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ABSTRACT 

 

Some parallelization bugs only manifest themselves when a program is executed 

at scale. Such bugs are notoriously difficult to find, and tracing parallel programs at scale 

tends to be very expensive both in terms of execution overhead and in terms of the 

amount of trace data generated. To make light-weight debugging possible on large-scale 

systems, I present and evaluate a scalable profiling tool called RTC-Tracer that incremen-

tally compresses the gathered information before it is written to memory or disk. For ex-

ample, RTC-Tracer can track every function call and return of the Mantevo miniapps run-

ning on Stampede with a 1.73 to 2.31x overhead in execution time on average while com-

pressing the collected information by a factor of 100, resulting in only a few kilobytes per 

second of trace data being emitted by each processor.  
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CHAPTER 1  

INTRODUCTION 

 

Tracing is a very useful and powerful method for analyzing the performance of 

programs and for identifying bugs. In fact, software engineers already invest nearly 70% 

of the development time of a project in debugging mostly serial code [1]. With the rap-

idly increasing amounts of data being generated, there is a growing need to scale the 

number of cores to process them. Parallel frameworks have thus become central to ad-

vancements in various fields of science and engineering. Unfortunately, the more cores a 

program uses, the harder, more expensive, and more time consuming it becomes to debug 

the code, and buggy code can drastically reduce the productivity. It is estimated that the 

US loses $60 billion every year due to software glitches [1]. 

 

1.1. Large traces 

Most of the existing debugging techniques perform poorly when scaled. One of 

the reasons is the overhead in collecting large amounts of runtime information, which in-

creases in proportion with the number of running processes and/or threads. Large trace 

sizes often constrain the scalability on large-scale systems and complicate the analysis 

and visualization of the trace data. What information to extract from the programs, how 

to best extract it, and how to keep the overhead of run-time and memory low are addi-

tional challenges. 



 

2 

To record traces, the application is usually instrumented, i.e., extra code is added 

at various points to intercept the desired events. The trace records are kept in a memory 

buffer and written to a file after program termination or upon buffer overflow. 

 

 

Figure 1: Reasons for large trace sizes and the problems they create 

 

The reasons for large trace sizes [2] as shown in Figure 1 are explained in detail below. 

 Number of processes or threads: Since this number is equal to the number of 

time-lines in a time-line diagram, it is often referred to as the width of an event 

trace (as opposed to the length, which represents the number of events per process 

or thread). Because the total number of gathered events usually grows with the 

number of processes or threads, the width influences both the total amount of data 

as well as the total number of local trace files that need to be handled. 
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 Temporal coverage: The intervals to be traced need not cover the entire execu-

tion. It is obvious that restricting tracing to smaller intervals can substantially de-

crease the amount of trace data, but may also result in loss of fidelity. 

 

 Granularity: How many events are recorded during a given interval depends on 

the frequency at which events are generated. This is typically related to the granu-

larity of measurements, that is, the level of detail (e.g., function, block, or state-

ment level) captured through tracing. 

 

 Number of event parameters: The number of parameters recorded directly af-

fects the trace size. Hence, the number of parameters rarely exceeds a few. 

 

 Problem size: This factor considers the number of performance-relevant events 

as a result of the input applied to a certain algorithm. A typical example is the 

number of iterations performed to arrive at a solution, which can prolong execu-

tion and increase the number of events traced. 

As a result, there are data management problems to store huge traces. Moreover, 

analyzing huge traces is a problem and cannot be done in a time efficient manner. Due to 

these problems, we need a low-overhead tracing mechanism that gathers as much infor-

mation as possible at as low of a cost as possible. 
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For my research, I have chosen a set of MPI and OpenMP applications to evaluate 

my approach. MPI is widely used for distributed-memory programming (e.g., clusters) 

and OpenMP is used for shared-memory programming (e.g., multicore systems). 

 

1.2. Contributions 

This thesis makes the following contributions: 

1. A user-friendly, portable tool called RTC-Tracer to extract function call and re-

turn information from parallel programs. 

2. The tool is efficient both in terms of runtime and in terms of storage utilization. 

3. The tool incorporates a custom algorithm to incrementally compress the generated 

traces at runtime. 

 

1.3. Results 

RTC-Tracer works well for large-scale parallel programs. Its overhead is a factor 

of about 1.73 to 2.31. The compression algorithm it incorporates often compresses better 

than standard compression algorithms while, at the same time, compressing the data 

much more quickly. The resulting bandwidth requirement per core is only a few kilobytes 

of data emitted per second compared to megabytes of data without compression. 

 

1.4. Outline 

The rest of this thesis is organized as follows: Chapter 2 presents the background. 

Chapter 3 summarizes related work. Chapter 4 describes the design of the RTC-Tracer 

tool. Chapter 5 presents the evaluation methodology and the testbed. Chapter 6 studies 
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and analyzes the performance results. Chapter 7 concludes with a summary and future 

work. 
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CHAPTER 2  

BACKGROUND 

 

2.1. Tracing 

In software engineering, tracing [3] is a specialized use of logging to record infor-

mation about a program’s execution. Since software tracing is often low-level, the possi-

ble volume of trace information is high. 

Phases of instrumentation tracing [4]: 

a. Instrumentation – adding trace code to the application. 

b. Tracing – the tracing code executes together with the application code and writes 

information to the disk. 

c. Analysis – evaluate the traces generated to identify problems. 

 

2.2. Instrumentation 

Instrumentation refers to the ability to measure or extract certain features of the 

program [5]. Programmers implement instrumentation by adding extra code to the appli-

cation code. The added code may output logging information to the screen or to a file [6]. 

1. Source code instrumentation – instrument source programs 

2. Binary instrumentation – instrument binary executables directly 

a. Static binary instrumentation – inserts additional code and data before execu-

tion and generates a persistent modified executable 

b. Dynamic binary instrumentation – inserts additional code and data during exe-

cution without making any permanent modifications to the executable 
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Advantages 

Binary instrumentation: 

 Language independent 

 Machine-level view 

 Instrument legacy/proprietary software 

 No access to the source code required 

Dynamic instrumentation: 

 No need to recompile or relink 

 Discover code at runtime 

 Handle dynamically-generated code 

 Attach to running processes 

 

 

Figure 2: Difference between original and instrumented executable 

 

 Figure 2 pictorially shows how an executable is modified when instrumented. In-

strumentation incurs overhead in terms to memory due to the extra data that needs to be 

stored and also in terms of runtime due to the extra code that needs to be executed. 
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2.3. Debugging 

 One of the uses of trace generation is identifying errors in a program. In computer 

systems, debugging is the process of locating bugs and fixing them. Debugging a pro-

gram starts by identifying the problem, isolating the source of the problem, and then fix-

ing it. Debugging is a necessary process in almost any software (or hardware) develop-

ment process [7]. For complex products, debugging is done at multiple levels, for exam-

ple in unit tests for the smallest units of a system as well as in system tests when the 

product is used with other existing products. Thorough debugging is a necessary step to 

ensure software quality. Bugs plague software projects, and today’s complicated software 

stacks make debugging more difficult than ever. 

 

2.4. Compression 

 When dealing with large-scale parallel programs, any attempt to generate traces 

will likely result in a huge amount of data. Moreover, such tracing will also incur signifi-

cant overhead due to the need to transfer and store these vast amounts of data. Hence, we 

need a way to both decrease the space and the overhead. I do this by applying lossless 

compression to the traces before storing the trace data on the disk. Compression involves 

encoding information using fewer bits than the original representation. Compression is 

useful because it helps reduce resource usage, such as data storage space, and boosts 

transmission bandwidth. Because compressed data must typically be decompressed be-

fore it can be used, this extra processing imposes computational costs during decompres-

sion. 
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CHAPTER 3  

RELATED WORK 

 

3.1. Tracing tools 

Tracing of parallel programs has always attracted interest. However, as these sys-

tems have multiple cores and each core may be able to run multiple threads, we need to 

generate traces for each thread of each core. Many different types of information can be 

extracted from a program like the memory addresses, the registers used, etc. One popular 

approach is to record the function call information, i.e., the function enter and leave 

events along with the name and possibly the source-code location of each function. 

One tool that records function call information is VampirTrace [8]. VampirTrace 

consists of a tool set and a runtime library for instrumentation and tracing of software ap-

plications. It is particularly tailored to parallel and distributed High-Performance Compu-

ting (HPC) applications. Its instrumentation component modifies a given application by 

injecting additional measurement calls during runtime. The tracing component provides 

the actual measurement functionality used by the instrumentation calls. Through this mech-

anism, a variety of detailed performance properties can be collected and recorded at 

runtime. This includes function enter and leave events, MPI communication, OpenMP 

events, and performance counters. After a successful tracing run, VampirTrace writes all 

collected data to a trace file in the Open Trace Format (OTF). As a result, the information 

is available for post-mortem analysis and visualization by various tools. Most notably, 

VampirTrace provides the input data for the Vampir analysis and visualization tool. Trace 

files can quickly become very large, especially with automatic instrumentation.  
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Tracing applications for just a few seconds can result in trace files of several hun-

dred megabytes per core. To protect users from creating trace files of several gigabytes, 

the default behavior of VampirTrace is to limit the internal buffer to 32 MB per process. 

Thus, even for large-scale runs, the total trace file size will be moderate. Of course, this 

means that some important information may not be included in the trace file. 

Dyninst [9] is another tool that allows insertion of code into a computer applica-

tion that is either running or on disk. The API for inserting code into a running applica-

tion, called dynamic instrumentation, shares much of the same structure as the API for in-

serting code into an executable file or library, known as static instrumentation. The API 

also permits changing or removing subroutine calls from the application program. Binary 

code changes are useful to support a variety of applications, including debugging, perfor-

mance monitoring, and composing applications out of existing packages. The goal of this 

API is to provide a machine independent interface to permit the creation of tools and ap-

plications that use runtime and static code patching. 

 

3.2. Pin 

Pin [10] is a tool for the instrumentation of programs. It supports the insertion of 

arbitrary code (written in C or C++) in arbitrary places in the executable. The code is 

added dynamically while the executable is running. It is also possible to attach Pin to an 

already running process. 

Pin provides a rich API that abstracts away the underlying instruction set idiosyn-

crasies and allows context information such as register contents to be passed to the in-
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jected code as parameters. Pin automatically saves and restores the registers that are over-

written by the injected code so the application continues to work normally. Limited ac-

cess to symbol and debug information is available as well. 

Advantages of Pin [6]: 

 Easy-to-use instrumentation: Uses dynamic instrumentation, does not need source 

code, recompilation, or post-linking 

 Programmable instrumentation: Provides rich APIs to write user-defined instru-

mentation tools (called Pintools) in C/C++ 

 Multiplatform: Supports x86, x86-64, Itanium, Xscale 

OS’s: Windows, Linux, OSX, Android 

 Robust: Instruments real-life applications: Databases, web browsers, multi-

threaded applications, and supports signals 

 Efficient: Applies compiler optimizations on instrumentation code 

 

3.2.1. Tracing compression techniques 

Traces are widely used in industry and academia to study the behavior of programs 

and processors [11]. The problem is that traces from interesting applications tend to be 

very large. For example, collecting just one byte of information per executed instruction 

generates on the order of a gigabyte of data per second of CPU time on a high-end micro-

processor. Moreover, traces from many different programs are typically collected to cap-

ture a wide variety of workloads. Storing the resulting multi-gigabyte traces can be a 

challenge, even on today’s large hard disks. 
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Hamou-Lhadj and Lethbridge [12] use common subexpression elimination to 

compress procedure-call traces. The traces are represented as trees and subtrees that oc-

cur repeatedly are eliminated by noting the number of times each subtree appears in the 

place of the first occurrence. A directed acyclic graph is used to represent the order in 

which the calls occur. This method requires a preprocessing pass to remove simple loops 

and calls generated by recursive functions. One benefit of this type of compression is that 

it can highlight important information contained in the trace, thus making it easier to ana-

lyze. 

 

3.2.2 Compression algorithms 

3.2.2.1. Bzip2 

Bzip2 is a general-purpose compressor that operates at byte granularity [12]. It 

implements a variant of the block sorting algorithm described by Burrows and Wheeler 

[13]. Bzip2 [14] applies a reversible transformation to a block of inputs, uses sorting to 

group bytes with similar contexts together, and then compresses them with a Huffman 

coder. The block size is adjustable. I use the “--fast” and “--best” option. 

 

3.2.2.2. Gzip 

The deflation algorithm used by gzip [15] is a variation of LZ77. It finds dupli-

cated strings in the input data. The second occurrence of a string is replaced by a pointer 

to the previous string, in the form of a pair (distance, length). Distances are limited to 32 

kilobytes, and lengths are limited to 256 bytes. When a string does not occur anywhere in 
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the previous 32 kilobytes, it is emitted as a sequence of literal bytes. I use the “--fast” and 

“--best” option. 
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CHAPTER 4  

DESIGN AND IMPLEMENTATION 

 

This chapter describes the design of the RTC-Tracer I developed for the efficient 

function-call tracing of large-scale parallel programs. 

 

4.1. Information Recorded and Extracted 

RTC-Tracer extracts and records, for each program thread, the enter and leave 

events of each executed function, including functions in library code, from which it de-

rives the following information: 

1. Function call frequency: The number of times a particular function was in-

voked. 

2. Call edge frequency: The number of a times one function called another. 

3. The approximate call stack at every point in the program execution. 

4. The full call and return trace with corresponding function and image names. 

The first step is to read the symbol table. The symbol table records information 

such as the name and starting address of each function of a program. A symbol table may 

only exist during compilation, or it may be embedded in the executable for later exploita-

tion, for example by a debugger. 

RTC-Tracer assigns every function in the application a unique ID and instruments 

every location in the program where a function is entered or left. Moreover, for each run-

ning thread, it creates a stack data structure in which every element has two fields: one 

for the function ID and the other for holding the current stack-pointer register value. 
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Since each thread has its own runtime stack, each thread is also assigned its own ‘func-

tion’ stack. Whenever a thread enters a function, the corresponding function ID is rec-

orded in the trace and pushed onto the function stack along with the value of the stack 

pointer. Similarly, after a thread leaves a function, a special ID is recorded in the trace 

and the function stack is popped. 

 

4.2. Stack Correction 

For certain types of debugging, a consistent call stack is desired. However, due to 

function inlining combined with compiler optimizations such as code scheduling, it is not 

always possible for Pin to determine when an application leaves a function as there is no 

corresponding return instruction. As a consequence, some function leaves are not rec-

orded, resulting in inconsistent call stacks. To correct this problem as much as possible, 

RTC-Tracer compares the application’s stack pointer (SP) value to the SP value on the 

function stack whenever a function is entered or left. If the SP values are out of sync, Pin 

must have missed one or more leave events, which are then successively added to the 

trace until the function stack is consistent again. This way, the resulting trace is consistent 

with a possible runtime stack at every execution point, though it may not be completely 

precise, which is why I refer to it as an “approximate” call stack. 

. 

4.3. Compression 

Since the symbol information is the same for all running threads of an application, 

the functions names and corresponding image names are only emitted once to save space. 

The actual traces tend to be many orders of magnitude larger than the symbol information 
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and pose some major problems. First, writing them to secondary storage can severely 

slow down the system due to the large bandwidth requirement. Second, the huge amount 

of required storage space makes the traces slow to access and difficult to handle. Hence, I 

decided to compress them. 

My first idea was to generate the full trace and then compress it. However, that 

would still have required huge amounts of (temporary) storage and resulted in high band-

width requirements. The better alternative, which I implemented, is to compress the 

traces on-the-fly as they are being generated. Hence, I needed to find a compression algo-

rithm that not only compresses function call traces well but also does so very quickly so 

as not to slow down the execution of the instrumented code. 

I used a tool called CRUSHER to determine a good compression algorithm based 

on several (uncompressed) training traces I had recorded. CRUSHER reported that an LZ 

component followed by a ZE component would work well. Since my tool supports up to 

65535 unique function IDs, the trace entries are two-byte words, which are fed into the 

LZ component. Its output is interpreted as a sequence of bytes, which is fed into the ZE 

component for further compression. The output of the ZE component is stored to disk. 

The LZ component implements a variant of the LZ77 algorithm [18]. It uses a 

hash table to identify the most recent prior occurrence of the current value in the trace. 

Then it checks whether the three values immediately before that location match the three 

trace entries just before the current location. If they do not, the current trace entry is emit-

ted and the component advances to the next entry. If the three values match, the compo-

nent counts how many values following the current value match the values following that 
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location. The length of the matching substring is emitted and the component advances by 

that many values. 

The ZE component emits a bitmap in which each bit corresponds to one input 

byte. The bits indicates whether the corresponding bytes in the input are zero or not. Fol-

lowing each eight-bit bitmap, ZE emits the non-zero bytes. 

Typically, compression is used in the following way. A buffer is filled with trace 

data, and whenever the buffer is full, the data is compressed and written out. Unfortu-

nately, this approach imposes long pauses upon application threads whenever compres-

sion is invoked, which can be a problem in parallel programs where threads synchronize 

with each other. To alleviate this problem, I had to implement both of these compression 

components in an incremental way, i.e., to compress the just generated trace entry with-

out knowing the next trace entries yet. That means the current matching counter in the LZ 

component may have to either be incremented or emitted and a new count started. Simi-

larly, the current bitmap in the ZE component may have to be updated or a new bitmap 

started. 

The result section of this thesis shows that my implementation does not only com-

press the traces well but also quickly. In fact, the extra runtime to perform the compres-

sion is significantly lower than the overhead saved by not having to emitting the uncom-

pressed trace. In other words, RTC-Tracer tends to run faster with compression than 

without. 
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4.4. Trace Reader 

To read and process the compressed traces, I wrote a corresponding decompres-

sor. However, the decompressor does not have to work incrementally, so it was easier to 

implement. It simply performs the inverse operations to recreate the original trace. From 

this trace, it then computes the four types of information listed in Section 4.1. The user 

can select which type of information the trace reader should output.  
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CHAPTER 5  

EVALUATION METHOD 

 

5.1. Pin 

Pin is a tool for the binary instrumentation of programs. My RTC-Tracer tool is 

based on Pin. Pin makes it possible to insert arbitrary code (written in C or C++) in arbi-

trary places in the executable. The code is added dynamically while the executable is run-

ning. 

The best way to think about Pin is as a “just-in-time” (JIT) compiler [10]. The in-

put to this compiler is a normal executable. Pin intercepts the program execution and gen-

erates (“compiles”) new code for each straight-line code sequence it encounters and 

transfers control to the generated sequence. In JIT mode, the only code ever executed is 

the generated code. The original code is only used for reference. When generating code, 

Pin gives the user the opportunity to inject his or her own code, which is called program 

instrumentation. 

Conceptually, instrumentation consists of the following two components. 

1. A mechanism that decides where and what code to insert 

2. The code to execute at the insertion points 

These two components are referred to as instrumentation code and analysis code. 

Both components live in a single executable called a Pintool. Pintools can be thought of 

as plugins that can modify the code-generation process inside Pin. RTC-Tracer is such a 

Pintool. I am using Pin 2.14 in this thesis.  
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5.2. Benchmarks 

In this thesis, I am using the Mantevo (version 3.0) [16] miniapps created by a 

team at Sandia National Laboratories to generate traces and evaluate RTC-Tracer. Man-

tevo is a multi-faceted application performance project, with the goal to provide open 

source-software to promote informed algorithm, application, and architecture decisions in 

the HPC community. It provides application performance proxies known as miniapps. 

Miniapps combine some or all of the dominant numerical kernels contained in an actual 

stand-alone application. They include libraries wrapped in a test driver providing repre-

sentative inputs. They may also be hard-coded to solve a particular test case so as to sim-

plify the need for parsing input files and mesh descriptions. Miniapps range in scale from 

partial, performance-coupled components of the application to a simplified representation 

of a complete execution path through the application. The following subsections describe 

each miniapp in more detail. 

 

5.2.1. MiniFE 

This is a miniapp that mimics the finite element generation, assembly, and solu-

tion for an unstructured grid problem. The physical domain is a 3D box with configurable 

dimensions and a structured discretization (which is treated as unstructured). The domain 

is decomposed using a recursive coordinate bisection (RCB) approach and the elements 

are simple hexahedra. The problem is linear and the resulting matrix symmetric, so a 

standard conjugate gradient algorithm is used as solver with a general sparse matrix data 

format and no preconditioning. 
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5.2.2. MiniGhost 

MiniGhost is a finite difference mini-application that implements a difference 

stencil across a homogenous three-dimensional domain. 

 

5.2.3. MiniMD 

This is a parallel molecular dynamics (MD) simulation package written in C++ 

and intended for use on parallel supercomputers and new architectures for testing pur-

poses. MiniMD uses spatial decomposition MD, where individual processors in a cluster 

own subsets of the simulation box. 

 

5.2.4. MiniXyce 

This is a circuit simulation application. Circuit simulation is the cornerstone of the 

electrical design automation industry and is a crucial part of commercial electrical design. 

Like most circuit simulation tools, MiniXyce is based on a modified nodal analysis for-

mulation, resulting in Kirchoff Current Laws being enforced across a potentially arbitrary 

network. The resulting system of differential-algebraic equations is solved implicitly us-

ing Newton-based methods. Traditional circuit codes have almost exclusively relied upon 

direct matrix solvers, but preconditioned GMRES is the method of choice for parallel 

simulation. 

 

5.2.5. PathFinder 
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PathFinder searches for “signatures” within graphs. The graphs being searched 

are directed and cyclic. Many but not all nodes within the graph have labels. Any given 

node may have more than one label, and any label may be applied to more than one node. 

A signature is an ordered list of labels. PathFinder searches for paths between labels 

within the signature. PathFinder returns success if there is a path from a node with the 

first label in the signature that passes through nodes with each label in order, ultimately 

reaching a node with the last label in the signature. Labeled nodes need not be contiguous 

on any given path. PathFinder simply searches until a signature is satisfied or all path-

ways have been exhausted. 

 

5.2.6. TeaLeaf 

TeaLeaf is a mini-app that solves the linear heat conduction equation on a spa-

tially decomposed regular grid using a five-point stencil with implicit solvers. In 

TeaLeaf, temperatures are stored at the cell centers. A conduction coefficient is calcu-

lated that is equal to the cell centered density or the reciprocal of the density. This is then 

averaged to each face of the cell for use in the solution. Solving is carried out using an 

implicit method due to the severe time-step limitations imposed by the stability criteria of 

an explicit solution for a parabolic partial differential equation. The implicit method re-

quires the solution of a system of linear equations, which form a regular sparse matrix 

with a well-defined structure. 

 

5.2.7. HPCCG 
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HPCCG is similar to MiniFE but generates a synthetic linear system. The focus is 

entirely on the sparse iterative solver. 

 

5.2.8. MiniSMAC2D 

This mini-application solves the finite-difference 2D incompressible Navier-

Stokes equations with the Spalart-Allmaras one-equation turbulence model on a struc-

tured body-conforming grid. The grid is partitioned into subgrids that are load balanced 

for the number of MPI ranks requested by the user. Subgrids overlap by one grid point 

for point-to-point boundary communication. MiniSMAC2D currently features implicit 

line and symmetric Gauss-Seidel relaxation algorithms. As a test case, input files are in-

cluded for a C-grid around a NACA 4412 airfoil at various angles of attack. 

 

5.2.9. CoMD 

This is an extensible molecular dynamics proxy applications suite featuring the 

Lennard-Jones potential and the Embedded Atom Method potential. 

 

5.3. Configuration 

 For all tested MPI applications, traces are generated for 2, 4, 8, 16, 32 and 64 

nodes, i.e., 32, 64, 128, 256, 512 and 1024 cores, respectively. For the OpenMP applica-

tions, traces are generated on one node with 16 cores and 2, 4, 8, 16 and 32 threads. The 

traces are compressed using the algorithm described in Chapter 4 before they are stored 

to disk. For comparison purposes, the resulting traces are decompressed and the gzip --
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fast, gzip --best, bzip --fast, and bzip --best algorithms are applied to them. All the exper-

iments were conducted on the Stampede system at TACC [17]. Stampede has two 8-core 

Xeon E5 processors per node running at 2.7 GHz clock frequency. There are a total of 

6400 nodes, each with a 32 GB of main memory. The compilers used for the experiments 

are mvapich2 2.1 for MPI codes and gcc 4.9.1 for OpenMP applications. In both cases, I 

used the –O3 compiler flag.  
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CHAPTER 6  

RESULTS 

 

The following subsections show the main results of the experiments I conducted. 

First, I investigate the overhead introduced by my RTC-Tracer tool. Second, I study the 

overhead of employing on-the-fly compression. Third, I evaluate the resulting compres-

sion ratio and compare it to the standard compression algorithms gzip and bzip2. Fourth, 

I study the compression speed. Finally, I examine the required trace-data bandwidth. 

 

6.1. Relative runtime 

This subsection investigates the overhead incurred by RTC-Tracer when tracing 

function calls and returns and performing on-the-fly trace compression. The overhead is 

computed by dividing the runtime of the Pin instrumented application by the runtime of 

normal execution of the application with the same input. Figure 3 shows the results for 

different core counts. It lists the various applications along the x-axis as well as the aver-

age overhead. The y-axis represents the overhead. Values above 1.0 indicate a slowdown 

due to the tracing. I conducted experiments with 32, 64, 128, 256, 512 and 1024 cores for 

the MPI applications and with 2, 4, 8, 16, 32, and 64 threads for the OpenMP applica-

tions. 
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Figure 3: Runtime overhead of RTC-Tracer (pathfinder and HPCCG uses 

lesser cores than indicated) 

 

These results highlight two key aspects of RTC-Tracer. First, the overhead is 

quite low. I found no application or core count for which it exceeded a five-fold slow-

down. On average, the overhead is only about a factor of two, meaning that the applica-

tions run twice as long with full tracing than they do without any tracing. Second, and 

equally importantly, the overhead stays roughly the same as the applications are scaled to 

larger core/thread counts. In fact, the overhead seems to decrease slightly at larger 

core/thread counts. This demonstrates that my approach is scalable and will probably also 

work at even larger scales than what I was able to test. 

HPCCG is missing the green bar as this application does not run with 64 threads. 

The overhead of the TeaLeaf application is below one, indicating that the run with the 

tracing turned on was faster than the run without tracing. I can only surmise that TeaLeaf 
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is probably a nondeterministic application whose runtime depends on the timing of its 

threads, which the tracing modifies, as it is unrealistic to achieve a speedup by tracing an 

application. 

 

6.2. Relative runtime of RTC-Tracer with and without compression 

 This subsection investigates the effect of the on-the-fly compression implemented 

in the RTC-Tracer by comparing the runtime of the RTC-Tracer with and without com-

pression. Figures 4 and 5 shows the runtime without compression divided by the runtime 

with compression turned on. Numbers above 1.0 mean that the version without compres-

sion is slower. 

 

 

Figure 4: Relative runtimes of RTC-Tracer without compression for 32 cores 

(pathfinder and HPCCG uses lesser cores than indicated) 
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Figure 5: Relative runtimes of RTC-Tracer without compression for 128 

cores (pathfinder and HPCCG uses lesser cores than indicated) 

 

Interestingly, for most of the tested applications, RTC-Tracer incurs a lower over-

head when compression is turned on. This result seems counterintuitive as the compres-

sion takes time to perform. However, the resulting data footprint is so much smaller that 

fewer calls to write out trace data need to be executed and the required memory and disk 

bandwidths are much lower, resulting in a net benefit. In other words, RTC-Tracer is of-

ten faster with compression than without. 

With 32 cores, there are three applications that can be traced faster without com-

pression. However, with 128 cores, only one of those application programs is still faster 

without compression. All other applications run faster with trace compression enabled. 

This again indicates that RTC-Tracer scales well and will likely also perform well on 

larger core counts than I tested. 
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6.3. Compression ratio 

This subsection investigates the compression ratio achieved by the customized 

compression algorithm used in RTC-Tracer and compares it with the compression ratios 

of standard compression algorithms applied to the decompressed traces. The compression 

ratios in Figures 6 and 7 are the compressed trace size divided by the uncompressed trace 

size. 

 

 

Figure 6: Compression ratio for traces generated with 32 cores (pathfinder 

and HPCCG uses lesser cores than indicated) 
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Figure 7: Compression ratio for traces generated with 128 cores (pathfinder 

and HPCCG uses lesser cores than indicated) 

 

Figures 6 and 7 show that, in many cases, the algorithm in the RTC-Tracer com-

presses better than gzip --fast. Only bzip2 --best consistently outperforms it. The com-

pression ratios are very stable between 32 cores and 128 cores. On average, the RTC-

Tracer compresses the traces by over a factor of 100. Gzip --best, bzip2 --fast and bzip2 -

-best have a better average compression ratio than RTC-Tracer. However, RTC-Tracer 

outperforms gzip --best and even bzip2 --fast on quite a few programs. It just compresses 

two programs’ traces relatively poorly, which is why its average is not better. The com-

pressed trace sizes for gzip --fast, gzip --best, bzip --fast and bzip --best are listed in the 

appendix. Overall, the utilized compression algorithm performs well, especially given 

that it performs incremental on-the-fly compression that needs to be very fast. 
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6.4. Compression speed comparison 

In this subsection, the runtime of gzip --fast, gzip --best, bzip2 --fast and bzip2 --

best are compared with the runtime of RTC-Tracer. In the following four figures, the y-

axes represent the runtime of these compression algorithms relative to the runtime of 

RTC-Tracer, which includes the runtime of the actual application. Results above 1.0 indi-

cate that the RTC-Tracer runs faster than the compression tools. 

 

 

Figure 8: Execution time comparison of gzip --fast with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated) 
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Figure 9: Execution time comparison of gzip --best with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated) 

 

 

 

 

 
Figure 10: Execution time comparison of bzip2 --fast with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated) 
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Figure 11: Execution time comparison of bzip2 --best with respect to RTC-

Tracer (pathfinder and HPCCG uses lesser cores than indicated) 

 

The two general-purpose compressors running in either mode, but especially in 

the --best mode, are much slower than RTC-Tracer, which compresses the traces nearly 

as well. This is especially surprising since the RTC-Tracer running time includes the ap-

plication execution time. Moreover, the runtime advantage of RTC-Tracer clearly in-

creases for larger core counts. The reason for this is that bzip2 and gzip are serial imple-

mentations whereas RTC-Tracer naturally runs in parallel as each application thread 

compresses its own trace concurrently with the work performed by the other threads. 
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more than a few seconds. Moreover, the data would flood the network and/or disk sys-

tem, which potentially slows down the application and places a great burden on the com-

munication subsystem. 

This subsection shows the bandwidth required with RTC-Tracer, which com-

presses the data before they are even written to memory or disk or sent over the network. 

Table 1 lists the bandwidth per core for RTC-Tracer. The values are in kilobytes per sec-

ond (per core). 

 

Miniapps 32 cores 64 cores 128 cores 

miniFE 9.2 9.2 8.2 

miniGhost 3.6 3.5 3.7 

miniMD 15.1 13.9 15.5 

miniSmacd 31.5 39.7 27.9 

Tealeaf 24.1 18.1 22.7 

miniAMR 13.6 15.5 12.7 

CoMD 94.9 87.7 104.0 

miniXyce 6.6 7.3 8.2 

Pathfinder 1.4 0.9 0.5 

HPCCG 2.6 1.4 0.7 

Average 20.26 19.72 20.41 

Table 1: Bandwidth required for compressed traces per core for RTC-Tracer  

 

As the table shows, the required bandwidth is quite low, ranging from less than a 

kilobyte per second to just over 100 kilobytes per second, with an average of about 20 

kilobytes per second. These bandwidths are just a small fraction of what a modern disk or 
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network interface can handle, meaning that tracing with my tool should not significantly 

impact the communication subsystem. Note also that the bandwidth per core remains 

nearly constant as we scale the application to more cores and compute nodes, which 

again indicates that my approach scales well. 
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CHAPTER 7 

SUMMARY 

 

7.1. Summary 

 This thesis presents a new function-call tracing tool called RTC-Tracer for large-

scale parallel systems that records the function enter and function leave events of every 

thread of every core. The new tool scales well to more than 1000 cores and has an aver-

age overhead in the range of 1.73 to 2.31, which remains approximately constant when 

scaling to larger core counts. It incorporates a customized compression algorithm that 

compresses the trace data by over a factor of 100 on average. In fact, it not only com-

presses about as well as standard compression algorithms but also compresses the data 

much more quickly, making on-the-fly compression possible. The resulting amount of 

bandwidth required per core is in the range of less than a kilobyte per second to a hun-

dred kilobytes per second, which is low compared to today’s disk and network through-

puts. To the best of my knowledge, RTC-Tracer is the first tracing tool that combines a 

low overhead in terms of runtime with a low overhead in terms of emitted data and exhib-

its excellent scaling. 

  

7.2. Future Work 

Based on the results of this work, future work aims at using RTC-Tracer on 

higher core counts to check its true scalability, testing it on different systems, and, of 

course, using the resulting traces for various purposes like debugging or performance 

analysis of large-scale parallel programs. 



 

37 

APPENDIX SECTION 

 

This section lists all the raw performance data for all tested configurations. 

Miniapps RTC-Tracer Decom-

pressed file 

 gzipfast  gzipbest  bzipfast bzipbest 

miniFE 4060452 1702179508 17211201 6381210 3605361 1420826 

miniGhost 4617202 14105059920 110231840 45395407 23524998 4528823 

miniMD 7487896 1342433816 
 

16693130 6464096 4675068 2077442 

miniSmacd 17570100 
 

5916002724 68771205 26224771 18153318 4191933 

Tealeaf 11613895 2222591456 32018729 12425011 10237816 2997136 

miniAMR 7684711 4288048804 36228099 14389242 8689694 2293252 

CoMD 2101428618 56545850496 1029625461 232393485 82701014 27184562 

miniXyce 3793692 963204800 10965942 4787497 3150104 1353497 

Pathfinder 390096 7845440 
 

368352 147040 128304 103568 

HPCCG 2615736 753430804 8730953 3480891 1982573 777832 

Table A.1 File sizes (in bytes) of the traces generated with 32 cores 

 

 

 

Miniapps RTC-Tracer Decompressed 

file 

 gzipfast  gzipbest  bzipfast bzipbest 

miniFE 8358821 
 

3467578944 35499232 13179877 7584649 2927496 

miniGhost 9568519 29316227444 230384205 95039180 49182783 9532335 

miniMD 15140005 2700342976 33940324 13270296 9652504 4184308 

miniSmacd 38998749 16010404908 191742728 76534248 50798774 12252671 

Tealeaf 19341202 4474861812 59476525 23396842 17289159 5135695 

miniAMR 18339586 9785843192 86730321 34323459 21844614 5802774 

CoMD 2094958941 100501551340 1409089619 388440433 140285220 33332916 

miniXyce 7782203 2052089784 23346313 10164924 6674089 2803875 

Pathfinder 395952 5797364 309041 134091 118252 104135 

HPCCG 2662072 
 

811550556 9662076 4037472 2295976 856195 

Table A.2 File sizes (in bytes) of the traces generated with 64 cores 
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Miniapps RTC-

Tracer 

Decompressed 

file 

 gzipfast  gzipbest  bzipfast bzipbest 

miniFE 17719457 
 

8220005312 83203337 31571744 17920258 6684864 

miniGhost 20312355 62054408644 499806741 202844746 107700620 21780294 

miniMD 30009160 6816874740 83364532 34247521 23955113 9489038 

miniSmacd 88117610 66553655080 711388720 281290931 165305981 36911657 

Tealeaf 44958065 10201349540 136010658 54564918 39769487 11734322 

miniAMR 43314004 25746905440 231124441 92318920 55548638 15127955 

CoMD 259977767 89013890004 1501012314 396956398 152909753 52801774 

miniXyce 15918271 4783886664 52061240 22859222 14456730 5934702 

Pathfinder 390096 7845440 368352 147040 128304 103568 

HPCCG 2708323 849278788 10322036 4359806 2599995 937213 

Table A.3 File sizes (in bytes) of the traces generated with 128 cores 
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