

LOW-OVERHEAD TRACING OF LARGE-SCALE PARALLEL PROGRAMS

by

Sindhu Devale

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

May 2016

Committee Members:

Martin Burtscher, Chair

Apan Qasem

Ziliang Zong

COPYRIGHT

by

Sindhu Devale

2016

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for fi-

nancial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Sindhu Devale, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my mentor, I couldn’t have done this without you, thank you for all of your

support and guidance along the way. To my husband, who has been so supportive and has

been my backbone throughout the journey, I cannot thank him enough. To my parents,

thank you for always giving me the moral support.

v

ACKNOWLEDGEMENTS

This project is supported by the National Science Foundation.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... v

LIST OF FIGURES ... viii

ABSTRACT .. iix

CHAPTER

1. INTRODUCTION ...1

1.1. Large traces ...1

1.2. Contributions...4

1.3 Results ..4

1.4 Outline..4

2. BACKGROUND ...6

2.1 Tracing ..6

2.2. Instrumentation ..6

2.3. Debugging ..8

2.4. Compression ..8

3. RELATED WORK ... 9

3.1. Tracing tools ..9

3.2. Pin ..10

3.2.1. Tracing compression techniques ...11

3.2.2. Compression algorithms ...12

3.2.2.1.Bzip2 ...12

3.2.2.2.Gzip ...12

4. DESIGN AND IMPLEMENTATION ...14

4.1. Information Recorded and Extracted ...14

4.2. Stack Correction ...15

4.3. Compression ..15

4.4. Trace Reader ..18

vii

5. EVALUATION METHOD ...19

5.1. Pin ..19

5.2. Benchmark ...20

5.2.1. MiniFE ..20

5.2.2. MiniGhost ...21

5.2.3. MiniMD ..21

5.2.4. MiniXyce ..21

5.2.5. PathFinder ...21

5.2.6. TeaLeaf ...22

5.2.7. HPCCG ...22

5.2.8. MiniSMAC2D ...23

5.2.9. CoMD ...23

5.3. Configuration ...23

6. RESULTS ...25

6.1. Relative runtime ...25

6.2. Relative runtime of RTC-Tracer with and without compression27

6.3. Compression ratio ..29

6.4. Compression speed comparison ...31

6.5. Bandwidth requirements ..33

7. SUMMARY ..36

7.1. Summary ..36

7.2. Future Work ...36

APPENDIX SECTION .. 37

LITERATURE CITED .. 39

viii

LIST OF FIGURES

Figure Page

1. Reasons for large trace sizes and the problems they create .. 2

2. Difference between original and instrumented executable ... 7

3. Runtime overhead due to RTC-Tracer .. 26

4. Relative runtimes of RTC-Tracer without compression for 32 cores 27

5. Relative runtimes of RTC-Tracer without compression for 128 cores 28

6. Compression ratio for traces generated with 32 cores ... 29

7. Compression ratio for traces generated with 128 cores ... 30

8. Execution time comparison of gzip –fast with respect to RTC-Tracer 31

9. Execution time comparison of gzip –best with respect to RTC-Tracer 32

10. Execution time comparison of bzip2 –fast with respect to RTC-Tracer 32

11. Execution time comparison of bzip2 –best with respect to RTC-Tracer 33

ix

ABSTRACT

Some parallelization bugs only manifest themselves when a program is executed

at scale. Such bugs are notoriously difficult to find, and tracing parallel programs at scale

tends to be very expensive both in terms of execution overhead and in terms of the

amount of trace data generated. To make light-weight debugging possible on large-scale

systems, I present and evaluate a scalable profiling tool called RTC-Tracer that incremen-

tally compresses the gathered information before it is written to memory or disk. For ex-

ample, RTC-Tracer can track every function call and return of the Mantevo miniapps run-

ning on Stampede with a 1.73 to 2.31x overhead in execution time on average while com-

pressing the collected information by a factor of 100, resulting in only a few kilobytes per

second of trace data being emitted by each processor.

1

CHAPTER 1

INTRODUCTION

Tracing is a very useful and powerful method for analyzing the performance of

programs and for identifying bugs. In fact, software engineers already invest nearly 70%

of the development time of a project in debugging mostly serial code [1]. With the rap-

idly increasing amounts of data being generated, there is a growing need to scale the

number of cores to process them. Parallel frameworks have thus become central to ad-

vancements in various fields of science and engineering. Unfortunately, the more cores a

program uses, the harder, more expensive, and more time consuming it becomes to debug

the code, and buggy code can drastically reduce the productivity. It is estimated that the

US loses $60 billion every year due to software glitches [1].

1.1. Large traces

Most of the existing debugging techniques perform poorly when scaled. One of

the reasons is the overhead in collecting large amounts of runtime information, which in-

creases in proportion with the number of running processes and/or threads. Large trace

sizes often constrain the scalability on large-scale systems and complicate the analysis

and visualization of the trace data. What information to extract from the programs, how

to best extract it, and how to keep the overhead of run-time and memory low are addi-

tional challenges.

2

To record traces, the application is usually instrumented, i.e., extra code is added

at various points to intercept the desired events. The trace records are kept in a memory

buffer and written to a file after program termination or upon buffer overflow.

Figure 1: Reasons for large trace sizes and the problems they create

The reasons for large trace sizes [2] as shown in Figure 1 are explained in detail below.

 Number of processes or threads: Since this number is equal to the number of

time-lines in a time-line diagram, it is often referred to as the width of an event

trace (as opposed to the length, which represents the number of events per process

or thread). Because the total number of gathered events usually grows with the

number of processes or threads, the width influences both the total amount of data

as well as the total number of local trace files that need to be handled.

3

 Temporal coverage: The intervals to be traced need not cover the entire execu-

tion. It is obvious that restricting tracing to smaller intervals can substantially de-

crease the amount of trace data, but may also result in loss of fidelity.

 Granularity: How many events are recorded during a given interval depends on

the frequency at which events are generated. This is typically related to the granu-

larity of measurements, that is, the level of detail (e.g., function, block, or state-

ment level) captured through tracing.

 Number of event parameters: The number of parameters recorded directly af-

fects the trace size. Hence, the number of parameters rarely exceeds a few.

 Problem size: This factor considers the number of performance-relevant events

as a result of the input applied to a certain algorithm. A typical example is the

number of iterations performed to arrive at a solution, which can prolong execu-

tion and increase the number of events traced.

As a result, there are data management problems to store huge traces. Moreover,

analyzing huge traces is a problem and cannot be done in a time efficient manner. Due to

these problems, we need a low-overhead tracing mechanism that gathers as much infor-

mation as possible at as low of a cost as possible.

4

For my research, I have chosen a set of MPI and OpenMP applications to evaluate

my approach. MPI is widely used for distributed-memory programming (e.g., clusters)

and OpenMP is used for shared-memory programming (e.g., multicore systems).

1.2. Contributions

This thesis makes the following contributions:

1. A user-friendly, portable tool called RTC-Tracer to extract function call and re-

turn information from parallel programs.

2. The tool is efficient both in terms of runtime and in terms of storage utilization.

3. The tool incorporates a custom algorithm to incrementally compress the generated

traces at runtime.

1.3. Results

RTC-Tracer works well for large-scale parallel programs. Its overhead is a factor

of about 1.73 to 2.31. The compression algorithm it incorporates often compresses better

than standard compression algorithms while, at the same time, compressing the data

much more quickly. The resulting bandwidth requirement per core is only a few kilobytes

of data emitted per second compared to megabytes of data without compression.

1.4. Outline

The rest of this thesis is organized as follows: Chapter 2 presents the background.

Chapter 3 summarizes related work. Chapter 4 describes the design of the RTC-Tracer

tool. Chapter 5 presents the evaluation methodology and the testbed. Chapter 6 studies

5

and analyzes the performance results. Chapter 7 concludes with a summary and future

work.

6

CHAPTER 2

BACKGROUND

2.1. Tracing

In software engineering, tracing [3] is a specialized use of logging to record infor-

mation about a program’s execution. Since software tracing is often low-level, the possi-

ble volume of trace information is high.

Phases of instrumentation tracing [4]:

a. Instrumentation – adding trace code to the application.

b. Tracing – the tracing code executes together with the application code and writes

information to the disk.

c. Analysis – evaluate the traces generated to identify problems.

2.2. Instrumentation

Instrumentation refers to the ability to measure or extract certain features of the

program [5]. Programmers implement instrumentation by adding extra code to the appli-

cation code. The added code may output logging information to the screen or to a file [6].

1. Source code instrumentation – instrument source programs

2. Binary instrumentation – instrument binary executables directly

a. Static binary instrumentation – inserts additional code and data before execu-

tion and generates a persistent modified executable

b. Dynamic binary instrumentation – inserts additional code and data during exe-

cution without making any permanent modifications to the executable

7

Advantages

Binary instrumentation:

 Language independent

 Machine-level view

 Instrument legacy/proprietary software

 No access to the source code required

Dynamic instrumentation:

 No need to recompile or relink

 Discover code at runtime

 Handle dynamically-generated code

 Attach to running processes

Figure 2: Difference between original and instrumented executable

 Figure 2 pictorially shows how an executable is modified when instrumented. In-

strumentation incurs overhead in terms to memory due to the extra data that needs to be

stored and also in terms of runtime due to the extra code that needs to be executed.

8

2.3. Debugging

 One of the uses of trace generation is identifying errors in a program. In computer

systems, debugging is the process of locating bugs and fixing them. Debugging a pro-

gram starts by identifying the problem, isolating the source of the problem, and then fix-

ing it. Debugging is a necessary process in almost any software (or hardware) develop-

ment process [7]. For complex products, debugging is done at multiple levels, for exam-

ple in unit tests for the smallest units of a system as well as in system tests when the

product is used with other existing products. Thorough debugging is a necessary step to

ensure software quality. Bugs plague software projects, and today’s complicated software

stacks make debugging more difficult than ever.

2.4. Compression

 When dealing with large-scale parallel programs, any attempt to generate traces

will likely result in a huge amount of data. Moreover, such tracing will also incur signifi-

cant overhead due to the need to transfer and store these vast amounts of data. Hence, we

need a way to both decrease the space and the overhead. I do this by applying lossless

compression to the traces before storing the trace data on the disk. Compression involves

encoding information using fewer bits than the original representation. Compression is

useful because it helps reduce resource usage, such as data storage space, and boosts

transmission bandwidth. Because compressed data must typically be decompressed be-

fore it can be used, this extra processing imposes computational costs during decompres-

sion.

9

CHAPTER 3

RELATED WORK

3.1. Tracing tools

Tracing of parallel programs has always attracted interest. However, as these sys-

tems have multiple cores and each core may be able to run multiple threads, we need to

generate traces for each thread of each core. Many different types of information can be

extracted from a program like the memory addresses, the registers used, etc. One popular

approach is to record the function call information, i.e., the function enter and leave

events along with the name and possibly the source-code location of each function.

One tool that records function call information is VampirTrace [8]. VampirTrace

consists of a tool set and a runtime library for instrumentation and tracing of software ap-

plications. It is particularly tailored to parallel and distributed High-Performance Compu-

ting (HPC) applications. Its instrumentation component modifies a given application by

injecting additional measurement calls during runtime. The tracing component provides

the actual measurement functionality used by the instrumentation calls. Through this mech-

anism, a variety of detailed performance properties can be collected and recorded at

runtime. This includes function enter and leave events, MPI communication, OpenMP

events, and performance counters. After a successful tracing run, VampirTrace writes all

collected data to a trace file in the Open Trace Format (OTF). As a result, the information

is available for post-mortem analysis and visualization by various tools. Most notably,

VampirTrace provides the input data for the Vampir analysis and visualization tool. Trace

files can quickly become very large, especially with automatic instrumentation.

10

Tracing applications for just a few seconds can result in trace files of several hun-

dred megabytes per core. To protect users from creating trace files of several gigabytes,

the default behavior of VampirTrace is to limit the internal buffer to 32 MB per process.

Thus, even for large-scale runs, the total trace file size will be moderate. Of course, this

means that some important information may not be included in the trace file.

Dyninst [9] is another tool that allows insertion of code into a computer applica-

tion that is either running or on disk. The API for inserting code into a running applica-

tion, called dynamic instrumentation, shares much of the same structure as the API for in-

serting code into an executable file or library, known as static instrumentation. The API

also permits changing or removing subroutine calls from the application program. Binary

code changes are useful to support a variety of applications, including debugging, perfor-

mance monitoring, and composing applications out of existing packages. The goal of this

API is to provide a machine independent interface to permit the creation of tools and ap-

plications that use runtime and static code patching.

3.2. Pin

Pin [10] is a tool for the instrumentation of programs. It supports the insertion of

arbitrary code (written in C or C++) in arbitrary places in the executable. The code is

added dynamically while the executable is running. It is also possible to attach Pin to an

already running process.

Pin provides a rich API that abstracts away the underlying instruction set idiosyn-

crasies and allows context information such as register contents to be passed to the in-

11

jected code as parameters. Pin automatically saves and restores the registers that are over-

written by the injected code so the application continues to work normally. Limited ac-

cess to symbol and debug information is available as well.

Advantages of Pin [6]:

 Easy-to-use instrumentation: Uses dynamic instrumentation, does not need source

code, recompilation, or post-linking

 Programmable instrumentation: Provides rich APIs to write user-defined instru-

mentation tools (called Pintools) in C/C++

 Multiplatform: Supports x86, x86-64, Itanium, Xscale

OS’s: Windows, Linux, OSX, Android

 Robust: Instruments real-life applications: Databases, web browsers, multi-

threaded applications, and supports signals

 Efficient: Applies compiler optimizations on instrumentation code

3.2.1. Tracing compression techniques

Traces are widely used in industry and academia to study the behavior of programs

and processors [11]. The problem is that traces from interesting applications tend to be

very large. For example, collecting just one byte of information per executed instruction

generates on the order of a gigabyte of data per second of CPU time on a high-end micro-

processor. Moreover, traces from many different programs are typically collected to cap-

ture a wide variety of workloads. Storing the resulting multi-gigabyte traces can be a

challenge, even on today’s large hard disks.

12

Hamou-Lhadj and Lethbridge [12] use common subexpression elimination to

compress procedure-call traces. The traces are represented as trees and subtrees that oc-

cur repeatedly are eliminated by noting the number of times each subtree appears in the

place of the first occurrence. A directed acyclic graph is used to represent the order in

which the calls occur. This method requires a preprocessing pass to remove simple loops

and calls generated by recursive functions. One benefit of this type of compression is that

it can highlight important information contained in the trace, thus making it easier to ana-

lyze.

3.2.2 Compression algorithms

3.2.2.1. Bzip2

Bzip2 is a general-purpose compressor that operates at byte granularity [12]. It

implements a variant of the block sorting algorithm described by Burrows and Wheeler

[13]. Bzip2 [14] applies a reversible transformation to a block of inputs, uses sorting to

group bytes with similar contexts together, and then compresses them with a Huffman

coder. The block size is adjustable. I use the “--fast” and “--best” option.

3.2.2.2. Gzip

The deflation algorithm used by gzip [15] is a variation of LZ77. It finds dupli-

cated strings in the input data. The second occurrence of a string is replaced by a pointer

to the previous string, in the form of a pair (distance, length). Distances are limited to 32

kilobytes, and lengths are limited to 256 bytes. When a string does not occur anywhere in

13

the previous 32 kilobytes, it is emitted as a sequence of literal bytes. I use the “--fast” and

“--best” option.

14

CHAPTER 4

DESIGN AND IMPLEMENTATION

This chapter describes the design of the RTC-Tracer I developed for the efficient

function-call tracing of large-scale parallel programs.

4.1. Information Recorded and Extracted

RTC-Tracer extracts and records, for each program thread, the enter and leave

events of each executed function, including functions in library code, from which it de-

rives the following information:

1. Function call frequency: The number of times a particular function was in-

voked.

2. Call edge frequency: The number of a times one function called another.

3. The approximate call stack at every point in the program execution.

4. The full call and return trace with corresponding function and image names.

The first step is to read the symbol table. The symbol table records information

such as the name and starting address of each function of a program. A symbol table may

only exist during compilation, or it may be embedded in the executable for later exploita-

tion, for example by a debugger.

RTC-Tracer assigns every function in the application a unique ID and instruments

every location in the program where a function is entered or left. Moreover, for each run-

ning thread, it creates a stack data structure in which every element has two fields: one

for the function ID and the other for holding the current stack-pointer register value.

15

Since each thread has its own runtime stack, each thread is also assigned its own ‘func-

tion’ stack. Whenever a thread enters a function, the corresponding function ID is rec-

orded in the trace and pushed onto the function stack along with the value of the stack

pointer. Similarly, after a thread leaves a function, a special ID is recorded in the trace

and the function stack is popped.

4.2. Stack Correction

For certain types of debugging, a consistent call stack is desired. However, due to

function inlining combined with compiler optimizations such as code scheduling, it is not

always possible for Pin to determine when an application leaves a function as there is no

corresponding return instruction. As a consequence, some function leaves are not rec-

orded, resulting in inconsistent call stacks. To correct this problem as much as possible,

RTC-Tracer compares the application’s stack pointer (SP) value to the SP value on the

function stack whenever a function is entered or left. If the SP values are out of sync, Pin

must have missed one or more leave events, which are then successively added to the

trace until the function stack is consistent again. This way, the resulting trace is consistent

with a possible runtime stack at every execution point, though it may not be completely

precise, which is why I refer to it as an “approximate” call stack.

.

4.3. Compression

Since the symbol information is the same for all running threads of an application,

the functions names and corresponding image names are only emitted once to save space.

The actual traces tend to be many orders of magnitude larger than the symbol information

16

and pose some major problems. First, writing them to secondary storage can severely

slow down the system due to the large bandwidth requirement. Second, the huge amount

of required storage space makes the traces slow to access and difficult to handle. Hence, I

decided to compress them.

My first idea was to generate the full trace and then compress it. However, that

would still have required huge amounts of (temporary) storage and resulted in high band-

width requirements. The better alternative, which I implemented, is to compress the

traces on-the-fly as they are being generated. Hence, I needed to find a compression algo-

rithm that not only compresses function call traces well but also does so very quickly so

as not to slow down the execution of the instrumented code.

I used a tool called CRUSHER to determine a good compression algorithm based

on several (uncompressed) training traces I had recorded. CRUSHER reported that an LZ

component followed by a ZE component would work well. Since my tool supports up to

65535 unique function IDs, the trace entries are two-byte words, which are fed into the

LZ component. Its output is interpreted as a sequence of bytes, which is fed into the ZE

component for further compression. The output of the ZE component is stored to disk.

The LZ component implements a variant of the LZ77 algorithm [18]. It uses a

hash table to identify the most recent prior occurrence of the current value in the trace.

Then it checks whether the three values immediately before that location match the three

trace entries just before the current location. If they do not, the current trace entry is emit-

ted and the component advances to the next entry. If the three values match, the compo-

nent counts how many values following the current value match the values following that

17

location. The length of the matching substring is emitted and the component advances by

that many values.

The ZE component emits a bitmap in which each bit corresponds to one input

byte. The bits indicates whether the corresponding bytes in the input are zero or not. Fol-

lowing each eight-bit bitmap, ZE emits the non-zero bytes.

Typically, compression is used in the following way. A buffer is filled with trace

data, and whenever the buffer is full, the data is compressed and written out. Unfortu-

nately, this approach imposes long pauses upon application threads whenever compres-

sion is invoked, which can be a problem in parallel programs where threads synchronize

with each other. To alleviate this problem, I had to implement both of these compression

components in an incremental way, i.e., to compress the just generated trace entry with-

out knowing the next trace entries yet. That means the current matching counter in the LZ

component may have to either be incremented or emitted and a new count started. Simi-

larly, the current bitmap in the ZE component may have to be updated or a new bitmap

started.

The result section of this thesis shows that my implementation does not only com-

press the traces well but also quickly. In fact, the extra runtime to perform the compres-

sion is significantly lower than the overhead saved by not having to emitting the uncom-

pressed trace. In other words, RTC-Tracer tends to run faster with compression than

without.

18

4.4. Trace Reader

To read and process the compressed traces, I wrote a corresponding decompres-

sor. However, the decompressor does not have to work incrementally, so it was easier to

implement. It simply performs the inverse operations to recreate the original trace. From

this trace, it then computes the four types of information listed in Section 4.1. The user

can select which type of information the trace reader should output.

19

CHAPTER 5

EVALUATION METHOD

5.1. Pin

Pin is a tool for the binary instrumentation of programs. My RTC-Tracer tool is

based on Pin. Pin makes it possible to insert arbitrary code (written in C or C++) in arbi-

trary places in the executable. The code is added dynamically while the executable is run-

ning.

The best way to think about Pin is as a “just-in-time” (JIT) compiler [10]. The in-

put to this compiler is a normal executable. Pin intercepts the program execution and gen-

erates (“compiles”) new code for each straight-line code sequence it encounters and

transfers control to the generated sequence. In JIT mode, the only code ever executed is

the generated code. The original code is only used for reference. When generating code,

Pin gives the user the opportunity to inject his or her own code, which is called program

instrumentation.

Conceptually, instrumentation consists of the following two components.

1. A mechanism that decides where and what code to insert

2. The code to execute at the insertion points

These two components are referred to as instrumentation code and analysis code.

Both components live in a single executable called a Pintool. Pintools can be thought of

as plugins that can modify the code-generation process inside Pin. RTC-Tracer is such a

Pintool. I am using Pin 2.14 in this thesis.

20

5.2. Benchmarks

In this thesis, I am using the Mantevo (version 3.0) [16] miniapps created by a

team at Sandia National Laboratories to generate traces and evaluate RTC-Tracer. Man-

tevo is a multi-faceted application performance project, with the goal to provide open

source-software to promote informed algorithm, application, and architecture decisions in

the HPC community. It provides application performance proxies known as miniapps.

Miniapps combine some or all of the dominant numerical kernels contained in an actual

stand-alone application. They include libraries wrapped in a test driver providing repre-

sentative inputs. They may also be hard-coded to solve a particular test case so as to sim-

plify the need for parsing input files and mesh descriptions. Miniapps range in scale from

partial, performance-coupled components of the application to a simplified representation

of a complete execution path through the application. The following subsections describe

each miniapp in more detail.

5.2.1. MiniFE

This is a miniapp that mimics the finite element generation, assembly, and solu-

tion for an unstructured grid problem. The physical domain is a 3D box with configurable

dimensions and a structured discretization (which is treated as unstructured). The domain

is decomposed using a recursive coordinate bisection (RCB) approach and the elements

are simple hexahedra. The problem is linear and the resulting matrix symmetric, so a

standard conjugate gradient algorithm is used as solver with a general sparse matrix data

format and no preconditioning.

21

5.2.2. MiniGhost

MiniGhost is a finite difference mini-application that implements a difference

stencil across a homogenous three-dimensional domain.

5.2.3. MiniMD

This is a parallel molecular dynamics (MD) simulation package written in C++

and intended for use on parallel supercomputers and new architectures for testing pur-

poses. MiniMD uses spatial decomposition MD, where individual processors in a cluster

own subsets of the simulation box.

5.2.4. MiniXyce

This is a circuit simulation application. Circuit simulation is the cornerstone of the

electrical design automation industry and is a crucial part of commercial electrical design.

Like most circuit simulation tools, MiniXyce is based on a modified nodal analysis for-

mulation, resulting in Kirchoff Current Laws being enforced across a potentially arbitrary

network. The resulting system of differential-algebraic equations is solved implicitly us-

ing Newton-based methods. Traditional circuit codes have almost exclusively relied upon

direct matrix solvers, but preconditioned GMRES is the method of choice for parallel

simulation.

5.2.5. PathFinder

22

PathFinder searches for “signatures” within graphs. The graphs being searched

are directed and cyclic. Many but not all nodes within the graph have labels. Any given

node may have more than one label, and any label may be applied to more than one node.

A signature is an ordered list of labels. PathFinder searches for paths between labels

within the signature. PathFinder returns success if there is a path from a node with the

first label in the signature that passes through nodes with each label in order, ultimately

reaching a node with the last label in the signature. Labeled nodes need not be contiguous

on any given path. PathFinder simply searches until a signature is satisfied or all path-

ways have been exhausted.

5.2.6. TeaLeaf

TeaLeaf is a mini-app that solves the linear heat conduction equation on a spa-

tially decomposed regular grid using a five-point stencil with implicit solvers. In

TeaLeaf, temperatures are stored at the cell centers. A conduction coefficient is calcu-

lated that is equal to the cell centered density or the reciprocal of the density. This is then

averaged to each face of the cell for use in the solution. Solving is carried out using an

implicit method due to the severe time-step limitations imposed by the stability criteria of

an explicit solution for a parabolic partial differential equation. The implicit method re-

quires the solution of a system of linear equations, which form a regular sparse matrix

with a well-defined structure.

5.2.7. HPCCG

23

HPCCG is similar to MiniFE but generates a synthetic linear system. The focus is

entirely on the sparse iterative solver.

5.2.8. MiniSMAC2D

This mini-application solves the finite-difference 2D incompressible Navier-

Stokes equations with the Spalart-Allmaras one-equation turbulence model on a struc-

tured body-conforming grid. The grid is partitioned into subgrids that are load balanced

for the number of MPI ranks requested by the user. Subgrids overlap by one grid point

for point-to-point boundary communication. MiniSMAC2D currently features implicit

line and symmetric Gauss-Seidel relaxation algorithms. As a test case, input files are in-

cluded for a C-grid around a NACA 4412 airfoil at various angles of attack.

5.2.9. CoMD

This is an extensible molecular dynamics proxy applications suite featuring the

Lennard-Jones potential and the Embedded Atom Method potential.

5.3. Configuration

 For all tested MPI applications, traces are generated for 2, 4, 8, 16, 32 and 64

nodes, i.e., 32, 64, 128, 256, 512 and 1024 cores, respectively. For the OpenMP applica-

tions, traces are generated on one node with 16 cores and 2, 4, 8, 16 and 32 threads. The

traces are compressed using the algorithm described in Chapter 4 before they are stored

to disk. For comparison purposes, the resulting traces are decompressed and the gzip --

24

fast, gzip --best, bzip --fast, and bzip --best algorithms are applied to them. All the exper-

iments were conducted on the Stampede system at TACC [17]. Stampede has two 8-core

Xeon E5 processors per node running at 2.7 GHz clock frequency. There are a total of

6400 nodes, each with a 32 GB of main memory. The compilers used for the experiments

are mvapich2 2.1 for MPI codes and gcc 4.9.1 for OpenMP applications. In both cases, I

used the –O3 compiler flag.

25

CHAPTER 6

RESULTS

The following subsections show the main results of the experiments I conducted.

First, I investigate the overhead introduced by my RTC-Tracer tool. Second, I study the

overhead of employing on-the-fly compression. Third, I evaluate the resulting compres-

sion ratio and compare it to the standard compression algorithms gzip and bzip2. Fourth,

I study the compression speed. Finally, I examine the required trace-data bandwidth.

6.1. Relative runtime

This subsection investigates the overhead incurred by RTC-Tracer when tracing

function calls and returns and performing on-the-fly trace compression. The overhead is

computed by dividing the runtime of the Pin instrumented application by the runtime of

normal execution of the application with the same input. Figure 3 shows the results for

different core counts. It lists the various applications along the x-axis as well as the aver-

age overhead. The y-axis represents the overhead. Values above 1.0 indicate a slowdown

due to the tracing. I conducted experiments with 32, 64, 128, 256, 512 and 1024 cores for

the MPI applications and with 2, 4, 8, 16, 32, and 64 threads for the OpenMP applica-

tions.

26

Figure 3: Runtime overhead of RTC-Tracer (pathfinder and HPCCG uses

lesser cores than indicated)

These results highlight two key aspects of RTC-Tracer. First, the overhead is

quite low. I found no application or core count for which it exceeded a five-fold slow-

down. On average, the overhead is only about a factor of two, meaning that the applica-

tions run twice as long with full tracing than they do without any tracing. Second, and

equally importantly, the overhead stays roughly the same as the applications are scaled to

larger core/thread counts. In fact, the overhead seems to decrease slightly at larger

core/thread counts. This demonstrates that my approach is scalable and will probably also

work at even larger scales than what I was able to test.

HPCCG is missing the green bar as this application does not run with 64 threads.

The overhead of the TeaLeaf application is below one, indicating that the run with the

tracing turned on was faster than the run without tracing. I can only surmise that TeaLeaf

0.0

1.0

2.0

3.0

4.0

5.0

6.0

O
v
er

h
ea

d

32 cores

64 cores

128 cores

256 cores

512 cores

1024 cores

27

is probably a nondeterministic application whose runtime depends on the timing of its

threads, which the tracing modifies, as it is unrealistic to achieve a speedup by tracing an

application.

6.2. Relative runtime of RTC-Tracer with and without compression

 This subsection investigates the effect of the on-the-fly compression implemented

in the RTC-Tracer by comparing the runtime of the RTC-Tracer with and without com-

pression. Figures 4 and 5 shows the runtime without compression divided by the runtime

with compression turned on. Numbers above 1.0 mean that the version without compres-

sion is slower.

Figure 4: Relative runtimes of RTC-Tracer without compression for 32 cores

(pathfinder and HPCCG uses lesser cores than indicated)

1.4 1.1 1.0
6.6

43.5

1.3 1.0 0.8 0.8 0.8
5.8

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

R
el

at
iv

e
ru

n
ti

m
e

28

Figure 5: Relative runtimes of RTC-Tracer without compression for 128

cores (pathfinder and HPCCG uses lesser cores than indicated)

Interestingly, for most of the tested applications, RTC-Tracer incurs a lower over-

head when compression is turned on. This result seems counterintuitive as the compres-

sion takes time to perform. However, the resulting data footprint is so much smaller that

fewer calls to write out trace data need to be executed and the required memory and disk

bandwidths are much lower, resulting in a net benefit. In other words, RTC-Tracer is of-

ten faster with compression than without.

With 32 cores, there are three applications that can be traced faster without com-

pression. However, with 128 cores, only one of those application programs is still faster

without compression. All other applications run faster with trace compression enabled.

This again indicates that RTC-Tracer scales well and will likely also perform well on

larger core counts than I tested.

1.7 1.3 1.2

6.4

21.0

1.1 1.0 1.3 1.1 0.8

3.7

0.0

5.0

10.0

15.0

20.0

25.0

R
el

at
iv

e
ru

n
ti

m
e

29

6.3. Compression ratio

This subsection investigates the compression ratio achieved by the customized

compression algorithm used in RTC-Tracer and compares it with the compression ratios

of standard compression algorithms applied to the decompressed traces. The compression

ratios in Figures 6 and 7 are the compressed trace size divided by the uncompressed trace

size.

Figure 6: Compression ratio for traces generated with 32 cores (pathfinder

and HPCCG uses lesser cores than indicated)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
o

m
p

re
ss

io
n
 r

at
io

RTC-Tracer

gzip-fast

gzip-best

bzip-fast

bzip-best

30

Figure 7: Compression ratio for traces generated with 128 cores (pathfinder

and HPCCG uses lesser cores than indicated)

Figures 6 and 7 show that, in many cases, the algorithm in the RTC-Tracer com-

presses better than gzip --fast. Only bzip2 --best consistently outperforms it. The com-

pression ratios are very stable between 32 cores and 128 cores. On average, the RTC-

Tracer compresses the traces by over a factor of 100. Gzip --best, bzip2 --fast and bzip2 -

-best have a better average compression ratio than RTC-Tracer. However, RTC-Tracer

outperforms gzip --best and even bzip2 --fast on quite a few programs. It just compresses

two programs’ traces relatively poorly, which is why its average is not better. The com-

pressed trace sizes for gzip --fast, gzip --best, bzip --fast and bzip --best are listed in the

appendix. Overall, the utilized compression algorithm performs well, especially given

that it performs incremental on-the-fly compression that needs to be very fast.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
o

m
p

re
ss

io
n
 r

at
io

RTC-Tracer

gzip-fast

gzip-best

bzip-fast

bzip-best

31

6.4. Compression speed comparison

In this subsection, the runtime of gzip --fast, gzip --best, bzip2 --fast and bzip2 --

best are compared with the runtime of RTC-Tracer. In the following four figures, the y-

axes represent the runtime of these compression algorithms relative to the runtime of

RTC-Tracer, which includes the runtime of the actual application. Results above 1.0 indi-

cate that the RTC-Tracer runs faster than the compression tools.

Figure 8: Execution time comparison of gzip --fast with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated)

0

5

10

15

20

25

R
el

at
iv

e
ru

n
ti

m
e

32 cores

64 cores

128 cores

32

Figure 9: Execution time comparison of gzip --best with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated)

Figure 10: Execution time comparison of bzip2 --fast with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated)

0

5

10

15

20

25

30

35

R
el

at
iv

e
ru

n
ti

m
e

32 cores

64 cores

128 cores

0

100

200

300

400

500

600

700

800

900

1000

R
el

at
iv

e
ru

n
ti

m
e

32 cores

64 cores

128 cores

33

Figure 11: Execution time comparison of bzip2 --best with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated)

The two general-purpose compressors running in either mode, but especially in

the --best mode, are much slower than RTC-Tracer, which compresses the traces nearly

as well. This is especially surprising since the RTC-Tracer running time includes the ap-

plication execution time. Moreover, the runtime advantage of RTC-Tracer clearly in-

creases for larger core counts. The reason for this is that bzip2 and gzip are serial imple-

mentations whereas RTC-Tracer naturally runs in parallel as each application thread

compresses its own trace concurrently with the work performed by the other threads.

6.5. Bandwidth requirements

The decompressed trace sizes shown in the appendix reveal that the amount of

data collected from just a few seconds of runtime is huge and increases as the number of

cores/threads increases. Writing that much data to secondary storage throughout the exe-

cution of an application is unrealistic for large-scale programs and programs running for

0
200
400
600
800

1000
1200
1400
1600
1800
2000

R
el

at
iv

e
ru

n
ti

m
e

32 cores

64 cores

128 cores

34

more than a few seconds. Moreover, the data would flood the network and/or disk sys-

tem, which potentially slows down the application and places a great burden on the com-

munication subsystem.

This subsection shows the bandwidth required with RTC-Tracer, which com-

presses the data before they are even written to memory or disk or sent over the network.

Table 1 lists the bandwidth per core for RTC-Tracer. The values are in kilobytes per sec-

ond (per core).

Miniapps 32 cores 64 cores 128 cores

miniFE 9.2 9.2 8.2

miniGhost 3.6 3.5 3.7

miniMD 15.1 13.9 15.5

miniSmacd 31.5 39.7 27.9

Tealeaf 24.1 18.1 22.7

miniAMR 13.6 15.5 12.7

CoMD 94.9 87.7 104.0

miniXyce 6.6 7.3 8.2

Pathfinder 1.4 0.9 0.5

HPCCG 2.6 1.4 0.7

Average 20.26 19.72 20.41

Table 1: Bandwidth required for compressed traces per core for RTC-Tracer

As the table shows, the required bandwidth is quite low, ranging from less than a

kilobyte per second to just over 100 kilobytes per second, with an average of about 20

kilobytes per second. These bandwidths are just a small fraction of what a modern disk or

35

network interface can handle, meaning that tracing with my tool should not significantly

impact the communication subsystem. Note also that the bandwidth per core remains

nearly constant as we scale the application to more cores and compute nodes, which

again indicates that my approach scales well.

36

CHAPTER 7

SUMMARY

7.1. Summary

 This thesis presents a new function-call tracing tool called RTC-Tracer for large-

scale parallel systems that records the function enter and function leave events of every

thread of every core. The new tool scales well to more than 1000 cores and has an aver-

age overhead in the range of 1.73 to 2.31, which remains approximately constant when

scaling to larger core counts. It incorporates a customized compression algorithm that

compresses the trace data by over a factor of 100 on average. In fact, it not only com-

presses about as well as standard compression algorithms but also compresses the data

much more quickly, making on-the-fly compression possible. The resulting amount of

bandwidth required per core is in the range of less than a kilobyte per second to a hun-

dred kilobytes per second, which is low compared to today’s disk and network through-

puts. To the best of my knowledge, RTC-Tracer is the first tracing tool that combines a

low overhead in terms of runtime with a low overhead in terms of emitted data and exhib-

its excellent scaling.

7.2. Future Work

Based on the results of this work, future work aims at using RTC-Tracer on

higher core counts to check its true scalability, testing it on different systems, and, of

course, using the resulting traces for various purposes like debugging or performance

analysis of large-scale parallel programs.

37

APPENDIX SECTION

This section lists all the raw performance data for all tested configurations.

Miniapps RTC-Tracer Decom-

pressed file

 gzipfast gzipbest bzipfast bzipbest

miniFE 4060452 1702179508 17211201 6381210 3605361 1420826

miniGhost 4617202 14105059920 110231840 45395407 23524998 4528823

miniMD 7487896 1342433816

16693130 6464096 4675068 2077442

miniSmacd 17570100

5916002724 68771205 26224771 18153318 4191933

Tealeaf 11613895 2222591456 32018729 12425011 10237816 2997136

miniAMR 7684711 4288048804 36228099 14389242 8689694 2293252

CoMD 2101428618 56545850496 1029625461 232393485 82701014 27184562

miniXyce 3793692 963204800 10965942 4787497 3150104 1353497

Pathfinder 390096 7845440

368352 147040 128304 103568

HPCCG 2615736 753430804 8730953 3480891 1982573 777832

Table A.1 File sizes (in bytes) of the traces generated with 32 cores

Miniapps RTC-Tracer Decompressed

file

 gzipfast gzipbest bzipfast bzipbest

miniFE 8358821

3467578944 35499232 13179877 7584649 2927496

miniGhost 9568519 29316227444 230384205 95039180 49182783 9532335

miniMD 15140005 2700342976 33940324 13270296 9652504 4184308

miniSmacd 38998749 16010404908 191742728 76534248 50798774 12252671

Tealeaf 19341202 4474861812 59476525 23396842 17289159 5135695

miniAMR 18339586 9785843192 86730321 34323459 21844614 5802774

CoMD 2094958941 100501551340 1409089619 388440433 140285220 33332916

miniXyce 7782203 2052089784 23346313 10164924 6674089 2803875

Pathfinder 395952 5797364 309041 134091 118252 104135

HPCCG 2662072

811550556 9662076 4037472 2295976 856195

Table A.2 File sizes (in bytes) of the traces generated with 64 cores

38

Miniapps RTC-

Tracer

Decompressed

file

 gzipfast gzipbest bzipfast bzipbest

miniFE 17719457

8220005312 83203337 31571744 17920258 6684864

miniGhost 20312355 62054408644 499806741 202844746 107700620 21780294

miniMD 30009160 6816874740 83364532 34247521 23955113 9489038

miniSmacd 88117610 66553655080 711388720 281290931 165305981 36911657

Tealeaf 44958065 10201349540 136010658 54564918 39769487 11734322

miniAMR 43314004 25746905440 231124441 92318920 55548638 15127955

CoMD 259977767 89013890004 1501012314 396956398 152909753 52801774

miniXyce 15918271 4783886664 52061240 22859222 14456730 5934702

Pathfinder 390096 7845440 368352 147040 128304 103568

HPCCG 2708323 849278788 10322036 4359806 2599995 937213

Table A.3 File sizes (in bytes) of the traces generated with 128 cores

39

LITERATURE CITED

[1] G. Tassey, "The Economic Impacts of Inadequate Infrastructure for Software

Testing." May 2002. [Online]. Available: http://www.rti.org/pubs/software_test-

ing.pdf

[2] http://people.ac.upc.edu/felix/pasa06.pdf

[3] https://en.wikipedia.org/wiki/Tracing (software)

[4] https://msdn.microsoft.com/en-us/library/zs6s4h68(v=vs.110).aspx

[5] https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)

[6] https://cs.gmu.edu/~astavrou/courses/ISA_673_S13/PIN_lecture.pdf

[7] http://searchsoftwarequality.techtarget.com/definition/debugging

[8] https://tudresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/pro

jekte/vampirtrace/dateien/VT-UserManual-5.14.4.pdf

[9] http://www.dyninst.org/sites/default/files/manuals/dyninst/DyninstAPI.pdf

[10] https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/

[11] http://cs.txstate.edu/~mb92/papers/tc05.pdf

[12] A. Hamou-Lhadj and T.C. Lethbridge, “Compression Techniques to Simplify the

Analysis of Large Execution Traces,” Proc. 10th Int’l Workshop Program

Comprehension, pp. 159-168, June 2002.

[13] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless Data Compression

Algorithm,” Digital SRC Research Report 124, May 1994.

[14] http://www.bzip.org/

[15] http://www.gzip.org/algorithm.txt

40

[16] https://mantevo.org/

[17] https://portal.tacc.utexas.edu/user-guides/stampede#running

[18] https://en.wikipedia.org/wiki/LZ77_and_LZ78

