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Abstract

Graphical chip-firing is a process where ‘chips’ are exchanged between vertices

of a graph, the dynamics of which are governed by the graph Laplacian. Chip-firing

is a well-developed field with applications to physics, computer science, and many

areas of mathematics.

Guzmán and Klivans introduced a generalization of the graphical chip-firing

model such that the dynamics can be governed by any invertible matrix. In this

model, the set of allowable configurations is described by the lattice points of a

rational convex cone given by a choice of M-matrix and the notions of criticality

and superstability from classical chip-firing have analogues. A signed graph is a

generalization of a simple graph with edges assigned to be either positive or negative.

Signed graphs were first introduced by Harary in the context of social psychology,

further studied by Zaslavsky, who investigated their matroidal properties, and have

uses in a wide range of fields from data science to ecology.

Here we study the chip-firing model on signed graphs that results from applying

the Guzmán-Klivans theory to the invertible signed graph Laplacian and the M-

matrix graph Laplacian of the underlying graph. We investigate the behavior of this

model and develop tools to compute examples.

iii



1 Graphs and chip-firing

Chip-firing is widely understood as a game played on a graph and its study is

interesting largely due to the way it relates to many other concepts in related fields

of math. Physics and combinatorics have both introduced processes or systems that

we now understand to share the same underlying DNA which we call chip-firing, with

a portion of that DNA also modeling a well studied concept from computer science.

The chip-firing model as we will discuss it moving forward, will play out on a

finite graph with a ‘sink’ vertex designated and relabeled q. Each vertex, with the

exception of the sink, is assigned some number of ‘chips’ and if the vertex is ready to

fire, may perform a ‘firing move’ to distribute its chips. The sink vertex does not fire

and we do not track its chips.

1.1 Graphs and their Laplacians

A simple graph, G, is a pair of sets (V,E). Here V is the vertex set given by a

set of points, V = {v0, v1, . . . , vn}, and E is the edge set of unordered pairs of distinct

vertices, E = {(u, v)}. We will always specify v0 as the sink vertex, and sometimes

use q to refer to this vertex to match other conventions in the literature.

The graph Laplacian is a matrix representation of a simple graph that encodes

the distribution dynamics of firing moves. The graph Laplacian represents the degree

or number of neighbors of each vertex along the diagonals and the adjacency of vertices

along the off diagonals.

Definition 1. Let G = (V,E) be a graph on n + 1 vertices {v0, . . . , vn}. The graph
Laplacian of G, ∆(G) is the (n+ 1)× (n+ 1) matrix given by

∆ij


deg(vi) i = j

−1 vi 6= vj and vi, vj ∈ E(G)

0 otherwise
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We can also take the reduced graph Laplacian by a vertex q of a graph which is

necessary for the formulation of chip-firing we will be using.

Definition 2. Let G = (V,E) be a graph. The reduced graph Laplacian of G with

respect to the vertex q, is the n× n matrix ∆q(G) that results from deleting the row

and column associated with q from ∆(G).

We refer to Figure 1 for an example of a graph and the associated Laplacian

matrices.

v1 v2

v0 v3

∆ =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 3



∆v0 =

 3 −1 −1
−1 2 −1
−1 −1 3


Figure 1: A graph and its Laplacians.

1.2 Chip-firing

Next we define the chip-firing game that we will study. We can express the state

of our chip-firing system, the number of chips at each vertex, as a vector. This state

is referred to as the configuration.

Definition 3. Suppose G is a graph on vertex set {v0, . . . , vn} with sink vertex v0.

A configuration on G is a non-negative integer vector c representing the number of

chips at each nonsink vertex of G.

c = {c1, c2, . . . , cn} ∈ Zn
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Definition 4. A vertex v in a graph G is ready to fire if the number chips at v is at

least the number of its neighbors, so that

cv ≥ deg(v).

When a vertex fires it sends one chip along each of its incident edges to each

of its neighboring vertices. We can use the reduced graph Laplacian to model these

redistribution dynamics. For a graph G, if a configuration c′ is the result of firing

vertex vi from the configuration c then

c′ = c−∆q(G)ei,

where ei is the ith standard basis vector of Rn.

v1
3

v2
0

q v3
1

v1
0

v2
1

q v3
2

c′ =

 3
0
1

−
 3 −1 −1
−1 2 −1
−1 −1 3

 1
0
0

 =

 3
0
1

−
 3
−1
−1

 =

 0
1
2


Figure 2: Firing v1

In Figure 2 we see that when firing v1, that vertex looses three chips, v2 and

v3 gain one each, and the chip unaccounted for is lost to the sink. We will also be

interested in the notion of firing a set (or even multiset) of vertices at once. See below

for more details.

Chip-firing defines an equivalence relation ∼ on the set of all vectors c in Zn.

Here two vectors c and d are equivalent, written c ∼ d, if one can obtain c from d via

a sequence of firings and reverse firings (performed by c′ = c+∆q(G)ei). Equivalently,

we have c ∼ d if c− d = ∆(G)z for some vector z ∈ Zn.
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One can check that the number of equivalence classes of chip configurations is

counted by the determinant of the reduced Laplacian ∆q(G). An important result in

Graph Theory (Kirchoff’s theorem or the Matrix-Tree theorem) says that this number

is given by the number of spanning trees of the graph G.

Below we will see that these firing equivalence classes have interesting properties,

described by certain representative configurations.

1.3 Special configurations

In this section we will describe certain special chip configurations, obtained by

choosing elements from each equivalence class determined by ∆q(G). Looking at the

configuration c′ from Figure 2 we notice that no site is ready to fire, configurations

like this are called stable.

Definition 5. A configuration c on a graph G is stable if

ci < deg(vi) for all vi ∈ V

or equivalently

c−∆q(G)ei 6≥ 0 for 1 ≤ i ≤ n.

There are two special cases of stable configurations, called critical and super-

stable configurations.

Recall that stable configurations are those that do not allow any firings. It turns

out that if we start our firings from a ‘generic’ starting point and stabilize, we obtain

an important subclass of stable configurations as follows.

Definition 6. A configuration c on a graph G is reachable if there exists some

configuration d such that

1. d−∆q(G)ei ≥ 0 for ≤ i ≤ n and

2. c = d−
∑k

j=1 ∆q(G)eij such that d−
∑l

j=1 ∆q(G)eij ≥ 0 for all l ≤ k.

4



That is, a configuration c is reachable if there exists some other configuration d

in which both every site can fire and c is the result of some sequence of firings on d.

Definition 7. A configuration is critical if it is both stable and reachable.

An important property of critical configurations is that they form an abelian

group under componentwise addition and stablization. This group is called the critical

group of the graph G, denoted K(G). One can also check that K(G) is isomorphic

to Zn/∆q(G). See [3] for more details.

Another important collection of configurations comes from the set of superstable

configurations. While so far we have only been firing one vertex at a time, it is

necessary to expand expand our rules to allow for simultaneous firings.

For S = {vi1 , vi2 , . . . , vik} ⊆ V , a non-empty subset of the vertices of a graph,

we let χS be the characteristic vector of S

χS =
k∑

j=1

eij .

For S ⊆ V a non-empty subset of the vertices of a graph G, the configuration c′

that is the result of the set-firing of S from the configuration c is given by the

c′ = c∆q(G)χS,

where the set-firing of S is only legal if c′ ≥ 0

With set-firings we can now define superstable configurations.

Definition 8. A configuration c is superstable if there are no legal set-firings, so that

∀S ⊆ V, c−∆q(G)χS 6≥ 0.

One can view the set of superstable configurations as solving a certain ‘energy

minimization’ problem among all elements of the equivalence class defined by the

Laplacian of a graph. This is the perspective taken in Baker-Shokrieh [2], and fur-
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ther developed in greater generality by Guzmán and Klivans in [5].This inspires the

generalizations that we discuss in the next sections.

An important result in the theory of chip-firing is that each equivalence class

determined by ∆(G) contains a unique critical and superstable configuration. In

particular the cardinality of each of these sets is τ(G), where τ(G) is the number of

spanning trees of G. Furthermore, the set of critical configurations and superstable

configurations are in simple duality. If we let k denote the canonical configuration

then one can check that c is critical if and only if k − c is superstable.

1.4 Other important results in chip-firing

Although chip-firing has its origins in statistical physics and combinatorics, more

recently it has seen connections to Algebraic Geometry, especially in light of a dis-

cretization of the Riemann-Roch theorem by Baker and Norine [1].

As we have seen the set of superstable configurations of a graph G is in bijection

with τ(G), the set of spanning trees of G. Dhar [7] developed an efficient bijection

between the superstable configurations of a graph and its spanning trees.

The set of superstable configurations is also related to the study of parking

functions and their generalizations.
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2 Signed graphs

We will briefly introduce signed graphs and their Laplacians. As far we know

there is no previously studied interpretation for chip-firing on signed graphs, and this

is partly what motivates our work. Signed graphs are widely studied and applicable

to other fields of math and can be used to model social psychology, data science,

and other complex systems. Zaslavsky [8] studied their relation to matroid theory

where he also established a relevant formulation of the Matrix-Tree theorem for signed

graphs.

Put simply, a signed graph is a graph in which each edge has been assigned

either a positive or negative value.

Definition 9. A Signed Graph G is the pairing of a simple graph, denoted |G|, and

a mapping σ : E(|G|)→ {±}.

We define the signed graph Laplacian and reduced signed graph Laplacian as

follows.

Definition 10. Let G = (|G|, σ) be a signed graph on n + 1 vertices. The signed

graph Laplacian of G, ∆(G) is the (n+ 1)× (n+ 1) matrix given by

∆ij


deg(vi) i = j

−1 vi 6= vj , vi, vj ∈ E(G), and σ((vi, vj)) = +

1 vi 6= vj , vi, vj ∈ E(G), and σ((vi, vj)) = −
0 otherwise

Definition 11. Let G = (|G|, σ) be a signed graph. The reduced signed graph Lapla-

cian of G with respect to the vertex q, ∆q(G) is the n × n matrix that results from

deleting the row and column associated with q from ∆(G).

In Zaslavsky’s work [8] he studies the notions of balance, switching, restriction

and contraction, and relates signed graphs to the notion of double coverings of ordi-

nary graphs. He also describes the matroids that are underlying a signed graph and
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v1 v2

v0 v3

−

+ ++

−

∆ =


2 −1 0 1
−1 3 1 −1

0 1 2 −1
1 −1 −1 3



∆v0 =

 3 1 −1
1 2 −1
−1 −1 3



Figure 3: A signed graph and its Laplacians

provides a description of their independent sets in graph theoretical terms. He also

proves the following matrix-tree theorem for signed graphs.

Theorem 1. [8] Let G be a signed graph on n vertices and let b` be the number of

independent sets with n edges that contain ` circles. Then

det ∆(G) =
n∑

`=0

4`b`.

For our work we will be interested in a matrix-tree theorem for the determinant of

the reduced Laplacian ∆q(G). Here we recover det ∆q(G) as the sum over independent

sets where there is only one ‘balanced’ component, which contains q. We refer to [8]

for more details.
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3 Generalized chip-firing

When looking at chip-firing through the perspective of configuration vectors

and the graph Laplacian we do not need to consider the graph in the system, the

redistribution dynamics of firing moves are all encoded within the matrix. This leads

us to an interesting question. If we can use a graph Laplacian to chip-fire, can we

play the game using other matrices? Matrices that do not even represent a graph?

As it turns out, we can. Guzmán and Klivans [6] established a theory for chip-

firing that utilizes a pair of matrices, (L,M), where L is any invertible matrix and M

is a so-called M -matrix (see below for a definition).

In their generalization of the graphical chip-firing model, any invertible integer

matrix, L, can be used to govern the redistribution dynamics of the chips while an

M-matrix of the same size, M, is used to define the set of valid configurations.

Definition 12. Suppose M is an invertible matrix with the property that Mi,j ≤ 0

for all i 6= j and Mi,i > 0 for all i. Then M is an M-matrix if any (and hence all) of

the following are true:

(a) M is avalanche finite.

(b) All entries of M−1 are non-negative.

(c) There exists x ∈ Rn such that x ≥ 0 and M has all positive entries.

Here M is said to be avalanche finite if given any initial configuration the process

of firing via the rule defined by M eventually stabilizes. These systems are closely

related to chip-firing and exist as a generalization of graphical chip-firing with which

non-graphical chip-firing models can be built. In particular reduced graph Laplacian

matrices are M-matrices (and equivalently avalanche finite).

Recall that in graphical chip-firing each site has a non-negative number of chips

which are collectively represented by the configuration vector. The set of valid con-
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N = LM−1 =

 2 2 1
5
4

2 3
4

0 0 1



Figure 4: An instance of S+ for the given N

figurations then is Zn
≥0 which can be visualized as the lattice points contained within

the positive orthant. In the Guzmán-Klivans theory we can visualize the set of valid

configurations as the lattice points contained within the cone LM−1, we call this set

S+ and define it as follows for N := LM−1.

S+ = {Nx|Nx ∈ Zn, x ∈ Rn
≥0}

We can see now that if, for a simple graph G, we apply the Guzmán-Klivans

theory to the pair (∆q(G),∆q(G)), N will be the identity matrix, S+ = Zn
≥0, and we

get the graphical chip-firing model. It is also worth noting that S+ may not be a

subset of Zn
≥0, that is, we could have a valid configuration which includes a negative

number of chips at some site.

With this new theory, and in particular this new understanding of what a valid

configuration is, it is necessary to restate when a site is ready to fire. For a valid

configuration c ∈ S+, the site i is ready to fire if c− Lei = c′ ∈ S+.

We will also restate the definitions for stable, reachable, critical and superstable

in this setting.

10



Definition 13. A configuration c ∈ S+ is stable if c− Lei /∈ S+ for 1 ≤ i ≤ n.

Definition 14. A configuration c ∈ S+ is reachable if there exists some configuration

d ∈ S+ such that

1. d− Lei ∈ S+ for ≤ i ≤ n and

2. c = d−
∑k

j=1 Leij such that d−
∑l

j=1 Leij ∈ S+ for all l ≤ k.

Definition 15. A configuration in S+ is critical if it is both stable and reachable.

Where the definitions for stable and critical configurations follow from graphical

chip-firing we extend the definition of superstable configuration to include multiset-

firing.

Definition 16. A configuration c ∈ S+ is z-superstable if c − Lz /∈ S+ for every

z ∈ Zn
≥0 and z 6= 0.

Here z represents a multiset-firing where the value zi indicates how many times

we will fire site i. In what follows we will refer to these configurations as superstable

if the context is clear.

Guzmán and Klivans prove that several results from classical chip-firing extend

to this more general setting. In particular, each equivalence class of Zn/L contains

a unique critical configuration and a unique superstable configuration. From this it

follows that each set has the same cardinality, given by the determinant of L.

On the other hand, much of what we know from graphical chip-firing is now lost.

Notably, we no longer have the duality between critical and superstable configurations

and any connections with other areas of graph theory are no longer relevant in this

setting such as the relationship between superstable configurations and spanning trees

or parking functions.

For any fixed L we select to govern the firing rules of our game, we have free

choice of an M-matrix to pair it with; each selection resulting in a different cone of

11



valid configurations and thus a different chip-firing system. This brings us to the

dilemma of what matrix to select for M, given an L. It is here that we turn to signed

graphs where, where we can apply the Guzmán Klivans model nicely. We can fix L to

be the reduced signed graph Laplacian, an invertible matrix, and since the reduced

graph Laplacian is an M-matrix, we can pick M to be the reduced graph Laplacian

of the underlying graph.

12



4 Chip-firing on signed graphs

Let G be a signed graph on n-vertices and |G| be the underlying graph of G.

In this section we will study the chip-firing model on (∆q(G),∆q(|G|)). Studying the

Guzmán-Klivans theory on this pairing gives us a natural selection for for the M-

matrix that also looks very similar to the (∆q(G),∆q(G)) pair from which we retrieve

graphical chip firing. We also notice that in the case where all edges are positive we

have exactly that same (∆q(G),∆q(G)) pair.

In Figure 5 we see that the effect of the negative edge (v1, v2) on the firing of v1

is that both v1 and v2 loose a chip. Notice also from Figure 3 that the signs of edges

incident to the sink are not preserved in the reduced signed graph Laplacian and as

such have no effect on the chip-firing system.

v1
9

v2
5

q v3
0

−

++

v1
6

v2
4

q v3
1

−

++

c′ =

 9
5
0

−
 3 1 −1

1 2 −1
−1 −1 3

 1
0
0

 =

 9
5
0

−
 3

1
−1

 =

 6
4
1


To check that c′ ∈ S+ we must confirm that for c′ = LM−1x, x ∈ Rn

≥0.

ML−1c′ = x

 4
3
−4

3
−1

3

−5
6

4
3
−1

6

0 0 1

 6
4
1

 =

 7
3
1
6

1


Figure 5: Firing v1

Recall in the general theory of Guzmán-Klivans the cone S+ of allowable config-

urations can be any rational cone in Zn. In the case of signed graphs there are some

restrictions.
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Proposition 1. For any signed graph G, the set of allowable configurations for G is

contained in the nonnegative orthant.

Proof. Let ∆q(G) denote the (reduced) Laplacian of the signed graph G, and let

∆q(|G|) denote the reduced Laplacian of the underlying graph. Since ∆q(|G|) is an

M-matrix we have that the entries of ∆q(|G|)−1 are all nonnegative from Definition

12. Recall that the columns of ∆q(G)∆q(|G|)−1 define the cone of the allowable

configurations. By definition the ith column of ∆q(G)∆q(|G|)−1 is given by ∆q(G)~mi,

where ~mi is the ith column of ∆q(|G|). Recall that ∆q(G) is obtained from ∆q(|G|) by

changing some negative −1 entries to +1. Since ∆q(|G|)∆q(|G|)−1 has all nonnegative

entries and ∆q(|G|)−1 has nonnegative entires, this implies that ∆q(G)∆q(|G|)−1 has

all nonnegative entries, and the claim follows.

Recall that much of what is studied in chip-firing relates to the critical and

superstable configurations and much of that theory is lost in the Guzmán-Klivans

generalization. Applying their theory to signed graphs gives us an opportunity to

try and recover what was lost. If we wish to study the critical and superstable

configurations of a chip-firing system it is helpful to first calculate some examples.
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4.1 Code

As we can see from the example in Figure 5, in order to perform firing moves,

each resultant configuration must be confirmed to be an element of S+(represented in

Figure 4). In classical chip-firing this is as easy as checking that the configuration is

non-negative and it may take only a few minutes to find the critical and superstable

configurations of a small graph. Now a great deal more work must go into calculating

these examples for a signed graph.

Klivans provided us with a function written in Matlab to calculate the criti-

cal configurations of a graph which, through experimentation, we found to provide

inconsistent results. Using that code as a framework we rewrote the function to cal-

culate the critical configurations of a signed graph and wrote an additional function

to calculate the superstable configurations of a signed graph.

15



The findcritical function takes an initial configuration v, checks that v satisfies

part 1 of Definition 14, and then performs firings, checking that each firing is legal,

until the configuration has stabilized and is therefore critical. The function may need

tuning on the max rand value to ensure it terminates.

1 function [lt]=findcritical(L,M)
2 % input: L invertible matrix, M M-matrix
3 % output: critical configurations
4

5 max rand value=50;
6

7 n = size(L,1);
8 lambda = abs(det(L));
9 Ninv = double(M*sym(inv(L)));

10 lt=[];
11 ltInitial=[];
12 g=0;
13 while g < lambda
14 % Take a random sufficiently large integer vector.
15 v = randi([0 max rand value],n,1);
16 vInitial=v;
17

18 % Check if v is in S+ equivalently, check if inv(N)*v is in R+
19 if not(all(Ninv*v ≥ 0))
20 continue
21 end
22

23 % Check that v is sufficiently large (every site can fire)
24 vsufficient=true;
25 for i=1:n
26 k = zeros(n,1);
27 k(i,1) = 1;
28

29 if not(all(Ninv*(v - L*k) ≥ 0))
30 vsufficient=false;
31 end
32 end
33 if not(vsufficient)
34 continue
35 end
36

37 % Chip-fire until stable - no single site can fire.
38 t = 0;
39 while t < n
40 t = 0;
41 for i=1:n
42 k = zeros(n,1);
43 k(i,1) = 1;
44 testfiring = v - L*k;
45 if all(Ninv*testfiring ≥ 0)
46 v = testfiring;

16



47 else
48 t=t+1;
49 end
50 end
51 end
52

53 % Check that we are not adding a duplicate and add to the list
54 valreadyfound=false;
55 for i=1:g
56 if v'==lt(i,:);
57 valreadyfound=true;
58 end
59 end
60 if not(valreadyfound)
61 lt =[lt;v'];
62 ltInitial=[ltInitial;vInitial'];
63 end
64 g=size(lt,1);
65 end
66 lt=sortrows(lt);
67 end

17



The findzsuperstable function takes each configuration config from the set

of critical configurations for an (L,M) pair and performs consecutive multiset firings

on config where each site may fire up to mset max times, checking that each firing is

legal, until no firings can occur and the configuration is superstable.

1 function [superedlts]=findzsuperstable(L,M,mset max)
2 %input: L invertible matrix, M M-matrix, mset max the most ...

times a vertex might be fired
3 %output: critical configurations
4 % When mset max is 1, the function will return \chi-superstables
5

6 Ninv = double(M*sym(inv(L)));
7

8 % Calculate starting from the criticals
9 lt = findcritical(L,M);

10

11 % Get the multisets
12 multisets=findmultisets(size(L,1),mset max);
13 multisets(1,:)=[];
14

15 superedlts=zeros(size(lt));
16 for i=1:size(lt,1)
17 % config starts as the critical representation of the ...

equivalence class under L dynamics for which we are ...
looking for the superstable

18 config=lt(i,:)';
19 isconfigsuper=false;
20 while not(isconfigsuper)
21 isconfigsuper=true;
22 % Cycle through all the multisets we are going to try ...

firing on the config
23 for mset=1:size(multisets,1)
24 % testfiring is the config after firing this multiset
25 testfiring=config-L*multisets(mset,:)';
26 % Check that the firing was legal
27 if all(Ninv*testfiring ≥ 0)
28 % if the firing was legal we will make that the new ...

config we are testing and start over with our multisets
29 config=testfiring;
30 % Make sure we do not falsely assume the config is ...

superstable
31 isconfigsuper=false;
32 % Start over with the multiset firings
33 break;
34 end
35 end
36 end
37 superedlts(i,:)=config';
38 end
39 end

18



The findmultisets function is used by findzsuperstable and provides all in-

teger vectors of dimension n that are componentwise less than or equal to max.

1 function [msets]=findmultisets(n,max)
2 %input: n=numbner of elements in the multiset, max=maxmium ...

value within the multiset
3 %output: an array of vectors of length n including every every ...

combination of 0-n for each value
4

5 max=max+1;
6 rangecol=zeros(max,1);
7 for i=1:max
8 rangecol(i,1)=i-1;
9 end

10

11 msets=rangecol;
12 for i=1:n-1
13 newmset=[];
14 for j=1:size(msets,1)
15 row=msets(j,:);
16 rowexpansion=row;
17 for k=1:max-1
18 rowexpansion=[rowexpansion;row];
19 end
20 rowexpansion=[rowexpansion rangecol];
21 newmset=[newmset;rowexpansion];
22 end
23 msets=newmset;
24 end
25 end

19



4.2 Calculated examples

Using this code we calculated the critical and superstable configurations for a

number of signed graphs. Below are those similar to the example we use in this text.

K4\{e} with deg(q) = 3 and σ : ∅ 7→ −

L =

 2 −1 0
−1 3 −1

0 −1 2

M =

 2 −1 0
−1 3 −1

0 −1 2

LM−1 =

 1 0 0
0 1 0
0 0 1


v1 v2

q v3

+

+

Criticals =



0 1 1
0 2 0
0 2 1
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1


z =



0 1 1
0 2 0
1 0 0
1 0 1
1 1 0
0 0 0
0 0 1
0 1 0



K4\{e} with deg(q) = 3 and σ : (1, 2) 7→ −

L =

 2 1 0
1 3 −1
0 −1 2

M =

 2 −1 0
−1 3 −1

0 −1 2

LM−1 =

 3
2

1 1
2

5
4

3
2

1
4

0 0 1


v1 v2

q v3

−

+

Criticals =



2 3 0
3 3 1
3 4 0
3 4 1
4 4 1
4 5 0
4 5 1
5 6 0


z =



2 3 0
0 0 0
3 4 0
2 2 0
1 1 0
1 1 1
3 3 0
2 2 1
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K4\{e} with deg(q) = 3 and σ : (1, 2), (2, 3) 7→ −

L =

 2 1 0
1 3 1
0 1 2

M =

 2 −1 0
−1 3 −1

0 −1 2

LM−1 =

 3
2

1 1
2

3
2

2 3
2

1
2

1 3
2


v1 v2

q v3

−

−
Criticals =



2 3 2
2 4 2
3 5 3
3 6 4
4 6 3
4 7 4
4 8 5
5 8 4


z =



2 3 2
2 4 2
0 0 0
3 6 4
4 6 3
1 2 1
3 4 2
2 4 3



K4\{e} with deg(q) = 2 and σ : ∅ 7→ −

L =

 3 −1 −1
−1 2 −1
−1 −1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 1 0 0
0 1 0
0 0 1


v1 v2

q v3

+

+
+

Criticals =



0 1 2
1 0 2
1 1 2
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2


z =



2 0 0
0 0 1
0 1 1
1 0 0
0 0 0
0 0 2
1 1 0
0 1 0
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K4\{e} with deg(q) = 2 and σ : (1, 2) 7→ − (from Figure 5)

L =

 3 1 −1
1 2 −1
−1 −1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 2 2 1
5
4

2 3
4

0 0 1


v1 v2

q v3

−

+
+

Criticals =



6 4 1
6 5 2
7 5 1
7 5 2
7 6 1
7 6 2
8 6 0
8 6 1
8 6 2
9 7 0
9 7 1
9 7 2



z =



3 2 0
6 4 0
4 3 0
1 1 0
0 0 0
7 5 0
4 3 2
5 4 0
2 2 0
5 4 2
6 5 0
3 3 0



K4\{e} with deg(q) = 2 and σ : (1, 2), (2, 3) 7→ −

L =

 3 1 −1
1 2 1
−1 1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 2 2 1
2 3 2
1 2 2


v1 v2

q v3

−

−
+

Criticals =



4 6 5
4 7 6
5 6 4
6 7 4
6 8 6
6 9 7
7 9 6
8 11 8


z =



1 2 2
4 4 2
2 2 1
2 4 4
0 0 0
3 5 4
4 5 3
2 3 2
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K4\{e} with deg(q) = 2 and σ : (1, 3) 7→ −

L =

 3 −1 1
−1 2 −1

1 −1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 7
4

1 5
4

0 1 0
5
4

1 7
4


v1 v2

q v3

+

+
−

Criticals =



4 1 5
5 1 4
5 1 6
6 0 6
6 1 5
6 1 7
7 0 7
7 1 6
7 1 7
8 0 8
8 1 8
9 1 9



z =



4 0 3
3 0 4
5 0 4
0 0 0
4 0 5
6 0 5
1 0 1
5 0 6
1 1 1
2 0 2
2 1 2
3 1 3



K4\{e} with deg(q) = 2 and σ : (1, 2), (1, 3) 7→ −

L =

 3 1 1
1 2 −1
1 −1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 11
4

3 9
4

5
4

2 3
4

5
4

1 7
4


v1 v2

q v3

−

+
−

Criticals =



10 4 6
12 5 7
13 6 7
14 6 8
15 7 8
16 7 9
17 8 9
19 9 10


z =



0 0 0
2 1 1
3 2 1
4 2 2
5 3 2
6 3 3
7 4 3
9 5 4
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K4\{e} with deg(q) = 2 and σ : (1, 2), (1, 3), (2, 3) 7→ −

L =

 3 1 1
1 2 1
1 1 3

M =

 3 −1 −1
−1 2 −1
−1 −1 3

LM−1 =

 11
4

3 9
4

2 3 2
9
4

3 11
4


v1 v2

q v3

−

−
−

Criticals =



10 8 10
10 9 11
11 9 10
11 9 11
11 10 12
12 10 11
12 10 12
12 11 13
13 11 12
13 11 13
14 12 14
15 13 15



z =



0 0 0
8 6 7
7 6 8
1 1 1
9 7 8
8 7 9
2 2 2
10 8 9
9 8 10
3 3 3
4 4 4
5 5 5



K4 with σ : ∅ 7→ −

L =

 3 −1 −1
−1 3 −1
−1 −1 3

M =

 3 −1 −1
−1 3 −1
−1 −1 3



LM−1 =

 1 0 0
0 1 0
0 0 1


v1 v2

q v3

+

+

+

Criticals =



0 1 2
0 2 1
0 2 2
1 0 2
1 1 2
1 2 0
1 2 1
1 2 2
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2



z =



0 1 2
0 2 1
2 0 0
1 0 2
0 0 1
1 2 0
0 1 0
0 1 1
2 0 1
0 2 0
2 1 0
1 0 0
1 0 1
0 0 2
1 1 0
0 0 0
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K4 with σ : (1, 2) 7→ −

L =

 3 1 −1
1 3 −1
−1 −1 3

M =

 3 −1 −1
−1 3 −1
−1 −1 3



LM−1 =

 3
2

1 1
2

1 3
2

1
2

0 0 1


v1 v2

q v3

−

+

+ Criticals =



3 4 1
4 3 1
4 4 2
4 5 1
4 5 2
5 4 1
5 4 2
5 5 2
5 6 1
5 6 2
6 5 1
6 5 2
6 6 0
6 6 1
6 6 2
7 7 0
7 7 1
7 7 2
8 8 1
8 8 2



z =



3 4 1
4 3 1
1 1 1
4 5 1
4 3 0
5 4 1
3 4 0
2 2 1
5 6 1
5 4 0
6 5 1
4 5 0
2 2 2
3 3 0
0 0 0
3 3 2
4 4 0
1 1 0
5 5 0
2 2 0



K4 with σ : (12), (13) 7→ −

L =

 3 1 1
1 3 −1
1 −1 3

M =

 3 −1 −1
−1 3 −1
−1 −1 3



LM−1 =

 2 3
2

3
2

1 3
2

1
2

1 1
2

3
2


v1 v2

q v3

−

+

−

Criticals =



5 2 4
5 4 2
6 4 4
7 3 5
7 4 4
7 4 5
7 5 3
7 5 4
8 4 5
8 5 4
8 5 5
9 5 6
9 6 5
10 6 6
11 6 7
11 7 6



z =



5 2 4
5 4 2
4 2 2
3 3 1
2 1 1
7 4 5
3 1 3
7 5 4
8 4 5
8 5 4
3 2 2
4 2 3
4 3 2
0 0 0
6 3 4
6 4 3
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K4 with σ : (12), (13), (23) 7→ −

L =

 3 1 1
1 3 1
1 1 3

M =

 3 −1 −1
−1 3 −1
−1 −1 3



LM−1 =

 2 3
2

3
2

3
2

2 3
2

3
2

3
2

2


v1 v2

q v3

−

−

− Criticals =



7 8 8
8 7 8
8 8 7
8 8 9
8 9 8
8 9 9
9 8 8
9 8 9
9 9 8
9 10 10
10 9 10
10 10 9
10 11 11
11 10 11
11 11 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15



z =



5 4 4
4 5 4
4 4 5
8 8 9
8 9 8
6 5 5
9 8 8
5 6 5
5 5 6
7 6 6
6 7 6
6 6 7
8 7 7
7 8 7
7 7 8
1 1 1
2 2 2
3 3 3
4 4 4
0 0 0
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5 Moving forward

Here we have laid out the Guzmán-Klivans theory of chip-firing on general invert-

ible matrices as applied to signed graphs, described the basic behavior of the game,

and developed tools to help in the exploration of these chip-firing systems. There is

still a great deal left to explore in this new model. As we mentioned previously, much

of what we know from the graphical chip-firing model is lost in generalization. With

this application to signed graphs it may be possible to recover some of that theory.

We have already explored the possibility of recovering the duality between su-

perstable and critical configurations and while there does seem to be some relation

between the sets of superstable and critical configurations, it is apparent that there

is no canonical configuration.

As we have seen, in the classical setting of chip firing on a simple graph, there is

a nice duality between critical configurations and superstables. In particular there is

a notion of a unique maximal stable configuration κ (sometimes called the ‘canonical

configuration’) which is always critical. In the setting of signed graphs, we see from

our examples that more than one critical configuration is maximal (in the sense of

coordinate-wise partial order).

A related question is whether the superstable configurations are in fact ‘closed

under taking subsets’. In particular suppose c is a superstable configuration for

a signed graph G and d is vector in the cone S+ of valid configurations that is

coordinate-wise less then c. Is it true that d is also superstable?

Another very promising front is to form an analogue to the bijection between

superstable configurations and spanning trees. In the context of chip-firing on reg-

ular graphs, there are many bijections from spanning trees to the set of superstable

configurations [4], many that generalize the original burning algorithm of Dhar.

We know from Guzmán-Klivans and Zaslavsky that they are both counted by the

determinant of the reduced graph Laplacian. In Theorem 1 we saw that for a signed
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G the value of det ∆q(G) is given by a (weighted) count of combinatorial objects that

generalize the set of spanning trees of G. We also know that the set of superstable

configurations has cardinality given by this number. It would be interesting to find a

map between these two sets.

We can also look at a number of special cases within signed graphs. From our

examples and testing it seems that in the case of all negative edges there is some

interesting behavior, especially regarding superstable configurations. An important

area of interest within signed graphs are balanced graphs where we might find some

interesting behavior. Sign-symmetric graphs may also have some relation to chip-

firing on bipartite graphs.

The superstable configurations on signed graphs may also give us some idea of

parking functions on signed graphs as they do for simple graphs.

Much of the questions and explorations we have would be aided by the develop-

ment of more code to generate examples and help discover patterns. The code itself

could be aided by the discovery of an upper-bound for the number of times a site

may fire in a multiset-firing while stabilizing to a superstable configuration.
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