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LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR
THE (2+1)-DIMENSIONAL MIKHALEV EQUATION

XINYUE LI, YONGLI ZHANG, HUIQUN ZHANG, QIULAN ZHAO

ABSTRACT. Lie symmetry analysis is applied to the (2+1)-dimensional Mikhalév
equation, which can be reduced to several (14+1)-dimensional partial differen-
tial equations with constant coefficients or variable coefficients. Then we con-
struct exact explicit solutions for part of the above (141)-dimensional partial
differential equations. Finally, the conservation laws for the (241)-dimensional
Mikhalév equation are constructed by means of Ibragimov’s method.

1. INTRODUCTION

Searching for solutions to partial differential equations (PDEs), which arise from
physics, chemistry, economics and other fields, is one of the most fundamental and
significant areas. A wealth of solving methods have been developed, such as the Lie
symmetry analysis [5l 8 [T} [T5], the homogeneous balance method [13] 18], Hirota’s
bilinear method [I0], the Painlev’s analysis method [6]. The Lie symmetry analysis
is one of the most effective tools for solving partial differential equations and it
was firstly traced back to the famous Norwegian mathematician Sophus Lie [12],
who was influenced and inspired by the Galois theory founded in the early 18th
century. Bluman and Cole proposed similarity theory for differential equations
in 1970s [?]. Subsequently, the scope of application and theoretical depth of Lie
symmetry analysis have been expanded. The (2+1)-dimensional Mikhalév equation
reads [14]

Uyy + Ugt + Uglgy — Uylgy = 0, (1.1)
which was first derived by Mikhalév in 1992. He described a relationship between
Poisson-Lie-Berezin-Kirillov brackets and the Mikhalév system

Uy = Vg, Uy + U + Uy —vuy =0. (1.2)

Pavlov adopts the method of extended Hodograph method to study integrability of
exceptional hydrodynamic type systems. The corresponding particular solution of
Mikhalév system [10] is constructed under the condition of three-component case.
By constructing new integrable hydrodynamic chains, he describes and integrates
all their fluid dynamics, and then extracts new (2+1) integrable hydrodynamic sys-
tems from them [I7]. Derchyi Wu discussed Cauchy problem of Pavlov’s equation
and solve the equation by using the backscattering method [19]. Grinevich and
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Santini investigated nonlocality and the inverse scattering transformation for the
Mikhalév equation [9]. Dunajski [7] presented a twistor description of and
demonstrated that the solutions of could be used to construct Lorentzian
Einstein-Weyl structures in three dimensions. In this paper, we apply Lie sym-
metry analysis to the (241)-dimensional Mikhalév equation to present its exactly
explicit solutions and construct its conservation laws. The concept of conserva-
tion laws is important in nonlinear science. The famous Noether’s theorem [I]
provides a systematic and effective way of determining conservation laws for Euler-
Lagrange differential equations once their Noether symmetries are known. Later,
researchers made various generalizations of Noether’s theorem. Among these ex-
tended methods, the new conservation theorem, also called nonlocal conservation
theorem, introduced by Ibragimov, is one of the most frequently used approaches.
In this paper we will apply the Ibragimov’s method to construct conservation laws
for the (241)-dimensional Mikhalév equation.

The paper is organized as follows. In Section 2, we will apply Lie symmetry
analysis to the (2+1)-dimensional Mikhalév equation. In Section 3, we will study
some exact explicit solutions for the (2+41)-dimensional Mikhalév equation based
on the similarity reductions. In Section 4, the conservation laws for the (2+1)-
dimensional Mikhalév equation will be established by using Ibragimov’s method.
In Section 5, we will give some conclusions and discussions.

2. LIE SYMMETRY ANALYSIS FOR THE (2+1)-DIMENSIONAL MIKHALEV
EQUATION

First of all, let us consider an one-parameter group of infinitesimal transforma-
tion,

T — x+ef(z,y, t,u) + O(e?),

t—t+er(x,y,t,u) + O(e?),

(z,y,t,u) + O(e?),

(z,y,t,u) + O(?),

where ¢ < 1 is a group parameter. The vector field associated with the above
group of transformation (2.1]) is presented

(2.1)
y—yten

U — U+ P

0 0 0 0
V= E(‘rvyata u)ix + 77(37»y7t7 u)i + T('T7y7t7u)7 + ¢($7y7t,u)* (22)

0 Oy ot ou’
Thus, the second prolongation pr® V is
Brv = v+ qﬁf”a%x + ¢yai + ‘byyauiy + o™ ajﬂ + ¢myaiy + WIG%M’ (2.3)
where
¢Y = Dy(¢ — Eug — nuy — TUy) + EUgy + Ny + Ty,
¢* = Da(d — Eug — Muy — Tuy) + EUaz + Nys + Tlia,
PV = Dz(q’) — &Uy — Ny — TU) + Elgyy + NUyyy + TUyy, (2.4

Pl = Dme((b — &g — Ny — Tut) + fumxy + NUgyy + TUzty,
¢wa: = D?g(d) - guz — Nuy — Tut) + gummc + NUgzy + TUZzt,
(bxt = DtDw(¢ - fua: —Nuy — Tut) + Eua::rt + Nyt + TUgte,
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and the operators D, D, D; are the total derivatives with respect to x,y,t respec-
tively. The determining equation of (1.1)) arises from the invariance condition
pr® V‘A:O =0, (2.5)
where A = uyy + Ugt + UgUyy — UyUaze = 0. Furthermore, we have
OV + 67+ $ gy + 5ty — HVitg — 7y = 0, (2.6)
where the coefficient functions ¢¥, ¢%, ¢¥¥, ¢Y, ¢*® and ¢® are determined in
(2.4). Then, the forms of the coefficient functions by calculating the standard
symmetry group are obtained
1 1
g = (Flt(t) + 201){)3 — iFltt(t)yQ + 5(
n = (Fu(t) + c1)y + Fa(t),
T = Fi(¢), (2.7)
(

—2F5(t) + c2)y — F3(t) + cs,

1 1
= (F1e(t) + 3c1)u — (Fiu(t)y — co + Fou(t))x + 6F1ttt(t)y3 + §F2tt(t)y2
+ Fy(t)y + Fu(t),

where ¢; (i = 1,2, 3) are arbitrary constants and F;(t) (i = 1,2,3,4) are arbitrary
functions with regard to ¢. For convenience, we assume that

F1(t) = ¢yt + csg, Fg(t) = c5t + cog, Fg(t) = cgt + ci10, F4(t) =c7t+c11. (28)

Therefore, the Lie algebra of infinitesimal symmetries of equation (|L.1)) is spanned
by the vector field

0 0 0 1 9 0
V1—2x%+yafy+3u%, ‘/2—5 £+(E%,
0 0 0 0 0
Vs s ‘Q—x%+y8fy+ta+ EI 29
ooyl 9,0 2.9 .
5T Yoy "oy T Touw 70 oz " You
0 0 0 0 0
V7*t%7 ‘/8*&7 V9*aiya ‘/10*7%3 ‘/11*%

We apply the Lie bracket [V;, V;] = V;V; —V;V;, with the (4, j)-th entry representing
[Vi, V] to get the commutator table listed in Table

TABLE 1. Lie bracket of equation (|1.1)

Lie V1 Vs V3 Vy Vs Vs \% Vs Vo Vio Vi1
Vi 0 —Vs —2V3 0 —Vs —2Ve —3Vz 0 —Vy —2Vio —3V11
Va Va 0 —Vi1 0 % Vs 1%4 0 0 % Vio Vi1 0
V3 2V3 Vi1 0 —Vio Vi1 0 0 0 0 0 0
Vy 0 0 —V3 0 0 0 —Vz —Vs —Vy —Vio -V
Vs Vs —1Vs Vi1 0 0 0 0 Vo —Vie —Vn 0
Ve 2Ves —Vz 0 0 0 0 0 —Vio —Vi1 0 0
V7 3Vz 0 0 %4 0 0 0 —Vi1 0 0 0
Vg 0 0 0 Vs Vo Vio Vi1 0 0 0 0
Vo Vo - % Vio 0 Vo Vio Vit 0 0 0 0 0
Vie —2V3 Vi1 0 Vio Vi1 0 0 0 0 0 0
Vit 3V3 0 0 Vii 0 0 0 0 0 0 0
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Next, using Table [T] and the Lie series
1
Ad(exp(eVi))V; = Vj — e[Vi, V] + 552[1/;-7 Vi, Vil — ..., (2.10)

where ¢ is a real number and [-, -] is the Lie bracket. The adjoint representation is
shown in Table 2

TABLE 2. Adjoint representation of equation (L.1J).

Ad Vi Vo Vs Va Vs Vs

Vl Vl VQSE V1€2E V4 ‘/585 V6625

Va Vi —eVa Va Viz+eVn Va Vs — §V6 + §V7 Ve —eVr

Vs Vi —2eVs Vo —eVi Vs Vi+eVio Vs + eV Ve

V4 V1 Vz Vgea V4 V5 V5

Vs Vi—eVs Vo+5Ve Vz—eVin Vy Vs Vs

Vs Vi —2eVs Vo +eVz Vs Vu Vs Vs

V7 V1 - 38V7 V2 V3 V4 - €V7 V5 VG

Vs |41 Va Vs Vi —eVs Vs —eVy Ve +eVs

Vg V1 - EVQ Vz — %EVQJ, V3 V4 — EVQ V5 -+ EVg V6 - €V11

Vio Vi —2eVig Va+eVn V3 Vi —€eVio Vs — eV Ve

V11 V1 6735 V2 V3 V4 - EV11 V5 V(;
Ad \% Vs Vo Vio Vi1
V1 V7635 Vg V9€E V1062E Vllese
Va V7 Vs Vo — §Vio + %‘/11 Vio —eVin Vi1
V3 V7 Vg V9 VlO Vll
Va Vze® Vge® Voe® Vige® Vire®
Vs Vz Vs +eVo + %Vw + aigvu Vo +eVio + %Vu Vio +eVin Vi1
Ve V7 Vs + eVio Vo +eVia Vio Vi1
V7 V7 Vs + eV Vo Vio Via
Vs Vz—eVia Vs Vo Vio Via
Vo V7 Vs Vo Vio Vi1
Vio Vz Vs Vo Vio Vi1
V11 V7 Vg V9 VlO Vll

The one-parameter symmetry groups g; (1 < 4 < 11) generated by the corre-
sponding infinitesimal generators V; (1 <4 < 11) will be obtained

2

g1: (I7y7t7u) - (6 E$7e€yat,€36u)7

1 1,
g2 : (x,y,t,u) - (*y€+l’,y,t7 —Ye +:cs+u),

2 4
g3 (x,y,t,u) = (x+e,y,t,u), g4:(x,y,t,u) = (e°x, ey, et eu),
g2 g3 &2 (2.11)
g5 (z,y,t,u) — (_515 —ey+x,et +y,t, Et—f— Ey —ex +u),

g6 : (x,y,t,u) = (x —te,y, t,ut+ey), gr:(x,y,t,u) = (x,y,t,u+et),
98 : (m7yﬂt>u) — (m‘,yﬂﬁ—l—s,u), 99 : (m7y7t7u) — (3379 +87t7u)7
gio - (l‘, Y, ta u) — (_5 +z, Y, ta U), gi1: ('T7 Y, ta u) — (J}, Y, ta u+ 5)a
where g3, g9 are space translations, gs is a time translation, gi; is a dependent
variable translation, g4 is a scaling transformation, and gs is a generalized Galilean

transformation. According to the above one-parameter symmetry groups g; (i =
1,2,...,11), it implies that if u = f(z,y,t) is a solution of (I.1)), then u¥) (1 <
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j < 11) are also solutions of (1.1
2
ul® = e fwe™,ye ™5, 1), u® = — Ty +ae+ f(o - gy,y,t),
u® = fx—e,y,1), u = e flze s, ye =, te™),
g2 g3 g2
u® = —ex — Sy + —t+ flx+ey — <ty —et 1), (2.12)

2 6 2
ul® = ey + fo+te,y,t), u'D =ct+ f(z,y,1),
u® = fla,yt—e), u® = fla,y—e),
where ¢ is an arbitrary real number.

3. SIMILARITY REDUCTIONS AND EXACT SOLUTIONS

The similarity reductions of the given equations can be identified by solving the
characteristic equation

dt dx
Fl(t) - (Flt(t) + 261)1’ — %Fltt(t)yQ + %(—2F2t(t) + 02)y — Fg(t) +c3
_ dy
- (Fu(t) +a)-y+ F(t) (3.1)

= ((Flt(t) + SCl)U — (Fltt(t)y — C2 + th(t))x + éFlttt(t)y?)

1 -1
+ 5Pty + Pulty + Fi(t))  du.

Here, we give the corresponding similarity reduction and provide some exact solu-
tions of the original equation (L.1)).

Case 1. Taking Fi(t) =0, Fy(t) =0, F5(t) =0, F4(t) =0,¢1 #0,¢c2=0,¢c3=0

in (3.2) yields
@ _dx ﬂ _du

0 2z cy 3cu’

(3.2)

where the expression % means that the first integral of time ¢ is a constant. Solving

(13.2)) provides

v=t, w=yr 2 u= flv,w)a?. (3.3)
Substituting into (L.I), we obtain the following (1+1)-dimensional nonlinear
PDE with variable coefficients

4fww + 6 s — 2w o + 3f fuo — 3WS frw +wf2 = 0. (3.4)

Case 2. If we take Fy(t) = 0, Fo(t) = 0, F5(t) =0, Fy(t) =0, ¢; =0, c2 # 0,
c3 = 0in (3.2), then we obtain
dt_ de _dy _du
0 %CQy_ 0 ez

(3.5)

Solving this equation, we obtain the similarity variables and the group-invariant
solution

v=t, w=uy, u:f(w,v)+x—. (3.6)
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Substituting (3.6)) into (1.1)), we derive reduced PDE with variable coefficients

fww - 2w_lfu) =0. (37)
Solving this equation, we obtain
f = F(v)w® + Fy(v), (3.8)

where F(v), F5(v) are arbitrary functions of v. Based on ({3.6)) and (3.8)), we obtain
the exact solution of (|1.1))
2
x
u:E@f+E@+;, (3.9)
where F}(t), Fa(t) are arbitrary functions of ¢.
Case 3. Letting Fl(t) = dl, FQ(t) = dz, Fg(t) = 0, F4(t) = d4, c1 = 0, Cy = 0,
c3 # 0, where dy, do, and d4 are nonzero constants and we have
dt d d d
a _dr _ ey _ au (3.10)
dl C3 dg d4
Solving ((3.10)), we obtain the similarity variables and group-invariant solution
d
v=dyx —c3y, w=dx—cst, u=—x+ f(w,v). (3.11)

€3
Substituting into yields
(c3 + dads) for — c3dy furw + (dids + c3d2) fow + dics fuo fuo
— diesfo fuow — drdacs fo fuw + drdacs fu foo = 0.
Letting di = do = d4 = c3 = 1, we obtain a reduced equation
— fuww + 2foo + fufwo = fofww = fofwo + fuwfoo = 0. (3.13)
Solving , the result is obtained

(3.12)

1 3 1
f = k3 tanh ( — ikQU + kz’w + kl) + k4 tanh ( — ikzv + kgw + kl) + k5, (314)
where ki, ko, ks, k4, ks are arbitrary constants. Combining (3.11)) and (3.14)), one

can obtain

k k 3
u = x + k3 tanh (éx—l—gy—kgt—kkl)

k k
+ k4 tanh (5290 + ;y — kot + k1> + ks,

where k1, ko, k3, k4, and ks are arbitrary constants.
Case 4. If we take Fi(t) = F3(t) =0, Fa(t) =dg, Fu(t) =t, c1 =c2=0,c3#0
where do and c3 are nonzero constants. The defining equation is
dt dxr dy du
0 e dy
Solving (3.16]), we can obtain the similarity variables and the group-invariant solu-
tion

(3.15)

(3.16)

t
v=t, w=dyr—cC3y, u= c—a:+f(w,v). (3.17)
3

Substituting (3.17)) into (1.1)), we obtain the following reduced PDE with variable
coeflicients

1
C%fww + d2fv7j - dZ’Ufwv - CBdg (fvfw,v - fwfvv) + a =0 (318)
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Case 5. Taking Fl(t) = dl, Fg(t) = dg, F3(t) = dg, F4(t) = 0, c1 = O, Cy = 0,
c3 # 0, where d; and ds, ds are nonzero constants, the characteristic equation

becomes
dt dx B @ B d7u

dilz 7d3+63 o d2 o 0
Solving this equation, we obtain the corresponding similarity variables and a group-
invariant solution

(3.19)

v=dot —dyy, w=(cz—d3)t—diz, u= f(w,v). (3.20)
Substituting ([3.20)) into , we have
dlfvv + (d3 - CS)fww - d2fwv - d%fwfvw + d%fvfww - 0 (321)
Solving this equation, we obtain
1 (do + \/—4d1ds + 4dyc3 + d3) k 3
f:k7tanh(—( 2 \/ 1d3 1C3 2) 20+k2w+k1>
2 h (3.22)
1 (de + /—4d1ds + 4dycs + d3) k
+k’5tanh<§( 2+ V- 4d: 3d 165 + dj) kv +k2w+k1) + ka,
1

where ki, ko, k4, ks, k7 are arbitrary constants. Combining (3.20) and (3.22)), we
obtain the exact solution of (1.1)),

1 (dy + \/—A4dyds + 4dics + d3)ka(dat — d1y)
2 d

3
+ k‘2[(C3 — d3)t — dl.’li] + k}l)

—4 4 2 _
+ ks tanh (% (d2 + /—4dids + dcllCS + d3) k2 (dat — dy1y)
1

+ kz[(Cg — dd)t — dl.’E] + kl) + ]€4,

u = k3 tanh (

(3.23)

where k1, ko, k3, k4, k5 are arbitrary constants.
Case 6. Setting Fy1(t) =0, Fa(t) =0, F3(t) =0, Fu(t) =0, ¢1 #0, c2 =0, ¢c3 =0,
the characteristic equation is

dt dx dy du
— = == = . 3.24
0 2c1x a1y  3ciu ( )

Solving this equation, the similarity variables and a group-invariant solution can
be obtained. They are

v=ay %, w=t, u=yf(wv), (3.25)

Substituting (3.25) into (1.1, it is obvious that the reduced nonlinear PDE with
variable coefficients is

6.f — 6vfy +40° fuoo + fow + i = 3f for = 0. (3.26)

Case 7. Letting Fl(t) = O7 FQ(t) == dg, F3(t) = dg, F4(t) = d4, cl = 0, Cy = 0,
c3 # 0, where dy,ds, d4 are nonzero constants, then the characteristic equation
becomes

dt dx dy du

= == 2
0 —d3 + ¢3 do dy (3 7)
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Solving this equation, we obtain

d
v=(c3—d3)y—dox, w=1t, u= d—4y + f(w,v). (3.28)
2
Substituting (3.28) into (1.1)) yields a reduced PDE of (1.1) with constant coeffi-

cients
((03 - d3)2 - d2d4)f'uv - d2fvw =0. (329)

Case 8. Letting Fy(t) = cqt + c5, Fo(t) =0, F5(t) =0, Fy(t) =0, ¢ =0, ca = 0,
c3=0,c4#0, c5 #0in (3.1), then we obtain
dt.  dr dy du

S = . (3.30)
cyt + cx C4T cqy C4U

Solving ([3.30)), we can get the similarity variables and the group-invariant solution

v=ay ', w=(ct+ecs)zt, u= f(v,w)z. (3.31)

Substituting (3.31)) into (1.1]), it is easily to obtain the reduced nonlinear PDE with
variable coefficients through a straight calculation
2v3fv + v4fvv + C4vaw - C4wfww - 2v2ffv + wUfowv - U?)ffvv

3.32
+2wv2fwfv _v2w2fwfwv _wvgfwfvv _wvsfvfwv+wgv2fvfww =0. ( )

FIGURE 1. Propagation of the exact solutions of (1.1 via (3.15)
with parameters: ky = 4, ko = 1, k3 = 3, k4 = =3, ks = 0.
Perspective of the solutions with: (a) t =0, (b) 2 =0, (¢) y = 0.

Case 9. If we set F1(t) = C4, Fg(t) = Cs, Fg(t) = 0, F4(t) = 0, (G 0, Co — 0,
c3 =0, cqg #0, c5 # 0, the defining equation is
dt dr dy du
s 3.33
Cyq 0 Cs 0 ( )

Solving this equation, we obtain the similarity variables and the group-invariant
solution

v=cst—cy, w=z, u= f(w,v). (3.34)
Then, we obtain the reduced nonlinear PDE with constant coefficients

c?lfm) + c5fwv - c4fwfwv + C4fvfww =0. (335)
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FIGURE 2. Propagation of the exact solutions of (|1.1)) via (3.35)
with parameters: k1 =0, ko = -1, ks =4, ks =2, ks =1, c4 = 1,
¢s = 2. Perspective of the solutions with: (a) ¢t =0, (b) z =0, (c)
y=0.
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FIGURE 3. Propagation of the exact solutions of (1.1 via (3.48)
with parameters: k1 = 1, ko = 4, ks = =1, ky = 2, ks = 1,
¢y = =2, c5 = 1, ¢cg = 2. Perspective of the solutions with: (a)

t=0, (b) 2 =0, (c) y = 0. Wave propagation pattern of the wave
along with: (d) the ¢ axis, (e) the z axis, (f) the y axis.

Solving this equation gives

ksch 3 kscj
f = ko tanh (kgv - —w+ kl) + ks tanh (kgv - ——w+ k1> + k4, (3.36)
Cs Cs
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where ki, ko, k3, k4, ks are arbitrary constants. Combining (3.34) and (3.36]), the
exact solution of (1.1)) is presented,

kscix

3
u = ko tanh (/cg(—c4y+05t) - + kl)

(3.37)

kscx
+ ks tanh (k3(764y+05t) - 304 + kl) + ka,
5
where ki, ko, k3, k4, ks are arbitrary constants.
Case 10. If taking Fi(t) = 0, Fa(t) = t, F5(t) = 0, F4(t) =0, ¢; = 0, 2 = 0,
¢3 = 0in (3.1), then the characteristic equation becomes
dt dr dy du
B A 3.38
0 —y t —T ( )

Solving this equation, the similarity variables and the group-invariant solution are
presented as follows

1 1 1
v=tr+ §y2, w=t, u=t"'f(w,v)+ 6t72y3 —t oy — §t72y3. (3.39)

Then, we obtain the PDE with variable coefficients
W fyw + 20 0y = 0. (3.40)
Solving ([3.40)), we obtain
v 2
f:fxw+ﬁmagw, (3.41)

where Fi(-%), Fp(w) are arbitrary functions of variables v and w. Combining

(3.39) and (3.41]), we obtain the exact solution of (1.1)

2t$+y2) EET S

—— |t —xyt” " — -yt 3.42
57 Ty P (3.42)

where F; and F; are arbitrary functions of variables z, t and y.

Case 11. Taking F(t) = ¢4, Fo(t) =1, F3(t) =0, F4(t) =0,¢1 =0,c2 =0,¢4 #0

in (3.1) yields

u=Ft)t! + F1<

b _dv_dy _ du

. (3.43)
Cq -y t -z
Solving ((3.43)), we obtain the similarity variables and the group-invariant solution
t3 t2 v th wt?
—_— t_ —_ —_— = s frng s 7t — T Y5 . 3.44
v 3¢y gro W 2 ey, w=flwo)+ c3 + 24c¢3 23 ( )
Substituting (3.44) into (1.1]) yields
1
szlfww - wfvv - Cifvaw + Cifwfvv - a =0. (345)

Case 12. Letting Fi(t) = ¢4, Fo(t) =0, F3(t) = cst+cg, Fu(t) =0, ¢1 =0, co =0,
c3=0,¢c4#0,¢5 #0, cg # 0 in (3.1)), we can obtain
dt d d d
at _ R (3.46)
Cq —cst — cg 0 cs5Y
Solving this equation we obtain the similarity variables and the group-invariant
solution

v = —%tz —ogt—cam, w=y, u=f(w,v)+ Syt (3.47)
Cq
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Substituting (3.47) into (1.1)) yields nonlinear PDE with constant coefficients
Suww + cace fou + Cifvaw - cifwfvv = 0. (348)

Solving this equation we have

k‘QU 3
f= kgtanh(— Ve +k2w+k1> .
f )
+k5tanh(— \/%ZC +k2w+k1> +/€47
6

where ki, ko, k3, k4, ks are arbitrary constants. Combining (3.47) and (3.48)), we
obtain the exact solutions of (|1.1))

ko(—%t% — cot — 3
u = k3 tanh ( k(=3 ) +k2y+k1)
V4% (3.50)
4 ks ta h( kQ(_%tQ_CGt_c4x)+k +l<:)+k + By
ah (— &
5 J/—cacs 2Y 1 4 0431,

where ki, ko, k3, k4, k5 are arbitrary constants. The illustrative examples of exact
solutions to case 3, case 9 and case 12 are presented graphically.

4. CONSTRUCTION OF CONSERVATION LAWS

In this section, we will construct conservation laws for the (2+1)-dimensional
Mikhalév equation (1.1). The formal Lagrangian form of (1.1)) is present by

Y = 0(Uyy + Upt + UgUzy — UyUzy)- (4.1)
Furthermore, the adjoint equation is written in this form
F* = 203Uy + 20y Upy + UgyUy — Ugally + Vyy + Vg = 0. (4.2)

Let us consider a Lie point symmetry generator,

0 0 0 0

X =Tr— +6y— + 5t— + 8u—. 4.3
Tor oy T T ou (4.3)

Thus, the extension of (4.3)) to v has the form

0 0 0 0 0
Y =Te— — + 5t— — — 14v—. 4.4
7x8x+6y8y+56t+8u8u Cw (4.4)
Theorem 4.1. Any infinitesimal symmetry

X :gi(x7u,u(1)7...)% —l—n"(m,u,u(l),...)% (4.5)

of a nonlinearly self-adjoint system to differential equation (1.1|) produces a conser-
vation law for this system,

[Di(CH)])1.1) =0 (4.6)
The components of the conserved vector are given by
i gi o[ OV ([ 9Y . oY
¢ =e W [&u?_Dj(au%>+DjDk(8u?jk)_.”} n
e[ DY Y e[ 00 ‘
+D;(W )[81;% Dk(@u?jk)+ } + D;Di(W )[8u%k ’

where ‘
W =y — s, (4.8)
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and 1 is the formal Lagrangian.
In this case, we obtain the conservation laws
D, (C") + Dy(C?) + D, (C?) =0, (4.9)
with the components of conserved vector C' = (C1,C?, C3), where
Ct = T20(Uyy + Uzt + UgUzy — UyUspg) + (B — TZUZE — Sty — BYUsy )V

— (Up — TTULg — BtUyy — 6YUgy ) (VUy) + (2uy — ToUgy — Stuy,

4.10

— 6yuyy) (vug) + (8u — Toug — Stuy — 6yuy) (Vug, (4.10)
+ Uglly — Vyly — Vt),

C? = 5t0(Uyy + Ut + Upllay — Uylzr) — SUV, + T2ULV, + 5lugv, (4.11)

+ 6YUy Uy + VUy — TTVULe — VUL — BYVULy,
c? = 60 (Uyy + Upt + UgUpy — UyUsgg) + (2uy — TTULy — Sty — Byuy, ) (v)
+ (8u — Tzuy — Stup — 6yuy ) (—20Ugs + vy — VzUy) (4.12)
+ (g — T2UZg — Bty — 6YUys ) (VUg).

This conserved vector includes an arbitrary solution v of the adjoint equation
F* = —203Ugy + 20y Ugy + Vgy Uz — Ugaly +Vyy + Ve = 0, and it can derive infinitely
many conservation laws. For convenience, let us take v = t, then the components
of the conserved vector are simplified to the form

cl = TTt(Uyy + Upt + UpUgy — Uylgs) + (8Uu — TaUy — Stuy — 6yuy ) (tugy)
— (Up — TTULZE — BtUgy — 6YUgy) (Tuy) + (2uy — TTULy — Bluyy, (4.13)
— 6yuyy) (tug) + (Buy — Toug, — Stuy — Byuy)t,
C? = 5¢t? (Uyy + Uzt + UglUpy — Uylgy) + tuy — TTlUL, — 52U — 6ytusy, (4.14)
c3 = Byt (Uyy + Ugt + Uplagy — Uylgy) + (8u — Txuy — Stuy — 6yuy, ) (—2tug,)

+ (1) (2uy — Tougy — Stuy — Byuyy) + (Ug — TTUgy — Bty — BYuys) (tus).
(4.15)

Then, we consider the point symmetry for the (241)-dimensional Mikhalév equa-
tion ,
X=—+—= (4.16)
and we obtain the conserved vector
Cl = (—uy — up) (Vatly + Vitgy — vyt — vg) + (Usy + gt ) (V1)
= (uyy + uye) (vua) — v(ugy + ue),
C? = (uy + w) (va) + (uyy + UsUay — Uylos — Uya ) (V), (4.18)

c? = Uy Uy + Uy + (Uplly + Uzt Vg + (UyUss

(4.17)

(4.19)
+ 2Up Uy — Upligr — Uty + Uzt V.
Similarly, we take v = —1 and get simplified conserved vector
cl = UpUpy — UgtUy + Uyt + Ugt + (Ury + Uyy ) Uz, (4.20)
C? = ugy + Uyz, (4.21)

Cc? = —UyUzg — 2UtUgy + UpUagt + Uty — Ut (4.22)
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We study a point symmetry for the (2+1)-dimensional Mikhalév equation (1.1

0
x=2, 4.23
o (4.23)
and the conserved vector
cl = (—2UgUpy — Ugt + Uylas )V + Uz + uivy — Ug Uy Uy, (4.24)
C? = uyvy — Uy, (4.25)
c? = (UpUgy — Ugy)V + uivm + Uz Vy. (4.26)

Taking the solution v = —1 of (4.2)), the following vector can be obtained

ct = (2UpUgy + Ugt — UyUsgg) = UgUgy — Uyy, (4.27)
C? = uyy, (4.28)
C? = (Ugtigy + Upy — 2UglUpy) = —UgUpg + Ugy. (4.29)

Specially, the conservation laws for the vector (4.27)-(4.29) have the form
D, (C") + Dy(C?) + D, (C?)

(4.30)
= UgUgzy + 2uma:t — UyUgza + Ugyy = (F)w + Uzt = 0.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented the Lie symmetry analysis for the (2+1)-
dimensional Mikhalév equation and applied the Ibragimov’s method to construct
its conservation laws. We have taken Fy(t), Fy(t), F3(t) and Fy(t) as linear func-
tions and systematically shown the Lie bracket and the adjoint representation to
the Mikhalév equation. Compared with [2], we have obtained several partial dif-
ferential equations with variable coefficients, such as, , , and get
their solutions. Meanwhile, we also have derived the solutions of partial differential
equations with constant coefficients such as equations (3.12)), (3.21)), (3.35), (3.48).
Hlustrative examples of solutions for the (2+1)-dimensional Mikhalév equation are
exhibited.
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