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Abstract

The properties of disordered proteins are thought to depend on intrinsic conformational pro-
pensities for polyproline Il (PP;) structure. While intrinsic PP, propensities have been
measured for the common biological amino acids in short peptides, the ability of these
experimentally determined propensities to quantitatively reproduce structural behavior in
intrinsically disordered proteins (IDPs) has not been established. Presented here are results
from molecular simulations of disordered proteins showing that the hydrodynamic radius
(Rn) can be predicted from experimental PP, propensities with good agreement, even when
charge-based considerations are omitted. The simulations demonstrate that R;, and chain
propensity for PP, structure are linked via a simple power-law scaling relationship, which
was tested using the experimental R, of 22 IDPs covering a wide range of peptide lengths,
net charge, and sequence composition. Charge effects on R;, were found to be generally
weak when compared to PP, effects on Ry,. Results from this study indicate that the hydro-
dynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone
propensities for PP, structure that qualitatively, if not quantitatively, match conformational
propensities measured in peptides.

Author Summary

Molecular models of disordered protein structures are needed to elucidate the functional
mechanisms of intrinsically disordered proteins, a class of proteins implicated in many
disease pathologies and human health issues. Several studies have measured intrinsic con-
formational propensities for polyproline IT helix, a key structural motif of disordered pro-
teins, in short peptides. Whether or not these experimental polyproline II propensities,
which vary by amino acid type, reproduce structural behavior in intrinsically disordered
proteins has yet to be demonstrated. Presented here are simulation results showing that
polyproline II propensities from short peptides accurately describe sequence-dependent
variability in the hydrodynamic dimensions of intrinsically disordered proteins. Good
agreement was observed from a simple molecular model even when charge-based
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considerations were ignored, predicting that global organization of disordered protein
structure is strongly dependent on intrinsic conformational propensities and, for many
intrinsically disordered proteins, modulated only weakly by coulombic effects.

Introduction

Many proteins, and protein domains, that perform critical biological tasks have disordered
structures under normal solution conditions [1-3]. These proteins are referred to as intrinsi-
cally disordered [4] and, accordingly, molecular models of disordered protein structures are
needed to understand the physical basis for the activities [2,3], roles regulating key signaling
pathways [5], and relationships to human health issues [6-9] that have been linked to intrinsi-
cally disordered proteins (IDPs).

The properties of disordered protein structures are often associated with conformational
propensities for polyproline IT (PPy;) helix [10-12] and charge-based intramolecular interac-
tions [13-15]. PPy, propensities are locally-determined [16] and intrinsic to amino acid type
[17-19], while charge-charge interactions seem to be important for organizing disordered
structures owing to both long and short range contacts [13-15,20,21]. Since chain preferences
for PPy increase the hydrodynamic sizes of IDPs [22,23], and Coulombic interaction energies
are distance-dependent, it could be argued that charge effects on IDP structures are modulated
locally by intrinsic PPy; propensities. A number of issues with that hypothesis, however, are
apparent. First, it has not been established if PP;; propensities measured in short peptide mod-
els of the unfolded states of proteins [17-19] translate to IDPs. It could be that PPy; propensities
are negligible and unimportant in IDP systems. Second, methods capable of separating the
impact of weak to possibly strong local conformational propensities and charge-charge interac-
tions in the context of flexible and disordered protein structures have not been demonstrated,
but are required for testing any potential interdependence.

To investigate such issues, a computer algorithm [22-24] based on the Hard Sphere Colli-
sion (HSC) model [25] was developed for parsing the contributions of intrinsic PP;; propensi-
ties and charge to the structures of IDPs, as represented by the hydrodynamic radius (Ry). A
HSC model was chosen since PPj; propensities and charge effects could be added separately
and in steps, to isolate contributions to simulated IDP structures. R, was chosen since experi-
mental values are available for a wide range of IDP sequences, allowing direct comparisons to
model-simulated R;,.

Here we demonstrate that Ry, for disordered proteins trend with chain propensities for PP;;
structure by a simple power-law scaling relationship. Using experimental PPj; propensities for
the common biological amino acids from Kallenbach [17], Creamer [18], and Hilser [19], this
relationship was tested against experimental R, from 22 IDPs [23,26-42] ranging in size from
73 to 260 residues and net charge from 1 to 43. We observed that the power-law scaling func-
tion was able to reproduce IDP R, with good agreement when using propensities from Hilser,
while the Kallenbach and Creamer scales consistently overestimated Ry,. The ability to describe
Ry, from just intrinsic PPy; propensities associated with a sequence was supported by simulation
results showing that charge effects on IDP Ry, are generally weak. Relative to the effects of PP,
propensities, charge effects on IDP R, were substantial only when charged side chains were
separated in sequence by 2 or fewer residue positions and if the sequence had higher than typi-
cal bias for one charge type (i.e., positive or negative). Overall, these results demonstrated that
two seemingly disparate experimental datasets, IDP R, and intrinsic PP;; propensities, are in
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qualitative agreement; providing evidence for considerable sequence-dependent conforma-
tional preferences for PPy structure in the disordered states of biological proteins.

Results
Computer simulation of R, dependence on PP, propensity

Ry, for IDPs are sensitive to site-specific and general structural perturbations such as amino
acid substitutions [23], changes in net charge [13,14], charge rearrangements [15], and temper-
ature changes [22,43,44]. Fig 1 shows that IDP R, differ substantially from R, for folded pro-
teins [22,45,46] that have similar residue length, N. R;, from modeling proteins with no
strongly preferred conformations [22], which is referred to as a random coil [47], is also pro-
vided for comparison to the experimental values. The solid line representing coil R;, was deter-
mined from computer simulation of randomly configured polypeptide chains using a HSC
model [22]. Owing to favorable native contacts that promote stable globular structures, folded
proteins have R, that are compacted relative to the R, of simulated random coils. In contrast,
the data in Fig 1 indicate that Ry, from IDPs are generally larger than random coil estimates.

The dependence of R;, on N for chemically denatured proteins follows a power-law scaling
relationship,

R,=R,- N, (1)

where R, is 2.2 A and v is 0.57 [45]. To understand changes in R, and v that are required for
modeling the dependence of R, on N for IDPs, it is useful to recognize that unfolded proteins
in aqueous solutions absent high concentrations of guanidine hydrochloride or urea show Rj,
compaction [48] with a concomitant decrease in v [49]. Consistent with that observation,
Marsh and Forman-Kay demonstrated that R, and N scale with v = 0.509 for IDPs under nor-
mal conditions [49]. R, for IDPs was found to depend on PRO content and net charge by,

R, = (1.24 - fp + 0.904) - (0.00759 - |Q| + 0.963) - 2.49, (2)

where fpro is the fractional number of PRO residues and |Q| the absolute net charge deter-
mined from sequence [49]. Since PRO residues have strong propensities for PPy helix, which is
an extended structure [50], and repulsive interactions between charged groups likewise favor
extended conformations to minimize unfavorable energetics, a simple molecular interpretation
of Eq (2) can be offered whereby the R;, dependence on N for IDPs follows a baseline trend of
Ry, = (2.17 A)-N*** (i.e,, R, with fppo and | Q| set to zero) with sequence-dependent increases
in R, from this baseline owing to chain propensities for PPj; and repulsive charge-charge inter-
actions. Simulated Ry, for random coils were observed to trend with N by Ry, = (2.16 A)-N*>%
[22], supporting this hypothesis (and reproduced in Fig 1). The effects of ALA to GLY substitu-
tions on IDP R, also indicated that chain propensities for PPj; structure modulate IDP R, and
not simply PRO content [23].

To model the effects of PPy; propensities on coil Ry, a sampling bias for PPy structure was
applied to random coil simulations and the relationship between R;, N, and fractional number
of residues in the PPy; conformation, fppy;, was determined [22,23]. This is shown in Fig 1 by
stippled lines to demonstrate that increases in fpp;r cause increases in coil Ry,. These results
were generated from simulations that modeled PPy, bias by applying an identical sampling bias
for PPy structure at each residue position in a polypeptide chain and, accordingly, did not
include effects that could be caused by position-specific variations in PP;; propensity.

To test for effects on coil R, owing to PPy; propensity variations within a polypeptide chain,
conformational ensembles for N = 15, 25, 35, 50, and 75 were generated for poly-ALA with the
algorithm modified to allow position-specific sampling rates for PPy structure. It was shown
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Fig 1. R, comparison to number of residues, N. Filled and open circles represent experimental R;, for
IDPs [23,26-42] and folded proteins [22,45,46], respectively. The solid line is the R, dependence on N
estimated from simulations of randomly configured protein structures [22]. Stippled lines show Ry, for
randomly configured structures with chain propensities for PPy, (fep);) from 0.1 to 1 in 0.1 increments. Every
other stippled line is end-labeled by its fppy, value.

doi:10.1371/journal.pcbi.1004686.9001

previously that the effects of N on R, were mostly insensitive to amino acid sequence in HSC
model simulations of disordered proteins [22] and thus poly-ALA was chosen as a computa-
tional simplification. Variations in PPy propensity among residue positions were simulated

by applying a sampling bias for PPy structure (Sppy;) at every position, every second position,
every third position, every fourth position, or every fifth position in the poly-ALA chains. Sppy;
at values 0f 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were tested at the indicated residue loca-
tions. This PPy sampling strategy resulted in 225 separate simulated ensembles (5 N lengths X
5 patterns X 9 Sppj; values).

A set of simulations using randomly determined position-specific bias for PPj; structure was
also modeled using poly-ALA chains. These additional simulations used N = 15, 25, and 35,
with each residue position assigned a different random value for Sppy;. Position-specific ran-
dom assignments were repeated 3 times for Spp;r ranging from 0 to 1, 0 to 0.5, 0.25 to 0.75, and
0.5 to 1, resulting in an additional 36 simulated ensembles (3 N lengths X 3 distributions of ran-
dom position-specific PPj; biases X 4 applied ranges in PPj; sampling bias).

The ensemble-averaged fractional number of residues in the PPj; conformation (i.e., the
propensity) can be different from Sppy; in these simulations since randomly generated struc-
tures containing van der Waals contact violations are removed from the calculation. Differ-
ences between the applied sampling rate (i.e., Sppy;) and the observed ensemble-averaged rate
(i-e., fpprr) at Sppy-targeted positions followed the same Gaussian relationship that was estab-
lished previously for whole-chain Spp;; and fpp;; comparisons [22] and thus straight-forward
conversion between applied and observed bias rates was available (S1 Fig). fppy; determined
from simulation for residue positions with no applied Sppy; was 0.012 + 0.004.

Cumulative results from the >250 separate ensemble simulations were analyzed in terms
of the power-law scaling relationship given by Eq (1). Previously, we demonstrated that the
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Fig 2. Simulated effect of PP, propensities on coil R,,. Each circle and square represents a simulated
disordered polypeptide. Squares are from ensembles simulated with position-specific PP, propensities
assigned randomly; circles had PP, propensity assignments that followed the sequence patterns described in
the text. In panel A, fppy chain Was calculated as <Npp;>/N, where <Npp;> was the ensemble averaged
number of residues with (®,¥) in the PP, region (-75+10, 145+10), and v was calculated as In(Rn/R,)/In(N)
using <L>/2 for R, and 2.16 Afor R,. These data were fitto v = v, + 8-In(1 ~fepir chain), With v, and B as fit
parameters, producing the solid line. In panel B, R, sc Was calculated as <L>/2. Ry, s; was determined from

fepir chain USING Rp it = (2.16 A)-N" and the panel A fit for v. Rp 1sc and Ry, 5 correlation (R?) is provided in the
figure.

doi:10.1371/journal.pcbi.1004686.9002

exponential term, v, was dependent on Spp;; while R, was mostly independent of Sppy; with an
averaged value of 2.16 A [22]. Fig 2A shows v, determined from In(R;/2.16)/In(N), for each
simulated ensemble and plotted as a function of fppy; calculated for the whole chain. Ry, for each
simulated ensemble was calculated as,

R, = (L)/2, (3)
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andfPPH,chain as,

fPPH.chuin = <NPPH>/N : (4)

In Eq (3), <L> =X L;-P;, where L; is the maximum Co.-Ca. distance calculated for state i, P;
is the Boltzmann probability for state i, and the summation was over all states 7 of an ensemble.
In Eq (4), <Npp> = ¥ Nppyri-P;, where Nppyp; is the number of residues in the PP;; conforma-
tion for state i. The distinction of “chain” given to fpp;;in Eq (4) was provided to limit confu-
sion between fppj; calculated for a whole chain versus fppy; calculated for specific residue
positions.

The relationship between v and fpp c4in for all simulations followed a logarithmic trend
that was fit to the equation,

V(fPPII,chain) =v,+f-In(1 _fPPILchain)v (5)

using the Levenberg-Marquardt method of nonlinear least squares [51,52]. The parameters v,
and /3 were found to be 0.503 + 0.002 and -0.11 + 0.003, respectively. Fig 2B shows that R,
determined from fpps; chain (Eq (4)) and N by combining Eqs (1) and (5) (see Eq (6) below) cor-
related strongly with R, calculated directly from a simulated ensemble (Eq (3)). All possible
patterns of position-specific PP, bias were not tested in our computer trials. Results in Fig 2
predict, however, that in general a quantitative relationship exists for disordered proteins
between Ry, N, and the ensemble-averaged per-residue chain propensity for PPj; structure

(fPPII,chain)'

Test of model using experimental PP, propensities

Results from HSC model simulations that are summarized in Figs 1 and 2 can be interpreted as
an ideal relationship between R;, and N that includes the general effects of sterics and PPy; pro-
pensities but is absent other intrinsic and intramolecular factors. Contributions from Coulom-
bic interaction energies to IDP R, will be discussed below and added to this model. First, the
simulation-derived relationship between Ry, N, and fppir cnain is tested by applying experimental
PP;; propensities to the sequences of IDPs in Fig 1. The identity, sequence, and experimental
Ry, for each IDP are given in Supporting Information (S1 and S2 Tables). This dataset includes
22 IDPs containing 3016 total residue positions. Amino acids represented at rates greater than
0.05 in this dataset were, in rank order and listed by their three letter codes, SER (0.104), GLU
(0.100), LEU (0.083), PRO (0.080), ASP (0.074), GLY (0.073), ALA (0.073), THR (0.061), LYS
(0.055), GLN (0.053), and VAL (0.053).

Amino acid PP, propensities reported by Kallenbach [17], Creamer [18], and Hilser [19]
for disordered proteins are reproduced in Table 1 and were used for testing the relationship,

R,=2.16- NO-303=0-11-In(1~fppry chain) (6)

These propensity scales were chosen since weak correlations are observed among the group
(S2 Fig), indicating a potential for yielding different results when each set is used separately
with Eq (6) for a given IDP sequence. A physical explanation for the different PP;; propensity
values reported for the amino acids is not given here (e.g., the reported ALA PPy, propensities
are very different when compared), other than to note that their measurements used host pep-
tide sequences that were also very different (Table 1). Kallenbach measured PP;; propensities
in the background of a GLY-rich host peptide, whereas the scale reported by Creamer was
determined for positions flanked on both sides by PRO residues. The propensity scale from
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Table 1. Intrinsic backbone PP, propensities measured in disordered peptides.

host?
ALA (A)
CYS (C)
ASP (D)
GLU (E)
PHE (F)
GLY (G)
HIS (H)
ILE (1)
LYS (K)
LEU (L)
MET (M)
ASN (N)
PRO (P)
GLN (Q)
ARG (R)
SER (S)
THR (T)
VAL (V)
TRP (W)
TYR (Y)
average

Kallenbach [17]
Ac-G>XG>-NH,»

Creamer [18]
Ac-P3XP3;GY-NH,

Hilser [19]
Ac-VP,XVP,;R3Y-NH,

0.818 0.61 0.37
0.557 0.55 0.25
0.552 0.63 0.30
0.684 0.61 0.42
0.639 0.58 0.17

= 0.58 0.13
0.428 0.55 0.20
0.519 0.50 0.39
0.581 0.59 0.56
0.574 0.58 0.24
0.498 0.55 0.36
0.667 0.55 0.27

= 0.67 1.00
0.654 0.66 0.53
0.638 0.61 0.38
0.774 0.58 0.24
0.553 0.53 0.32
0.743 0.49 0.39
0.764 = 0.25
0.630 s 0.25
0.626 0.58 0.35

2sequence of host peptide used to measure PP, propensity at the guest position, X

doi:10.1371/journal.pcbi.1004686.t001

Hilser was measured for positions located in between PRO and valine (VAL). Other PPy; pro-
pensity scales were not included in these tests due to similarities to the Kallenbach, Creamer, or
Hilser reported values. For example, a PPy; propensity scale from Zondlo [53] correlated with
the Creamer values (coefficient of determination, R?, gave a correlation of 0.58), likely owing to
the use of a host peptide that also flanked the guest position with PRO residues.

Inspection of Table 1 shows that PPy; propensities for tryptophan (TRP) and tyrosine (TYR)
were not reported by Creamer. For these amino acids, we used the averaged Creamer-reported
value calculated from the 18 other amino acids (0.58). In the Hilser set, TRP and TYR had
lower than average PP;; propensity. In contrast, TRP and TYR had higher than average PP;;
propensity in the Kallenbach set. Using the Creamer average was a compromise that likely had
low significance in our tests since TRP and TYR had very low representation among the IDP
sequences; 0.008 and 0.012, respectively. PP;; propensities were not reported for PRO and GLY
by Kallenbach. Here, we used 1 for PRO since it is generally accepted that PRO has the highest
propensity for PPj; structure [10,12,17-19]. This gave PRO a larger value than ALA (0.818),
which was the amino acid with the highest reported propensity in the Kallenbach set. GLY was
given a propensity of 0.50, which is lower than the Kallenbach average (0.626) but higher than
the lowest value (0.428). This also was a compromise from observing that GLY had the lowest
value in the Hilser set (0.13), but an average value in the Creamer set (0.58).

fppirchain Was calculated for each IDP by using the amino acid PPj; propensity given in
Table 1, summing over the IDP sequence, and dividing by N. Fig 3A shows the experimental
scales predict different chain propensities for PPy structure for each IDP sequence. The scale
from Kallenbach gave fppsr h4in ranging from 0.746 to 0.628, whereas the Creamer and Hilser
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Fig 3. Chain propensity for PP, from experimental scales and comparison of predicted and observed
Rp. Panel A gives fppy chain for each IDP sequence, ordered left to right to show the range obtained with each
scale, calculated using experimental PP, propensities from Kallenbach (red triangles), Creamer (blue
squares), and Hilser (open circles). X is fppy chain from the null model. Panel B shows Ry, predicted for each
IDP using Eq (6) and fppy chain from panel A. Symbols in panel B match panel A representations. Black dots
show Ry, predicted from the composite propensity scale. Stippled line is the identity line.

doi:10.1371/journal.pcbi.1004686.9003

scales gave fppir, chain from 0.609 to 0.579 and 0.489 to 0.283, respectively. Eq (6) was then used
to predict Ry, from fppy ciain fOr comparison to experimentally observed Ry, which is shown in
Fig 3B. The average prediction error (|Ry, yredicted—Rn,observed|) and the correlation between pre-
dicted and observed Ry, is given in Table 2. To assess contributions from the amino acid scales
for predicting Ry, a null model was included by assigning each amino acid the PP;; propensity
0f 0.012, the background fppy; calculated from HSC simulations when no sampling bias for
PPy structure was applied (i.e., Spp;r = 0). Accordingly, the null model represents random coil
values.

Different values of fppr7 cnain predict different Ry, for a given IDP sequence, as expected from
Eq (6). For example, the null model, which used the smallest fpp;r 4in Values, predict R, that

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004686 January 4, 2016 8/22
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Table 2. Comparison of predicted and observed Rj,.

Propensity Scale Average Error (A)? R2P Average Normalized Error® R2d
Null (random coil) 71+37 0.797 -0.28 +0.13 0.265
Kallenbach 134+54 0.819 0.51+£0.15 0.301
Creamer 8.4+43 0.817 0.32+0.13 0.297
Hilser 25+1.8 0.825 0.006 +0.12 0.407
Composite 24+1.8 0.834 0.015+0.12 0.423
Static 26120 0.799 -0.016 £ 0.13 0.291

@determined from |predicted R,—observed Ry|

beoefficient of determination, correlation of predicted R, and observed Ry,
°determined from (predicted R,—observed Ry,)/(random coil Ry,)
9coefficient of determination, correlation of normalized error and net charge density

doi:10.1371/journal.pcbi.1004686.t002

are smaller than observed for each IDP. In contrast, PP propensities from Kallenbach and
Creamer, which report relatively large fppir nain Values, predict R, that are larger than observed
for each IDP. Experimental propensities from Hilser predict R, that trend with the identity
line, showing good agreement, but also showing scatter relative to that line (average error was
2.5 A). In an attempt to reduce prediction error, a composite PP;; propensity scale that used
the Hilser values by default but the Kallenbach values for residues located between GLY (i.e.,
GLY-X-GLY) and Creamer values for residues located between PRO (i.e., PRO-X-PRO) was
tested. This context-specific composite propensity scale (identified as “Composite” in Table 2
and Fig 3B) caused only small changes in predicted Ry, with no significant improvement in pre-
diction capabilities relative to using only the Hilser reported PP;; propensities.

Since Ry, increases with N (Fig 1), prediction error was normalized for peptide length by,

normalized error = (predicted R, — observed R, )/(random coil R,) - (7)

Random coil R, was calculated using Eq (6) with fppyy chain = 0.012, the null model value.
Average normalized error is given in Table 2 for each propensity scale. Fig 4 shows trends in
the normalized error with N and net charge density, determined as the absolute net charge nor-
malized for peptide length,

net charge density = |Q|/(random coil R,) - (8)

S1 Table gives net charge and N for each IDP. No obvious bias with peptide length (i.e., N)
was observed in the normalized error for the Hilser and composite propensity scales. Normal-
ized error clearly increased with N when using Kallenbach and Creamer values, indicating that
these PPy; propensities may be over-estimated when applied to IDP sequences to predict Ry,
Since the exponent in Eq (6) becomes larger with increasing fppircnain» @ set of propensity values
that systematically are too large would cause normalized errors that increase with N.

It is interesting to note that normalized error correlated with net charge density for each
experimental propensity scale (Fig 4B and Table 2), suggesting that prediction error was caused
partially by charge effects on R, that were not included in the model. This is not surprising
since Marsh and Forman-Kay demonstrated that increases in net charge correlate with
increases in IDP Ry, [49] and the trend we observed of decreasing normalized error with
increased net charge density is consistent with their conclusions. Extrapolating this trend to
zero net charge density for the Hilser and composite propensity scales yields positive

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004686 January 4, 2016 9/22
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triangles show normalized error from R, predicted using the Kallenbach reported propensities, blue squares
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the symbols (Kallenbach scale was red; Creamer was blue, Hilser was stippled black, composite was solid
black, and null was dotted black).

doi:10.1371/journal.pcbi.1004686.9004

normalized errors suggesting that, in the background of no net charge contributions to Ry,
the PPy propensities reported by Hilser may also be slightly too large when using Eq (6) to pre-
dict Rh-

While this analysis of experimental PP;; propensities indicated that one of the scales was
capable of reproducing experimental R;, with good agreement for a set of IDPs, it is important
to recognize that comparative tests based on Eq (6) may not be suitable for affirmation. Since
Ry, in this model depends only on N and chain averaged propensity for PPy; structure, contrived
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scales that predict IDP R, with similar agreement in terms of the average prediction error are
simple to generate. For example, each IDP could be given a sequence-independent fppir cnain
value of 0.364, which was determined by converting experimental Ry, to an apparent fppsr chain
using Eq (6) and then averaging over the IDP dataset. Using this static fppir cain to predict IDP
Ry, gives an average prediction error (identified as “Static” in Table 2) that is close to the error
obtained when using the experimental scale from Hilser. Correlations between predicted and
observed R, and between normalized error and net charge density for the contrived static scale,
however, decreased relative to the correlations that were observed with the experimental scales,
suggesting that static representations of fppsr cnqin may not fully capture some molecular depen-
dencies that are inherent to IDP R;,.

To further investigate the capabilities of Eq (6) for relating IDP R, and PPy; propensity, ran-
dom sets of amino acid scales were generated following a two-step protocol and analyzed. First,
a random number between 0 and 1 was used to target an average propensity for a scale. Then,
random scales were generated, where each amino acid was assigned a different random value
between 0 and 1, until a set was found whose average for the 20 amino acids matched the target
determined in the first step (£0.05). The goal from using two steps to generate scales was to
ensure that chain averaged propensities in the high, medium, and low range were evenly sam-
pled. This sampling scheme was repeated until 100,000 random scales were generated. Each
propensity scale was then used to predict R, from Eq (6) and the results are summarized in
Fig 5. It was observed that randomly generated scales gave average prediction errors for the
IDP dataset ranging from 1.9 to 239.8 A, correlations between predicted and observed Ry, rang-
ing from 0.02 to 0.88, and correlations between normalized error and net charge density from
0 to 0.81. Optimal values for these metrics (i.e., highest correlations coupled with lowest aver-
age error), seem to focus toward values of R* and average error that are obtained when using
experimental PPy propensities from Hilser. This result shows that experimental Ry, of the IDP
dataset are in good qualitative agreement with experimental PPy; propensities reported by Hil-
ser, and vice versa, giving evidence that the molecular properties of IDPs that link R, N, and
fppi1chain are well-approximated by the simple power-law scaling relationship of Eq (6).

Effects of Coulombic interaction energies on R,

In the HSC model used for this study, a computer algorithm generates polypeptide structures
by random conformational search until R, (Eq (3)) converges to a stable ensemble-averaged
value [22]. A structure-based energy function parameterized to solvent-accessible surface areas
that has been tested extensively [54-62] is used to population-weight each randomly generated
structure. To approximate charge effects on ensemble populations, the energy function was
modified to include Coulombic interaction energies by,

332 Z
AGCoulomb = 9 : Zzz : (Z m>7 (9)

DHZO ' j ij

where the constant 332 converts the energy into units of kilocalories per mole at 25°C, Dypy0 is
the dielectric of water, Z is the charge at site i or j, R;; is the distance between two charged sites i
and j (in A), x (the Debye parameter) accounts for screening from solution ionic strength, and
the sums are over all charge-bearing sites. The Debye parameter was calculated as,

Kk = 2913 - \/T/Dyo, (10)

where I is ionic strength (in molarity, M). Dy0 used was 78.3 [63] and I was 0.1 M to represent
normal conditions. Since the simulations used poly-ALA chains, charged residues were
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Fig 5. R, prediction from random PP, propensity scales. Random scales were generated as described in
the text and used to predict Ry, for each IDP by Eq (6). Shown is the correlation (R?) obtained for each scale
between observed and predicted Ry, plotted against the correlation obtained between the normalized error (n.
error) and the net charge density (ncd). Shown by color is the average prediction error of each scale. Random

scales giving average prediction error larger than 75 A were omitted to emphasize differences at lower error
values.

doi:10.1371/journal.pcbi.1004686.9005

modeled with a positive or negative charge located at the coordinates of the Cf atom to denote
the approximate location for flexible and charged side chains. Coordinates for the backbone N
and O atoms of the first and last residues were used to assign positive and negative charge,
respectively, to N- and C-termini. Simulations were limited to 25 residue poly-ALA chains to
establish trends for the effects of charge on Ry, in this model. For each ensemble, an identical
Spprr was applied at each residue position. Spp;r was varied among the different simulations to
target ensemble-averaged fppir nain ranging from 0.1 to 0.92.

Fig 6A shows that introducing charge at N- and C-termini had no effect on simulated R, for
poly-ALA chains. Modeling negative charge at the C position of each residue, or positive
charge (S3 Fig), caused large increases in R, from repulsive electrostatic intramolecular interac-
tions. Identical charge at every other residue position caused smaller increases in R, while
identical charge at every third position gave R, that were mostly similar to Ry, of poly-ALA
modeled with no charges. These data predict that the effects of charge on IDP R, should
weaken as charged residues separate in sequence, as expected. Fig 6B shows the ensemble-aver-
aged distance between “charged” CpB atoms that were closest in sequence for each ensemble in
panel A, indicating repulsive charge-charge interactions at distances >9 A had only minor
effects on Ry,. The Debye length for the modeled conditions (i.e., 1/x) was 9.6 A, which is
the distance where interactions between charged groups become negligible at a given ionic
strength. The simulation results thus trend with expected outcomes for fully solvated charges.
It was also observed that, for polypeptides with each residue position charged, fppi1 cnain calcu-
lated for an ensemble was larger than expected based upon the applied Sppy; (Fig 6A inset).
This result predicts that repulsive charge-charge interactions between side chain groups prefer-
entially select for the extended PPy structure to minimize unfavorable interaction energies.

To test the effects of clusters of charge on Ry, polypeptides with patterns consisting of three
consecutively charged residues were also simulated (Fig 7). Similar trends were observed,
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Fig 6. Simulated effect of charged residues on R, In panel A, the stippled line is R, from Eq (6) with

N =25 and fppy; chain = 0—0.98. Plotted symbols are Ry, from poly-ALA simulations (N = 25) calculated using Eq
(3). Open squares are uncharged poly-ALA and open circles have charged termini. Filled circles have each
residue modeled with negative charge at the Cf atom. Filled squares have every other residue modeled with
negative charge, filled triangles have every third residue with negative charge, and X is every fourth residue
with negative charge. In panel B, <R;> is the ensemble averaged distance (in A) between CP atoms from two
charged residues, i and j, closest in sequence. Panel B symbols match panel A representations. A inset:
comparison of observed fep; chain (Shown as obs fepy) 10 fppy chain €Xpected from the applied Sppy, (shown as
applied fepy; calculated as fepy = Spay— 0.062-eXp(-(Spei-0.63)%/(2:0.282%)) [22]. Note that filled circles trend
higher than other plotted data. Inset symbols match panel representations.

doi:10.1371/journal.pcbi.1004686.9006

whereby the effects of charge on R;, weaken as charged groups (i.e., clusters) were separated in
sequence. Charge clusters, however, affected R;, when modeled with 4 intervening non-charged
residues, with weaker effects persisting at even larger separation distances between the clusters.
This contrasts with the simulation results for non-clustered charged residues that exhibited
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Fig 7. Simulated effect of clusters of charged residues on R,. Filled circles, open circles, open squares,
and the stippled line were reproduced from Fig 6A. As in Fig 6A, R, was calculated from poly-ALA simulations
with N = 25. A charge cluster was defined as three consecutive residues with negative charge modeled at the
CpB atoms. Charge clusters separated in sequence by two uncharged residues (no charge modeled at CB) are
shown with filled squares whereas charge clusters separated by four uncharged residues are shown with
filled triangles. X and + symbols represent charge clusters separated by six and eight uncharged residues,
respectively. Inset: comparison of observed fpp chain 0 frpi chain €Xpected from the applied Sppy (following
Fig 6A inset description). Inset symbols match panel representations.

doi:10.1371/journal.pcbi.1004686.9007

negligible effects on R;, when charges were separated by as little as 2 intervening uncharged res-
idue positions (Fig 6A).

Since IDPs, in general, contain both positive and negative charges, simulations with oppo-
site charge at adjacent residue positions were also performed. Fig 8A shows that repeating pat-
terns of opposite charge had minimal effects on Ry, in these simulations, even when each
residue position was charged. This was mostly the case for charge clusters too (Fig 8B) with the
exception that the simulation would sporadically generate ensembles with compacted Ry,
whereby “compacted” is used to indicate R;, smaller than what was observed for non-charged
poly-ALA coils of identical N. Overall, the amount of R;, compaction owing to favorable inter-
actions between oppositely charged residues (or clusters) was small when compared to
increases in R, that were observed owing to unfavorable interactions between identically
charged residues (or clusters).

The results in Figs 6-8 from modeling charge effects on R, indicate that, in general, the
strongest effects on R;, should occur owing to identical charges at sequentially-adjacent residue
positions (Figs 6 and 7) and for polypeptides with the least amount of mixing of positive and
negative charge types (Fig 8). To test these two general observations, the IDP dataset was ana-
lyzed to determine the net number of adjacent charges in each IDP sequence. This was calcu-
lated by first summing the number of ASP residues that had GLU or ASP immediately next or
prior in sequence with the number of GLU residues that had GLU or ASP immediately next or
prior in sequence to determine the total number of negative charges with an adjacent negatively
charged neighbor. A similar calculation was performed using LYS and ARG to determine the
number of positive charges with an adjacent positively charged neighbor. The net number of
adjacent charges for an IDP was then the absolute value in the difference between the positive
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Fig 8. Simulated effect on R, from oppositely charged residues. Stippled line in each panel was
reproduced from Fig 6A. As in Fig 6A, Ry, was calculated from poly-ALA simulations with N = 25. Charge was
modeled with opposite charge at adjacent residue positions (panel A) or adjacent clusters (panel B). In panel
A, filled circles have each residue modeled with charge at the CR atom (first residue negative, second residue
positive, third residue negative, etc.). Filled squares have every other residue modeled with charge (first
residue negative, third residue positive, etc.), filled triangles have every third residue modeled with charge,
and X represents every fourth residue modeled with charge. In panel B, each residue in a cluster had
identical charge while clusters adjacent in sequence had opposite charge. Filled circles are poly-ALA with
every residue charged (i.e., residues 1-3 having negative charge, residues 4—6 with positive charge,
residues 7-9 with negative charge, etc.). Charge clusters separated in sequence by two uncharged residues
are shown with filled squares (i.e., residue 1-3 with negative charge, residues 4-5 uncharged, residues 68
with positive charge, etc.) whereas charge clusters separated by four uncharged residues are shown by filled
triangles. X and + symbols represent charge clusters separated by six and eight uncharged residues,
respectively. Insets: comparison of observed fppy; chain 10 frpir chain €Xpected from the applied Sppy (following
Fig 6A inset description). Inset symbols match panel representations.

doi:10.1371/journal.pcbi.1004686.9008
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doi:10.1371/journal.pcbi.1004686.9009

and negative adjacent charge numbers (provided in S1 Table). Fig 9A shows that normalized
error in predicted Ry, for the IDP dataset trends with the net adjacent charge density (i.e., net
adjacent charge normalized for peptide length), similar to the correlation that was observed
between normalized error and net charge density (Fig 4B). This should be expected since net
charge and net adjacent charge correlate with R* = 0.64 in the dataset.

The set of IDPs was also split according to the amount of mixing of positive and negative
charge types in a given sequence. To do this, a “charge bias” was calculated for each IDP as the
simple ratio of total negative charges (sum of ASP and GLU residues) to total positive charges
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(sum of LYS and ARG residues), or vice versa, depending on which ratio gave a value greater
than 1. As a metric for separating IDPs with “high” and “low” charge bias, a “typical” charge
bias was calculated for the entire dataset by the concatenated sequence and found to be 1.9.
The average IDP charge bias, found to be 4.2, was not used to separate IDPs since: 1) ratio-
based distributions are skewed, 2) only 7 IDPs would have been in the “high” charge bias set,
and 3) 4 of these 7 were sequences derived from the p53 protein. Using the charge bias of the
concatenated sequence gave 12 IDPs in the high charge bias set and 10 IDPs in the low charge
bias set.

Fig 9B shows that correlations between net adjacent charge density and normalized error in
predicted Ry, persisted in the set of IDPs with high charge bias and mostly disappeared for IDPs
with low charge bias, seeming to agree with the simulation prediction that significant mixing of
positive and negative charge types in a sequence should reduce charge effects on R,. Applying
this analysis to net charge density gave different results (S4 Fig). Correlations between net
charge density and normalized error in predicted R, decreased for both the high and low
charge bias sets. This could be owing to trends shown in Fig 6, whereby net charge effects on
Ry, depended strongly on the distance between the charged groups. Overall, these results seem
to indicate that charge effects on IDP structures are highly dependent on sequence, however,
charge effects on R, can be weakened substantially by mixing negative and positive charge
types or by slight increases in the distances between charged groups in sequence. The hypothe-
sis that charge effects on R;, may be generally weak for IDPs is supported by data in Fig 3B
showing that Ry, could be predicted without specific consideration of charges when provided an
appropriate amino acid scale for intrinsic PPj; propensities.

Discussion

Fig 1 shows that experimental R, for IDPs are much larger than computational predictions
based on random coil modeling of the R, dependence on N. Numerous studies have demon-
strated the importance of Coulombic effects for regulating IDP structural preferences [13-15].
Thus, it could be surprising to note that sequence effects on IDP Ry, can be predicted with good
agreement from sequence differences in PPy; propensity, even when other intramolecular fac-
tors are ignored. Ry, predicted from IDP sequence and Eq (6) seemed to work best when using
an experimental PPj; propensity scale from Hilser and colleagues [19], or a composite scale
that combined the Hilser, Kallenbach [17], and Creamer [18] propensities, giving an average
error of ~2.5 A for an IDP dataset covering a wide range of residue lengths, net charge, and
sequence composition. As examples of sequence differences in this dataset, the fractional num-
ber of PRO residues (fpro = (# PRO residues)/N) varied from 0 to 0.24, SER from 0.02 to 0.20,
GLU from 0.06 to 0.31, and ALA from 0 to 0.16, indicating significant sequence diversity
among the IDPs that were tested.

If it were established that molecular descriptions for R;, depend mostly on PP;; propensities
for disordered proteins, this would have important implications. First, R;, well-above random
coil estimates would indicate non-trivial preferences for PPy structure. Fig 1 shows this to be
the case for many IDPs. And second, large variations in R, for IDPs with similar N would indi-
cate large differences in propensity for PPy structure among the biologically common amino
acids. Observed differences in amino acid propensity for PPj; [17-19,53] are thus consistent
with the observed differences in R, for IDPs with similar N. For example, consider that Ry, var-
ied from 24.5 A to 32.4 A for IDPs with N = 87-97 in Fig 1. The average prediction error in Ry,
for these 8 IDPs from using Eq (6) and the composite propensity scale was only 1.7 + 0.7 A,
though net charge ranged from 4 to 29 for these proteins. In contrast, predictions using ran-
dom coil values give R, from 20.5 to 21.7 A with an average error of 6.4 +2.7 A.
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The simulation-derived relationship between Ry, N, and fppy cpain @ppears to be surprisingly
simple for disordered proteins. As noted above, Eq (6) should be interpreted as an ideal rela-
tionship that excludes many molecular factors known to regulate structural preferences in pro-
teins (e.g., electrostatic effects, cis-trans isomerization rates). Observed deviations from this
“ideal” behavior can then be interpreted in terms of factors that were not modeled, as shown
(Fig 4B). We recognize that exclusive use of poly-ALA for computational modeling may prove
to be unjustified with further studies. Poly-ALA was used as a simplifying step since the effects
of N on R;, were mostly independent of amino acid sequence in previous HSC-based simula-
tions and agreed with general IDP trends determined from a literature survey [22,49]. As
shown here, this simulation-derived relationship provides a straight-forward molecular expla-
nation for Ry, variations among IDPs. The R;, dependence on fppsr chain also predicts heat-
induced compaction of IDP Ry, since the enthalpy of unfolding PPy, structure is positive
[16,64]. Many studies have demonstrated R, compaction caused by elevated temperatures for
IDPs [22,43,44].

As noted above, the simulation results presented here could be interpreted as indicating that
charge effects on R), are generally weak for IDPs, relative to the effects of intrinsic PPy; propen-
sities. These data demonstrate, however, that certain sequence patterns of charge can modulate
Ry, substantially (see Fig 6). For charged groups, this would be those that are separated at dis-
tances averaging less than the solution Debye length, involving identical charge type (i.e., posi-
tive or negative), and within a region showing higher than typical charge bias. These general
rules are in qualitative agreement with results from Pappu and colleagues showing that simu-
lated hydrodynamic sizes for highly charged and disordered polypeptides, with every residue
modeled as GLU or LYS, depend strongly on the mixing of negative and positive charge types
[15]. In that study, mixing of charge types in a sequence caused structural compaction relative
to biased charge distributions, similar to our own conclusions. The observation that unfavor-
able charge-charge interactions between side chain groups can promote PPy structure (Figs 6A
and 7 insets) has also been noticed in computational studies from other researchers [14,65].
This result predicts multiple mechanisms for charge-mediated regulation of IDP structure;
possibly owing to both the accumulation of charge and local modulation of PP;; propensities.
Opverall, these data demonstrate the importance of sequence context for understanding the
structural properties of IDPs and for describing quantitatively how disordered protein struc-
tures respond to discrete perturbations such as changes in charge state and amino acid
substitutions.

Methods
Computer generation of polypeptide structures

Detailed description of the computer algorithm that was used is provided elsewhere [22,24].
Briefly, simulations of disordered protein structures were limited to poly-ALA polypeptides.
Main chain atoms of poly-ALA were generated using the standard bond angles and bond
lengths [66] and a random sampling of the dihedral angles @, ¥, and w. The dihedral angle w
was given a Gaussian fluctuation of +5° around the trans value of 180°. To sample conforma-
tional space efficiently, (®,'¥') values were restricted to the allowed Ramachandran regions
[67]. Of the two possible positions of the side chain CB atom, the one corresponding to L-ala-
nine was used throughout the studies. To calculate state distributions typical of protein ensem-
bles, a structure-based energy function parameterized to solvent-accessible surface areas was
used to population-weight the generated structures [54-62].
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Supporting Information

S$1 Fig. Comparison of fppp; and Sppyy. In this figure, Sppy is the average applied sampling rate for
PPy, for residues with Sppy # 0 in a simulation, while fpp; was the observed per-position average
PPy, rate, also excluding residues with Sppy; = 0. Open circles are from ensembles where position-
specific Sppjr followed the pattern specified in the text (i.e., different simulations had different Spp;
ranging from 0.1 to 0.9 in 0.1 increments applied to each residue, every other residue, every third
residue, etc.) which is why circles align at Spp;; = 0.1-0.9 in 0.1 increments. Blue circles give the
average fppy; for each applied Spp;r. Open squares represent this calculation performed on simula-
tions using randomly assigned position-specific Sppy. Stippled line is the identity; solid line is the
relationship between fppy; and Sppyr established previously for Spp;; applied at constant values
across all residues [22]. In general, fpp;; trends with Sppy; by: fpprr = SppH—O.062-exp(—(SppH—O.63)2/
(2:0.28%)). This gives the algorithm the ability to target specific fpp;; from the applied value of Sppy;.
(TIF)

S2 Fig. Correlation of experimental PP;; propensities for the common amino acids. Panel
A, correlation of Kallenbach [17] and Creamer reported values [18]. Panel B, correlation of
Kallenbach and Hilser reported values [19]. Panel C, correlation of Creamer and Hilser
reported values. Panel D, correlation of Creamer and Zondlo reported values [53].

(TIF)

S3 Fig. Simulated effect of positive charged residues on Ry, Stippled line is R, from Eq (6) with
N =25 and fppyr ain from 0 to 0.98. Symbols are simulated Ry, from ensembles of poly-ALA

(N =25) using Eq (3) (R, = <L>/2). Filled circles have each residue modeled with positive charge
at the Cp atom. Filled squares have every other residue modeled with positive charge, filled trian-
gles have every third residue modeled with positive charge, and X represents every fourth residue
modeled with positive charge. Inset: comparison of observed fppiz chain tO frpm chain €Xpected from
the applied Spp;r (following Fig 6A inset description). Inset symbols match panel representations.
(TIF)

$4 Fig. Correlation of normalized error in predicted R;, to net charge density. Shown are
correlations (R®) between normalized error and net charge density for all IDPs, IDPs in the
high charge bias group (labeled as “high bias”), and IDPs in the low charge bias group (labeled
as “low bias”). Red columns are correlations from using the Kallenbach propensity scale to pre-
dict Ry, blue from using the Creamer propensities, white the Hilser propensities, and black the
composite propensity scale.

(TIF)

S1 Table. IDP dataset.
(DOCX)

S2 Table. Sequence of each IDP in dataset.
(DOCX)
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