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1.0  INTRODUCTION 

Within the past 20 years, Texas has become one of the fastest growing states in 

the United States. The Capital Areas Council of Governments’ (CAPCOG) Assessment 

of Growth and Development (2010) describes counties in the central Texas region as 

having experienced unprecedented growth in recent years. Between 1990 and 2010, 

population doubled from 919,000 to 1.8 million, and increased nearly 43 percent between 

2000 and 2011. This strong regional population growth trend is expected to continue at 

approximately 50,000 people per year, such that half of the region’s counties are 

projected to have double-digit percent growth (CAPCOG 2010).  At this rate, population 

totals are estimated to increase to 4.1 million in 2040.   Satellite cities of major 

metropolitan areas have exhibited massive population growth as well. For example, Kyle, 

Texas, 32 km south of Austin on the IH-35 corridor had a population increase of 427 

percent from 5,300 in 2000 to 28,000 in 2010 (U.S. Bureau of the Census 2012). 

Counties in the central Texas region do not have adequate land use administrative powers 

to ensure future urban development is suitable for the region’s long-term needs. 

Consequently, cities, which do have land use control, often plan land use development in 

isolation (CAPCOG 2010). Despite this lack of coordination between city and county 

planning agendas, the rapid urban growth in the region has piqued the interest of 

governmental entities and non-governmental organizations. 

Similar to many other large urban centers throughout the world, the in-migration 

of residents from throughout Texas, the United States, and immigration from other 

countries is responsible for the rapid growth of the Central Texas Region (CAPCOG 

2010). Past trends in population growth in Texas suggest that more people are moving 
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from rural to urban areas. Between 2000 and 2005, 11 Texas counties with one or more 

urban areas had at least 20 percent growth in population, while 93 rural counties 

experienced losses in population (Texas Comptroller of Public Accounts 2008). Residents of 

other states, such as California and New York, are drawn to Texas due to increased 

employment opportunities and economic advantages such as lack of state income taxes 

(Sager 2013). Additionally, many communities throughout the United States have 

struggled from recent economic downturns; however, the unemployment rate for the 

Central Texas region has remained two percent lower than the national average 

(CAPCOG 2012). 

 Agencies such as CAPCOG and The Trust for Public Land (TPL) have released 

assessments on the current growth trends of the area and expressing the need for 

sustainable urban growth management. Beyond the urban problems associated with 

population growth, there are additional environmental problems that should be 

considered regarding the overall effects of urbanization. Generally, environmental 

impacts of urbanization include habitat fragmentation (Scolozzi and Geneletti 2012; 

Shrestha et al. 2012), biochemical and physical changes to the hydrological system 

(White 2006), increased surface runoff and decreased aquifer recharge (Jacobson 2011; 

Pappas et al. 2008), reduction of CO2 sequestration (Zhang et al. 2012), and urban heat 

island effects (Radhi et al. 2013).  Impervious surfaces such as buildings, roads, and other 

paved surfaces prevent water infiltration into the soil and increase water runoff, thus 

resulting in increased erosion and potential for downstream flooding (Jacobson 2011; 

Pappas et al. 2008; White 2006).  The non-contiguous conversion of native land cover 

creates a fragmented landscape that reduces viable habitat for native fauna and flora 
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species (Scolozzi and Geneletti 2012; Shrestha et al. 2012). Additionally, the conversion 

of vegetated land to urban cover exacerbates urban heat island effects and inhibits local 

CO2 sequestration (Radhi et al. 2013; Zhang et al. 2012). 

 Unanimously, CAPCOG and TPL reports agree that the most pressing issues for 

managing urban growth in the central Texas region include access to water, improvement 

to transportation, land use management, and preservation of green spaces as some of 

main factors to consider for promoting sustainable growth. Proper management and 

consideration of these resources and infrastructure may provide a solid foundation for the 

economic development necessary for continued population growth in this region. 

The city of San Marcos, Texas is no exception to this unprecedented population 

and urban growth. San Marcos is situated off the IH-35 corridor, just 48 km south of 

Austin and 97 km north of San Antonio; two of the fastest growing metropolitan areas of 

Texas.  From 2000 to 2010, the total population of San Marcos increased nearly 30 

percent from 34,700 to 44,900, respectively (U.S. Bureau of the Census 2012). A great 

deal of this increase in population may be attributed to the growth in the student 

population of Texas State University located within the city. Enrollment at Texas State 

exhibited a steady increase throughout the past decade, with a notable increase of 4.7 

percent in fall 2011 to 34,113 from 32,572 in fall 2010 (TXSU 2012b). This increase in 

student enrollment is significant compared to the 2.2 percent increase in enrollment at 

University of Texas at Austin for the same period (UT 2012).  

1.1 Problem Statement 

The urban coverage of San Marcos is expected to expand to permit the needs of a 

growing population and will warrant a greater expenditure of local resources. With the 
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projected growth of population and urban coverage alike, local governmental and non-

governmental organizations could benefit from information pertaining to the projected 

amount and location of urban growth. Models, such as the Cellular automata based 

SLEUTH model, are one such tool that can forecast urban growth patterns that can be 

utilized by decision-makers for urban planning considerations.  

1.2 Objectives 

This study will address two main objectives: 

1.   Describe regional changes in urban cover within the study area beginning in 

2000 and ending in 2013, and  

2.    Implement the SLEUTH urban growth model to produce a probability map of 

urban coverage for San Marcos, TX in the year 2023. 

1.3 Justification 

Both Texas State and the city of San Marcos facilitate rapid population growth 

through policy and urban development.  The city of San Marcos is encouraging economic 

development by offering new business incentives, development fee waivers, and tax 

waivers (City of San Marcos 2012). These incentives exist to attract new businesses 

investments, which in turn may result in property development and increased 

employment opportunities. Similarly, Texas State has invested over $585 million in 

improvements and new developments to the university campus (TXSU 2012a). These 

campus developments are designed to bring greater academic attention to the university, 

increase student enrollment, and, therefore, the overall population of San Marcos. 

Beyond the measurement of urban growth, the full impact of urban expansion can be 
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realized by considering the need for water, building materials, food, and other goods 

pulled from the surrounding region to facilitate population and urban growth. As a result, 

the surrounding region is often converted from natural land to agricultural land (where 

permissible), and, through time, agricultural land is converted to urban cover.  

Monitoring the expansion of urban areas is of critical importance to those 

involved in the study and management of the processes that influence such growth. 

Simply put, the greater the population within a region, the greater the impact on the 

environment through the consumption of food, energy, water, and land (Soltész 2010). As 

urban areas continue to expand to facilitate the population growth and resource needs, 

many areas previously used for agricultural or other green spaces are converted to urban 

cover (Bagan and Yamagata 2012; Li et al. 2010; Sezgin and Varol 2012; Yang 2002). 

Thus, accurate assessments of urban growth are important to understand the 

environmental impacts over time and to guide sustainable growth such that negative 

impacts on the environment are mitigated (Han et al. 2008).  
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2.0 LITERATURE REVIEW 

2.1 Overview 

Factors that influence growth of urban areas are complex with varying degrees of 

interdependence. Thus, simulating this complex process and accounting for key factors 

fostering such growth is challenging (Barredo et al., 2003). Models are a way of 

representing a process in reality composed of many complex relationships into a 

simplified version that is composed of the most significant factors perceived to influence 

a particular process (Liu 2009). Researchers construct models to represent the structure or 

process of a real system in an effort to understand, explain, or predict the behavior of the 

system (Liu 2009). A key feature and benefit of modeling is the ability to construct the 

model using key elements believed to influence a process. This selectiveness eliminates 

noise of other, less important factors and enables the real world to be simplified in a valid 

and understandable way. A challenge to constructing a model, however, involves the 

decision of the selecting elements of a real-world system to are perceived to be important 

and must be included and adequately interrelated to create valid results (Liu 2009).  

 The establishment of known relationships among elements included in a model 

enables researchers to make predictions of future conditions. As data used in models are 

generated from empirical observations, modeling results should be applicable to the real 

world.  It should be noted here, however, that models are only approximations of reality 

and that any subsequent predictions can only be interpreted as generalizations of future 

conditions (Liu 2009). As many Earth processes are highly dynamic and complex, the use 

of geospatial models have been widely applied to help researchers gain more insight in to 

the causes of such phenomena. Common examples of geospatial modeling include 
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hydrological (Remo et al., 2009), ecological (Silva et al., 2008; Zhao et al., 2006), land 

cover change (Araya and Cabral, 2010; Bagan and Yamagata, 2012; Yang, 2002) and 

urban development (Cheng and Masser 2003; Jantz et al., 2010, Liu, 2009; Yang, 2002). 

The adequacy of these models is highly dependent on the quality and accuracy of the data 

used. Currently, there is a great deal of research in determining the optimal methods of 

analysis to generate the most accurate output results. 

Urban growth modeling is a common method used to help researchers attempt to 

understand the underlying factors influencing urban growth. Understanding the 

complexity of urban growth and expansion is a heavily researched topic (Barredo et al. 

2003; Cheng and Masser 2003; Clarke et al. 1997; Cohen 2006; Geohegan 2001; Liu 

2009; Santé et al. 2010; Soltész 2010). A review of this relevant literature reveals a set of 

characteristics describing urban expansion that are common among all cases. Developing 

urban systems can be characterized as self-organizing, complex emergent systems in 

which the collective interactions at the local-scale will shape and determine the ordered 

patterns at the large-scale (Tobler 1979; Wolfram 1984). Self-organization is defined as a 

process that typically involves emergent properties where coherent and organized 

patterns arise over time from the local interactions of an initially disordered system.  The 

degree of interdependence of the processes within a system is not completely known; 

however, it is through these relationships that systems will tend to develop patterns 

(Barredo et al., 2003).  

Geographic information systems (GIS) and remote sensing technologies are the 

most commonly utilized tools in geospatial modeling. GIS serves as a platform for 

quantitative and qualitative analysis of geospatial data. The application of GIS 
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technologies is well known to be a means of efficiently analyzing large amounts of 

spatial data.  However, in order to make predictions of future conditions, one must first 

have a good understanding of the historical patterns of change leading up to present 

conditions. Remotely sensed data are well suited for land cover land use (LCLU) change 

detection because of its repetitive acquisition capabilities and ability to cover a large 

spatial extent. Therefore, remotely sensed images are often used as the basis for LCLU 

maps analyzed within a GIS. 

2.2  Remote Sensing for LCLU Change Detection 

The U.S. Geological Survey (USGS) has long been on the forefront of studying 

land-use and land-cover changes. Since the 1970s with the development of a land-cover 

and land-use classification system by Anderson et al. (1976), the USGS has maintained 

an interest in monitoring the changes over the Earth’s surface. In the 1990s, the USGS 

began the Human-Induced Land Transformations (HILT) project that was initially aimed 

at understanding the transitions of land to urban land-use, specifically in the San 

Francisco/ Sacramento area (Acevedo et al. 2010; Clarke et al. 1997; Kirtland et al. 

2010).  The results of the HILT project showed that the integration of historical maps and 

related geographic information with remotely sensed data can successfully map urban 

land characteristics, as well as provide a visual representation of such changes through 

time (Acevedo et al. 2010). 

A good change detection study, as determined by Lu et al. (2004), should provide 

the following information: area change and change rate, spatial distribution of changed 

types, change trajectories of land-cover types, and accuracy assessment of change 

detection. Traditional methods of change detection began with repeat photography and, 
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through timely technological advances, have eventually evolved to using digital remote 

sensing data. As technology continues to progress, the scientific community continues to 

develop new methods with increasingly accurate information on the changes to the 

Earth’s surface. 

There are many characteristics of remotely sensed data that make them 

particularly well suited for change detection projects. Currently, there are dozens of 

existing remote sensing platforms, all of which collect a variety of multispectral 

information at varying spatial scales (Jensen 2005). Satellite remote sensing platforms, 

such as Landsat Thematic Mapper (TM), Landsat Multi-Spectral Scanner (MSS), Landsat 

Enhanced Thematic Mapper Plus (ETM+), Satellite Pour l’Observationde la Terre 

(SPOT), Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution 

Imaging Spectroradiometer (MODIS), and Advanced Spaceborne Thermal Emission and 

Reflectance Radiometer (ASTER) are all major sources of data for change detection 

applications (Jensen 2005; Lu et al. 2004).  These platforms are consistent and reliable 

sources of data with known temporal and spatial resolutions (Jensen 2005). Additionally, 

airborne (sub-orbital) remote sensing platforms, such as Compact Airborne 

Spectrographic Imager (CASI), are capable of capturing data at intervals that a particular 

satellite cannot (Jensen 2005).  

The synoptic view of satellite and airborne sensors also allows for data to be 

collected over large areas, making it possible to detect changes over a large region. For 

example, Zhou et al. (2011) acquired five images from Landsat TM, MSS, ETM+, and 

SPOT HRV (high resolution visible image) to determine land-use changes and the human 

impacts on the land over 30 years in a region of China. Their results show that until the 
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early 1990s human impacts were minimal, however, since then the area of cultivated 

farmland increased over five times, and continues to do so 30 percent annually. This 

research highlights the use of multitemporal remote sensing data sets for detecting 

changes across a large area over a relatively long period.   

It is important to consider the sensor selected to obtain data for specific 

applications, as all sensors provide specific spectral and spatial data with varying 

resolutions (Jensen 2005). The digital format of remote sensing data makes it easy to 

store and is suitable for computer processing (Lu et al. 2004). After selecting the image 

data, the next step, selecting the appropriate change detection method, is perhaps the most 

important consideration for generating accurate results (Lu et al. 2004; Lu et al. 2005).  

Lu et al. (2005) analyzed the differences in land-cover change detection 

accuracies generated from ten binary change detection methods using Landsat 5 TM 

imagery over a study site in the Amazon tropical region.  Their results indicate that three 

of the ten techniques produce significantly better results. Furthermore, these results 

exemplify the importance of selecting the appropriate change detection technique to 

produce the best results for a specific study area.  

Lu et al. (2004) and Singh (1989) provide in-depth reviews of the many available 

change detection techniques available at their respective times of publishing. These 

studies show the abundant methods available for comparing data between images for a 

diverse set of applications. Lu et al. (2004) identified the major categories of change 

detection applications using remote sensing technology, including LULC change, forest 

or vegetation change, wetland change, forest fire, urban change, environmental change, 
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and many other applications. These reviews underscore the importance of monitoring the 

changes on the Earth throughout the years and the broad applicability of remote sensing 

data for change detection studies. It is not surprising that significant effort has gone into 

the development of new technology and methods for various change detection 

applications.  

Change detection projects provide timely and accurate information on the changes 

of Earth’s surface features and allow us to have a better understanding of the 

relationships among humans and our environment (Lu et al. 2004). Remote sensing 

technology has been utilized for many change detection studies throughout the years, 

fostering the advancement of change detection techniques for various applications. 

Despite this, characterizing the volumetric changes of target features using traditional 

photogrammetric methods is labor intensive and time consuming (Lefsky et al. 2002). 

Nonetheless, results of change detection studies are broadly applicable to anyone who is 

interested in any visible changes on the earth over time. Examples of applications include 

land-use and land-cover change, forest or vegetation change, forest fire, wetland change, 

urban change, environmental change, and many others.  

2.3 Overview of Urban Growth Modeling 

Most early applications of understanding the urban processes used transportation 

and land-use information to create models that were based on gravity theory or some 

form of optimized mathematics (Santé et al. 2010). However, among all urban modeling 

techniques, cellular automata (CA) are particularly well suited for modeling complex and 

dynamic natural phenomena such as urban areas (Tobler 1979; Wolfram 1984). Tobler 

(1979) identified the potential application of cellular space models to geographical 
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processes. Tobler (1979) proposed that changes in the patterns on the Earth’s surface are 

analogous to a game of chess in which the rules are simple, yet using these rules as 

strategy makes the game complex. In this context, given an initial state, a desired state, 

and a set of transition rules, one must determine if there is an identifiable path from one 

state to another (Tobler 1979). Wolfram (1984) demonstrated that CA are capable of 

modeling complex systems and are most appropriate in highly nonlinear processes, such 

as biological and physical systems, where growth inhibition effects occur.  

More recent conceptual and technological advances have led to increased CA 

research and development of models applicable to real-world urban systems. CA models 

have the ability to simulate urban growth through the assumption that past urban 

development affects future urban growth patterns through neighboring interactions 

between land-uses (Santé et al. 2010).  

Liu (2009) defines and explains the five basic elements of cellular automation: the 

cell, the state, the neighborhood, the transition rule, and the time. Cellular automata 

operate on a raster-format of discrete cells, each characterized by a state, where the state 

is representative of any one specific land cover or land use, such as rural or urban. This 

format allows for easy integration with GIS, and, consequently, operates at high 

computational efficiency at relatively fine spatial resolutions. The state of each cell is 

dependent on its previous state, the state of neighboring cells, and set of transition rules 

(Barredo et al. 2003; Garcia et al. 2012; Santé et al. 2010).  The complexity of urban 

simulation requires considering particular behaviors of urban systems and modifying (or 

relaxing) the original structure of the CA to compensate for such complexity.  
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A major benefit of cellular automata is its ability to model complicated behavior, 

given its relatively simple construction (Wolfram 1984).  A cellular automata system 

operates by dividing space into a regular cell spatial tessellation, where each cell is 

assigned a specific state. The status of each cell is determined by the state of the cell itself 

and the state of the other cells within a local neighborhood. Statuses of each cell change 

synchronously based on a defined set of local transition rules. All cells together, with the 

combined effect of single cell transition rules, define and generate the whole complex 

system where changes occur with each discrete time step (Liu 2009; Silva et al. 2008).  

Another beneficial component of cellular automata is its ability to model the 

characteristics of a system that is capable of self-organization. Self-organization is a 

characteristic found in many complex systems, such as cities, in which local-scale 

interactions continue existing patterns, but also generate new patterns that participate in 

the next iteration; much like a feedback mechanism (Barredo et al. 2003). Cellular 

automata are able to accommodate this self-organization characteristic by allowing rules 

to change as the system grows (Clarke et al. 1997). 

 The concept of cellular automata can be easily applied to the organization and 

development patterns of urban areas. Consider that an urban area is represented by 

cellular space in which each cell is representative of a specific land parcel within the 

urban area. Each cell state can be defined as urban or non-urban at a specific point in 

time. The probability land development, or a cell's status changing from non-urban to 

urban, is influenced by the collective status of a local neighborhood of cells and a set of 

defined transition rules. These transition rules, usually expressed as "If-Then" statements, 
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determine the process of a land parcel, or cell, transitioning from one state to another (Liu 

2009).  

For example, if three or more urban cells surround a non-urban cell, then the non-

urban cell will likely convert to an urban cell through a growth cycle. This is, however, 

just a simple example of one transition rule. In the real-world most geographic 

phenomena, such as urban development, do not follow a uniform development process 

and requires developing multiple locally defined transition rules that take in to account 

multiple geographical conditions.  Urban areas are composed of a complex mix of related 

units, but the degree and nature of the connections can be difficult to determine.  The 

dynamics of urban land use in an urban area is directly attributable to the decisions of 

individuals, public, and private corporations acting together over time (Barredo et al. 

2003). As a result, cities are continuously organized and shaped based on these 

influences. Barredo et al. (2003) identified five groups of factors that can influence the 

allocations and decision-making process of urban land-uses: environmental 

characteristics; local-scale neighborhoods characteristics; spatial characteristics of the 

cities (i.e. accessibility); urban and regional planning policies; factors related to 

individual preferences, level of economic development, socio-economic and political 

systems. 

Santé et al. (2010) provides an in-depth review of many of the common 

modifications of CA for urban simulations and provides examples of the main urban CA 

models applied to real-world urban development processes. Additionally, CA-based 

models for urban growth simulation are grouped and compared based on the main 

characteristics of the model. Garcia et al. (2010) assesses the operational practicability of 
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three common urban CA models to simulate the growth of a town in Spain.  Their results 

showed that low growth in the area over the study period warrants more information with 

greater detailed data in order to identify growth dynamics within the area. However, 

including additional land-uses and extending the neighborhood of cell interactions could 

improve simulation results.  This research provides context into the strengths and 

weaknesses of various models and underscores the application of a diversity of CA-based 

models for understanding various complex urban systems.  

2.4 Incorporation of Remote Sensing LCLU Change Detection and Urban Growth 

Modeling 

The systematic analysis of the dynamic changes between non-urban land cover to 

urban, or other land covers associated with urban expansion, can reveal trends that begin 

to explain past development patterns, as well as improve predictions of future growth. 

Remotely sensed imagery has been widely applied for the systematic analysis of changes 

in land cover and land use relative to changing urban growth characteristics. Bagan and 

Yamagata (2012) integrated Landsat MSS, TM, and ETM + derived land cover maps 

with population density to determine relationships between the land-cover and population 

density changes based on grid cells each covering 1 km
2
. Population statistics were 

generated per grid cell by linking census data to the appropriate cell using latitude and 

longitude coordinates. Results demonstrated a decrease in growth within the metropolitan 

core area, a strong positive relationship between urban expansion and population density, 

and a strong negative relationship between urban expansion and cropland change. 

Additionally, urban growth exceeded population growth by a factor of approximately 2.6.    
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Hepinstall-Cymerman et al. (2009) developed a set of multi-date land cover maps 

for an urban area using Landsat TM images to examine the change in composition and 

configuration of land covers over a twenty-year time span. Images were classified using a 

combination of image classification techniques including image segmentation, spectral 

unmixing, and supervised classification. Image classification results were refined using 

multi-season imagery using landscape trajectory rules and ancillary GIS data. Changes in 

land covers through the study periods are described using landscape metrics of 

composition and configuration. Results from this study are similar to other findings; 

urban patches grow in size and become less dispersed with a subsequent decrease in the 

extent and homogeneity of grass, agriculture, and forest land cover. 

An understanding of historic land cover change is a prerequisite to predictions of 

future urban land cover characteristics.  Other studies have applied LULC maps derived 

from remotely sensed imagery to model and predict future conditions of class coverage. 

Tewolde and Cabral (2011) used eCognition to perform an object-based classification of 

Landsat 5 TM imagery into six basic land cover classes. Changes in urban sprawl were 

analyzed and quantified using post-classification change detection, land change modeler 

(LCM), and Shannon’s Entropy, an urban sprawl index. Land cover maps were analyzed 

through the LCM to determine the main variables responsible for growth. The multilayer 

perceptron (MLP) neural network algorithm is used to create maps of cell transition 

potential that are subsequently used with Markov Chain modeler to simulate future land 

cover extents. The model simulation is validated by a comparative analysis of the 

predicted map to the reference map based on Kappa variations. Following the trends of 
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similar studies, the study area has experienced, and is simulated to continue to experience 

rapid urban growth at the expense of valuable periphery resource lands.  

Araya and Cabral (2010) conducted a comparable study with similar results. In 

this study, spatial metrics and Shannon’s entropy were used to describe the spatial 

characteristics of class patches, class area, and the landscape. Modeling changes in 

classes was evaluated using a combination of Markov Chain and CA. The Markov Chain 

analysis is useful for describing the probability of land cover changes from one period to 

the next. The CA component allows for the integration of the transitional probabilities. 

This research highlights the utility of CA models to consider the dynamic transitional 

characteristics that will vary from one region to another.  

Although there are several LULC modeling tools available, each with their own 

advantages and disadvantages, the SLEUTH model is capable of simulating changes in 

urban form independently, or in concert with LCLU data or socioeconomic variables. 

Development of the SLEUTH model comes from the modification of a wildfire model 

developed by Clarke et al. (1994) that established principles and growth rules to simulate 

organic growth based on CA research by Batty and Xie (1994), Couclelis (1985), and 

others.  Based on these principles and rules, Clarke et al. (1996) developed SLEUTH, a 

CA-based urban growth simulation model as part of the USGS HILT project to estimate 

the regional impacts of urbanization. The SLEUTH model includes neighborhood 

transition rules that are typical of CA models, but operates with multiple data sources that 

are believed to be major influences on the process of urban growth including topography 

(slope and hillshade), road networks, existing settlements, excluded zones, and LCLU. 

These data sources are included as layers in the modeling process and all (except for 
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hillshade) influence the way urban and other LCLUs change over time (Mahiny and 

Clarke 2012).  

Clarke et al. (1996; 1997) and Clarke and Gaydos (1998) define and discuss five 

factors that control the behavior of the system and the four type of growth that all 

together create an urban growth simulation that is unique to an individual region of 

interest. The five factors controlling system behavior include: “a diffusion factor which 

determines the overall dispersiveness of the distribution both of single grid cells and in 

the movement of new settlements outward through the road system; a breed coefficient 

which determines how likely a newly generated detached settlement is to begin is town 

growth cycle; a spread coefficient which controls how much normal outward ‘organic’ 

expansion takes place within the system; a slope resistance factor which influences the 

likelihood of settlement extending up steeper slopes; and road gravity factor which has 

the effect of attracting new settlements onto the existing road system if the fall within a 

given distance of the road” (Clarke et al. 1997, 252). The growth rate of an urban area is 

the result of the combination of four different types of urban growth: spontaneous, 

diffusive, organic, and road influenced (Clarke et al. 1996, Clarke et al. 1997, Clarke and 

Gaydos 1998).  

SLEUTH allows for predictive modeling under different scenarios matching 

urban planning objective, or lack thereof (Feng et al. 2012, Jantz et al. 2010). Jantz et al. 

(2010) developed a new version of the SLEUTH model (SLEUTH-3r) including a 

method to expand the utility of the SLEUTH model to include economic, cultural, and 

policy variables, as well as other modifications including new calibration statistics, 

decreased memory requirements, and enhanced scale sensitivity.  Their study area 
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covered encompassed 257,000 km
2
 divided into 15 sub-regions of 7100 km

2 
to 23,000 

km
2
, each with a unique set of calibration values. Urban growth, simulated for a twenty-

year period, was forecasted under current growth trends for each sub-region and other 

model scenarios created to simulate urban growth under different economic, cultural, and 

policy regimens by relative changes in calibration values. Calibration results of the 

SLEUTH-3r model show a match within 10 percent of the simulated map to the control 

map. The Jantz et al. (2010) study demonstrates the capability of the SLEUTH-3r model 

to adapt to a range of local conditions, while at the same time facilitating the discovery of 

the impacts of the human socio-economic decision-making on urban development.  Other 

studies cited by Mahiny and Clarke (2012) describe the ease of linking environmental 

data to model predictions by making appropriate changes to input layers to reflect study 

area conditions or urban planning objectives. 

Measurement of urban area shape, size and configuration is important to for land-

use planning and development. A systematic measurement of built-up area can aid in 

establishing relationships between growth and the process of such growth (Yeh and Li 

2001). Furthermore, knowing the probability of land conversion of resource land 

(agriculture, forest) to residential, commercial, or industrial uses will guide development 

planning to seek alternative or preventative measure to protect resources (Araya and 

Cabral 2010, Hepinstall-Cymerman et al. 2009; Jantz et al. 2010, Tewolde and Cabral 

2011). The spatio-temporal processes of urban development and the resulting social and 

environmental consequences of this development deserve a great deal of attention from 

urban geographers and policy makers (Liu 2009). 
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3.0  MATERIALS AND METHODS 

3.1 Study Area 

San Marcos, the county seat of Hays County, Texas (Figure 1) is located in the 

southeastern corner of the county along the IH-35 corridor between Austin and San 

Antonio, two of the fastest growing cities in the U.S. The city limits encompass 

approximately 4,700 ha and contains land east and west of IH-35. The main campus of 

Texas State, located within the city, covers 185 ha, nearly four percent of the land area 

within city limits.  The city is positioned on the Balcones Escarpment separating the 

Edwards Plateau to the west and the Blackland Prairies to the east. This unique location 

at the foot of the Edwards Escarpment provides the headwaters for the spring fed Spring 

Lake and San Marcos River that transect the city. In fact, Native American artifacts found 

around Spring Lake are evidence that this area is one of the oldest and longest inhabited 

locations in the United States (Hickey 2011).  
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Figure 1. The study site, San Marcos, located within Hays County within the central 

region of Texas.   
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 Within the context of urban growth, there are unique characteristics of San Marcos 

that make the city a good candidate for this study: 

 San Marcos’ close proximity to IH-35 is a source of continuous human and 

economic resources to the city. Beyond the historical trends of urban growth 

following main transportation lines, the location of the city between Austin and 

San Antonio intensifies capital resources.   

 Since incorporation of San Marcos in 1877 and the opening of the Southwest 

Texas State Normal School in 1903, growth of the city and school are related. The 

influence of the university on economic and urban development within the city is 

a contributing factor not common in most developing cities.  

 The local topography is not uniform across the entire study area. A dynamic range 

in slope will influence and produce unique growth patterns where new 

development must follow the path of least topographic resistance.  

 San Marcos currently contains approximately 550 ha of parkland and local natural 

spaces, much of it sharing borders with the San Marcos River or its tributaries. 

These natural areas have and will continue to be a source of revenue for the city 

and can limit growth in certain areas that some would consider attractive for 

development.   

These unique characteristics of San Marcos fit well with the data requirements of the 

SLEUTH model and will require case-specific consideration during model calibration. 
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3.2 Geospatial Data and Pre-processing 

The SLEUTH model operates from six input grayscale gif images: urban extent, 

transportation, excluded areas from urbanization, slope, and hillshade are all required. 

The sixth layer, land use, is optional and is not used in this study. Additionally, there are 

format standards for all dataset images. For this study, all input images are projected to 

Texas State Plane Coordinate System using the Lambert Conformal Conic zone 4204 

(meters) with the North American Datum of 1983. All images have a 30 m spatial 

resolution and are composed of 990 columns and 906 rows of pixels. Four discrete time 

periods of data are required for statistical calibration of the model.  

3.2.1 Urban 

Landsat 8 and Landsat 5 TM digital images at 30 m spatial resolution were 

collected for the study area for four time periods across the scope of the study; 2000, 

2004, 2009, and 2013. Landsat 8 imagery was used for 2013 due to the decommissioning 

of Landsat 5 TM in 2011 and the Scan Line Corrector failure of Landsat 7 ETM+ in 

2003. All images were collected from EarthExplorer, a USGS web-based repository for 

all Landsat and other sensor’s imagery. An object-oriented supervised classification was 

performed in eCognition Definiens 8 to produce urban land cover datasets for each 

calibration year. eCognition is an object-oriented image analysis software that extracts 

features based on spectral and/or textural attributes. Object-based classification is 

advantageous compared to pixel-based classification as it allows the user to analyze 

imagery based on image objects rather than on a pixel level (Araya and Cabral 2010, 

Tewolde and Cabral 2011).  eCognition operates by segmenting groups of image pixels 

that share similar properties based on a set of threshold values, or rules defined by the 
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user. Additionally, classification results can be exported as raster or vector formats that 

are easily integrated into a GIS.  

Supervised classification implemented the nearest neighbor classification 

algorithm. Extracted segments were classified based on user-specific samples and a set of 

spectral and textural conditions. These conditions are adjusted to best suit a specific land 

cover and are saved for use on subsequent images of the same area. Image segments were 

classified as urban and non-urban. The Multi-resolution Land Characteristics Consortium 

(MRLC) Level 1 classification scheme is used to distinguish different levels of urban 

cover intensity (Anderson et al. 1972). Low-density urban areas were not included in the 

urban extent layer.  Low-density urban areas are found primarily outside of the city limits 

and consist of lots or developments with considerable acreage separating each house or 

areas with small groupings of multiple houses. These areas were difficult to distinguish 

from the surrounding areas during image segmentation due to their proportional coverage 

to the surrounding vegetation. Medium and high-density urban areas are both included in 

the urban cover layer. The study area was extended to a best-fit square around the San 

Marcos extraterritorial jurisdiction to allow for the forecasting of extended urban growth 

outside of San Marcos city limits and for consistency in the number of pixel columns and 

rows of each input image. Consequently, smaller municipalities that now fall within the 

study area, including Martindale, Staples, Uhland, Reedville, Redwood, Hunter, and 

Maxwell were also included in the urban cover layer.  

Accuracy assessments of urban and non-urban land cover classifications were 

performed for classified image.  Accuracy assessment is necessary due to the multiple 

applications of results for model simulation assessment and other data requirements for 
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the model. Kappa statistics and confusion matrices were used to assess overall accuracies 

and to validate classification results. Only classified images with Kappa values greater 

than or equal to 0.8 were considered acceptable for use in further analysis. A Kappa score 

of 0.8 (80 percent) or higher is considered indicative of a strong agreement between the 

classified image and reference samples. A high Kappa score provides the user/producer 

assurance that land cover classifications are significantly better than if land cover 

classifications were made by chance (Jensen 2005). A stratified random sample of 24 

samples per land cover was used to populate the confusion matrix. This sample size was 

calculated through a multinomial distribution with a 95 percent confidence level and ten 

percent precision (Jensen 2005).    

The same Landsat 8 and Landsat 5 TM images were used for both the collection 

of samples for land cover classifications and for accuracy assessments. In-situ and high-

resolution imagery were not used for gathering classification samples as the difference 

between high and medium-intensity urban and non-urban land covers are easily 

distinguishable from visual image interpretation. Moreover, accuracy assessments of 

image classifications warranted the use of the same imagery for the purpose of 

segmentation identification. The image segmentation is unique to the individual image 

and, therefore, requires reference to the originally segmented image during accuracy 

assessments for identification of the correct land cover class.   

Each urban layer (Figure 2) was derived through the extraction of urban pixels 

from land cover classification of images for each period. The urban image used as the 

start date for the model, referred to at the seed layer, represents the initial conditions in 

which further expansion will occur in subsequent iterations. All classified urban/non-
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urban images were converted to grayscale GIF images using ArcGIS to make data 

compatible for model operation. 

Figure 2. Input urban extent input images derived from satellite image classification. 

White represents urban, black represents non-urban pixels. 
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3.2.2 Excluded Area 

The excluded area layer includes cells that represent areas protected from future 

urbanization. The excluded layer is composed of rivers, streams, water bodies, parks, 

railroads, and cultural areas. All data composing the excluded layer were obtained in 

vector format, merged together, and then converted to raster format. Parks, cultural areas, 

and railroads data were collected from CAPCOG.  Hydrological datasets were gathered 

from the USGS National Hydrography Dataset.  A 30 m buffer surrounding the rivers and 

streams was added to exclude these areas from any new urban development. These areas 

fall within the water quality zone of 30 m, per City of San Marcos’ code of ordinances for 

new development and is prohibited or very limited to development. All water bodies 

smaller than 0.005 km
2
 were removed from the excluded areas as any water body larger 

than that was believed to be beyond the cost benefit of infilling for new development. 

Nearly all water bodies removed as a result of this operation were small cattle ponds on 

the eastern side of the study area. 

3.2.3 Transportation (Roads) 

Roads are represented by an array of cells corresponding to roads present at each 

specific period and with pixel values relative to accessibility. For example, pixels with 

higher values represent roads with a tendency to attract urban growth. Road pixel values, 

or weighting, are determined by using the functional classification system developed by 

the U.S Department of Transportation Federal Highway Administration (2013). Roads 

are grouped into classes according to the level of service and accessibility they are 

intended to provide. This system provides an objective guideline for associating weights 

with each road. Each road was categorized into one of three classes: arterial, collector, or 
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local roads. Arterial roads, given a pixel weight of 100, are the least common of the three 

road classes and are designed to provide the fastest route of travel. Collector roads, the 

second most common with a pixel weight of 50, are used as connections between arterial 

and local roads and are equally accessible and mobile. Local roads, with a pixel weight of 

25, have high accessibility, but low mobility and are the most common class of roads.   

Transportation networks can have a major influence on regional development. 

Thus, several road layers are desired to represent a change with the city’s growth through 

time. These road layers (shown in Appendix A) were read into the model as time 

progressed to represent the most up-to-date transportation system for a particular period. 

Historic and current road data were collected as shapefiles from the City of San Marcos’ 

GIS Department and U.S. Census TIGER/Line shapefiles. The vector road data were 

converted to GIF images with pixel values adjusted to represent road influence and 

accessibility.   

3.2.4 Slope 

The slope layer is used for establishing a slope-resistance weighting that 

determines the maximum change in elevation where urban expansion or new settlement 

can take place. To match the requirements of the SLEUTH model, slope values represent 

percent slope and were calculated from a 2009 USGS 7.5-minute digital elevation model 

(DEM). 
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3.2.5 Hillshade 

The hillshade layer is a static background image included with image outputs of 

forecasted urban extent to provide a spatial perspective to changes in urban extent over 

time. Similar to slope, the hillshade image was generated using the 2009 USGS 7.5-

minute DEM.  

3.3 SLEUTH Model Calibration 

A major component to SLEUTH implementation and accurate reproduction of 

past land cover changes is through calibration of parameter values to match local 

conditions of the study area. Thus, determining the best fit of appropriate parameter 

values is highly important with regard to simulating future conditions. Five coefficient 

values affect the simulated growth of a study area: diffusion, breed, spread, slope, and 

road gravity. The model was calibrated using the “brute force” Monte Carlo methodology 

in which a large number of coefficient values are generated and tested, resulting in an 

output of fit statistics for the user to evaluate. Output statistics include several Pearson r
2 

statistics that compare measurements between known historical data and simulated data 

such as number of urban pixels, edges, clusters, and spatial match comparison. One such 

output statistic is a shape index named the Lee Sallee metric, which is a measure of 

spatial fit between the simulated urban growth and known urban growth (KantaKumar et 

al. 2011).  While the Lee Salle metric has been used in previous studies for SLEUTH 

model calibration, studies have shown the Lee Sallee metric to have a relatively poor 

association with urban growth (Dietzel and Clarke 2007, KantaKumar et al. 2011). The 

Optimum SLEUTH Metric (OSM), a metric developed by Dietzel and Clarke (2007), 

produces a value based on compare, population, edges, clusters, slope, Xmean, and 
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Ymean metrics and “will provide the most robust results for SLEUTH calibration” 

(Dietzel and Clarke 2007, 43). OSM values are the product of multiple correlation 

coefficients, thus the resulting OSM values share the same minimum and maximum 

values ranging between zero and one.  The highest OSM values can be used to narrow 

down the range of calibration values that creates the best fit between known and 

simulated urban growth.  

Calibration begins with a set of starting coefficient values that are slightly 

modified by a process of self-modification through each calibration cycle. Calibration of 

coefficient values for this study were produced through a series of calibration phases, 

starting with coarse calibration.  For coarse calibration, values for each parameter range 

from 1-100, and are incremented in steps of 25. Jantz et al. (2010) noted that any 

additional testing of parameter values than those tested through the coarse calibration 

warranted no additional gain at the cost of additional computing time. Coefficient values 

are changed to simulate accelerated or depressed growth relative to local urban 

development conditions for that point in time and result in a new set of coefficient values 

at the end. The resulting values of the coarse calibration are further narrowed down 

through fine and final calibration, where each set of refined coefficients are selected 

using the range of best-fit values determined by the top five OSM values of the 

antecedent calibration.  

The final step of the calibration process is to determine the coefficient values that 

most accurately simulate historic growth trends. The top OSM values calculated after the 

final calibration are used to initialize the model for forecasting land cover conditions. 

Additionally, coefficient values used in predictions of urban extent for 2023 were run 
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with 1,000 Monte Carlo iterations to account for any inherent variability in the modeling 

results.  

3.4 Urban Growth Change Modeling 

The SLEUTH model was applied to forecast and characterize the growth of urban 

land cover for a twenty three-year period. Growth was characterized by evaluating the 

conversion of non-urban to urban cover through time using urban growth maps, 

multivariate statistics, and landscape metrics. Figure 3 provides a basic graphical 

representation of a SLEUTH model simulation beginning with a set of initial conditions 

calibrated specifically for the study area, and run through a series of growth cycles.  The 

model concludes when the required number of growth cycles are generated.  

 

Figure 3. Conceptual representation of SLEUTH operational model including required 

input datasets (UCSB 2012). 
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3.4.1 Interpretation and Analysis of Results 

Implementation of the SLEUTH model produces image and statistical output 

files, each with varying details about the growth resulting from each growth cycle. Land 

cover classification results were used as the control to test the calibration accuracy of 

simulated urban growth. The number and percentage of urban pixels, and the number of 

urban clusters were calculated for both the 2013 land cover classification and the 2023 

simulated urban extent. The SLEUTH model conveniently outputs measurements of the 

number of urban pixels and clusters for each simulated growth cycle.  A fractional 

difference metric was used to assess the difference between simulated and actual urban 

areas where negative values indicate underestimation, positive values for overestimation, 

and zero values for a perfect match. 

 Surface metrics are used to describe the spatial and non-spatial characteristics of 

an area of interest through quantification of existing relationships between features on the 

landscape. For example, the variability in the size of urban land-cover patches (non-

spatial) and the arrangement and location of these patches throughout the landscape 

(spatial) (McGarigal et al. 2012). For this study, metrics were computed per land cover 

class describing the pattern and distribution per class, and by landscape, where the spatial 

structure of the entire surface may be described by a single metric. These metrics can be 

easily computed on categorical (i.e., land cover) grids in FRAGSTATS (McGarigal et al. 

2012). Class and landscape metrics used in this study are provided in Table 1.  
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Table 1. Class and Landscape Metrics used to describe spatial and non-spatial 

characteristics 

Metric Definition 

Class Metrics 

Total (Class) Area (CA) 

Total (Class) Area (CA) is a measured sum of the landscape area composed 

of a specific class. The sum of the equation is divided by 10,000 to convert 

the calculated value to hectares (McGarigal et al. 2012). 

 

Percentage of Landscape 

(PLAND) 

Percentage of landscape (PLAND) equals the percentage of the landscape 

occupied by a particular class. Although this is similar to CA, the percentage 

values is relative to the entire landscape and is therefore more appropriate for 

comparative purposes (McGarigal et al. 2012). 

Clumpiness Index 

(CLUMPY) 

From McGarigal et al. (2012):  -1 ≦  CLUMPY ≦  1 

Given any Pi , CLUMPY equals -1 when the focal patch type is maximally 

disaggregated; CLUMPY equals 0 when the focal patch type is distributed 

randomly, and approaches 1 when the patch type is maximally aggregated. 

Note, CLUMPY equals 1 only when the landscape consists of a single patch 

and includes a border comprised of the focal class. 

 Landscape Metrics  

Contagion Index 

(CONTAG) 

From McGarigal et al. (2012):  0 < CONTAG ≦  100 

CONTAG approaches 0 when the patch types are maximally disaggregated 

(i.e., every cell is a different patch type) and interspersed (equal proportions 

of all pairwise adjacencies). CONTAG = 100 when all patch types are 

maximally aggregated; i.e., when the landscape consists of single patch. 

 

A visual analysis of the output images resulting from SLEUTH is also very 

illustrative of the model sensitivity to local conditions. Each forecasted growth cycle 

outputs images of simulated urban growth showing existing urban cells, as well as cells 

with associated probabilities of urbanization. These images are important for quantitative 

analysis, but also for visual analysis in illustrating the process of growth from an initial to 

final state. Thus, visual interpretation of image outputs was used to qualitatively describe 

the change in urban extent from 2013 to 2023.  
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After the final calibration values were selected, the SLEUTH model was 

implemented to produce future land cover maps to predict urban land cover in 2023. 

These maps demonstrate the expected patterns of urban growth if historic and current 

trends persist.  
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4.0 RESULTS 

Accuracy assessments for land cover classifications, provided in Table 2, show 

adequate accuracies for the urban/non-urban land cover classifications. All classifications 

were found to have an overall Kappa statistic score of over 80 percent and overall 

accuracy of more than 90 percent, thereby making them suitable for use in further 

analysis. Lower Kappa values for urban classification in 2000 and 2013 suggest some 

confusion in segments classified as urban. This could be expected, as it can be difficult to 

assess if the proportion of urban to non-urban coverage is large enough within the 

segment to be classified as urban.    

Table 2. Accuracy assessments results for all four images classifications 

2000 Imagery 

Class Name 
Producer’s 

Accuracy (%) 

Users Accuracy 

(%) 

Kappa Statistic 

(%) 

Urban 95.45 87.50 76.92 

Non-Urban 88.46 95.83 90.91 

Overall Kappa 

Statistic 
83.33% 

Overall 

Classification 

Accuracy 

91.67% 

 

2004 Imagery 

Class Name 
Producer’s 

Accuracy (%) 

Users Accuracy 

(%) 

Kappa Statistic 

(%) 

Urban 100 91.67 84.62 

Non-Urban 92.3 100 100 

Overall Kappa 

Statistic 
91.67% 

Overall 

Classification 

Accuracy 

95.83% 
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Table 2-Continued. Accuracy assessments results for all four images classifications 

2009 Imagery 

Class Name 
Producer’s 

Accuracy (%) 

Users Accuracy 

(%) 

Kappa Statistic 

(%) 

Urban 100 91.67 84.62 

Non-Urban 92.3 100 100 

Overall Kappa 

Statistic 
91.67% 

Overall 

Classification 

Accuracy 

95.83% 

 

2013 Imagery 

Class Name 
Producer’s 

Accuracy (%) 

Users Accuracy 

(%) 

Kappa Statistic 

(%) 

Urban 100 83.33 71.43 

Non-Urban 84.71 100 100 

Overall Kappa 

Statistic 
83.33% 

Overall 

Classification 

Accuracy 

91.67% 

 

The parameter value sets used for each calibration phase for all five growth 

coefficients are summarized in Table 3. Each calibration phase was run with step values 

that tested at least five increments between the start and stop values or each parameter. 

Each combination of parameter values was run with five Monte Carlo iterations. Each 

calibration was successful in increasing the OSM value, with the final calibration 

significantly improving the OSM value by 0.066. The final calibration produced a top 

OSM value of 0.593, representing a moderate fit between modeled and known urban 

extent.  The calibration accuracy results (Table 4) show that model simulations of the 

2013 urban extent were slightly underestimated; -0.13 for urban pixels and -0.06 for 
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urban clusters. The model achieved a fractional difference of 13 percent for urban pixels 

and 6 percent for urban clusters.  Table 5 lists the forecasted amount of urban pixels and 

clusters for 2023. Urban coverage in 2023 is expected to increase 39,895 pixels to 

164,282 urban pixels, composing 18.32 percent of the study area, along with the addition 

of 12 more urban clusters to increase the total to 72.  

For the forecasting coefficient values, the highest score is found in the spread 

parameter suggesting a high probability of urbanization outward from existing urban 

centers. Similarly, a relatively high road growth coefficient suggests that urban growth 

has and will continue to be affected by road networks. The slope resistance value shows 

that the topography in this study area has a slight impact on limiting development, which 

is expected due to the highly variable topography in the study area. The low diffusion 

coefficient value indicates that, although most growth will expand from established urban 

areas – as indicated by the high spread coefficient, growth will be compacted around 

existing urban areas. The low breed coefficient suggests a low probability of a newly 

generated urban settlement outside of existing urban areas.  

Table 3. Calibration and Prediction Parameter Sets (Start - Stop; Step) 

Calibration Diffusion Breed Spread Slope Road Growth 
Top OSM 

Value 

Coarse 0-100; 25 0-100; 25 0-100; 25 0-100; 25 0-100; 25 0.513 

Fine 1-25; 5 1-25; 5 50-75; 5 1-25; 5 50-100; 10 0.527 

Final 15-20; 1 1-6; 1 50-75; 5 19-24; 1 50-100; 10 0.593 

Prediction Parameter Sets 

 18 4 75 21 50  
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Table 4. Calibration accuracy results between 2013 known and simulated urban extent 

 Pixels (%) Clusters 

2013 Known Urban 124,387 (13.87) 64 

2013 Simulated Urban 107,753 (12.01) 60 

Fractional Difference -0.13 -0.06 

 

Table 5. 2023 simulated urban pixels and clusters 

 Pixels (%) Clusters 

2023 Simulated Urban 164,282 (18.32) 72 

 

Tables 6 and 7 provide the results of the calculated class and landscape metrics. 

Calculated metrics for 2023 include all probabilities over 50 percent. Total urban area is 

forecasted to grow approximately 3,589.38 ha by 2023, increasing total coverage of the 

landscape from 13.87 percent to 18.32 percent. The Clumpiness Index value slightly 

increases from 0.95 in 2013 to 0.96 in the 2023. Similarly, the Contagion Index value 

drops slightly from 66.44 in 2013 to 61.38; which could be contributed to a greater 

amount of clusters in 2023. The minimal change in Clumpiness and Contagion index 

values is not ample to suggest that urban coverage will be any more or less fragmented 

across the landscape in 2023. 
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Table 6. Calculated Class and Landscape Metric Values for 2013 Urban Extent 

2013 Urban Extent 

Metric Value 

Total Urban Area (CA) 11,196 ha 

Percentage of Landscape (PLAND) 13.87% 

Clumpiness Index (CLUMPY) 0.95 

Contagion Index (CONTAG) 66.44 

 

Table 7. Calculated Class and Landscape Metric Values for 2023 Urban Extent 

2023 Predicted Urban Extent 

Metric Value 

Total Urban Area (CA) 14,785.38 ha 

Percentage of Landscape (PLAND) 18.32% 

Clumpiness Index (CLUMPY) 0.96 

Contagion Index (CONTAG) 61.38 

 

A visual interpretation of the forecasts of urban extent for 2023 (Figure 4) 

indicates that the majority of future growth in San Marcos is characterized by edge 

growth. Most urban growth is forecasted to occur outward from the city in conjunction 

with continued urban infilling between established urban areas. Spontaneous urban 

growth is minimal, with only a few pixels representing a relatively low probability of the 

occurrence of urban settlement in a new area without pre-existing urban coverage. It is 

difficult to interpret the impact of the road growth coefficient in this study area due to a 
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low breed coefficient and with most pre-established urban cores surrounding main road 

networks, especially those associated with the highest gravity weighting.  
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Figure 4. Probability maps of San Marcos urban extent in 2023. Probabilities are scaled 

from dark green representing lowest probability to dark red representing high probability.  
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5.0 DISCUSSION 

5.1 Data and Calibration Modifications 

Object-oriented image classification was adequate for classifying urban and non-

urban areas and integration into the model; however, the segmentation of each image 

produced slightly different results. While the core of most urban clusters remained 

consistent, the segment boundaries of each urban cluster deviated slightly throughout 

each image classification. Deviation of urban cluster boundaries is exacerbated with the 

Landsat 8 image, likely due to its higher radiometric resolution (12-bit) compared to 

Landsat 5 TM (8-bit). Differences in known urban cluster boundaries could be a source 

of error during model calibration by creating artificial growth or loss of urban coverage. 

To compensate for deviations in urban cluster boundaries each urban extent layers were 

merged with the previous year. Thus, each subsequent urban layer will carry over the 

maximum urban extent from the previous years. This ensures that all urban clusters are 

expanding, eliminates the possibility of urban clusters getting smaller, and makes urban 

growth more consistent across all urban extent layers. This operation was not considered 

to have a significant impact on the results of the study with the expectation that urban 

sprawl in San Marcos has continued to grow rather than shrink during the scope of time 

this research has investigated.  

SLEUTH implementation suggests resampling input image resolution for both 

coarse and fine calibration phases.  However, resampling of input image resolution for 

these calibration phases had a considerably negative impact on OSM values and 

subsequent prediction results. Contrary to results of research by Silva and Clarke (2002), 

enhancing the spatial resolution of input images during calibration did not make the 
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model more sensitive to local conditions for this study. Maximum OSM values for final 

calibrations using spatially resampled input data with the original and merged urban 

extent input layers were 0.341 and 0.382, respectively. Additionally, calibration 

coefficients generated through calibration with resampled input images generated urban 

predictions with nearly no urban growth.  For this study, running all calibration phases 

with the full 30 m resolution imagery has produced more meaningful parameter values 

for the growth coefficients and urban extent predictions. Wu et al. (2009) opted to use 

full resolution for calibration along with other modifications to the model to improve 

simulation accuracy.  

Poor calibration results from utilizing resampled input images suggest an issue of 

scale sensitivity. The drop in calibration performance when using finer resolution 

imagery could point towards SLEUTH’s inability to capture the highly dispersed 

settlement patterns resulting from local scale factors (Jantz and Goetz 2005, Wu et al. 

2009). Alternatively, this maybe due to a relatively short time span (2000-2013) of urban 

development used to calibrate the model. Jantz and Goetz (2005) conducted a study using 

45 m imagery resampled to 90 m, 180 m, and 360 m to investigate the influence of input 

image resolution on the goodness-of-fit between modeled and known urban extent and 

the resulting coefficient calibration values. Their description on the behavior of urban 

growth for the 45 m spatial resolution shares many similarities with the results of this 

study.  They found a dominance of edge growth, less dominance in spontaneous new 

growth and the spreading of center growth, and minimal development produced through 

road growth. Additionally, their results show SLEUTH consistently underestimating the 

number of urban edge pixels and urban clusters at a fine input resolution. This may be in 
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part be due to finer resolution data’s inability to fully capture the development patterns of 

an urban area, the particular time period chosen for model calibration, or from the 

difficulty in evaluating multiple metric-fit statistics (Jantz and Goetz 2005).  

OSM values range between zero and one, where an OSM values closer to one 

represent a good fit between simulated and known urban extent and the opposite of that 

for values closer to zero. Obviously, it is ideal to have high OSM value for each 

calibration phase; however, there is no discussion within the literature that identifies a 

threshold of OSM values that should be met before initiating an urban growth prediction.  

Furthermore, there still remains no general consensus on the most appropriate method to 

be used for ranking the best fitting coefficient values.  However, Dietzel and Clarke 

(2007) assert that the OSM is optimal for evaluating and selecting coefficient parameters 

for the best goodness of fit. Alternatively, Wu et al. (2009) suggest performing a 

thorough examination of the study area to identify consistent processes and patterns along 

with the crucial factors influencing urban growth for a study area. This information can 

lend insight into the most appropriate spatial resolution for input images and goodness-

of-fit statistics.  

5.2 2023 Forecasted Growth 

The forecasts of urban growth made here continue the growth trends from the past 

thirteen years. It is clear from the class and landscape metric values and visual outputs of 

the model that San Marcos’ urban coverage will continue to expand. The resulting values 

of the Clumpiness and Contagion index make sense when considering the prevalence of 

forecasted edge growth. Although infilling is projected to occur, the slightly higher 

Clumpiness value would suggest that, while the majority of growth would expand 
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outward from urban centers, the 2023 urban extent will not be considerably more or less 

aggregated than urban coverage in 2013. Along the same lines with the Contagion Index 

value, the slight drop in value between 2013 and 2023 is not considerable enough to 

suggest that future urban coverage will be any more fragmented throughout the landscape 

than current conditions. Together, these indices indicate that, although growth is expected 

to occur, the general shape and distribution of urban sprawl in 2023 will remain similar to 

2013.   

The high value for the spread coefficient suggests that past growth has been 

extending out from the periphery of existing urban clusters. The likelihood of this trend 

continuing is further supported by the similarity in the class and landscape metric values 

for the Clumpiness and Contagion indices between 2013 and 2023. The coefficient value 

for road growth suggests that road networks are influential to urban growth in this study 

area. This would make sense as San Marcos is situated as a center point for the 

connection to many of the surrounding major highways to IH-35. Despite this, road 

influenced urban growth is not visually obvious in the results. Evaluating the effect of 

various road weight, or lack thereof, would likely provide more information on the 

influence of road weighting on urban growth patterns; however, this was not a focus of 

this study.  

The low breed and diffusion values indicate that no significant new urban areas 

have developed in the area within the past decade and that the expansion of growth from 

existing urban areas has been relatively slow. These values are to be expected after 

further visual inspection of the urban input layers in which the majority of growth 

occurring between each image is through the expansion of currently existing urban areas 
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rather than the development of new areas. Spontaneous growth was almost non-existent 

with the exception of a few dark green pixels in the top northwest and south-central 

regions of the output image (Number 2 in Figure 4). These small urban areas likely 

stayed small due to the low diffusion value. New urban centers may have occurred more 

frequently, however, the probability of such growth was not high enough to be displayed 

on the output probability map. 

It is clear from the results of this study that scale influences coefficient parameters 

differently. This issue raises the question of the ability of certain parameters to function 

at certain image scales. Jantz and Goetz (2005) found that the highest fit score between 

simulated and known urban extents was reached when using the coarsest resolution input 

images, although it should be noted their study used different fit metrics from this study. 

With the results of this study, a potential for future research would involve investigating 

the changes in OSM and coefficient parameter values through calibration using coarser 

and finer resolution imagery. Utilization of finer resolution data on a relatively small 

study area may help connect modeled and simulated urban extent and reduce the 

Clumpiness index. Although this would increase processing time, the results may 

produce evidence that confirms or rejects methods of better performance suggested by the 

literature.  

5.3 SLEUTH Performance 

Considering that CA is raster based operation that relies on transitional 

neighboring cells to trigger a state change in surrounding cells, it makes sense that the 

dominance of urban growth trending towards edge growth in predictions is a common 

characteristic of SLEUTH (Jantz and Goetz 2005, Wu et al. 2009). This precedence to 
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edge growth may limit the ability of model to simulate the development of new urban 

coverage from other influential factors (Wu et al. 2009). A major point of discussion over 

SLEUTH is in its simplicity of urban growth prediction (Chaudhuri and Clarke 2013, Wu 

et al. 2009). Principally, SLEUTH is a descriptive model and the transition rules do not 

allow for any analysis on the causes of the spatial patterns developed (Santé et al. 2010). 

In a real-world situation, there might be various regional developmental plans that could 

stimulate a leapfrog urban development throughout the region.  Currently, however, the 

model is not capable of simulating the potential impacts regional developmental policies 

or incentives and the generations of urban extent forecasts are made without the direct 

influence of such planning and local-decision making.  

 The complex emergent behaviors of urban systems are very difficult to model. 

All models are abstract representations of this complex and dynamic behaviors and are 

flawed to some degree. For the most part, most CA-based urban models are simple in 

nature, yet these models are well suited for simulating certain components of the complex 

behaviors of urban systems.  While SLEUTH is not adapted to the particular urbanism 

ideologies that exist in any particular city it is modeling, additional modifications or 

coupling with other models may produce results that consider the impact of other factors 

influencing growth (Clarke 2008).  

SLEUTH is also computationally intensive and can take many hours to days to 

complete one of the three calibration phases. Calibration time is dependent on the 

calibration phase, cell resolution of input images, the number of coefficient parameters to 

be tested, the number of Monet Carlo iterations, and the size of the study area. In this 

study, with a relatively small study area and high-resolution input imagery, the combined 
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completion time of all three calibration phases was just over three days.  Although 

extensive research has gone into developing successful techniques for enhancing the 

computational efficiency of calibration (Candau 2000), time of operation continues to be 

an issue for SLEUTH (Al-shalabi et al. 2013, Jantz and Goetz 2005, Wu et al. 2009). 
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6.0 CONCLUSION 

The results of this study suggest a high probability of continued urban growth 

from urban edges with continued aggregation of urban coverage in the gaps between 

existing urban areas in 2023. Effective forecasting of growth patterns will be useful tool 

in planning decision-making for local municipalities.  Based on the results of this study, it 

may be recommended that decision makers prepare for aggregation of urban coverage at 

the city core with concurrent conversion of available land along the periphery of 

established urban areas. Perhaps most beneficial to local planning initiatives would 

include information on the predicted locations of newly developed urban centers and the 

preference of land use for conversion to urban coverage. This study, however, did not 

find any significant probability of such development within the near future or consider 

land use conversions.  

The results of this study are derived from a standard SLEUTH implementation 

with very few model modifications, thus leaving the potential for pursing various avenues 

of research for urban modeling of the San Marcos area. These results may be considered 

as “business as usual” and could be used as a baseline for comparison to the results of 

different predictive scenarios. Other growth scenarios might include environmental 

protection parameters, preferential selection of lands for urban growth, or overall 

booming urban growth. These scenarios could be initiated through modifications of the 

excluded layer or the self-modification parameters and including land use data. Values 

for the self-modification parameters were left at the default values for this study. Many 

SLEUTH implementations have been conducted in the past, but few have changed their 

default values for these parameters (Clarke 2008, Wu et al. 2009). It is possible that 
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modification of these parameters could produce more significant urban growth 

predictions and lend insight into the development process of the urban form of a 

particular city. This could help local decision-makers evaluate the impact to urban growth 

under various city urban planning, resource allocation, and environmental protection 

initiatives.  

Beyond the results specific to San Marcos, this research has also opened up 

research opportunities for the SLEUTH model in general. For the calibration of 

coefficient values – if OSM is the best metric to use for the sorting and selection of 

values, then perhaps research could be done to investigate a threshold to which OSM 

values should not fall below in order to reliably forecast urban growth. Additionally, 

investigations on the optimal input image resolutions for various study area sizes would 

be beneficial to this study and to anyone interested in conducting a SLEUTH 

implementation. With the model’s apparent issues of sensitivity to scale, future research 

could be applied towards developing a metric that determines the optimal size of input 

cell resolutions that produce coefficient growth values that most closely mimic the urban 

development of any particular study area.  
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APPENDIX SECTION 

APPENDIX A 

  

Figure 5. 2013 Transportation input image derived from the City of San Marcos’ GIS 

Department and U.S. Census TIGER/Line shapefiles. 
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Figure 6. 2009 Transportation input image derived from the City of San Marcos’ GIS 

Department and U.S. Census TIGER/Line shapefiles. 
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Figure 7. 2004 Transportation input image derived from the City of San Marcos’ GIS 
Department and U.S. Census TIGER/Line shapefiles. 
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Figure 8. 2000 Transportation input image derived from the City of San Marcos’ GIS 

Department and U.S. Census TIGER/Line shapefiles. 
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