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POSITIVE SOLUTIONS OF FOUR-POINT BOUNDARY-VALUE
PROBLEMS FOR HIGHER-ORDER WITH p-LAPLACIAN

OPERATOR

YUNMING ZHOU, HUA SU

Abstract. In this paper, we study the existence of positive solutions for non-

linear four-point singular boundary-value problems for higher-order equation

with the p-Laplacian operator. Using the fixed-point index theory, we find
conditions for the existence of one solution, and of multiple solutions.

1. Introduction

In this paper, we study the quasi-linear equation, with p-Laplacian operator,

(φp(u(n−1)))′ + g(t)f(u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1, (1.1)

subject to the boundary conditions

u(i)(0) = 0 0 ≤ i ≤ n− 3,

u(n−2)(0)−B0(u(n−1)(ξ)) = 0 n ≥ 3,

u(n−2)(1) + B1(u(n−1)(η)) = 0 n ≥ 3,

(1.2)

where φp(s) is the p-Laplacian operator; i.e., φp(s) = |s|p−2s, p > 1, φq = φ−1
p ,

1
p + 1

q = 1. ξ, η ∈ (0, 1) is prescribed and ξ < η, g : (0, 1) → [0,∞), B0, B1 are both
nondecreasing continuous odd functions defined on (−∞,+∞).

In recent years, the existence of positive solutions for nonlinear boundary-value
problems with p-Laplacian operator received wide attention. Recently, for the ex-
istence of positive solutions of multi-points boundary-value problems for second-
order ordinary differential equation, some authors have obtained the existence re-
sults [3, 1, 2, 4, 8]. However, the multi-points boundary-value problems treated
in the above mentioned references do not discuss the problems with singularities
and the higher-order p-Laplacian operator. For the singular case of multi-point
boundary-value problems for higher-order p-Laplacian operator, with the author’s
acknowledge, no one has studied the existence of positive solutions in this case.
Therefore this paper mainly studies the existence of positive solutions for nonlinear
singular boundary-value problem (1.1), (1.2).
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In this paper, by constructing an integral equation which is equivalent to the
problem (1.1), (1.2), we research the existence of positive solutions when g and f
satisfy some suitable conditions.

For the rest of this paper, we make the following assumptions:

(H1) f ∈ C([0,+∞)n−1, [0,+∞));
(H2) g : (0, 1) → [0,+∞) and 0 <

∫ 1

0
g(t)dt < ∞;

(H3) B0, B1 are both increasing, continuous, odd functions defined on (−∞,+∞)
and at least one of them satisfies the condition that there exists one b > 0
such that

0 < Bi(v) ≤ bv, ∀v ≥ 0, i = 0, or i = 1.

It is easy to check that condition (H2) implies

0 <

∫ 1

0

φq(
∫ s

0

g(s1)ds1)ds < +∞.

This paper is organized as follows. In section 2, we present some preliminaries
and lemmas that will be used to prove our main results. In section 3, we discuss
the existence of single solution of the systems (1.1). In section 4, we study the
existence of at least two solutions of the systems (1.1). In section 5, we give two
examples as an application.

2. Preliminaries and Lemmas

Let
B =

{
u ∈ Cn−2[0, 1] : u(i)(0) = 0, 0 ≤ i ≤ n− 3

}
.

Then B is a Banach space with the norm ‖u‖ = maxt∈[0,1] |u(n−2)(t)|. And let

K =
{
u ∈ B : u(n−2)(t) ≥ 0, u(n−2)(t) is concave function, t ∈ [0, 1]

}
.

Obviously, K is a cone in B and 0 ≤ u(i)(t) ≤ ‖u‖ on [0, 1]. Set Kr = {u ∈ K :
‖u‖ ≤ r}. We can easily get the following Lemmas.

Lemma 2.1. Suppose condition (H2) holds. Then there exists a constant θ ∈
(0, 1/2) that satisfies

0 <

∫ 1−θ

θ

g(t)dt < ∞.

Furthermore, the function

A(t) =
∫ t

θ

φq

( ∫ t

s

g(s1)ds1

)
ds +

∫ 1−θ

t

φq

( ∫ s

t

g(s1)ds1

)
ds, t ∈ [θ, 1− θ]

is positive continuous function on [θ, 1−θ], therefore A(t) has minimum on [θ, 1−θ].
Hence we suppose that there exists L > 0 such that A ≥ L, t ∈ [θ, 1− θ].

Lemma 2.2. Let u ∈ K and θ ∈ (0, 1/2) in Lemma 2.1. Then

u(n−2)(t) ≥ θ‖u‖, t ∈ [θ, 1− θ].

The proof of the above lemma is similar to the proof of in [9, Lemma 2.2], so we
omit it.
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Lemma 2.3. Suppose that conditions (H1)–(H3) hold. Then u(t) ∈ K∩Cn−1(0, 1)
is a solution of boundary-value problem (1.1), (1.2) if and only if u(t) ∈ B is a
solution of the integral equation

u(t) =
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

w(sn−2)dsn−2dsn−3 . . . ds1,

where

w(t) =


B0 ◦ φq

( ∫ δ

ξ
g(s)f(u(s), u′(s), . . . , u(n−2)(s))ds

)
+

∫ t

0
φq

( ∫ δ

s
g(r)f(u(r), u′(r), . . . , u(n−2)(r))dr

)
ds 0 ≤ t ≤ δ,

B1 ◦ φq

( ∫ η

δ
g(s)f(u(s), u′(s), . . . , u(n−2)(s))ds

)
+

∫ 1

t
φq

( ∫ s

δ
g(r)f(u(r), u′(r), . . . , u(n−2)(r))dr

)
)ds δ ≤ t ≤ 1.

(2.1)

Here δ is unique solution of the equation g1(t) = g2(t), where

g1(t) = B0 ◦ φq

( ∫ η

δ

g(s)f(u(s), u′(s), . . . , u(n−2)(s))ds
)

+
∫ 1

t

φq

( ∫ s

δ

g(r)f(u(r), u′(r), . . . , u(n−2)(r))dr
)
ds,

g2(t) = B1 ◦ φq(
∫ η

δ

g(s)f(u(s), u′(s), . . . , u(n−2)(s))ds)

+
∫ 1

t

φq(
∫ s

δ

g(r)f(u(r), u′(r), . . . , u(n−2)(r))dr)ds.

The equation g1(t) = g2(t) has unique solution in (0, 1) because g1(t) is strictly
increasing on [0, 1), and g1(0) = 0, while g2(t) is strictly decreasing on (0, 1], and
g2(1) = 0.

Proof. Necessity. By the equation of the boundary condition and (H3), we have
u(n−1)(ξ) ≥ 0, u(n−1)(η) ≤ 0, then there exist a constant δ ∈ [ξ, η] ⊂ (0, 1) such
that u(n−1)(δ) = 0. Firstly, by integrating the equation of the problems (1.1) on
(δ, t), we have

φp(u(n−1)(t)) = φp(u(n−1)(δ))−
∫ t

δ

g(s)f
(
u(s), u′(s), . . . , u(n−2)(s)

)
ds,

then

u(n−1)(t) = −φq

( ∫ t

δ

g(s)f
(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
, (2.2)

thus

u(n−2)(t) = u(n−2)(δ)−
∫ t

δ

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds. (2.3)

By u(n−1)(δ) = 0 and condition (1.2), letting t = η on (2.2), we have

u(n−2)(1) = −B1

(
u(n−1)(η)

)
= B1 ◦ φq

( ∫ η

δ

g(s)f
(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
.
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Then by (2.3), we have

u(n−2)(δ) = B1 ◦ φq

( ∫ η

δ

g(s)f
(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
)

+
∫ 1

δ

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds.

(2.4)

Then

u(n−2)(t) = B1 ◦ φq

( ∫ η

δ

g(s)f
(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
+

∫ 1

t

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds.

(2.5)

Integrating (2.5) for n− 2 times on (0, t), we have

u(t) =
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

B1 ◦ φq

( ∫ η

δ

g(s)f
(
u(s), u′(s),

. . . , u(n−2)(s)
)
ds

)
dssn−2 . . . ds2 ds1

+
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

(
∫ 1

sn−2

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r),

. . . , u(n−2)(r)
)
dr

)
ds)dssn−2 . . . ds2 ds1.

Similarly, for t ∈ (0, δ), integrating problems (1.1) on (0, δ), we have

u(t) =
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

B0 ◦ φq

( ∫ δ

ξ

g(s)f
(
u(s), u′(s),

. . . , u(n−2)(s)
)
ds

)
dssn−2 . . . ds2 ds1

+
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

(
∫ sn−2

0

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r),

. . . , u(n−2)(r)
)
dr

)
ds)dssn−2 . . . ds2 ds1.

Therefore, for any t ∈ [0, 1], u(t) can be expressed as

u(t) =
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

w(sn−2)dsn−2dsn−3 . . . ds1,

where w(t) is expressed as (2.1).
Sufficiency. Suppose that u(t) =

∫ t

0

∫ s1

0
. . .

∫ sn−3

0
w(sn−2)dsn−2dsn−3 . . . ds1.

Then by (2.1), we have

u(n−1)(t) =

φq

( ∫ δ

t
g(s)f

(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
ds ≥ 0, 0 ≤ t < δ,

−φq

( ∫ t

δ
g(s)f

(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
ds ≤ 0, δ < t ≤ 1,

(2.6)
So that (φp(u(n−1)))′+ g(t)f(u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1, t 6= δ. These
imply that (1.1) holds. Furthermore, by letting t = 0 and t = 1 on (2.1) and (2.6),
we obtain the boundary-value equations of (1.2). The proof is complete. �
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Now, we define a mapping T : K → Cn−1[0, 1] given by

(Tu)(t) =
∫ t

0

∫ s1

0

. . .

∫ sn−3

0

w(sn−2)dsn−2dsn−3 . . . ds1,

where w(t) is given by (2.1).

Lemma 2.4. Suppose that conditions (H1), (H2) hold. Then the solution u(t) ∈ K
of (1.1), (1.2) satisfies

u(t) ≤ u′(t) ≤ · · · ≤ u(n−3)(t), t ∈ [0, 1],

and for θ ∈ (0, 1/2) in Lemma 2.1, we have

u(n−3)(t) ≤ 1
θ
u(n−2)(t), t ∈ [θ, 1− θ].

Proof. If u(t) is the solution of problem (1.1), (1.2), then u(n−2)(t) is concave
function, and u(i)(t) ≥ 0, i = 0, 1, . . . , n− 2, t ∈ [0, 1], Thus we have

u(i)(t) =
∫ t

0

u(i+1)(s)ds ≤ tu(i+1)(t) ≤ u(i+1)(t), i = 0, 1, . . . , n− 4,

i.e., u(t) ≤ u′(t) ≤ · · · ≤ u(n−3)(t), t ∈ [0, 1]. Next, by Lemma 2.2, for t ∈ [θ, 1− θ],
we have u(n−2)(t) ≥ θ‖u(n−2)‖. Then from

u(n−3)(t) =
∫ t

0

u(n−2)(s)ds ≤ ‖u(n−2)‖,

we have
u(n−3)(t) ≤ 1

θ
u(n−2)(t), t ∈ [θ, 1− θ].

The proof is complete. �

Lemma 2.5. The operator T : K → K is completely continuous.

Proof. Because

(Tu)(n−1)(t)

= w′(t) =

φq

( ∫ δ

t
g(s)f

(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
≥ 0 0 ≤ t ≤ δ,

−φq

( ∫ t

δ
g(s)f

(
u(s), u′(s), . . . , u(n−2)(s)

)
ds

)
≤ 0 δ ≤ t ≤ 1,

is continuous, decreasing on [0, 1] and satisfies (Tu)(n−1)(δ) = 0. Then, Tu ∈ K for
each u ∈ K and (Tu)(n−2)(δ) = maxt∈[0,1](Tu)(n−2)(t). This shows that TK ⊂ K.
Furthermore, it is easy to check by Arzela-ascoli Theorem that T : K → K is
completely continuous. �

Obviously, we can obtain the following results,

w(0)−B0w
′(ξ) = 0, w(1) + B1w

′(η) = 0.

Our main tool of this paper is the following fixed point index theorem.

Theorem 2.6 ([5, 6]). Suppose E is a real Banach space and K ⊂ E is a cone. Let
Ωr = {u ∈ K : ‖u‖ ≤ r}, and the operator T : Ωr → K be completely continuous
and satisfy Tx 6= x for all x ∈ ∂Ωr. Then

(i) If ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ωr, then i(T,Ωr,K) = 1;
(ii) If ‖Tx‖ ≥ ‖x‖ for all x ∈ ∂Ωr, then i(T,Ωr,K) = 0.
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For convenience, we set

θ∗ =
2
L

, θ∗ =
1

(b + 1)φq

( ∫ 1

0
g(r)dr

) .

where L is the constant in Lemma 2.1. By Lemma 2.4, we can also set

f0 = lim
un−1→0

max
0≤u1≤···≤un−2≤un−1/θ

f(u1, u2, . . . , un−1)
(un−1)p−1

,

f∞ = lim
un−1→∞

min
0≤u1≤···≤un−2≤un−1/θ

f(u1, u2, . . . , un−1)
(un−1)p−1

,

f0 = lim
un−1→0

min
0≤u1≤···≤un−2≤un−1/θ

f(u1, u2, . . . , un−1)
(un−1)p−1

,

f∞ = lim
un−1→∞

max
0≤u1≤···≤un−2≤un−1/θ

f(u1, u2, . . . , un−1)
(un−1)p−1

.

3. Existence of Positive Solutions

In this section, we present our main results.

Theorem 3.1. Suppose that condition (H1)–(H3) hold. Assume that f also satis-
fies

(A1) f(u1, u2, . . . , un−1) ≥ (mr)p−1 for θr ≤ un−1 ≤ r, 0 ≤ u1 ≤ · · · ≤ un−2 ≤
un−1/θ;

(A2) f(u1, u2, . . . , un−1) ≤ (MR)p−1 for 0 ≤ un−1 ≤ R, 0 ≤ u1 ≤ · · · ≤ un−2 ≤
un−1/θ, where m ∈ (θ∗,∞),M ∈ (0, θ∗).

Then the boundary-value problem (1.1), (1.2) has a solution u such that ‖u‖ lies
between r and R.

Theorem 3.2. Suppose that condition (H1)–(H3) hold. Assume that f also satis-
fies

(A3) f0 = ϕ ∈ [0, (θ∗/4)p−1);
(A4) f∞ = λ ∈ (2θ∗/θ)p−1,∞).

Then the boundary-value problem (1.1), (1.2) has a solution u which is bounded in
the norm ‖ · ‖.
Theorem 3.3. Suppose that condition (H1)–(H3) hold. Assume that f also satis-
fies

(A5) f∞ = λ ∈ [0, (θ∗/4)p−1);
(A6) f0 = ϕ ∈ ((2θ∗/θ)p−1,∞).

Then the boundary-value problem (1.1), (1.2) has a solution u which is bounded in
the norm ‖ · ‖.
Proof of Theorem 3.1. Without loss of generality, we suppose that r < R and 0 <
B0(v) ≤ bv for all v ≥ 0. For any u ∈ K, by Lemma 2.2, we have

u(n−2)(t) ≥ θ‖u‖, t ∈ [θ, 1− θ]. (3.1)

We define the following two open subset of E:

Ω1 = {u ∈ K : ‖u‖ < r}, Ω2 = {u ∈ K : ‖u‖ < R}.
For each u ∈ ∂Ω1, by (3.1) we have

r = ‖u‖ ≥ u(n−2)(t) ≥ θ‖u‖ = θr, t ∈ [θ, 1− θ].
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For t ∈ [θ, 1− θ] and u ∈ ∂Ω1, we shall discuss it from three perspectives.
(i) If δ ∈ [θ, 1− θ], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.3, we have

2‖Tu‖ = 2(Tu)(n−2)(δ)

≥
∫ δ

0

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

+
∫ 1

δ

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≥
∫ δ

θ

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

+
∫ 1−θ

δ

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≥ mrA(δ) ≥ mrL

> 2r = 2‖u‖.

(ii) If δ ∈ (1− θ, 1], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.3, we have

‖Tu‖ = (Tu)(n−2)(δ)

≥ B0 ◦ φq

( ∫ δ

ξ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+

∫ δ

0

φq(
∫ δ

s

g(r)f(u(r), u′(r), . . . , u(n−2)(r))dr)ds

≥
∫ 1−θ

θ

φq

( ∫ 1−θ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≥ mrA(1− θ) ≥ mrL

> 2r > r = ‖u‖.

(iii) If δ ∈ (0, θ), thus for u ∈ ∂Ω1, by (A1) and Lemma 2.3, we have

‖Tu‖ = (Tu)(n−2)(δ)

≥ B1 ◦ φq

( ∫ η

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+

∫ 1

δ

φq

( ∫ s

δ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≥
∫ 1−θ

θ

φq

( ∫ s

θ

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≥ mrA(θ) ≥ mrL

> 2r > r = ‖u‖.

Therefore, under all condition, we have ‖Tu‖ > ‖u‖ for all u ∈ ∂Ω1. Then by
Theorem 2.6,

i(T,Ω1,K) = 0. (3.2)
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On the other hand, for u ∈ ∂Ω2, we have u(n−2)(t) ≤ ‖u‖ = R, by (A2),

‖Tu‖ = (Tu)(n−2)(δ)

≤ B0 ◦ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+

∫ 1

0

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≤ bMRφq

( ∫ 1

0

g(r)dr
)

+ MRφq

( ∫ 1

0

g(r)dr
)

= (b + 1)MRφq

( ∫ 1

0

g(r)dr
)

≤ R = ‖u‖.

Thus ‖Tu‖ < ‖u‖ for all u ∈ ∂Ω2. Then by Theorem 3.1, we have

i(T,Ω2,K) = 1. (3.3)

Therefore, by (3.2), (3.3), r < R we have

i(T,Ω2 \ Ω1,K) = 1.

Then operator T has a fixed point u ∈ (Ω2 \Ω1) and r ≤ ‖u‖ ≤ R. This completes
the proof �

Proof of Theorem 3.2. First, from f0 = ϕ ∈ [0, (θ∗/4)p−1), for ε = (θ∗/4)p−1 − ϕ,
there exists an appropriately small positive number ρ, such that 0 ≤ un−1 ≤ ρ.
Since un−1 6= 0, we have

f(u1, u2, . . . , un−1) ≤ (ϕ + ε)(un−1)p−1 ≤ (θ∗/4)p−1ρp−1 = (θ∗ρ/4)p−1. (3.4)

Then let R = ρ, M = θ∗
4 ∈ (0, θ∗), thus by (3.4)

f(u1, u2, . . . , un−1) ≤ (MR)p−1,

0 ≤ un−1 ≤ R, 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ.

So condition (A2) holds.
Next, by condition (A4), f∞ = λ ∈ ((2θ∗/θ)p−1,∞), then for ε = λ−(2θ∗/θ)p−1,

there exists an adequately big positive number r 6= R, such that un−1 ≥ θr, 0 ≤
u1 ≤ · · · ≤ un−2 ≤ un−1/θ, we have

f(u1, u2, . . . , un−1) ≥ (λ− ε)(un−1)p−1 ≥ (2θ∗/θ)p−1(θr)p−1 = (2θ∗r)p−1, (3.5)

Let m = 2θ∗ > θ∗, thus by (3.5), condition (A1) holds. Therefore by Theorem 3.1
we know that the results of Theorem 3.2 hold. The proof is complete. �

Proof of Theorem 3.3. First, by condition (A6), f0 = ϕ ∈ ((2θ∗/θ)p−1,∞), then
for ε = ϕ− (2θ∗/θ)p−1, there exists an appropriately small positive number r, such
that 0 ≤ un−1 ≤ r, un−1 6= 0, we have

f(u1, u2, . . . , un−1) ≥ (ϕ− ε)(un−1)p−1 = (2θ∗/θ)p−1(un−1)p−1,

thus when θr ≤ un−1 ≤ r, we have

f(u1, u2, . . . , un−1) ≥ (2θ∗/θ)p−1(θr)p−1 = (2θ∗r)p−1. (3.6)

Let m = 2θ∗ > θ∗, so by (3.6), condition (A1) holds.
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Next, by condition (A5): f∞ = λ ∈ [0, (θ∗/4)p−1), then for ε = (θ∗/4)p−1 − λ,
there exists an suitably big positive number ρ 6= r, such that un−1 ≥ ρ, we have

f(u1, u2, . . . , un−1) ≤ (λ + ε)(un−1)p−1 ≤ (θ∗/4)p−1(un−1)p−1. (3.7)

If f is unbounded, by the continuation of f on [0,∞)n−1, then exists constant
R ≥ ρ, R 6= r, and a point (u01, u02, . . . , u0(n−1)) ∈ [0,∞)n−1 such that

ρ ≤ u0(n−1) ≤ R

and
f(u1, u2, . . . , un−1) ≤ f(u01, u02, . . . , u0(n−1)), 0 ≤ un−1 ≤ R.

Thus, by ρ ≤ u0(n−1) ≤ R, we know

f(u1, u2, . . . , un−1) ≤ f(u01, u02, . . . , u0(n−1))

≤ (θ∗/4)p−1(u0(n−1))p−1

≤ (θ∗R/4)p−1.

Choose M = θ∗
4 ∈ (0, θ∗). Then, we have

f(u1, u2, . . . , un−1) ≤ (MR)p−1,

0 ≤ un−1 ≤ R, 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ.

If f is bounded, we suppose f(u1, u2, . . . , un−1) ≤ M
p−1

, un−1 ∈ [0,∞), M
p−1 ∈

R+, there exists an adequately big positive number R > 4M/θ∗, then choose M =
θ∗/4 ∈ (0, θ∗), for 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ, we have

f(u1, u2, . . . , un−1) ≤ M
p−1 ≤ (θ∗R/4)p−1 = (MR)p−1, 0 ≤ un−1 ≤ R

Therefore, condition (A2) holds. Therefore, by Theorem 3.1, we know that the
results of Theorem 3.3 holds. The proof is complete. �

4. Existence of Many Positive Solutions

Next, we discuss the existence of many positive solutions.

Theorem 4.1. Suppose that conditions (H1)–(H3) and (A2) hold. Assume that f
also satisfies

(A7) f0 = +∞;
(A8) f∞ = +∞.

Then the boundary-value problem (1.1), (1.2) has at least two solutions u1, u2 such
that

0 < ‖u1‖ < R < ‖u2‖.

Proof. First, by condition (A7), for any M > 2
θL , there exists a constant ρ∗ ∈ (0, R)

such that
f(u1, u2, . . . , un−1) ≥ (Mun−1)p−1,

0 < un−1 ≤ ρ∗, 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ.
(4.1)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ . By (4.1) and Lemma 2.2, similar
to the proof of Theorem 3.1, we have from the three perspectives,

‖Tu‖ ≥ ‖u‖, ∀ u ∈ ∂Ωρ∗ .

Then by Theorem 2.6, we have

i(T,Ωρ∗ ,K) = 0. (4.2)



10 Y. ZHOU, H. SU EJDE-2007/05

Next, by condition (A8), for any M > 2
θL , there exists a constant ρ0 > 0 such that

f(u1, u2, . . . , un−1) ≥ (Mun−1)p−1,

un−1 > ρ0, 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ.
(4.3)

We choose a constant ρ∗ > max{R, ρ0
θ }, obviously ρ∗ < R < ρ∗. Set Ωρ∗ = {u ∈

K : ‖u‖ < ρ∗}. For any u ∈ ∂Ωρ∗ , by Lemma 2.2, we have

u(n−2)(t) ≥ θ‖u‖ = θρ∗ > ρ0, t ∈ [θ, 1− θ].

Then by (4.3) and also similar to the proof of Theorem 3.1, we have from the three
perspectives,

‖Tu‖ ≥ ‖u‖ ∀u ∈ ∂Ωρ∗ .

Then by Theorem 2.6, we have

i(T,Ωρ∗ ,K) = 0. (4.4)

Finally, set ΩR = {u ∈ K : ‖u‖ < R}, For each u ∈ ∂ΩR, by (A2), Lemma 2.2 and
also similar to the proof of Theorem 3.1, we can also have

‖Tu‖ ≤ ‖u‖ ∀u ∈ ∂ΩR.

Then by Theorem 2.6, we have

i(T,ΩR,K) = 1. (4.5)

Therefore, by (4.2), (4.4), (4.5), ρ∗ < R < ρ∗ we have

i(T,ΩR \ Ωρ∗ ,K) = 1, i(T,Ωρ∗ \ ΩR,K) = −1.

Then T have fixed point u1 ∈ ΩR \Ωρ∗ , and fixed point u2 ∈ Ωρ∗ \ΩR. Obviously,
u1, u2 are all positive solutions of problem (1.1),(1.2) and 0 < ‖u1‖ < R < ‖u2‖.
The proof is complete. �

Theorem 4.2. Suppose that conditions (H1)–(H3)and (A1) hold. Assume that f
also satisfies

(A9) f0 = 0;
(A10) f∞ = 0.

Then the boundary-value problem (1.1), (1.2) has at least two solutions u1, u2 such
that 0 < ‖u1‖ < r < ‖u2‖.

Proof. First, from f0 = 0, for η1 ∈ (0, θ∗), there exists a constant ρ∗ ∈ (0, r) such
that

f(u1, u2, . . . , un−1) ≤ (η1un−1)p−1,

0 < un−1 ≤ ρ∗, 0 ≤ u1 ≤ · · · ≤ un−2 ≤ un−1/θ.
(4.6)
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Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for each u ∈ ∂Ωρ∗ , by (4.6), we have

‖Tu‖ = (Tu)(n−2)(δ)

≤ B0 ◦ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+

∫ 1

0

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≤ B0 ◦ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
≤ (b + 1)η1ρ∗φq

( ∫ 1

0

g(r)dr
)

≤ ρ∗ = ‖u‖.

i.e., ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Ωρ∗ . Then by Theorem 2.6, we have

i(T,Ωρ∗ ,K) = 1. (4.7)

Next, let f∗(x) = max0≤un−1≤x,0≤u1≤···≤un−2≤un−1/θ f(u1, u2, . . . , un−1), note that
f∗(x) is monotone increasing with respect to x ≥ 0. Then from f∞ = 0, it is easy
to see that

lim
x→∞

f∗(x)
xp−1

= 0.

Therefore, for any η2 ∈ (0, θ∗), there exists a constant ρ∗ > r such that

f∗(x) ≤ (η2x)p−1, x ≥ ρ∗. (4.8)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for each u ∈ ∂Ωρ∗ , by (4.8), we have

‖Tu‖ = (Tu)(n−2)(δ)

≤ B0 ◦ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+

∫ 1

0

φq

( ∫ δ

s

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
ds

≤ B0 ◦ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
+ φq

( ∫ 1

0

g(r)f
(
u(r), u′(r), . . . , u(n−2)(r)

)
dr

)
≤ (b + 1)φq

( ∫ 1

0

g(r)f∗(ρ∗)dr
)

≤ (b + 1)η2ρ
∗φq

( ∫ 1

0

g(r)dr
)

≤ ρ∗ = ‖u‖.

i.e., ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Ωρ∗ . Then by Theorem 2.6, we have

i(T,Ωρ∗ ,K) = 1. (4.9)
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Finally, set Ωr = {u ∈ K : ‖u‖ < r}, For any u ∈ ∂Ωr, by (A1), Lemma 2.2 and
also similar to the previous proof of Theorem 3.1, we can also have ‖Tu‖ ≥ ‖u‖ for
all u ∈ ∂Ωr. Then by Theorem 2.6, we have

i(T,Ωr,K) = 0. (4.10)

Therefore, by (4.7), (4.9), (4.10), ρ∗ < r < ρ∗, we have

i(T,Ωr \ Ωρ∗ ,K) = −1, i(T,Ωρ∗ \ Ωr,K) = 1.

Then T has a fixed points u1 ∈ Ωr \ Ωρ∗ , and u2 ∈ Ωρ∗ \ Ωr. Obviously, u1, u2 are
all positive solutions of problem (1.1),(1.2) and 0 < ‖u1‖ < r < ‖u2‖. The proof is
complete. �

Similar to Theorem 3.1, we obtain the following Theorems.

Theorem 4.3. Suppose that conditions (H1)–(H3), (A2), (A4), and (A6)hold.
Then the boundary-value problem (1.1), (1.2) has at least two solutions u1, u2 such
that 0 < ‖u1‖ < R < ‖u2‖.

Theorem 4.4. Suppose that conditions (H1)–(H3), (A1), (A3) and (A5) hold.
Then the boundary-value problem (1.1), (1.2) has at least two solutions u1, u2 such
that 0 < ‖u1‖ < r < ‖u2‖.

5. Applications

Example 5.1. Consider the following third-order singular boundary-value problem
(SBVP), with p-Laplacian,

(φp(u′′))′ +
√

3
36

t−
1
2 (u′)1/2[

1
5

+
94
5 e2u′

120u + 7eu′ + e2u′
] = 0 0 < t < 1,

u(0) = 0,

u′(0)− u′′(1/4) = 0, u′(1) + 3u′′(1/2)) = 0,

(5.1)

where

p =
3
2
, ξ =

1
4
, η =

1
2
, b = 2, θ =

1
4
,

g(t) =
√

3
36

t−
1
2 , f(u1, u2) = (u2)1/2

[1
5

+
94e2u2/5

120u1 + 7eu2 + e2u2

]
.

Then obviously,

q = 3, f0 = ϕ = lim
u2→0+

max
0≤u1≤4u2

f(u1, u2)
up−1

2

=
51
20

,

f∞ = l = lim
u2→∞

min
0≤u1≤4u2

f(u1, u2)
up−1

2

= l =
95
5

,

∫ 1

0

g(t)dt =
√

3
18

,

B0(v) = v < 2v = bv, B1(v) = 3v, ∀v ≥ 0,

so conditions (H1)–(H3) hold. Next,

θ∗ =
1

(b + 1)φq

( ∫ 1

0
g(r)dr

) = 36,
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then (θ∗/4)p−1 = 3 > 51
20 , i.e. ϕ ∈ [0, (θ∗/4)p−1), so conditions (A3) holds. For

θ = 1/4, by calculating, it is easy see that

L = min
t∈[θ,1−θ]

A(t) =
1
16

(
7
36

+
√

3
3

).

Because

(2θ∗/θ)p−1 = 96× (
1

7 + 12
√

3
)1/2 <

95
5

,

we have
l ∈ ((2θ∗/θ)p−1,∞),

so conditions (A4) holds. Then by Theorem 3.2, (5.1) has at least a positive solu-
tion.

Example 5.2. Consider the following third-order singular boundary-value prob-
lem, with p-Laplacian,

(φp(u′′))′ +
1

64π4
t−

1
2 (1− t)[u + (u′)2 + (u′)4] = 0 0 < t < 1,

u(0) = 0,

u′(0)− u′′(1/4) = 0, u′(1) + 5u′′(1/3)) = 0,

(5.2)

where

p = 4, ξ =
1
4
, η =

1
3
, θ =

1
4
,

g(t) =
1

64π4
t−

1
2 (1− t), f(u1, u2) = u1 + u2

2 + u4
2.

Then obviously,

q =
4
3
,

∫ 1

0

g(t)dt =
1

64π3
, f∞ = +∞, f0 = +∞,

B0(v) = v < 2v = bv, B1(v) = 5v ∀v ≥ 0,

conditions (H1)–(H3), (A7), (A8) hold. Next,

φq

( ∫ 1

0

g(t)dt
)

=
1
4π

, θ∗ =
4π

3
,

we choose R = 3, M = 2 and for θ = 1
4 , because of the monotone increasing of

f(u1, u2) on [0,∞)× [0,∞), then

f(u1, u2) ≤ f(12, 3) = 12 + 90 = 102, 0 ≤ u2 ≤ 3, 0 ≤ u1 ≤ 4u2.

Therefore, by
M ∈ (0, θ∗), (MR)p−1 = (6)3 = 216,

we know that

f(u1, u2) ≤ (MR)p−1, 0 ≤ u2 ≤ 3, 0 ≤ u1 ≤ 4u2,

so conditions (A2) holds. Then by Theorem 4.1, (5.2) has at least two positive
solutions v1, v2 and 0 < ‖v1‖ < 3 < ‖v2‖.
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