)∇v(t)dt =

∫
Ω

g(t)v(t)dt

for any v ∈ H1
0 belongs to H1

0 ∩H2 and

(−∆)u = g.

Let us point out that even in the case of N = 1 and Ω = (0, π) the operator
[(−∆)ω]1/2 = (−∆)1/2 differs from the operator H1

0 ⊂ L2 → L2, defined by

x 7→ ∇x = x′ .

This operator is not self-adjoint. So, we have a new variational approach to the
equation (−∆)u = g.

3.5. Compactness of the inverse (w2((−∆)ω))−1. Let us consider the operator
w((−∆)ω) assuming additionally that αi > 0 for i = 0, . . . , k. From (3.1) it follows
that D(w((−∆)ω)) = D([(−∆)ω]βk). Introduce in D(w((−∆)ω)) a new scalar
product

〈u, v〉w((−∆)ω) = 〈w((−∆)ω)u,w((−∆)ω)v〉L2 .

Lemma 3.6. The scalar products 〈·, ·〉∼βk and 〈·, ·〉w((−∆)ω) generate the equivalent
norms

‖u‖∼βk = ‖[(−∆)ω]βku‖L2

and
‖u‖w((−∆)ω) = ‖w((−∆)ω)u‖L2

in D(w((−∆)ω)) and, consequently, D(w((−∆)ω)) is complete under the scalar
product 〈·, ·〉w((−∆)ω).

Proof. First, let us observe that if βi < βj , then (see (2.4))

αiαj〈[(−∆)ω]βiu, [(−∆)ω]βju〉L2

= αiαj〈[(−∆)ω]βiu, [(−∆)ω]βj−βi([(−∆)ω]βiu)〉L2

= αiαj〈[(−∆)ω]
βj−βi

2 ([(−∆)ω]βiu), [(−∆)ω]
βj−βi

2 ([(−∆)ω]βiu)〉L2

= αiαj‖[(−∆)ω]
βj−βi

2 +βiu‖2L2 ≥ 0.
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Using this property we obtain

‖u‖2∼βk =
1

α2
k

‖αk[(−∆)ω]βku‖2L2

≤ 1

α2
k

‖w((−∆)ω)u‖2L2

≤ C1

α2
k

k∑
i=0

‖[(−∆)ω]βiu‖2L2

=
C1

α2
k

k∑
i=0

( ∞∑
j=1

((λj)
βi)2a2

j

)
≤ C1

α2
k

( ∞∑
j=1

((λj)
βk)2a2

j + kC2
2

∞∑
j=1

((λj)
βk)2a2

j

)
=
C1

α2
k

(1 + kC2
2 )

∞∑
j=1

((λj)
βk)2a2

j

=
C1

α2
k

(1 + kC2
2 )‖u‖2∼βk

where u(x) =
∑∞
j=1 ajej(x), ({ej : j ∈ N} is a Hilbertian basis in L2 consisting of

eigenfunctions corresponding to eigenvalues λj), C1 > 0 is a constant that does not
depend on u and C2 is such that

(λj)
βi ≤ C2(λj)

βk

for any i = 0, . . . , k − 1 and j ∈ {j ∈ N, λj < 1} (if the set {j ∈ N, λj < 1} is
empty, we put C2 = 1). Completeness is obvious. �

Now, let us fix g ∈ L2 and consider the equation

w2((−∆)ω)u = g

in D(w2((−∆)ω)). According to Corollary 3.4, to show that there exists a unique
solution to this equation it is equivalent to prove that there exists a unique function
u ∈ D(w((−∆)ω)) such that∫

Ω

w((−∆)ω)u(t)w((−∆)ω)v(t)dt =

∫
Ω

g(t)v(t)dt

for any v ∈ D(w((−∆)ω)). Indeed, the functional

D(w((−∆)ω)) 3 u 7→
∫

Ω

g(x)u(x)dx ∈ R

is linear and continuous with respect to the norm ‖u‖w((−∆)ω) (continuity follows
from (3.2) and Lemma 3.6). So, from the Riesz theorem it follows that there exists
a unique function ug ∈ D(w((−∆)ω)) such that

〈ug, v〉w((−∆)ω) =

∫
Ω

g(x)v(x)dx

for any v ∈ D(w((−∆)ω)), i.e.∫
Ω

w((−∆)ω)ug(t)w((−∆)ω)v(t)dt =

∫
Ω

g(t)v(t)dt
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for any v ∈ D(w((−∆)ω)). Thus, we have proved the following theorem.

Theorem 3.7. For any function g ∈ L2, there exists a unique solution

ug ∈ D(w2((−∆)ω))

to the equation
w2((−∆)ω)u = g.

So, the operator w2((−∆)ω) : D(w2((−∆)ω)) ⊂ L2 → L2 is bijective and,
consequently, there exists an inverse operator

(w2((−∆)ω))−1 : L2 → L2

defined on the whole space L2. Moreover, for every g ∈ L2, we have

‖(w2((−∆)ω))−1g‖2L2 = ‖ug‖2L2 ≤M2βk‖ug‖2∼2βk

= M2βk‖[(−∆)ω]2βkug‖2L2

= M2βk〈[(−∆)ω]2βkug, [(−∆)ω]2βkug〉L2

=
M2βk

α4
k

〈α2
k[(−∆)ω]2βkug, α

2
k[(−∆)ω]2βkug〉L2

≤ M2βk

α4
k

〈w2((−∆)ω)ug, w
2((−∆)ω)ug〉L2

=
M2βk

α4
k

‖w2((−∆)ω)ug‖2L2 =
M2βk

α4
k

‖g‖2L2 ,

i.e. (w2((−∆)ω))−1 is bounded. Using Proposition 2.6 with the operator A =
(−∆)ω and the function b(λ) = w2(λ), we assert that

(w2((−∆)ω))−1 =

∫ ∞
−∞

1

w2(λ)
E(dλ).

Note that
{λ ∈ R : w2(λ) = 0} = {λ ∈ R : λ ≤ 0}

and E({λ ∈ R : λ ≤ 0}) = 0 because

σ((−∆)ω) ⊂ [λ1,∞)

where λ1 > 0 is the first eigenvalue of (−∆)ω.
Thus, the operator (w2((−∆)ω))−1 is self-adjoint and (see (2.2)) the spectrum

σ((w2((−∆)ω))−1) consists of 0 and eigenvalues µj = 1
w2(λj)

(λj-s are eigenvalues of

(−∆)ω) such that 0← µj < · · · < µ2 < µ1 (we used here the fact that αj > 0 for j =
0, . . . , k and, consequently, w2(λ) is increasing, w2(λ)→∞ as λ→∞ and w2(λ) 6=
0 for λ > 0). Since eigenspaces Nµj , Nw2(λj) and Nλj of operators (w2((−∆)ω))−1,

w2((−∆)ω) and (−∆)ω, corresponding to µj , w
2(λj) and λj , respectively, are the

same, therefore multiplicity of each µj is the same as multiplicity of w2(λj) and λj .
Finally, we have the operator (w2((−∆)ω))−1 which is defined on L2, bounded,

self-adjoint with countable spectrum consisting of 0 and eigenvalues of finite mul-
tiplicity, tending to 0. So, (see [22, Part VI.6]) we obtain the following theorem.

Theorem 3.8. The operator (w2((−∆)ω))−1 is compact, i.e. the image of any
bounded set in L2 is relatively compact in L2.

Remark 3.9. The case of w(λ) = λ1/2 of the above theorem is proved in [3,
Proposition 8.2.1] and that proof is based on the Rellich-Kondrakov theorem.
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Using the above theorem we obtain the following property.

Proposition 3.10. If uk ⇀ u0 weakly in D(w((−∆)ω)), then uk → u0 strongly in
L2 and w((−∆)ω)uk ⇀ w((−∆)ω)u0 weakly in L2.

Proof. First, let us assume that w(λ) = z2(λ) where z is a polynomial of type (2.3)
with positive coefficients αi. From the continuity of the linear operators

D(z2((−∆)ω)) 3 u 7→ u ∈ L2,

D(z2((−∆)ω)) 3 u 7→ z2((−∆)ω)u ∈ L2

it follows that uk ⇀ u0 weakly in L2 and z2((−∆)ω)uk ⇀ z2((−∆)ω)u0 weakly
in L2. Theorem 3.8 implies that the sequence (uk) contains a subsequence (uki)
converging strongly in L2 to a limit. Of course, this limit is the function u0, i.e.
uki → u0 strongly in L2. Supposing contrary and repeating the above argumenta-
tion we assert that uk → u0 strongly in L2.

Now, let us consider any polynomial w(λ) of type (2.3) with positive coefficients
αi. Clearly, weak convergence uk ⇀ u0 in D(w((−∆)ω)) implies the weak conver-
gence w((−∆)ω)uk ⇀ w((−∆)ω)u0 in L2. Moreover,

D(w((−∆)ω)) = D([(−∆)ω]βk) = D([(−∆)ω]2
βk
2 ) = D(z2((−∆)ω))

where z(λ) = λ
βk
2 . Applying the proved case of the proposition to the polynomial

z(λ) we assert that uk → u0 strongly in L2 (positivity of coefficients αi guaranties
equivalence of norms ‖u‖∼βk and ‖u‖w((−∆)ω)). �

3.6. Closedness of the range of w2((−∆)ω) − aI. Now, let us consider the
operator

L = w2((−∆)ω)− aI : D(w2((−∆)ω)− aI) ⊂ L2 → L2

where a ∈ R and I : L2 → L2 is the identity operator. As in the previous section
we assume that αi > 0 for i = 0, . . . , k. It is clear that the spectrum σ(L) of L
consists of eigenvalues

w2(λ1)− a < w2(λ2)− a < . . . (3.8)

where 0 < λ1 < λ2 < . . . are eigenvalues of the operator (−∆)ω, of finite multiplic-
ity. Since eigenspaces Nλi and Nw2(λi)−a of operators (−∆)ω and w2((−∆)ω)−aI,

corresponding to λi and w2(λi)−a, respectively, are the same, therefore multiplicity
of each eigenvalue w2(λi)− a is also finite.

Now, we shall show that the range R(L) of the operator L is closed.
First, let us consider the case when a /∈ {w2(λi) : i ∈ N} (non-resonance case).

So, 0 belongs to the resolvent set ρ(L). It means that the operator L−1 exists, is

bounded and D(L−1) = R(L) = L2. Consequently (see [22, Part III, Lemma 7.1]),
(L−1)∗ ∈ L(L2) (the set of linear bounded operators defined on L2). Moreover, since
the operators L−1, L∗, (L−1)∗ exist, therefore (L∗)−1 exists and (L∗)−1 = (L−1)∗

(see [22, Part III, Theorem 6.2]). Thus (L = L∗),

R(L) = D(L−1) = D((L∗)−1) = D((L−1)∗) = L2.

Now, let us assume that a = w2(λ1). Since L2 = N(L) ⊕ R(L), i.e. R(L) =
N(L)⊥ (orthogonal subspace), therefore it is sufficient to show that

N(L)⊥ ⊂ R(L).
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Indeed, let v ∈ N(L)⊥ = Nw2(λ1)−a
⊥. Since L2 = ⊕

i≥1
Nw2(λi)−a (orthogonal

sum), therefore Nw2(λ1)−a
⊥ = ⊕

i>1
Nw2(λi)−a. Consequently v =

∑
i>1 vi where

vi ∈ Nw2(λi)−a. Consider the point u =
∑
i>1

1
w2(λi)−avi ∈ L2 and observe that

(below, E(dλ) is the spectral measure connected with (−∆)ω according to Theorem
2.3) ∫

σ((−∆)ω)

|w2(λ)− a|2‖E(dλ)u‖2 =
∑
i>1

|w2(λi)− a|2‖E({λi})u‖2

=
∑
i>1

|w2(λi)− a|2‖
1

w2(λi)− a
vi‖2

=
∑
i>1

‖vi‖2 = ‖v‖2 <∞,

i.e. u ∈ D(L). Moreover,

Lu =

∫
σ((−∆)ω)

(w2(λ)− a)E(dλ)u

=
∑
i>1

(w2(λi)− a)E({λi})u

=
∑
i>1

(w2(λi)− a)
1

w2(λi)− a
vi

=
∑
i>1

vi = v.

So, v ∈ R(L) and, finally, R(L) is closed. In a similar way, one can prove that R(L)
is closed when a = w2(λi) for i > 1.

4. Boundary value problem

Now, we shall study existence of solutions to boundary value problem (1.1). By
a solution to (1.1) we mean a function u ∈ D(w2((−∆)ω) − aI) = D(w2((−∆)ω))
satisfying (1.1) a.e. on Ω. We shall apply two approaches. First of them, applied
in the case of a = 0, is based on a direct method of calculus of variations and
the second one, applied in the non-resonance and resonance cases, is based on the
results obtained with the aid of the dual least action principle (see [20, 25, 21]).

4.1. Direct method. Let us consider problem (1.1) with a = 0. According to
Corollary 3.4, to derive existence of a solution to (1.1) it is equivalent to show that
there exists u ∈ D(w((−∆)ω)) such that∫

Ω

w((−∆)ω)u(x)w((−∆)ω)v(x)dx =

∫
Ω

DuF (x, u(x))v(x)dx (4.1)

for any v ∈ D(w((−∆)ω)). In such a case, a solution to (4.1) is the solution to
(1.1). Of course, such a point u is a critical point of the functional

f : D(w((−∆)ω)) 3 u 7→
∫

Ω

(
1

2
|w((−∆)ω)u(x)|2 − F (x, u(x)))dx ∈ R (4.2)

(clearly, under assumptions guaranteeing Gateaux differentiability of f).
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4.1.1. Gateaux differentiability of F . Assume that function F is measurable in x ∈
Ω, continuously differentiable in u ∈ R and

|F (x, u)| ≤ a|u|2 + b(x), (4.3)

|DuF (x, u)| ≤ c|u|+ d(x) (4.4)

for x ∈ Ω a.e., u ∈ R, where a, c ≥ 0 and b ∈ L1, d ∈ L2.

Proposition 4.1. Functional f is differentiable in Gateaux sense and the differ-
ential f ′(u) : D(w((−∆)ω))→ R of f at u is given by

f ′(u)v =

∫
Ω

w((−∆)ω)u(x)w((−∆)ω)v(x)−DuF (x, u(x))v(x)dx

for v ∈ D(w((−∆)ω)).

Proof. Of course, the first term of f , equal to 1
2‖u‖

2
w((−∆)ω), is Gateaux (even

continuously Gateaux) differentiable and its Gateaux differential at u is of the form

D(w((−∆)ω)) 3 v 7→ 〈u, v〉w((−∆)ω).

So, let us consider the mapping

g : D(w((−∆)ω)) 3 u 7→
∫

Ω

F (x, u(x))dx ∈ R.

In a standard way, using the Lebesgue dominated convergence theorem we state
that

g′(u) : D(w((−∆)ω)) 3 v 7→
∫

Ω

DuF (x, u(x))v(x)dx ∈ R,

is Gateaux differential of g at u. �

4.1.2. Existence of a solution to (1.1). First, we shall prove the following two propo-
sitions.

Proposition 4.2. If there exist constants A <
α2
k

Mβk

, B, C ∈ R such that

F (x, u) ≤ A

2
|u|2 +B|u|+ C (4.5)

for x ∈ Ω a.e., u ∈ R, then the functional (4.2) is coercive, i.e. f(u) → ∞ as
‖u‖w((−∆)ω) →∞.

Proof. Let us assume, without loss of the generality, that A,B ≥ 0. For any
u ∈ D(w((−∆)ω)), we have

f(u) =

∫
Ω

(
1

2
|w((−∆)ω)u(x)|2 − F (x, u(x)))dx

≥ 1

2
‖u‖2w((−∆)ω) −

A

2
‖u‖2L2 −B

√
|Ω|‖u‖L2 − C|Ω|

≥ 1

2
‖u‖2w((−∆)ω) −

A

2
Mβk‖u‖2∼βk −B

√
|Ω|Mβk‖u‖∼βk − C|Ω|

≥ 1

2
(1− AMβk

α2
k

)‖u‖2w((−∆)ω) −B
√
|Ω|Mβk

1

αk
‖u‖w((−∆)ω) − C|Ω|

where |Ω| is the Lebesgue measure of Ω. It means that f is coercive. �

Proposition 4.3. Functional (4.2) is weakly sequentially lower semicontinuous.
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Proof. Weak sequential lower semicontinuity of the second power of the norm in
Banach space is a classical result. So, it sufficient to show that the functional

D(w((−∆)ω)) 3 u 7→
∫

Ω

F (x, u(x)))dx ∈ R

is weakly sequentially continuous. But this fact follows immediately from Lebesgue
dominated convergence theorem. Indeed, the weak convergence of a sequence (un)
to u0 in D(w((−∆)ω)) implies (see Proposition 3.10) the convergence un → u0

in L2. From [8, Theorem 4.9] it follows that one can choose a subsequence (unk)
converging a.e. on Ω to u0 and pointwise bounded by a function belonging to L2.
Using growth condition (4.3) we assert that∫

Ω

F (x, unk(x)))dx→
∫

Ω

F (x, u0(x)))dx.

Supposing that the convergence∫
Ω

F (x, un(x)))dx→
∫

Ω

F (x, u0(x)))dx.

does not hold and repeating the above reasoning we obtain a contradiction. �

Now, let us recall the following classical result:

If E is a reflexive Banach space and functional f : E → R is weakly
sequentially lower semicontinuous and coercive, then there exists a
global minimum point of f .

Thus, the functional f given by (4.2) has a global minimum point u ∈ D(w((−∆)ω)).
Differentiability of f means that u satisfies (4.1). Consequently, u is a solution to
(1.1).

Example 4.4. Let us consider the Dirichlet problem for the equation

(αk[(−∆)ω]βk + · · ·+α0[(−∆)ω]β0)2u(x) = A cos(x1 + · · ·+xN )u(x)−b(x) sin(u(x))

in a bounded open set Ω ⊂ RN with αi > 0 for i = 0, . . . , k (k ∈ N ∪ {0}) and 0 ≤
β0 < β1 < · · · < βk, where 0 < A <

α2
k

Mβk

, Mβk = max{ 1
((λj)

βk )2
, λj < 1} = 1

(λ1)2βk

(recall that if there is no λj < 1, then Mβk = 1), b ∈ L∞(Ω,R). It is clear that the
function

F (x, u) =
A

2
cos(x1 + · · ·+ xN )u2 + b(x) cosu

satisfies growth conditions (4.3), (4.4), (4.5). Consequently, there exists a solution
u ∈ D(w2((−∆)ω)) = D([(−∆)ω]2βk) to the problem under consideration. As we
know, in the case of the domain Ω ⊂ RN being of class C1,1 or a bounded open
convex polygon in R2, (−∆)ω can be replaced by (−∆). If Ω = (0, π)× (0, π) then
(see [3, Proposition 8.5.3]) the first eigenvalue λ1 of the operator (−∆)ω = (−∆) is
equal to 2 and consequently Mβk = 1.

4.2. Dual approach.
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4.2.1. Abstract results. In [25] (see also [21]) the following abstract results have
been derived. Let L : D(L) ⊂ H → H be self-adjoint with closed range R(L) and
let g : H → R be convex continuous on H and Gateaux differentiable at any point
u ∈ D(L). By the gradient of g at u we mean a unique element ∇g(u) ∈ H such
that

g′(u)h = 〈∇g(u), h〉
for any h ∈ H.

Theorem 4.5. If there exist numbers b, c, d, α ∈ R such that

• σ(L)∩]0, α[= ∅
• σ(L) ∩ [α,∞[ consists of at most countable amount of isolated eigenvalues

of L of finite multiplicity
• 0 < b ≤ c < α
• for any u ∈ H,

b
‖u‖2

2
− d ≤ g(u) ≤ c‖u‖

2

2
+ d,

then there exists a solution u0 to the equation

Lu = ∇g(u)

such that v0 = Lu0 minimizes the dual functional

f̃ : R(L) 3 v 7→ g∗(v)− 1

2
〈Kv, v〉 ∈ R ∪ {+∞}

where
g∗ : H 3 v 7→ sup{〈v, u〉 − g(u); u ∈ H} ∈ R ∪ {+∞}

is the Fenchel transform of g and K = (L |D(L)∩R(L))
−1 : R(L)→ R(L).

If, additionally, we assume that N(L) 6= {0} (resonance case), then one can
weaken the assumption

b
‖u‖2

2
− d ≤ g(u), u ∈ H.

Clearly, such an assumption implies coercivity of g on H (g(x) → ∞ as ‖x‖ →
∞, x ∈ H). When N(L) 6= {0}, it is sufficient to assume coercivity of g only on
N(L). Namely, we have the following theorem.

Theorem 4.6. If N(L) 6= {0} and there exist numbers c, d, α ∈ R such that

• σ(L)∩]0, α[= ∅
• σ(L) ∩ [α,∞[ consists of at most countable amount of isolated eigenvalues

of L of finite multiplicity
• 0 < c < α
• for any u ∈ H,

g(u) ≤ c‖u‖
2

2
+ d

• g is coercive on N(L), i.e.

g(u)→∞ as ‖u‖ → ∞, u ∈ N(L),

then there exists a solution u0 to the equation

Lu = ∇g(u)

such that v0 = Lu0 minimizes the dual functional f̃ .
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4.2.2. Existence of a solution to (1.1). Assume that F : Ω× R→ R is measurable
in x ∈ Ω, continuously differentiable in u ∈ R and satisfies (4.3), (4.4). Thus, the
functional

g : L2 3 u 7→
∫

Ω

F (x, u(x))dx ∈ R

is continuous and differentiable in Gateaux sense on L2 with differential g′(u) given
by

g′(u)v =

∫
Ω

DuF (x, u(x))v(x)dx

for u, v ∈ L2. So, ∇g(u) = DuF (·, u(·)). Additionally, we assume that F is
convex in u ∈ R. From Theorem 4.5 and characterization (3.8) of the spectrum of
w2((−∆)ω)− aI we obtain the following theorem.

Theorem 4.7. If a, b, c, d ∈ R are such that

• 0 < b ≤ c < w2(λ1)− a or 0 < b ≤ c < w2(λi0+1)− a where i0 is such that
w2(λi0)− a < 0 < w2(λi0+1)− a,
• for x ∈ Ω a.e., u ∈ R,

b
|u|2

2
− d ≤ F (x, u) ≤ c |u|

2

2
+ d

then there exists a solution u0 to the equation (1.1) such that v0 = w2((−∆)ω)u0−
au0 minimizes the dual functional f̃ .

Theorem 4.6 implies the following result.

Theorem 4.8. If a = w2(λi0) for some i0 ∈ N and c, d ∈ R are such that

• 0 < c < w2(λi0+1)− a
• for x ∈ Ω a.e., u ∈ R,

F (x, u) ≤ c |u|
2

2
+ d (4.6)

•
∫

Ω
F (x, u(x))dx→∞ as ‖u‖ → ∞, u ∈ Nw2(λi0 )

then there exists a solution u0 to the equation (1.1) such that v0 = w2((−∆)ω)u0−
au0 minimizes the dual functional f̃ .

Example 4.9. Let us consider the Dirichlet problem for the equation

[(−∆)ω]
3
4 + 3

4u(x1, x2)− 2
3
2u(x1, x2) = (x1 + x2 + 1)u(x1, x2)− sin(u(x1, x2))

in the set Ω = (0, π)× (0, π) ⊂ R2. It is known (see [3, Proposition 8.5.3]) that the
eigenspace corresponding to the first eigenvalue λ1 = 2 of (−∆)ω = (−∆) is the set
{η sinx1 sinx2; η ∈ R} and the second eigenvalue λ2 is equal to 5. Of course, the
function

F (x1, x2, u) =
1

2
(x1 + x2 + 1)u2 + cosu, (x1, x2) ∈ Ω, u ∈ R,

satisfies growth conditions (4.3), (4.4). Moreover, it satisfies (4.6) with i0 = 1,
c = 2π + 1 (c < 53/2 − 23/2), d = 1 and∫

Ω

F (x1, x2, η sinx1 sinx2)dx

=

∫
Ω

(
1

2
(x1 + x2 + 1)η2 sin2 x1 sin2 x2 + cos(η sinx1 sinx2))dx→∞
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as |η| → ∞. Convexity of F in u ∈ R is obvious because F ′′u (x1, x2, u) = x1 + x2 +
1− cosu ≥ 0 for (x1, x2) ∈ Ω and u ∈ R. Consequently, there exists a solution

u0 ∈ D((−∆)3/2 − 23/2I) = D((−∆)3/2)

to (1.1) such that v0 = [(−∆)ω]3/2u0 − 23/2u0 minimizes the dual functional

f̃ : R(L)→ R ∪ {+∞}
where L = [(−∆)ω]3/2 − 23/2I, and

R(L) = {v ∈ L2 :

∫
Ω

v(x1, x2) sinx1 sinx2)dx = 0}.
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