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PERIODIC AND INVARIANT MEASURES FOR STOCHASTIC
WAVE EQUATIONS

JONG UHN KIM

Abstract. We establish the existence of periodic and invariant measures for

a semilinear wave equation with random noise. These are counterparts of

time-periodic and stationary solutions of a deterministic equation. The key
element in our analysis is to prove that the family of probability distributions

of a solution is tight.

1. Introduction

We consider the semi-linear wave equation with random noise

utt + 2αut −∆u+ βu = f(t, x, u) +
∞∑

k=1

gk(t, x, u)
dBk

dt
(1.1)

where (t, x) ∈ (0,∞)×R3, α > 0, β > 0 are constants, and f, gk’s are given nonlin-
ear functions. Bk’s are mutually independent standard Brownian motions. Later
on, we will make precise assumptions on f and gk’s. When gk ≡ 0 for all k, and
f(t, x, u) = f1(t, x)−|u|p−1u with 1 ≤ p ≤ 3, (1.1) is a model equation in nonlinear
meson theory. The Cauchy problem and the initial-boundary value problem associ-
ated with this deterministic equation have been completely investigated. See Lions
[12], Reed and Simon [16], Temam [17], and references therein. It has been also
investigated as a model equation whose solutions converge to a global attractor.
For an extensive discussion of the dynamical system associated with this equation,
see [17]. On the other hand, the Cauchy problem for the stochastic equation with
random noise was discussed by Chow [2], Garrido-Atienza and Real [8] and Pardoux
[14]. Crauel, Debussche and Flandoli [4] proved the existence of random attractors
for an initial-boundary value problem associated with (1.1). Here our goal is to
obtain a periodic measure for (1.1) when the given functions are time-periodic, and
an invariant measure when the given functions are independent of time. A proba-
bility measure µ on the natural function class for (1.1) is called a periodic measure
if the initial probability distribution equal to µ generates time-periodic probability
distributions of the solution, and is called an invariant measure if it results in time-
invariant probability distributions of the solution. We can handle both the Cauchy
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problem in the whole space R3 and an initial-boundary value problem in a bounded
domain. But we will present full details only for the case of the whole space R3, and
give a sketch of the procedure for a bounded domain. The case of the whole space
is more challenging for lack of compact imbedding of usual Sobolev spaces. For the
Cauchy problem for (1.1), Chow [2] used a basic result of Da Prato and Zabczk [6]
for evolution equations. The main difficulty arises from polynomial nonlinearity in
the equation. This type of nonlinearity can be handled by the truncation method.
For its use for parabolic equations, see Gyöngy and Rovira [9]. The result in [6] is
based on the analysis of stochastic convolutions in the frame of semigroup theory.
Our goal is to obtain periodic and invariant measures. For this, we need some basic
estimates to ensure tightness of the probability laws. Such estimates can be ob-
tained most conveniently in the frequency domain via the Fourier transform. These
new estimates can be derived through the representation formula for solutions in
the frequency domain. Hence, it seems natural to obtain solutions in the same
context, and we will present the proof of existence independently of the previous
works. But we will borrow a truncation device from [2].

Da Prato and Zabczyk [6, 7] present some general results on the existence of
invariant measures for stochastic semilinear evolution equations, which cover basi-
cally two different cases. The first case is the equations with suitable dissipation.
By means of translation of the time variable and two-sided Brownian motions, dissi-
pation of the energy results in invariant measures. The second case is the equations
associated with compact semigroups. This compactness of semigroups can be used
to prove tightness of the probability distributions of a solution, which in turn yields
invariant measures. Parabolic equations fall in this category, and so far most of
the works on invariant measures for nonlinear equations have been concerned with
equations of parabolic type. However, there are other types of equations which are
not covered by either of these cases. The equation (1.1) is one of them. The result of
[4] combined with that of [5] yields invariant measures for (1.1) in a bounded space
domain. According to their method, only additive noise with sufficiently regular
coefficients can be handled. Our method can relax such restrictive assumptions; see
remarks in Section 6 below. Our method is based upon the works of Khasminskii
[11] and Parthasarathy [15]. The idea of [11] was used in [3] for quasilinear para-
bolic equations. The main task is to prove tightness of the probability distributions
of a solution. We borrow an essential idea from Parthasarathy [15, Theorem 2.2].
But substantial technical adaptation is necessary for our problem. When the space
domain is unbounded, we cannot use compact imbedding of usual Sobolev spaces.
For reaction-diffusion equations, Wang [18] overcame this difficulty by approximat-
ing the whole space through expanding balls. This idea was also used in Lu and
Wang [13]. We will adopt this for our problem.

In section 2, we introduce notation and present some preliminaries for stochastic
processes. In Section 3, we prove the existence of a solution and establish some
estimates which will be used later. In Section 4, we prove that the family of
probability distributions of a solution is tight, and establish the existence of a
periodic measure and an invariant measure in Section 5. Finally, we explain how
our method can be used for initial-boundary value problem in Section 6.
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2. Notation and Preliminaries

When G is a subset of Rn, C(G) is the space of continuous functions on G, and
C0(G) is the space of continuous functions with compact support contained in G.
Hm(R3) stands for the usual Sobolev space of order m. For a function in R3, its
Fourier transform is given by

f̂(ξ) =
1

(2π)3/2

∫
R3
f(x)e−iξ·x dx

and the inversion formula is

f(x) =
1

(2π)3/2

∫
R3
f̂(ξ)eiξ·x dξ,

which will be also expressed by f = F−1
ξ

(
f̂
)
. In this context, it is convenient to

define the convolution by(
f ∗ g

)
(x) =

1
(2π)3/2

∫
R3
f(x− y)g(y) dy.

For function spaces with respect to the variable ξ in the frequency domain, we use
the notation Lp(ξ) and Hm(ξ) to denote Lp(R3) and Hm(R3), respectively.

We recall some properties of Sobolev spaces. For 2 ≤ q ≤ 6, there is some
positive constant Cq such that

‖ψ‖Lq(R3) ≤ Cq‖ψ‖H1(R3), for all ψ ∈ H1(R3). (2.1)

We also have

Lemma 2.1. Suppose 0 ≤ s < 1 and ψ ∈ L2(R3). If∣∣∣ ∫
R3
ψ(x)

(
I −∆

)
φ(x) dx

∣∣∣ ≤ C‖φ‖H1+s(R3) (2.2)

holds for all φ ∈ C∞0 (R3), for some positive constant C, then ψ ∈ H1−s(R3).

Proof. By the Parseval’s identity,∫
R3
ψ(x)

(
I −∆

)
φ(x) dx =

∫
R3
ψ̂(ξ)

(
1 + |ξ|2

)(1−s)/2
φ̂(ξ)

(
1 + |ξ|2

)(1+s)/2
dξ

which, with (2.2), yields ψ̂(ξ)
(
1 + |ξ|2

)(1−s)/2 ∈ L2(R3), and ‖ψ‖H1−s(R3) ≤ C. �

Lemma 2.2. Let 1 ≤ p < 3 and q = 3−p
2 . Then,

‖ψ|ψ|p−1‖Hq(R3) ≤ Cp‖ψ‖p
H1(R3) (2.3)

holds for all ψ ∈ H1(R3), for some positive constant Cp.

Proof. For any φ ∈ C∞0 (R3), we see, by (2.1),∥∥ψ|ψ|p−1
∥∥

L2(R3)
≤ C‖ψ‖p

H1(R3) (2.4)

and ∣∣∣ ∫
R3
ψ|ψ|p−1∆φdx

∣∣∣ =
∣∣∣p∫

R3
|ψ|p−1∇ψ · ∇φdx

∣∣∣ (2.5)

≤ Cp‖∇ψ‖L2(R3)

∥∥|ψ|p−1
∥∥

L6/(p−1)(R3)
‖∇φ‖L6/(4−p)(R3)

≤ Cp‖ψ‖p
H1(R3)‖φ‖H(1+p)/2(R3).

(2.3) follows from (2.4), (2.5) and Lemma 2.1. �
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Throughout this paper, {Bk(t)}∞k=1 is a set of mutually independent standard
Brownian motions over the stochastic basis {Ω,F ,Ft, P} where P is a probability
measure over the σ-algebra F , {Ft} is a right-continuous filtration over F , and
F0 contains all P -negligible sets. E(·) denotes the expectation with respect to P .
When X is a Banach space, B(X ) denotes the set of all Borel subsets of X . For
1 ≤ p < ∞, Lp

(
Ω;X

)
denotes the set of all X -valued F-measurable functions h

such that ∫
Ω

‖h‖p
X dP <∞.

L∞
(
Ω;X

)
is the set of all X -valued F-measurable functions h such that ‖h‖X is

essentially bounded with respect to the measure P . For general information on
stochastic processes, see Karatzas and Shreve [10]. We need the following fact due
to Berger and Mizel [1].

Lemma 2.3. Let h(t, s;ω) be B([0, T ]× [0, T ])⊗F-measurable and adapted to {Fs}
in s for each t. Suppose that for almost all ω ∈ Ω, h is absolutely continuous in t,
and ∫ T

0

∫ t

0

∣∣∣∂h
∂t

(t, s)
∣∣∣2dsdt <∞, for almost all ω,∫ t

0

|h(t, s)|2ds <∞, for almost all ω,

for each t. Let

zk(t) =
∫ t

0

h(t, s)dBk(s), k = 1, 2, . . . .

Then, it holds that

dzk(t) = h(t, t)dBk(t) +
( ∫ t

0

∂h

∂t
(t, s)dBk(s)

)
dt.

3. The Cauchy problem

We start from the linear problem.

utt + 2αut −∆u+ βu = f +
∞∑

k=1

gk
dBk

dt
, (3.1)

u(0) = u0, ut(0) = u1. (3.2)

We suppose that (u0, u1) is H1(R3)× L2(R3)-valued F0-measurable,

(u0, u1) ∈ L2
(
Ω;H1(R3)× L2(R3)

)
(3.3)

and that f, gk’s are L2(R3)-valued predictable processes such that

f, gk ∈ L2
(
Ω;L2(0, T ;L2(R3))

)
, (3.4)

E
( ∞∑

k=1

∫ T

0

‖gk‖2
L2(R3) dt

)
<∞ (3.5)

for each T > 0. By taking the Fourier transform, this problem is transformed in
the frequency domain as follows.

ûtt + 2αût + |ξ|2û+ βû = f̂ +
∞∑

k=1

ĝk
dBk

dt
, (3.6)
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û(0) = û0, ût(0) = û1. (3.7)

Let us first consider more restrictive data. So we assume that (û0, û1) is F0-
measurable, and

û0, û1 ∈ L2(Ω;C0(K)) (3.8)

and that f̂ , ĝk’s are predictable, and

f̂ , ĝk ∈ L∞
(
Ω;C0([0,∞)×K)

)
(3.9)

∞∑
k=1

‖ĝk‖2
L∞(Ω;C0([0,∞)×K)) <∞ (3.10)

where K is a compact subset of R3. Then, the solution û of (3.6) - (3.7) is given
by, for each ξ ∈ R3,

û(t, ξ) = e−αt cos(
√
|ξ|2 + γt)û0(ξ) + e−αt sin(

√
|ξ|2 + γt)√
|ξ|2 + γ

û1(ξ)

+
∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
f̂(s, ξ)ds (3.11)

+
∞∑

k=1

∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
ĝk(s, ξ) dBk(s)

for all t ≥ 0, for almost all ω ∈ Ω, where γ = β −α2. Since |ξ|2 + γ ≤ 0 is possible,
we note that

cos
(√

|ξ|2 + γt
)

=
∞∑

k=0

(−1)k

(
|ξ|2 + γ

)k
t2k

(2k)!

sin
(√

|ξ|2 + γt
)√

|ξ|2 + γ
=

∞∑
k=0

(−1)k

(
|ξ|2 + γ

)k
t2k+1

(2k + 1)!
.

One can apply Ito’s formula to (3.6) for each fixed ξ, but we first have to find the
manner in which û depends on ξ. It is easy to see that

e−αt cos
(√

|ξ|2 + γt
)
, e−αt sin

(√
|ξ|2 + γt

)√
|ξ|2 + γ

and their time derivatives are continuous and uniformly bounded for t ≥ 0 and
ξ ∈ K. This fact is used to estimate the terms in the right-hand side of (3.11). But
the last term needs some manipulation for a necessary estimate, because it is not
a martingale. Thus, we use Lemma 2.3 to write

Jk :=
∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
ĝk(s, ξ)dBk(s)

=
∫ t

0

∫ s

0

(−α)e−α(s−η) sin
(√

|ξ|2 + γ(s− η)
)√

|ξ|2 + γ
ĝk(η, ξ)dBk(η) ds

+
∫ t

0

∫ s

0

e−α(s−η) cos
(√

|ξ|2 + γ(s− η)
)
ĝk(η, ξ)dBk(η) ds, k = 1, 2, . . . ,
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and

∂tJk =
∫ t

0

∫ s

0

α2e−α(s−η) sin
(√

|ξ|2 + γ(s− η)
)√

|ξ|2 + γ
ĝk(η, ξ)dBk(η) ds

+
∫ t

0

∫ s

0

(−α)e−α(s−η) cos
(√

|ξ|2 + γ(s− η)
)
ĝk(η, ξ)dBk(η) ds

+
∫ t

0

∫ s

0

(−α)e−α(s−η) cos
(√

|ξ|2 + γ(s− η)
)
ĝk(η, ξ)dBk(η) ds

−
∫ t

0

∫ s

0

e−α(s−η)
√
|ξ|2 + γ sin

(√
|ξ|2 + γ(s− η)

)
ĝk(η, ξ)dBk(η) ds

+
∫ t

0

ĝk(s, ξ) dBk(s), k = 1, 2, . . . .

These integrals are easy to estimate, and we find that for each T > 0,

lim
ξ1→ξ2

E
(∥∥Jk(ξ1)− Jk(ξ2)

∥∥2

C1([0,T ])

)
= 0. (3.12)

By (3.10) and (3.12), the last term of (3.11) belongs to C0

(
K;L2(Ω;C1([0, T ]))

)
for each T > 0. It is easy to see that other terms also belong to the same function
class, and we conclude

û ∈ C0

(
K;L2(Ω;C1([0, T ]))

)
for all T > 0. Let K̃ be another compact subset whose interior contains K. By
partition of unity, û can be approximated in C0

(
K̃;L2(Ω;C1([0, T ]))

)
by a sequence

of functions of the form

ûN =
N∑

j=1

aNj(ξ)bNj(ω, t)

where each aNj ∈ C0(K̃) and bNj ∈ L2
(
Ω;C1([0, T ])

)
, and bNj(t) is Ft-measurable

for every t. Since each ûN ∈ L2
(
Ω;C1([0, T ];L2(K̃))

)
and

‖ûN‖L2(Ω;C1([0,T ];L2(K̃))) ≤MK̃‖ûN‖C0(K̃;L2(Ω;C1([0,T ])))

where MK̃ is a positive constant depending only on K̃. It follows that {ûN} is a
Cauchy sequence in L2

(
Ω;C1([0, T ];L2(K̃))

)
. Hence, û ∈ L2

(
Ω;C1([0, T ];L2(K̃))

)
.

Meanwhile, each ûN (t) is L2(K̃)-valued Ft-measurable and so is û(t). Also, for each
t, ûN (t) and û(t) are B(K̃)⊗Ft-measurable. By Ito’s formula, we find that for each
ξ ∈ K,

|ût|2(t) + (|ξ|2 + β + 2εα)|û(t)|2 + 2εRe
(
ût(t)û(t)

)
= |û1|2 + (|ξ|2 + β + 2εα)|û0|2 + 2εRe

(
û1û0

)
(3.13)

− (4α− 2ε)
∫ t

0

|ût(s)|2 ds− 2ε
∫ t

0

(|ξ|2 + β)|û(s)|2 ds

+
∫ t

0

2Re
(
f̂(s)ût(s) + εf̂(s)û(s)

)
ds+

∞∑
k=1

∫ t

0

|ĝk(s)|2 ds

+
∞∑

k=1

∫ t

0

2Re
(
ĝk(s)ût(s) + εĝk(s)û(s)

)
dBk(s)
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holds for t ≥ 0, for almost all ω ∈ Ω. In fact, (3.13) holds in C0

(
K;L1(Ω;C([0, T ])

)
,

for all T > 0, because each term belongs to C0

(
K;L1(Ω;C([0, T ])

)
, for all T > 0.

By (3.10), we can apply the stochastic Fubini theorem to the last term, and find
that

‖ût(t)‖2
L2(ξ) +

∥∥√
|ξ|2 + β + 2εαû(t)

∥∥2

L2(ξ)
+ 2ε

∫
R3
Re

(
ût(t)û(t)

)
dξ

= ‖û1‖2
L2(ξ) +

∥∥√
|ξ|2 + β + 2εαû0

∥∥2

L2(ξ)
+ 2ε

∫
R3
Re

(
û1û0

)
dξ

− (4α− 2ε)
∫ t

0

∫
R3
|ût(s)|2 dξ ds− 2ε

∫ t

0

∫
R3

(|ξ|2 + β)|û(s)|2 dξds

+
∫ t

0

∫
R3

2Re
(
f̂(s)ût(s) + εf̂(s)û(s)

)
dξds+

∞∑
k=1

∫ t

0

‖ĝk(s)‖2
L2(ξ) ds

+
∞∑

k=1

∫ t

0

∫
R3

2Re
(
ĝk(s)ût(s) + εĝk(s)û(s)

)
dξ dBk(s) (3.14)

holds for all t ≥ 0, for almost all ω. We now choose ε such that

0 < ε < α . (3.15)

By the Burkholder-Davis-Gundy inequality, we have

E
(

sup
0≤s≤t

∣∣∣ ∞∑
k=1

∫ s

0

∫
R3

2Re
(
ĝk(η)ût(η) + εĝk(η)û(η)

)
dξ dBk(η)

∣∣∣)
≤ME

( ∞∑
k=1

∫ t

0

∣∣∣ ∫
R3

2Re
(
ĝk(s)ût(s) + εĝk(s)û(s)

)
dξ

∣∣∣2 ds)1/2

(3.16)

≤ ρE
(

sup
0≤s≤t

(
‖û(s)‖2

L2(ξ) + ‖ût(s)‖2
L2(ξ)

))
+
M

ρ

∞∑
k=1

E
( ∫ t

0

‖ĝk(s)‖2
L2(ξ)ds

)
, for all ρ > 0.

Thus, by using (3.16) with suitably small ρ, we can derive from (3.14)

E
(

sup
0≤s≤t

(
‖ût(s)‖2

L2(ξ) + ‖
√
|ξ|2 + βû(s)‖2

L2(ξ)

))
≤ME

(
‖û1‖2

L2(ξ) +
∥∥√

|ξ|2 + βû0

∥∥2

L2(ξ)

)
(3.17)

+MtE
( ∫ t

0

‖f̂(s)‖2
L2(ξ)ds

)
+M

∞∑
k=1

E
( ∫ t

0

‖ĝk(s)‖2
L2(ξ)ds

)
where M denotes positive constants independent of K and t ≥ 0. We now consider
the general data satisfying (3.3) - (3.5). Let us fix any T > 0. We can choose
sequences {û0,n}, {û1,n}, {f̂n} and {ĝk,n} such that√

|ξ|2 + βû0,n →
√
|ξ|2 + βû0 in L2

(
Ω;L2(ξ)

)
,

û1,n → û1 in L2
(
Ω;L2(ξ)

)
,

f̂n → f̂ in L2
(
Ω;L2(0, T ;L2(ξ))

)
,
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∞∑
k=1

E
( ∫ T

0

‖ĝk,n(s)− ĝk(s)‖2
L2(ξ) ds

)
→ 0,

and each û0,n, û1,n satisfy (3.8), and each f̂n, ĝk,n satisfy (3.9), (3.10) with some
compact subset Kn. It follows from (3.17) that

(
un, ∂tun

)
corresponding to

û0,n, û1,n, f̂n, ĝk,n forms a Cauchy sequence in L2
(
Ω;C([0, T ];H1(R3) × L2(R3))

)
,

and its limit
(
u, ut

)
is the solution which also satisfies (3.17). In addition, if we

have
∞∑

k=1

∥∥gk

∥∥2

L∞(Ω;L2(0,T ;L2(R3)))
<∞, for all T > 0, (3.18)

then (3.14) is also valid. We now suppose that there is another solution
(
u∗, u∗t

)
∈

L2
(
Ω;C([0, T ];H1(R3)×L2(R3))

)
. Then,

(
u− u∗, ut − u∗t

)
is a solution of the de-

terministic wave equation, and the pathwise uniqueness of solution follows directly
from the uniqueness result for the deterministic wave equation.

We now summarize what has been established.

Lemma 3.1. Suppose that (u0, u1) satisfies (3.3) and that f and gk’s satisfy (3.4)
and (3.5). Then, there is a pathwise unique solution of (3.1) and (3.2) such that
(u(t), ut(t)) is a H1(R3)× L2(R3)-valued predictable process and

(u, ut) ∈ L2
(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
for all T > 0. Furthermore, it satisfies (3.17), and if (3.18) holds, (3.14) is also
valid.

Next we will consider the semi-linear case.

utt + 2αut −∆u+ βu = f(t, x, u) +
∞∑

k=1

gk(t, x, u)
dBk

dt
, (3.19)

u(0) = u0, ut(0) = u1. (3.20)

Let us suppose that

f(t, x, u) = f1(t, x) + f2(u); (3.21)

gk(t, x, u) = gk,1(t, x) + φ(x)gk,2(u); (3.22)

φ ∈ H1(R3) ∩ L∞(R3); (3.23)

f1 ∈ C([0,∞);L2(R3)), f1(t) = f1(t+ L), for all t ≥ 0, (3.24)

where L is a fixed positive number;

f2(0) = 0, ‖f2(v)− f2(w)‖L2(R3) ≤M‖v − w‖H1(R3) (3.25)

for all v, w ∈ H1(R3), for some positive constant M ;

gk,1 ∈ C([0,∞);L2(R3)), gk,1(t) = gk,1(t+ L), for all t ≥ 0; (3.26)

‖gk,1(t)‖L2(R3)) ≤Mk, for all t ≥ 0; (3.27)

|gk,2(y)| ≤ M̃k, |gk,2(y)− gk,2(z)| ≤ αk|y − z|, for all y, z ∈ R (3.28)

with
∞∑

k=1

(M2
k + M̃2

k + α2
k) <∞. (3.29)
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We employ the standard iteration scheme. Let us set u(0) = u0 and let u(n) be the
solution of

utt + 2αut −∆u+ βu = f(t, x, u(n−1)) +
∞∑

k=1

gk(t, x, u(n−1))
dBk

dt
,

u(0) = u0, ut(0) = u1.

Fix any T > 0. By subtraction, we can obtain an equation satisfied by u(n+1)−u(n).
By treating f(t, x, u(n))− f(t, x, u(n−1)) and gk(t, x, u(n))− gk(t, x, u(n−1)) as given
functions, we interpret

(
u(n+1) − u(n), u

(n+1)
t − u

(n)
t

)
as a solution of the linear

problem. By the pathwise uniqueness of solution for the linear problem, we can
apply the estimate (3.17) with help of (3.25), (3.28) and (3.29) to derive

E
(

sup
0≤s≤t

(
‖u(n+1)

t (s)− u
(n)
t (s)‖2

L2(R3) + ‖u(n+1)(s)− u(n)(s)‖2
H1(R3)

))
≤M

∫ t

0

E
(
‖u(n)(s)− u(n−1)(s)‖2

H1(R3)

)
ds (3.30)

+M
( ∞∑

k=1

α2
k

) ∫ t

0

E
(
‖u(n)(s)− u(n−1)(s)‖2

L2(R3)

)
ds, for all 0 ≤ t ≤ T .

By induction, we have, for all 0 ≤ t ≤ T and all n ≥ 1,

E
(

sup
0≤s≤t

(
‖u(n+1)

t (s)− u
(n)
t (s)‖2

L2(R3) + ‖u(n+1)(s)− u(n)(s)‖2
H1(R3)

))
≤ Kntn/n!

for some constant K independent of n and t. Thus, the sequence {(u(n), u
(n)
t )} is

a Cauchy sequence in L2
(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
. The limit

(
u, ut

)
is the

solution, and
(
u(t), ut(t)

)
is H1(R3)×L2(R3)-valued Ft-measurable. Suppose that(

u∗, u∗t
)
∈ L2

(
Ω;C([0, T ];H1(R3) × L2(R3))

)
is another solution. By subtraction,

we can obtain an equation satisfied by v = u − u∗. By the same argument as for
(3.30), we can derive

E
(

sup
0≤s≤t

(
‖vt(s)‖2

L2(R3) + ‖v(s)‖2
H1(R3)

))
≤M

∫ t

0

E
(
‖v(s)‖2

H1(R3)

)
ds+M

( ∞∑
k=1

α2
k

) ∫ t

0

E
(
‖v(s)‖2

L2(R3)

)
ds,

for all 0 ≤ t ≤ T . This yields the pathwise uniqueness. Since T can be arbitrarily
large, it follows from the pathwise uniqueness that for almost all ω ∈ Ω,(

u, ut

)
∈ C

(
[0,∞);H1(R3)× L2(R3)

)
.

We now drop the assumption (3.25) and consider the case

f2(v) = −v|v|p−1, 1 ≤ p < 3. (3.31)

Borrowing a truncation device from [2], we set, for a positive integer N ,

f2,N (v) = −ηN

(
‖v‖H1(R3)

)
v|v|p−1

where ηN (y) = η(y/N), η ∈ C∞0 (R) such that 0 ≤ η(y) ≤ 1, for all y, η(y) = 1, for
|y| ≤ 2, and η(y) = 0, for |y| ≥ 3. Then, it follows from (2.1) that∥∥f2,N (v1)− f2,N (v2)

∥∥
L2(R3)

≤ CN‖v1 − v2‖H1(R3). (3.32)
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Hence, there is a solution uN of (3.19) - (3.20) with f = f1 + f2,N such that for
each T > 0, (

uN , ∂tuN

)
∈ L2

(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
,

and for almost all ω ∈ Ω,(
uN , ∂tuN

)
∈ C

(
[0,∞);H1(R3)× L2(R3)

)
.

Now define

τN =

{
inf

{
t : ‖uN (t)‖H1(R3) > N

}
,

∞, if {t : ‖uN (t)‖H1(R3) > N} = ∅
(3.33)

so that uN satisfies the original equation with f = f1 + f2 for 0 ≤ t ≤ τN (ω), for
almost all ω. For N1 < N2, we set

v(t) = uN1(t ∧ τN1 ∧ τN2)− uN2(t ∧ τN1 ∧ τN2).

We then note that v(t) is the solution of

vtt + 2αvt −∆v + βv = F (t, x) +
∞∑

k=1

Gk(t, x)
dBk

dt

on the interval [0, τN1 ∧ τN2) satisfying v(0) = 0, vt(0) = 0 where

F (t, x) = f2,N1

(
uN1(t ∧ τN1 ∧ τN2)

)
− f2,N2

(
uN2(t ∧ τN1 ∧ τN2)

)
, (3.34)

Gk(t, x) = φ(x)
(
gk,2

(
uN1(t ∧ τN1 ∧ τN2)

)
− gk,2

(
uN2(t ∧ τN1 ∧ τN2)

))
. (3.35)

We also note that∥∥∥f2,N1

(
uN1(t ∧ τN1 ∧ τN2)

)
− f2,N2

(
uN2(t ∧ τN1 ∧ τN2)

)∥∥∥
L2(R3)

=
∥∥∥f2(uN1(t ∧ τN1 ∧ τN2)

)
− f2

(
uN2(t ∧ τN1 ∧ τN2)

)∥∥∥
L2(R3)

≤ CNp−1
2 ‖v(t)‖H1(R3)

for all 1 ≤ N1 < N2 and all t ≥ 0, for almost all ω. We can treat v as a solution
of the linear equation where F and Gk’s are given functions. By the pathwise
uniqueness of solution of the linear problem, v must satisfy

E
(

sup
0≤s≤t

(
‖vt(s)‖2

L2(R3) + ‖v(s)‖2
H1(R3)

))
≤M

∫ t

0

E
(
‖v(s)‖2

H1(R3)

)
ds+M

( ∞∑
k=1

α2
k

) ∫ t

0

E
(
‖v(s)‖2

L2(R3)

)
ds,

for all t ≥ 0. It follows from the Gronwall inequality that v(t) ≡ 0, for all t ≥ 0, for
almost all ω. Thus, τN1 ≤ τN2 , for almost all ω. Let

τ∞ = lim
N→∞

τN

and define
u(t) = lim

N→∞
uN (t), for 0 ≤ t < τ∞.

Apparently, u(t ∧ τN ) = uN (t ∧ τN ), for all t ≥ 0 and all N ≥ 1, and consequently,(
u, ut

)
∈ C

(
[0, τ∞);H1(R3)× L2(R3)

)
, for almost all ω.
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On account of (3.22) - (3.23) and (3.26) - (3.29), we can use (3.14) so that for each
N ≥ 1,

‖ut(t ∧ τN )‖2
L2(R3) + ‖∇u(t ∧ τN )‖2

L2(R3) + (β + 2εα)‖u(t ∧ τN )‖2
L2(R3)

+ 2ε〈ut(t ∧ τN ), u(t ∧ τN )〉
= ‖u1‖2

L2(R3) + ‖∇u0‖2
L2(R3) + (β + 2εα)‖u0‖2

L2(R3) + 2ε∠u1, u0〉

− (4α− 2ε)
∫ t∧τN

0

‖ut(s)‖2
L2(R3) ds− 2ε

∫ t∧τN

0

(
‖∇u(s)‖2

L2(R3) + β‖u(s)‖2
L2(R3)

)
ds

+ 2
∫ t∧τN

0

〈f1(s) + f2,N (u(s)), ut(s) + εu(s)〉ds

+
∞∑

k=1

∫ t∧τN

0

∥∥gk,1(s) + φgk,2(u(s))
∥∥2

L2(R3)
ds

+
∞∑

k=1

∫ t∧τN

0

2〈gk,1(s) + φgk,2(u(s)), ut(s) + εu(s)〉dBk(s)

for all t ≥ 0, for almost all ω, where 〈·, ·〉 is the inner product in L2(R3). We write

Q(t) = ‖ut(t)‖2
L2(R3) + ‖∇u(t)‖2

L2(R3) + (β + 2εα)‖u(t)‖2
L2(R3)

+ 2ε〈ut(t), u(t)〉+
2

p+ 1

∫
R3
|u(t)|p+1dx.

We then have

Q(t ∧ τN ) =Q(0)− (4α− 2ε)
∫ t∧τN

0

‖ut(s)‖2
L2(R3) ds

− 2ε
∫ t∧τN

0

(
‖∇u(s)‖2

L2(R3) + β‖u(s)‖2
L2(R3)

)
ds

− 2ε
∫ t∧τN

0

∫
R3
|u(s)|p+1 dx ds+ 2

∫ t∧τN

0

〈f1(s), ut(s) + εu(s)〉 ds

+
∞∑

k=1

∫ t∧τN

0

∥∥gk,1(s) + φgk,2(u(s))
∥∥2

L2(R3)
ds (3.36)

+
∞∑

k=1

∫ t∧τN

0

2〈gk,1(s) + φgk,2(u(s)), ut(s) + εu(s)〉dBk(s)

for all t ≥ 0, for almost all ω ∈ Ω. In addition to (3.3), we assume

u0 ∈ Lp+1
(
Ω;Lp+1(R3)

)
so that E

(
Q(0)

)
<∞.

By the same argument as for (3.17), we can derive from (3.36)

E
(

sup
0≤s≤t

Q(s ∧ τN )
)
≤ E

(
Q(0)

)
+MtE

( ∫ t∧τN

0

‖f1(s)‖2
L2(R3) ds

)
+Mt

∞∑
k=1

(
M2

k + M̃2
k‖φ‖2

L2(R3)

)
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for all t ≥ 0 and all N ≥ 1, for some positive constant M . Thus, for each T > 0,

E
(

sup
0≤t≤T

Q(t ∧ τN )
)
≤MT , for all N ≥ 1,

where MT is a positive constant independent of N . By the same argument as in [2],
this implies that τN ↑ ∞ as N →∞, for almost all ω. Using this fact and Fatou’s
lemma, we pass N →∞ to arrive at

E
(

sup
0≤t≤T

Q(t)
)
≤MT . (3.37)

Hence, for each T > 0, we have obtained a solution(
u, ut

)
∈ L2

(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
.

Suppose that there is another solution(
u∗, u∗t

)
∈ L2

(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
.

We define τ∗N by (3.33) in terms of u∗. Then, by means of∥∥f2(u(t ∧ τN ∧ τ∗N )
)
− f2

(
u∗(t ∧ τN ∧ τ∗N )

)∥∥
L2(R3)

≤ CNp−1
∥∥u(t ∧ τN ∧ τ∗N )− u∗(t ∧ τN ∧ τ∗N )

∥∥
H1(R3)

,

we can derive

E
(

sup
0≤t≤T

(∥∥u(t ∧ τN ∧ τ∗N )− u∗(t ∧ τN ∧ τ∗N )
∥∥2

H1(R3)

+
∥∥ut(t ∧ τN ∧ τ∗N )− u∗t (t ∧ τN ∧ τ∗N )

∥∥2

L2(R3)

))
= 0

for all N ≥ 1. Since τ∗N ∧ T ↑ T , as N →∞, for almost all ω, we have(
u, ut

)
=

(
u∗, u∗t

)
in C

(
[0, T ];H1(R3)× L2(R3)

)
for almost all ω. This proves the pathwise uniqueness. Next by passing N →∞ in
(3.36), we find

Q(t) =Q(0)− (4α− 2ε)
∫ t

0

‖ut(s)‖2
L2(R3) ds

− 2ε
∫ t

0

(
‖∇u(s)‖2

L2(R3) + β‖u(s)‖2
L2(R3)

)
ds

− 2ε
∫ t

0

∫
R3
|u(s)|p+1 dx ds

+ 2
∫ t

0

〈f1(s), ut(s) + εu(s)〉 ds+
∞∑

k=1

∫ t

0

‖gk,1(s) + φgk,2(u(s))‖2
L2(R3) ds

+
∞∑

k=1

∫ t

0

2〈gk,1(s) + φgk,2(u(s)), ut(s) + εu(s)〉dBk(s)

for all t ≥ 0,for almost all ω ∈ Ω. Thus, Q(t) is a solution of

dQ(t)
dt

=− (4α− 2ε)‖ut(t)‖2
L2(R3) − 2ε

(
‖∇u(t)‖2

L2(R3) + β‖u(t)‖2
L2(R3)

)
− 2ε

∫
R3
|u(t)|p+1 dx+ 2〈f1(t), ut(t) + εu(t)〉
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+
∞∑

k=1

∥∥gk,1(t) + φgk,2(u(t))
∥∥2

L2(R3)
(3.38)

+
∞∑

k=1

2〈gk,1(t) + φgk,2(u(t)), ut(t) + εu(t)〉dBk(t)
dt

.

Recalling that ε was chosen by (3.15), we can choose δ = δ(ε, α, β) > 0, κ =
κ(ε, α, β) > 0 so that

− (4α− 2ε)‖ut(t)‖2
L2(R3) − 2ε

(
‖∇u(t)‖2

L2(R3) + β‖u(t)‖2
L2(R3)

)
− 2ε

∫
R3
|u(t)|p+1 dx+ 2〈f1(t), ut(t) + εu(t)〉 (3.39)

≤ −δQ(t) + κ‖f1(t)‖2
L2(R3)

for all t ≥ 0, for almost all ω.
Let Y (t) be the solution of the following initial value problem.

dY (t)
dt

=− δY (t) + κ‖f1(t)‖2
L2(R3) +

∞∑
k=1

∥∥gk,1(t) + φgk,2(u(t))
∥∥2

L2(R3)

+
∞∑

k=1

2〈gk,1(t) + φgk,2(u(t)), ut(t) + εu(t)〉dBk(t)
dt

, (3.40)

Y (0) = Q(0). (3.41)

It follows from (3.38) and (3.40) that Q(t) − Y (t) is continuously differentiable in
t for almost all ω, and, by (3.39) and (3.40),

d

dt

(
Q(t)− Y (t)

)
≤ −δ

(
Q(t)− Y (t)

)
for all t ≥ 0, for almost all ω. Hence, by (3.41), Q(t) ≤ Y (t) for all t, for almost all
ω. Since Y (t) can be given by

Y (t) =Q(0)e−δt + κ

∫ t

0

e−δ(t−s)‖f1(s)‖2
L2(R3) ds

+
∞∑

k=1

∫ t

0

e−δ(t−s)
∥∥gk,1(s) + φgk,2(u(s))

∥∥2

L2(R3)
ds

+
∞∑

k=1

∫ t

0

e−δ(t−s)2 < gk,1(s) + φgk,2(u(s)), ut(s) + εu(s) > dBk(s),

we have

Q(t) ≤Q(0)e−δt + κ

∫ t

0

e−δ(t−s)‖f1(s)‖2
L2(R3) ds

+
∞∑

k=1

∫ t

0

e−δ(t−s)
∥∥gk,1(s) + φgk,2(u(s))

∥∥2

L2(R3)
ds (3.42)

+
∞∑

k=1

∫ t

0

e−δ(t−s)2〈gk,1(s) + φgk,2(u(s)), ut(s) + εu(s)〉dBk(s)
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for all t ≥ 0, for almost all ω. By means of (3.23), (3.24), (3.26) - (3.29) and

E
( ∞∑

k=1

∫ t

0

e−δ(t−s)2〈gk,1(s) + gk,2(u(s)), ut(s) + εu(s)〉dBk(s)
)

= 0,

we can derive from (3.42) that

E
(
Q(t)

)
≤M, for all t ≥ 0. (3.43)

By virtue of (3.15), this implies that

E
(∥∥ut(t)

∥∥2

L2(R3)
+

∥∥u(t)∥∥2

H1(R3)

)
≤M, for all t ≥ 0. (3.44)

For later use, we can further derive

E
(
|Q(t)|2

)
≤M, for all t ≥ 0, (3.45)

provided (u0, u1) ∈ L4
(
Ω;H1(R3) × L2(R3)

)
and u0 ∈ L2p+2

(
Ω;Lp+1(R3)

)
. This

follows from (3.42) and

E
(∣∣∣ ∞∑

k=1

∫ t

0

e−δ(t−s)2〈gk,1(s) + gk,2(u(s)), ut(s) + εu(s)〉dBk(s)
∣∣∣2)

≤ME
( ∞∑

k=1

∫ t

0

e−2δ(t−s)
(
M2

k + M̃2
k‖φ‖2

L2(R3)

)(
‖ut‖2

L2(R3) + ε2‖u‖2
L2(R3)

)
ds

)
≤M, for all t ≥ 0,

where (3.44) has been used.
We now state the existence result we have obtained.

Lemma 3.2. Suppose that (u0, u1) is the same as in Lemma 3.1 with additional
assumption u0 ∈ Lp+1

(
Ω;Lp+1(R3)

)
and that f, gk satisfy the conditions (3.21) -

(3.24), (3.26) - (3.29) and (3.31). Then, there is a pathwise unique solution of
(3.19) and (3.20) such that

(
u(t), ut(t)

)
is a H1(R3) × L2(R3)-valued predictable

process and

(u, ut) ∈ L2
(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
for all T > 0. Furthermore, (3.43) is valid, and if (u0, u1) ∈ L4

(
Ω;H1(R3)×L2(R3)

)
and u0 ∈ L2p+2

(
Ω : Lp+1(R3)

)
, then (3.45) is also valid.

4. Tightness of probability laws

Let
(
u, ut

)
be the solution of (3.19) - (3.20) in Lemma 3.2. In this section, the

goal is to establish tightness of the probability laws for
(
u, ut

)
.

We will present basic estimates which are necessary for tightness of the prob-
ability distributions of a solution. For this, we suppose that the initial value(
u0, u1

)
belongs to L4

(
Ω;H1(R3) × L2(R3)

)
and u0 ∈ L2p+2

(
Ω;Lp+1(R3)

)
. We

also retain all other conditions in Lemma 3.2 so that a unique solution
(
u, ut

)
∈

L4
(
Ω;C

(
[0, T ];H1(R3)× L2(R3)

))
may exist for all T > 0.
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Estimate I. We choose a function χR such that χR(x) = χ(x/R), χ ∈ C∞(R3),
and

χ(x) =

{
1, |x| ≤ 1
0, |x| ≥ 2

, 0 ≤ χ(x) ≤ 1, for all x ∈ R3.

We set v =
(
1− χR

)
u. Then, v is the solution of

vtt + 2αvt −∆v + βv = F +
∞∑

k=1

Gk
dBk

dt

v(0) = v0 =
(
1− χR

)
u0, vt(0) = v1 =

(
1− χR

)
u1

where

F =
(
1− χR

)
f + 2∇χR · ∇u+ u∆χR

Gk =
(
1− χR

)
gk

By the uniqueness of the solution, v can be obtained as a solution of the linear
problem of the form (3.1)–(3.2). Hence, we can apply (3.14) to v so that

‖vt(t)‖2
L2(R3) + ‖∇v(t)‖2

L2(R3) + (β + 2εα)‖v(t)‖2
L2(R3) + 2ε〈vt(t), v(t)〉

= ‖v1‖2
L2(R3) + ‖∇v0‖2

L2(R3) + (β + 2εα)‖v0‖2
L2(R3) + 2ε〈v1, v0〉

− (4α− 2ε)
∫ t

0

‖vt(s)‖2
L2(R3) ds− 2ε

∫ t

0

(
‖∇v(s)‖2

L2(R3) + β‖v(s)‖2
L2(R3)

)
ds

+
∫ t

0

2〈F (s), vt(s) + εv(s)〉ds+
∞∑

k=1

∫ t

0

‖Gk(s)‖2
L2(R3) ds (4.1)

+
∞∑

k=1

∫ t

0

2 < Gk, vt(s) + εv(s) > dBk(s)

for all t ≥ 0, for almost all ω, where 〈·, ·〉 is the inner product in L2(R3). We write

QR(t) =
∥∥(

1− χR

)
ut(t)

∥∥2

L2(R3)
+

∥∥∇(
(1− χR)u(t)

)∥∥2

L2(R3)

+ (β + 2εα)
∥∥(

1− χR

)
u(t)

∥∥2

L2(R3)
+ 2ε〈(1− χR)ut(t), (1− χR)u(t)〉

+
2

p+ 1

∫
R3

(
1− χR

)2|u(t)|p+1dx

Then, by the same argument as for (3.42), we derive from (4.1) that

QR(t) ≤QR(0)e−δt +M

∫ t

0

e−δ(t−s)
∥∥(1− χR)f1(s)

∥∥2

L2(R3)
ds

+
M

R2

∫ t

0

e−δ(t−s)
(
‖∇u‖2

L2(R3) + ‖u‖2
L2(R3)

)
ds

+
∞∑

k=1

∫ t

0

e−δ(t−s)
∥∥(

1− χR

)(
gk,1(s) + φgk,2(u(s))

)∥∥2

L2(R3)
ds (4.2)

+
∞∑

k=1

∫ t

0

e−δ(t−s)2
〈
(1− χR)

(
gk,1(s) + φgk,2(u(s))

)
,

(1− χR)
(
ut(s) + εu(s)

)〉
dBk(s)
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for all R ≥ 1 and all t ≥ 0, for almost all ω. Here δ and M are positive constants
independent of R, t and ω. It follows from (3.24) and (3.26) that

{
f1(t)

}
t≥0

and{
gk,1(t)

}
t≥0

are compact subsets of L2(R3). We also use (3.23), (3.27) - (3.29) and
(3.44) to derive from (4.2) that E

(
QR(t)

)
→ 0, as R→∞, uniformly in t.

Estimate II. It follows from (3.11) and Lemma 2.3 that for j = 1, 2, 3,

iξj û(t, ξ) =e−αt cos(
√
|ξ|2 + γt)iξj û0(ξ)

+ e−αt sin(
√
|ξ|2 + γt)√
|ξ|2 + γ

iξj û1(ξ)

+
∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
iξj f̂(s)ds (4.3)

+
∞∑

k=1

∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
iξj ĝk(s) dBk(s)

where i =
√
−1, ξ = (ξ1, ξ2, ξ3), and

ût(t, ξ) =− αe−αt cos(
√
|ξ|2 + γt)û0(ξ)− αe−αt sin(

√
|ξ|2 + γt)√
|ξ|2 + γ

û1(ξ)

− e−αt
√
|ξ|2 + γ sin(

√
|ξ|2 + γt)û0(ξ) + e−αtcos(

√
|ξ|2 + γt)û1(ξ)

− α

∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
f̂(s)ds

+
∫ t

0

e−α(t−s)cos
(√

|ξ|2 + γ(t− s)
)
f̂(s) ds (4.4)

− α

∞∑
k=1

∫ t

0

e−α(t−s) sin
(√

|ξ|2 + γ(t− s)
)√

|ξ|2 + γ
ĝk(s)dBk(s)

+
∞∑

k=1

∫ t

0

e−α(t−s)cos
(√

|ξ|2 + γ(t− s)
)
ĝk(s) dBk(s).

Then, we define

Î1 =
∫ t

0

e−α(t−s) cos
(√

|ξ|2 + γ(t− s)
)
f̂2(s) ds

where f̂2(s) is the Fourier transform of f2(u(s)). It follows from (2.3), (3.31) and
(3.45) that for some positive constant M ,

E
(
‖f2(u(t))‖Hq(R3)

)
≤M, for all t ≥ 0,

where q = (3 − p)/2. We also define Ξr(ξ) = Ξ(ξ/r), where Ξ ∈ C∞(R3), 0 ≤
Ξ(ξ) ≤ 1, for all ξ ∈ R3, and

Ξ(ξ) =

{
1, |ξ| ≤ 1
0, |ξ| ≥ 2.

We use different symbols to emphasize that χR is defined in the space domain and
Ξr is defined in the frequency domain. Then, by writing I1 = F−1

ξ

(
Î1

)
, we have

E
(
‖χRI1(t)‖Hq(R3)

)
≤ME

(
‖I1(t)‖Hq(R3)

)
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≤ME
( ∫ t

0

e−α(t−s)‖f2(u(s))‖Hq(R3)ds
)
≤M

for all R ≥ 1 and all t ≥ 0, for some positive constants M. Hence,

E
(∥∥(1− Ξr)

(
χ̂R ∗ Î1(t)

)∥∥
L2(ξ)

)
≤ E

( ∫
|ξ|≥r

∣∣χ̂R ∗ Î1(t)
∣∣2 dξ)1/2

≤ 1
rq
E

(∥∥χRI1(t)
∥∥

Hq(R3)

)
→ 0 (4.5)

as r →∞, uniformly in t ≥ 0. In the meantime, by using

∂

∂ξ

(
χ̂R ∗ Î1(t)

)
=

( ∂

∂ξ
χ̂R

)
∗ Î1(t), (4.6)

we have

E
(∥∥Ξr

(
χ̂R ∗ Î1(t)

)∥∥
H1(ξ)

)
≤M(R, r)E

(
‖Î1(t)‖L2(ξ)

)
≤M(R, r) for all t ≥ 0, (4.7)

where M(R, r) denotes positive constants depending on R and r. Next we consider

Î2 =
∫ t

0

e−α(t−s) cos
(√

|ξ|2 + γ(t− s)
)
f̂1(s) ds.

As above,∥∥∥Ξ4r

(
χ̂R ∗ Î2(t)

)∥∥∥
H1(ξ)

≤M(R, r)‖Î2(t)‖L2(ξ) ≤M(R, r), for all t ≥ 0, (4.8)

and, by the triangle inequality,∥∥∥(1− Ξ4r)
(
χ̂R ∗ Î2(t)

)∥∥∥
L2(ξ)

≤
∥∥∥(1− Ξ4r)

(
χ̂R ∗

(
Ξr Î2(t)

))∥∥∥
L2(ξ)

+
∥∥∥(1− Ξ4r)

(
χ̂R ∗

(
(1− Ξr)Î2(t)

))∥∥∥
L2(ξ)

.

The last term can be estimated as follows.∥∥∥(1− Ξ4r)
(
χ̂R ∗

(
(1− Ξr)Î2(t)

))∥∥∥
L2(ξ)

≤ ‖χ̂R‖L1(ξ)

∥∥(1− Ξr)Î2(t)
∥∥

L2(ξ)

≤M(R)
∥∥(1− Ξr)Î2(t)

∥∥
L2(ξ)

. (4.9)

Since the set
{
f̂1(s)

}
s≥0

is compact in L2(ξ), we find that
∥∥(1−Ξr)f̂1(s)

∥∥
L2(ξ)

→ 0,
as r →∞, uniformly in s, which yields∥∥(1− Ξr)Î2(t)

∥∥
L2(ξ)

→ 0, as r →∞, uniformly in t. (4.10)

Next we see that ∣∣∣ ∫
R3

(
1− Ξ4r(ξ)

)
χ̂R(ξ − η)Ξr(η)Î2(t, η) dη

∣∣∣
≤

∫
R3

(
1− Ξ4r(ξ)

)
|χ̂R(ξ − η)|Ξr(η)|Î2(t, η)| dη

≤
∫

R3

(
1− Ξr(ξ − η)

)
|χ̂R(ξ − η)||Î2(t, η)| dη

=
((

(1− Ξr)|χ̂R|
)
∗ |Î2(t)|

)
(ξ).
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Thus,∥∥∥(
1− Ξ4r(ξ)

)(
χ̂R ∗

(
Ξr Î2(t)

))∥∥∥
L2(ξ)

≤
∥∥(1− Ξr)|χ̂R|

∥∥
L1(ξ)

‖Î2(t)‖L2(ξ) (4.11)

≤M
∥∥(1− Ξr)|χ̂R|

∥∥
L1(ξ)

, for all t ≥ 0.

It follows from (4.9), (4.10) and (4.11) that for each fixed R > 0,∥∥∥(1− Ξ4r)
(
χ̂R ∗ Î2(t)

)∥∥∥
L2(ξ)

→ 0 as r →∞, uniformly in t.

Let us define

Î3(t) =
∞∑

k=1

∫ t

0

e−α(t−s) cos
(√

|ξ|2 + γ(t− s)
)
ĝk,1(s) dBk(s).

Then, we can proceed in the same manner as for Î2(t). Applying (4.8) to Î3(t), we
find

E
(∥∥∥Ξ4r

(
χ̂R ∗ Î3(t)

)∥∥∥2

H1(ξ)

)
≤M(R, r)E

(
‖Î3(t)‖2

L2(ξ)

)
≤M(R, r)

∞∑
k=1

E
( ∫ t

0

e−2α(t−s)‖ĝk,1(s)‖2
L2(ξ)

)
ds

≤M(R, r), for all t ≥ 0, by (3.27) and (3.29)

where M(R, r) denotes positive constants depending only on R and r. Also, apply-
ing (4.9) to Î3(t), we have

E
(∥∥∥(1− Ξ4r)

(
χ̂R ∗

(
(1− Ξr)Î3(t)

))∥∥∥2

L2(ξ)

)
≤M(R)E

(∥∥(1− Ξr)Î3(t)
∥∥2

L2(ξ)

)
(4.12)

≤M(R)
∞∑

k=1

E
( ∫ t

0

e−2α(t−s)
∥∥(1− Ξr)ĝk,1(s)

∥∥2

L2(ξ)

)
ds.

By virtue of (3.26), (3.27) and (3.29), the last term of (4.12) converges to zero as
r →∞ uniformly in t ≥ 0. By the same argument as for (4.11), we have

E
(∥∥∥(

1− Ξ4r(ξ)
)(
χ̂R ∗

(
Ξr Î3(t)

))∥∥∥2

L2(ξ)

)
≤ E

(∥∥(1− Ξr)|χ̂R|
∥∥2

L1(ξ)

∥∥Î3(t)∥∥2

L2(ξ)

)
≤M

∥∥(1− Ξr)|χ̂R|
∥∥2

L1(ξ)
, for all t ≥ 0, by (3.27) and (3.29).

Apparently, this converges to zero as r →∞ uniformly in t ≥ 0. Thus, we conclude
that for each fixed R > 0,

E
(∥∥∥(

1− Ξ4r(ξ)
)(
χ̂R ∗ Î3(t)

)∥∥∥2

L2(ξ)

)
→ 0 as r →∞ uniformly in t ≥ 0.

Next we define

Î4(t) =
∞∑

k=1

∫ t

0

e−α(t−s) cos
(√

|ξ|2 + γ(t− s)
)
Ĝk,2(s) dBk(s)
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where Ĝk,2(s) is the Fourier transform of φgk,2(u(s)). By virtue of (3.23), (3.28),
(3.29) and (3.44), we find

E
(∥∥χRI4(t)

∥∥2

H1(R3)

)
≤ME

(∥∥√
|ξ|2 + 1Î4(t)

∥∥2

L2(ξ)

)
≤M

∞∑
k=1

E
( ∫ t

0

e−2α(t−s)
∥∥φgk,2(u(s))

∥∥2

H1(R3)
ds

)
≤M, for all t ≥ 0, and R ≥ 1.

By the same argument as for (4.5), we find that for each fixed R ≥ 1,

E
(∥∥(1− Ξr)

(
χ̂R ∗ Î4(t)

)∥∥
L2(ξ)

)
→ 0, as r →∞ uniformly in t ≥ 0.

Also, as in (4.7),

E
(∥∥Ξr

(
χ̂R ∗ Î4(t)

)∥∥2

H1(ξ)

)
≤M(R, r), for all t ≥ 0.

Next let
Î5(t) = e−αt cos

(√
|ξ|2 + γ t

)
iξj û0(ξ).

Then, by (4.6),

E
(∥∥∥Ξ4r

(
χ̂R ∗ Î5(t)

)∥∥∥2

H1(ξ)

)
≤M(R, r)E

(
‖Î5(t)‖2

L2(ξ)

)
≤M(R, r), for all t ≥ 0.

As in (4.9), we find

E
(∥∥∥(1− Ξ4r)

(
χ̂R ∗

(
(1− Ξr)Î5(t)

))∥∥∥2

L2(ξ)

)
≤M(R)E

(∥∥(1− Ξr)Î5(t)
∥∥2

L2(ξ)

)
(4.13)

≤M(R)E
(∥∥(1− Ξr)iξj û0(ξ)

∥∥2

L2(ξ)

)
, for all t ≥ 0.

Since
∥∥(1−Ξr)iξj û0(ξ)

∥∥2

L2(ξ)
converges to zero as r →∞ for almost all ω, it follows

from the dominated convergence theorem that the last term of (4.13) converges to
zero as r → ∞ uniformly in t ≥ 0. Next as in (4.11), we see that for each fixed
R > 0,

E
(∥∥∥(

1− Ξ4r(ξ)
)(
χ̂R ∗

(
Ξr Î5(t)

))∥∥∥2

L2(ξ)

)
≤ ‖(1− Ξr)|χ̂R|‖2

L1(ξ)E
(
‖Î5(t)‖2

L2(ξ)

)
→ 0

as r →∞ uniformly in t ≥ 0.
The only property of the function e−αt cos

(√
|ξ|2 + γ t

)
that has been used in the

above estimates is that the function is uniformly bounded and the uniform bound
decays to zero exponentially fast as t→∞. Thus, we can obtain the same estimate
if e−αt cos

(√
|ξ|2 + γ t

)
is replaced by

e−αt sin
(√

|ξ|2 + γ t
)√

|ξ|2 + γ
or e−αt sin

(√
|ξ|2 + γ t

)√
|ξ|2 + γ

iξj

So we can estimate all other terms in the right-hand sides of (3.11), (4.3) and (4.4)
as above.
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Let us define a linear mapping Λ by

Λ(Θ) =
(
Θ1,

∂Θ1

∂x1
,
∂Θ1

∂x2
,
∂Θ1

∂x3
,Θ2

)
, for Θ =

(
Θ1,Θ2

)
∈ H1(R3)× L2(R3).

Then, it is evident that Λ is an isometry from H1(R3)× L2(R3) onto S which is a
closed subspace of

(
L2(R3)

)5. Let us write

Ψ = Λ
(
u, ut

)
.

By combining all the above analysis, we can conclude the following facts.

E
(∥∥(1− χR)Ψ(t)

∥∥(
L2(R3)

)5

)
→ 0 as R→∞ uniformly in t ≥ 0;

For each fixed R ≥ 1,

E
(∥∥∥(1− Ξr)

(
χ̂R ∗ Ψ̂(t)

)∥∥∥(
L2(ξ)

)5

)
→ 0 as r →∞ uniformly in t ≥ 0;

For each R ≥ 1 and r ≥ 1, there is a positive constant M(R, r) such that

E
(∥∥∥Ξr

(
χ̂R ∗ Ψ̂(t)

)∥∥∥(
H1(ξ)

)5

)
≤M(R, r), for all t ≥ 0. (4.14)

Let ε > 0 be given. We can choose positive numbers Rk and εk such that

E
(∥∥(1− χRk

)Ψ
∥∥(

L2(R3)
)5

)
< εk and

∞∑
k=1

mkεk < ε (4.15)

where {mk} is a sequence of increasing positive integers with mk →∞ as k →∞.
Next, we choose rk such that

E
(∥∥∥(1− Ξrk

)
(
χ̂Rk

∗ Ψ̂(t)
)∥∥∥(

L2(ξ)
)5

)
< εk. (4.16)

We define Gk to be the set of all R5-valued functions Φ ∈
(
L2(R3)

)5 such that

supp Φ̂ ⊂
{
ξ : |ξ| ≤ 2rk

}
, ‖Φ̂‖(

H1(ξ)
)5 ≤ M(Rk, rk)

mkεk
(4.17)

where M(Rk, rk) is the positive constant in (4.14) with R = Rk, r = rk. Then, each
Gk is a compact subset of

(
L2(R3)

)5
. Next we define

Hk =
{

Θ ∈
(
L2(R3)

)5 : ‖Θ− Φ‖(
L2(R3)

)5 ≤ 1
mk

, for some Φ ∈ Gk

}
.

Suppose Ψ(t, ω) = Λ
(
u(t, ω), ut(t, ω)

)
/∈ Hk, for some ω ∈ Ω, t ≥ 0. We can write

Ψ = (1− χRk
)Ψ + F−1

ξ

(
(1− Ξrk

)
(
χ̂Rk

∗ Ψ̂
)

+ Ξrk

(
χ̂Rk

∗ Ψ̂
))
.

Obviously, either F−1
ξ

(
Ξrk

(
χ̂Rk

∗Ψ̂
))

/∈ Gk or F−1
ξ

(
Ξrk

(
χ̂Rk

∗Ψ̂
))

∈ Gk. If Ψ /∈ Hk

and F−1
ξ

(
Ξrk

(
χ̂Rk

∗ Ψ̂
))

∈ Gk, then it must occur that either∥∥∥(
1− Ξrk

)(
χ̂Rk

∗ Ψ̂
)∥∥∥(

L2(ξ)
)5 >

1
2mk

or ∥∥(1− χRk
)Ψ

∥∥(
L2(R3)

)5 >
1

2mk
.
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Therefore, for fixed t ≥ 0,{
ω : Ψ /∈ Hk

}
⊂

{
ω : F−1

ξ

(
Ξrk

(χ̂Rk
∗ Ψ̂)

)
/∈ Gk

}
⋃ {

ω :
∥∥(

1− Ξrk

)
(χ̂Rk

∗ Ψ̂)
∥∥(

L2(ξ)
)5 >

1
2mk

}
⋃ {

ω :
∥∥(1− χRk

)Ψ
∥∥(

L2(ξ)
)5 >

1
2mk

}
.

By (4.14) and (4.17),

P
{
ω : F−1

ξ

(
Ξrk

(χ̂Rk
∗ Ψ̂)

)
/∈ Gk

}
≤ mkεk.

Also, it follows from (4.15) and (4.16) that

P
{
ω :

∥∥(
1− Ξrk

)
(χ̂Rk

∗ Ψ̂)
∥∥(

L2(ξ)
)5 >

1
2mk

}
≤ 2mkεk

and
P

{
ω :

∥∥(1− χRk
)Ψ

∥∥(
L2(ξ)

)5 >
1

2mk

}
≤ 2mkεk.

These yield P
{
ω : Ψ(t, ω) /∈ Hk

}
≤ 5mkεk, for every t ≥ 0. We define

Kε =
∞⋂

k=1

Hk.

Then, Kε is closed and totally bounded in L2(R3)5. Thus, Kε∩S is a compact subset
of S, and Λ−1

(
Kε ∩ S

)
is a compact subset of H1(R3)× L2(R3). Furthermore,

P
{
ω :

(
u(t, ω), ut(t, ω)

)
/∈ Λ−1

(
Kε ∩ S

)}
= P

{
ω : Ψ(t, ω) /∈ Kε

}
≤

∞∑
k=1

5mkεk < 5ε, for every t ≥ 0.

Let L(t) = L
((
u(t), ut(t)

))
be the probability distribution for

(
u(t), ut(t)

)
for each

t ≥ 0. By the above analysis, the family of probability measures
{
L(t)

}
t≥0

on
H1(R3)× L2(R3) is tight.

5. Existence of periodic and invariant measures

It is clear that we could take any s ≥ 0 as the initial time for the Cauchy problem
(3.19) - (3.20). We define X(t, s; ζ) = (u, ut) to be the solution of (3.19) for t ≥ s
satisfying (u(s), ut(s)) = ζ, where ζ is H1(R3) × L2(R3)-valued Fs-measurable
such that ζ ∈ L2

(
Ω;H1(R3) × L2(R3)

)
and u(s) ∈ Lp+1

(
Ω;Lp+1(R3)

)
. Then,

X
(
·, s; ζ

)
∈ L2

(
Ω;C([s, T ];H1(R3) × L2(R3))

)
, for all T > s, and (3.43) holds for

all t ≥ s. For each 0 ≤ s < t, z ∈ H1(R3)× L2(R3) and Γ ∈ B
(
H1(R3)× L2(R3)

)
,

we set
p
(
s, z; t,Γ

)
= P

{
ω : X(t, s; z) ∈ Γ

}
. (5.1)

Lemma 5.1. Let φ be a bounded continuous function on H1(R3) × L2(R3). For
each 0 ≤ s < t, the integral∫

H1(R3)×L2(R3)

p(s, z; t, dy)φ(y)
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is continuous in z ∈ H1(R3)× L2(R3).

Proof. Let
{
zn

}∞
n=1

be a Cauchy sequence in H1(R3)× L2(R3) such that

lim
n→∞

zn = z∗.

Consider the probability distributions for X(t, s; zn), n = 1, 2, . . . , and X(t, s; z∗).
All the estimates in Section 4 are valid uniformly in zn and 0 ≤ s < t, for the
sequence

{
zn

}∞
n=1

is contained in a compact subset of H1(R3) × L2(R3). Conse-
quently, the family of probability measures p(s, zn; t, ·), n = 1, 2, . . . , is tight for
each 0 ≤ s < t. Fix any 0 ≤ s∗ < t∗ and any small ε > 0. Then, there is a compact
subset Υε of H1(R3)× L2(R3) such that

p
(
s∗, z∗; t∗,Υε

)
> 1− ε, p

(
s∗, zn; t∗,Υε

)
> 1− ε, for all n ≥ 1.

It follows from (3.37) that

E
(

sup
s∗≤t≤t∗

∥∥X(t, s∗; zn)
∥∥2

H1(R3)×L2(R3)

)
≤M(t∗), for all n ≥ 1,

and
E

(
sup

s∗≤t≤t∗

∥∥X(t, s∗; z∗)
∥∥2

H1(R3)×L2(R3)

)
≤M(t∗).

Thus, we can choose a positive number L such that

P
{
ω : sup

s∗≤t≤t∗

∥∥X(t, s∗; zn)
∥∥

H1(R3)×L2(R3)
> L

}
< ε, for all n ≥ 1,

and
P

{
ω : sup

s∗≤t≤t∗

∥∥X(t, s∗; z∗)
∥∥

H1(R3)×L2(R3)
> L

}
< ε.

We then define stopping times by

Tn =

{
inf

{
t :

∥∥X(t, s∗; zn)
∥∥

H1(R3)×L2(R3)
> L

}
,

∞, if
{
t :

∥∥X(t, s∗; zn)
∥∥

H1(R3)×L2(R3)
> L

}
= ∅

and

T∗ =

{
inf

{
t :

∥∥X(t, s∗; z∗)
∥∥

H1(R3)×L2(R3)
> L

}
,

∞, if
{
t :

∥∥X(t, s∗; z∗)
∥∥

H1(R3)×L2(R3)
> L

}
= ∅.

We write

Yn(t) = X
(
t ∧ Tn ∧ T∗, s∗; zn

)
and Y∗(t) = X

(
t ∧ Tn ∧ T∗, s∗; z∗

)
.

Since
∥∥f2(v)− f2(w)

∥∥
L2(R3)

≤M(L)‖v−w‖H1(R3), for all v, w ∈ H1(R3) satisfying
‖v‖H1(R3) ≤ L, ‖w‖H1(R3) ≤ L, for some positive constant M(L), we can derive

E
(∥∥Yn(t∗)− Y∗(t∗)

∥∥2

H1(R3)×L2(R3)

)
≤M

(
t∗, L

)
‖zn − z∗‖2

H1(R3)×L2(R3), (5.2)

where M
(
t∗, L

)
is a positive constant independent of n. Let φ be a bounded contin-

uous function on H1(R3)× L2(R3). Then, φ is uniformly continuous on Υε. Thus,
there is some δ > 0 such that for all v, w ∈ Υε satisfying ‖v−w‖H1(R3)×L2(R3) < δ,∣∣φ(v)− φ(w)

∣∣ < ε. (5.3)

Let us write, for n = 1, 2, . . . ,

Ωn =
{
ω : X

(
t∗, s∗; zn

)
∈ Υε

}⋂ {
ω : X

(
t∗, s∗; z∗

)
∈ Υε

}
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ω : sup

s∗≤t≤t∗

∥∥X(t, s∗; zn)
∥∥

H1(R3)×L2(R3)
≤ L

}
⋂ {

ω : sup
s∗≤t≤t∗

∥∥X(t, s∗; z∗)
∥∥

H1(R3)×L2(R3)
≤ L

}
.

For every n ≥ 1, it holds that

P
(
Ωn

)
> 1− 4ε. (5.4)

For each n ≥ 1, if ω ∈ Ωn, then

Y∗(t∗) = X
(
t∗, s∗; z∗

)
and Yn(t∗) = X

(
t∗, s∗; zn

)
.

It follows from (5.2) that

P
(
Ωn

⋂ {
ω :

∥∥X(t∗, s∗; zn)−X(t∗, s∗; z∗)
∥∥

H1(R3)×L2(R3)
≥ δ

})
≤
M

(
t∗, L

)
δ2

∥∥zn − z∗
∥∥2

H1(R3)×L2(R3)
, for all n ≥ 1. (5.5)

Let us define
Mφ = sup

w∈H1(R3)×L2(R3)

∣∣φ(w)
∣∣

By (5.4), we see that for all n ≥ 1,∣∣∣ ∫
Ω\Ωn

φ
(
X(t∗, s∗; zn)

)
dP

∣∣∣ < 4εMφ,∣∣∣ ∫
Ω\Ωn

φ
(
X(t∗, s∗; z∗)

)
dP

∣∣∣ < 4εMφ,

and, by (5.3) and (5.5),∫
Ωn

∣∣∣φ(
X(t∗, s∗; zn)

)
− φ

(
X(t∗, s∗; z∗)

)∣∣∣ dP
≤

2MφM
(
t∗, L

)
δ2

∥∥zn − z∗
∥∥2

H1(R3)×L2(R3)
+ ε.

Finally we arrive at

lim
zn→z∗

∣∣∣ ∫
Ω

φ
(
X(t∗, s∗; zn)

)
− φ

(
X(t∗, s∗; z∗)

)
dP

∣∣∣ < ε+ 8εMφ,

which yields the continuity, for ε > 0 was arbitrarily chosen. �

Lemma 5.2.
(
u(t), ut(t)

)
is a H1(R3)× L2(R3)-valued Markov process.

Proof. By the uniqueness of solution, it holds that for any 0 ≤ r < s < t, and
z ∈ H1(R3)× L2(R3),

X(t, r; z) = X
(
t, s;X(s, r; z)

)
for almost all ω. We define

Ps,tφ(z) = E
(
φ
(
X(t, s; z)

))
for each bounded Borel function φ on H1(R3)×L2(R3). It is enough to show that

E
(
φ
(
X(t, s;X(s, r; z))

)∣∣∣Fs

)
= Ps,tφ

(
y
)∣∣∣

y=X(s,r;z)

for almost all ω, for each bounded continuous function φ. Let us recall the proof
of Lemma 3.2. The solution was obtained by the truncation method. Let XN =
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XN (t, s; ζ) denote the solution
(
uN , ∂tuN

)
of (3.19) with f = f1 + f2,N satisfying(

uN (s), ∂tuN (s)
)

= ζ, where ζ is H1(R3)×L2(R3)-valued Fs-measurable such that
ζ ∈ L2

(
Ω;H1(R3)×L2(R3)

)
and uN (s) ∈ Lp+1

(
Ω;Lp+1(R3)

)
. Then, we know that

for each T > s,

X(t, s; ζ) = lim
N→∞

XN (t, s; ζ) in C
(
[s, T ];H1(R3)× L2(R3)

)
for almost all ω. For each N ≥ 1 and each bounded continuous function φ on
H1(R3)× L2(R3), it holds that

E
(
φ
(
XN (t, s; ζ)

)∣∣∣Fs

)
= E

(
φ
(
XN (t, s; y)

))∣∣∣
y=ζ

for almost all ω, which follows directly from the argument in [6, p.250], for f2,N (·)
satisfies (3.32). Since φ is a bounded continuous function, we pass N →∞ to arrive
at

E
(
φ
(
X(t, s; ζ)

)∣∣∣Fs

)
= E

(
φ
(
X(t, s; y)

))∣∣∣
y=ζ

for almost all ω. �

Next we show periodicity of the transition function.

Lemma 5.3. Let p(s, z; t,Γ) be defined by (5.1). Then,

p(s+ L, z; t+ L,Γ) = p(s, z; t,Γ) (5.6)

for all 0 ≤ s < t, z ∈ H1(R3)× L2(R3), and Γ ∈ B
(
H1(R3)× L2(R3)

)
.

Proof. Let {Ω(j),F (j)
t , P (j)}, j = 1, 2, be a stochastic basis, and let B(j)

k (t), k =
1, 2, . . . , be mutually independent standard Brownian motions over this stochastic
basis for each j = 1, 2. Let

(
u(j), u

(j)
t

)
be the solution of (3.19) with Bk = B

(j)
k , k =

1, 2, . . . , satisfying
(
u(j)(s), u(j)

t (s)
)

= z, over the stochastic basis {Ω(j),F (j)
t , P (j)}.

We will show that
(
u(1)(t), u(1)

t (t)
)

and
(
u(2)(t), u(2)

t (t)
)

have the same probability
law. We may replace each B(j)

k (t) by B(j)
k (t)−B(j)

k (s). Recalling that the solution
was obtained by the truncation procedure, let

(
u

(j)
N , ∂tu

(j)
N

)
be the solution with

f = f1 + f2,N . It is enough to show that
(
u

(1)
N (t), ∂tu

(1)
N (t)

)
and

(
u

(2)
N (t), ∂tu

(2)
N (t)

)
have the same probability law for each N ≥ 1. Fix any N and drop the subscript N .
Then,

(
u(j), u

(j)
t

)
was obtained by iteration scheme. Choose any T > 0, and sup-

pose that f (j), g
(j)
k ’s are C

(
[s, T ];L2(R3)

)
-valued random variables which are pre-

dictable processes over {Ω(j),F (j)
t , P (j)}, j = 1, 2, such that the joint distribution

of
(
f (1), {g(1)

k }m
k=1, {B

(1)
k }m

k=1

)
is the same as that of

(
f (2), {g(2)

k }m
k=1, {B

(2)
k }m

k=1

)
,

for each m ≥ 1. Let us define for j = 1, 2, and m ≥ 1,

v̂(j,m)(t, ξ) =e−α(t−s) cos(
√
|ξ|2 + γ(t− s))v̂(j,m)

0 (ξ)

+ e−α(t−s) sin(
√
|ξ|2 + γ(t− s))√
|ξ|2 + γ

v̂
(j,m)
1 (ξ)

+
∫ t

s

e−α(t−η) sin
(√

|ξ|2 + γ(t− η)
)√

|ξ|2 + γ
f̂ (j)(η)dη (5.7)

+
m∑

k=1

∫ t

s

e−α(t−η) sin
(√

|ξ|2 + γ(t− η)
)√

|ξ|2 + γ
ĝ
(j)
k (η)dB(j)

k (η)
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where
(
v
(j,m)
0 , v

(j,m)
1

)
= z. Then,

(
v(j,m), v

(j,m)
t

)
is a C

(
[s, T ];H1(R3) × L2(R3)

)
-

valued random variable which is a predictable process over {Ω(j),F (j)
t , P (j)}, j =

1, 2. Furthermore,
((
v(1,m), v

(1,m)
t

)
, {B(1)

k }m
k=1

)
and

((
v(2,m), v

(2,m)
t

)
, {B(2)

k }m
k=1

)
have the same joint distribution. In the meantime, as m→∞,(

v(j,m), v
(j,m)
t

)
→

(
v(j), v

(j)
t

)
in L2

(
Ω(j);C

(
[s, T ];H1(R3)× L2(R3)

))
where v(j) is defined by the right-hand side of (5.7) with m replaced by ∞. Con-
sequently, the joint distribution of

((
v(1), v

(1)
t

)
, {B(1)

k }m
k=1

)
is equal to that of((

v(2), v
(2)
t

)
, {B(2)

k }m
k=1

)
for each m ≥ 1. At the same time,(

f1 + f2,N (v(1)),
{
gk,1 + φgk,2(v(1))

}m

k=1
, {B(1)

k }m
k=1

)
and (

f1 + f2,N (v(2)),
{
gk,1 + φgk,2(v(2))

}m

k=1
, {B(2)

k }m
k=1

)
have the same joint distribution for m ≥ 1. Thus, approximate solutions at each
step of the iterations scheme have the same joint distribution, and

(
u(1)(t), u(1)

t (t)
)

and
(
u(2)(t), u(2)

t (t)
)

have the same distribution for each s ≤ t ≤ T . With the aid of
(3.21) - (3.24), (3.26) - (3.29) and (3.31), we apply this observation to

(
u(1), u

(1)
t

)
=(

u(·), ut(·)
)
,

(
u(2), u

(2)
t

)
=

(
u(· + L), ut(· + L)

)
, B

(1)
k (t) = Bk(t) − Bk(s) and

B
(2)
k (t) = Bk(t+ L)−Bk(s+ L) to arrive at (5.6). �

With the aid of the above lemmas under the assumptions (3.21) - (3.24), (3.26)
- (3.29) and (3.31), we will establish the existence of a periodic measure.

Theorem 5.4. There exists a probability measure µ on H1(R3) × L2(R3) such
that if the initial distribution is equal to µ, then the probability distribution of the
solution to (3.19) - (3.20) is L-periodic in time.

Proof. Here we use the notation p(s, z; t,Γ) defined by (5.1). By Lemma 5.3, the
transition function p(s, z; t,Γ) is L-periodic. Choose any z ∈ H1(R3) × L2(R3).
Then, by Lemma 3.2, there is a unique solution of (3.19) - (3.20) satisfying (3.45).
Following Khasminskii [11], we set

µN =
1
N

N∑
k=1

p(0, z; kL, ·).

Then, by virtue of the analysis in Section 4,
{
µN

}
N≥1

is a tight sequence of proba-
bility measures onH1(R3)×L2(R3). Thus, there is a weakly convergent subsequence{
µNk

}∞
k=1

.
Let µ = limk→∞ µNk

and write

X = H1(R3)× L2(R3).

It follows from (3.45) that∫
X
‖y‖4

X p(0, z; kL, dy) ≤M, for all k ≥ 1,
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for some constant M . Hence, by means of the weak convergence of
{
µNk

}
, cut-off

functions and Fatou’s lemma, we find∫
X
‖y‖4

Xdµ(y) ≤M.

In fact, this is a necessary condition for µ to be the probability distribution of a
random function in L4

(
Ω;H1(R3)×L2(R3)

)
. We now assume that

(
u0, u1

)
satisfies

the conditions in Lemma 3.2 and the distribution of
(
u0, u1

)
is equal to µ. Choose

any bounded continuous function φ on H1(R3) × L2(R3). By using Lemma 5.1,
Lemma 5.3 and the Chapman-Kolmogorov equation, we see that for each t ≥ 0,∫

X
dµ(y)

∫
X
p(0, y; t, dζ)φ(ζ)

= lim
k→∞

1
Nk

Nk∑
k=1

∫
X
p(0, z; kL, dy)

∫
X
p(0, y; t, dζ)φ(ζ)

= lim
k→∞

1
Nk

Nk∑
k=1

∫
X
p(0, z; t+ kL, dζ)φ(ζ)

= lim
k→∞

1
Nk

Nk∑
k=1

∫
X
p(0, z; t+ L+ kL, dζ)φ(ζ) (5.8)

= lim
k→∞

1
Nk

Nk∑
k=1

∫
X
p(0, z; kL, dy)

∫
X
p(0, y; t+ L, dζ)φ(ζ)

=
∫
X
dµ(y)

∫
X
p(0, y; t+ L, dζ)φ(ζ).

This yields that for each Borel subset Γ of H1(R3)× L2(R3) and each t ≥ 0,

P
{
ω :

(
u(t), ut(t)

)
∈ Γ

}
=

∫
X
dµ(y)p(0, y; t,Γ)

=
∫
X
dµ(y)p(0, y; t+ L,Γ)

= P
{
ω :

(
u(t+ L), ut(t+ L)

)
∈ Γ

}
.

This completes the proof of Theorem 5.4. �

Next we assume that f1 and gk’s are independent of time, and retain all other
conditions in Lemma 3.2. Then, Lemma 3.2, Lemma 5.1 and Lemma 5.2 are still
valid, and (5.6) is also valid for arbitrary L > 0. We will prove the existence of an
invariant measure.

Theorem 5.5. There exists an invariant measure on H1(R3)×L2(R3) for (3.19).

Proof. We first note that the result of Theorem 5.4 cannot be used directly because
periodic measures lack uniqueness. As above we follow Khasminskii [11] to choose
any z ∈ X = H1(R3)× L2(R3) and set

µN =
1
N

∫ N

0

p(0, z; t, ·) dt, (5.9)
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which is a well-defined probability measure over X . For this, we argue as follows.
For each z ∈ X and each bounded continuous function φ on X , the integral∫

X
p
(
0, z; t, dy

)
φ(y) =

∫
Ω

φ
(
X(t, 0; z)

)
dP

is continuous in t, which implies that for each closed subset G ⊂ X , the func-
tion p

(
0, z; t, G

)
is upper semi-continuous in t. By the Dynkin system theorem,

p(0, z; t,Γ) is B
(
[0,∞)

)
-measurable in t for each Borel subset Γ ⊂ X . Thus,

the right-hand side of (5.9) defines a probability measure over X . Again by the
analysis in Section 4, the sequence {uN}∞N=1 is tight, and we can find a subse-
quence {µNk

}∞k=1 which converges weakly to a probability measure on X . Let
µ = limk→∞ µNk

. Choose any bounded continuous function φ on X . It is enough
to show that∫

X
dµ(y)

∫
X
p(0, y; t, dζ)φ(ζ) =

∫
X
dµ(y)

∫
X
p(0, y; t+ L, dζ)φ(ζ),

for all t ≥ 0 and all L > 0. Since (5.6) is valid for every L > 0, we can proceed in
the same manner as in (5.8) to find∫

X
dµ(y)

∫
X
p(0, y; t, dζ)φ(ζ)

= lim
k→∞

1
Nk

∫ Nk

0

ds

∫
X
p(0, z; s, dy)

∫
X
p(0, y; t, dζ)φ(ζ)

= lim
k→∞

1
Nk

∫ Nk

0

ds

∫
X
p(0, z; t+ s, dζ)φ(ζ)

= lim
k→∞

1
Nk

∫ Nk−L

−L

ds

∫
X
p(0, z; t+ L+ s, dζ)φ(ζ)

= lim
k→∞

1
Nk

∫ Nk

0

ds

∫
X
p(0, z; t+ L+ s, dζ)φ(ζ)

= lim
k→∞

1
Nk

∫ Nk

0

ds

∫
X
p(0, z; s, dy)

∫
X
p(0, y; t+ L, dζ)φ(ζ)

=
∫
X
dµ(y)

∫
X
p(0, y; t+ L, dζ)φ(ζ), for all t ≥ 0 and all L > 0.

This completes the proof. �

6. Remarks on the case of a bounded domain

Let G be a bounded domain in R3 with smooth boundary ∂G. We consider the
initial-boundary value problem.

utt + 2αut −∆u+ βu = f(t, x, u) +
∞∑

k=1

gk(t, x, u)
dBk

dt
, (t, x) ∈ (0,∞)× G,

u = 0, (t, x) ∈ (0,∞)× ∂G,
u(0) = u0, ut(0) = u1 x ∈ G.
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Here we impose the same conditions on f and gk’s as in the previous section.
Following [15], our basic function class is

V s =
{
ψ :

∞∑
k=1

λs
k|〈ψ, φk〉|2 <∞

}
, s ∈ R

where 〈·, ·〉 is the inner product in L2(G), and {φk}∞k=1 is a complete orthonormal
system for L2(G) which consists of the eigenfunctions:

−∆φk = λkφk in G
φk = 0 on ∂G.

Then, V 0 = L2(G), V 1 = H1
0 (G) and V 2 = H1

0 (G) ∩H2(G). We also note that for
1 ≤ p < 3 and q = (3− p)/2,

‖ψ|ψ|p−1‖V q ≤ Cp‖ψ‖p
V 1 (6.1)

for all ψ ∈ V 1, for some positive constant Cp. By Poincare’s inequality, we may
include the case β = 0. We can also take φ ≡ 1 in (3.22). By Galerkin approxi-
mation in terms of φk’s, we can prove Lemma 3.1 with H1(R3)× L2(R3) replaced
by V 1 × V 0. Then, by iteration and truncation method, we prove Lemma 3.2. If
(u0, u1) ∈ L6

(
Ω;V 1×V 0

)
and u0 ∈ L3p+3

(
Ω;Lp+1(R3)

)
, then we can use the same

procedure as for (3.45) to obtain

E
(
|Q(t)|3

)
≤M, for all t ≥ 0, (6.2)

for some positive constant M . Next we define the operator PN on V s by

ψ 7→
N∑

k=1

< ψ, φk > φk.

We then define vN =
(
I − PN

)
u, so that vN can be the solution of

∂ttvN + 2α∂tvN −∆vN + βvN

= (I − PN )f(t, x, u) +
∞∑

k=1

(I − PN )gk(t, x, u)
dBk

dt
, (t, x) ∈ (0,∞)× G,

vN = 0, (t, x) ∈ (0,∞)× ∂G,
vN (0) = (I − PN )u0, ∂tvN (0) = (I − PN )u1, x ∈ G.

By virtue of (6.1), we have ∥∥u|u|p−1
∥∥

V q ≤ Cp‖u‖p
V 1

which, together with (6.2), yields

E
(∥∥(

I − PN

)(
u|u|p−1

)∥∥2

V 0

)
≤ Cpλ

−q
N+1M

for all t ≥ 0. By virtue of (3.24), (3.26) - (3.29), it is easy to see that as N →∞,∥∥(I − PN )f1(t)
∥∥

V 0 → 0, uniformly in t ≥ 0,

and
∞∑

k=1

E
(∥∥(

I − PN

)
gk,1(t)

∥∥2

V 0 +
∥∥(
I − PN

)
φgk,2(u(t))

∥∥2

V 0

)
→ 0
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uniformly in t ≥ 0. Using these and an equation similar to (4.1), we find that

E
(∥∥(

I − PN

)
u(t)

∥∥2

V 1 +
∥∥(
I − PN

)
ut(t)

∥∥2

V 0

)
→ 0

as N → ∞ uniformly in t. Here the term u|u|p−1 is handled differently from the
previous procedure, because the operator PN does not preserve the polynomial
structure of the term. By virtue of (6.2), we have

E
(∥∥(

PNu(t), PNut(t)
)∥∥

V 1×V 0

)
≤M, for all t ≥ 0 and N ≥ 1. (6.3)

Now let ε > 0 be given. Then, there are positive integer Nk and positive number
εk such that

E
(∥∥(

I − PNk

)
u(t)

∥∥
V 1 +

∥∥(
I − PNk

)
ut(t)

∥∥
V 0

)
< εk,

∞∑
k=1

mkεk < ε

where {mk} is a sequence of increasing positive integers with mk →∞ as k →∞.
We define Sk to be the set of all R2-valued functions Φ ∈ V 1 × V 0 such that

PNk
Φ = Φ and

∥∥Φ
∥∥

V 1×V 0 ≤
M

mkεk

where M is the same positive constant as in (6.3). Apparently, Sk is a compact
subset of V 1 × V 0. Next we define

Uk =
{

Θ ∈ V 1 × V 0 : ‖Θ− Φ‖V 1×V 0 ≤ 1
mk

, for some Φ ∈ Sk

}
.

Then,
⋂∞

k=1 Uk is a compact subset of V 1 × V 0. For each k ≥ 1, we can write(
u(t), ut(t)

)
=

(
PNk

u(t), PNk
ut(t)

)
+

((
I − PNk

)
u(t),

(
I − PNk

)
ut(t)

)
.

By the same argument as in Section 4, we can conclude that

P
{
ω :

(
u(t), ut(t)

)
/∈

∞⋂
k=1

Uk

}
≤ 2ε, for each t ≥ 0.

The remaining procedure is the same as the one used in Section 5 to prove the
existence of periodic and invariant measures.
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