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LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR

THE (2+1)-DIMENSIONAL MIKHALËV EQUATION

XINYUE LI, YONGLI ZHANG, HUIQUN ZHANG, QIULAN ZHAO

Abstract. Lie symmetry analysis is applied to the (2+1)-dimensional Mikhalëv

equation, which can be reduced to several (1+1)-dimensional partial differen-
tial equations with constant coefficients or variable coefficients. Then we con-

struct exact explicit solutions for part of the above (1+1)-dimensional partial

differential equations. Finally, the conservation laws for the (2+1)-dimensional
Mikhalëv equation are constructed by means of Ibragimov’s method.

1. Introduction

Searching for solutions to partial differential equations (PDEs), which arise from
physics, chemistry, economics and other fields, is one of the most fundamental and
significant areas. A wealth of solving methods have been developed, such as the Lie
symmetry analysis [5, 8, 11, 15], the homogeneous balance method [13, 18], Hirota’s
bilinear method [10], the Painlev’s analysis method [6]. The Lie symmetry analysis
is one of the most effective tools for solving partial differential equations and it
was firstly traced back to the famous Norwegian mathematician Sophus Lie [12],
who was influenced and inspired by the Galois theory founded in the early 18th
century. Bluman and Cole proposed similarity theory for differential equations
in 1970s [?]. Subsequently, the scope of application and theoretical depth of Lie
symmetry analysis have been expanded. The (2+1)-dimensional Mikhalëv equation
reads [14]

uyy + uxt + uxuxy − uyuxx = 0, (1.1)

which was first derived by Mikhalëv in 1992. He described a relationship between
Poisson-Lie-Berezin-Kirillov brackets and the Mikhalëv system

uy = vx, vy + ut + uvx − vux = 0. (1.2)

Pavlov adopts the method of extended Hodograph method to study integrability of
exceptional hydrodynamic type systems. The corresponding particular solution of
Mikhalëv system [16] is constructed under the condition of three-component case.
By constructing new integrable hydrodynamic chains, he describes and integrates
all their fluid dynamics, and then extracts new (2+1) integrable hydrodynamic sys-
tems from them [17]. Derchyi Wu discussed Cauchy problem of Pavlov’s equation
and solve the equation by using the backscattering method [19]. Grinevich and
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Santini investigated nonlocality and the inverse scattering transformation for the
Mikhalëv equation [9]. Dunajski [7] presented a twistor description of (1.2) and
demonstrated that the solutions of (1.2) could be used to construct Lorentzian
Einstein-Weyl structures in three dimensions. In this paper, we apply Lie sym-
metry analysis to the (2+1)-dimensional Mikhalëv equation to present its exactly
explicit solutions and construct its conservation laws. The concept of conserva-
tion laws is important in nonlinear science. The famous Noether’s theorem [1]
provides a systematic and effective way of determining conservation laws for Euler-
Lagrange differential equations once their Noether symmetries are known. Later,
researchers made various generalizations of Noether’s theorem. Among these ex-
tended methods, the new conservation theorem, also called nonlocal conservation
theorem, introduced by Ibragimov, is one of the most frequently used approaches.
In this paper we will apply the Ibragimov’s method to construct conservation laws
for the (2+1)-dimensional Mikhalëv equation.

The paper is organized as follows. In Section 2, we will apply Lie symmetry
analysis to the (2+1)-dimensional Mikhalëv equation. In Section 3, we will study
some exact explicit solutions for the (2+1)-dimensional Mikhalëv equation based
on the similarity reductions. In Section 4, the conservation laws for the (2+1)-
dimensional Mikhalëv equation will be established by using Ibragimov’s method.
In Section 5, we will give some conclusions and discussions.

2. Lie symmetry analysis for the (2+1)-dimensional Mikhalëv
equation

First of all, let us consider an one-parameter group of infinitesimal transforma-
tion,

x→ x+ εξ(x, y, t, u) +O(ε2),

t→ t+ ετ(x, y, t, u) +O(ε2),

y → y + εη(x, y, t, u) +O(ε2),

u→ u+ εφ(x, y, t, u) +O(ε2),

(2.1)

where ε � 1 is a group parameter. The vector field associated with the above
group of transformation (2.1) is presented

V = ξ(x, y, t, u)
∂

∂x
+ η(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t
+ φ(x, y, t, u)

∂

∂u
. (2.2)

Thus, the second prolongation pr(2) V is

(2)

PrV = V + φx
∂

∂ux
+ φy

∂

∂uy
+ φyy

∂

∂uyy
+ φxt

∂

∂uxt
+ φxy

∂

∂uxy
+ φxx

∂

∂uxx
, (2.3)

where
φy = Dy(φ− ξux − ηuy − τut) + ξuxy + ηuyy + τuty,

φx = Dx(φ− ξux − ηuy − τut) + ξuxx + ηuyx + τutx,

φyy = D2
y(φ− ξux − ηuy − τut) + ξuxyy + ηuyyy + τutyy,

φxy = DyDx(φ− ξux − ηuy − τut) + ξuxxy + ηuxyy + τuxty,

φxx = D2
x(φ− ξux − ηuy − τut) + ξuxxx + ηuxxy + τuxxt,

φxt = DtDx(φ− ξux − ηuy − τut) + ξuxxt + ηuxyt + τuxtt,

(2.4)
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and the operators Dx, Dy, Dt are the total derivatives with respect to x, y, t respec-
tively. The determining equation of (1.1) arises from the invariance condition

pr(2) V
∣∣
∆=0

= 0, (2.5)

where ∆ = uyy + uxt + uxuxy − uyuxx = 0. Furthermore, we have

φyy + φxt + φxuxy + φxyux − φyuxx − φxxuy = 0, (2.6)

where the coefficient functions φy, φx, φyy, φxy, φxx and φxt are determined in
(2.4). Then, the forms of the coefficient functions by calculating the standard
symmetry group are obtained

ξ = (F1t(t) + 2c1)x− 1

2
F1tt(t)y

2 +
1

2
(−2F2t(t) + c2)y − F3(t) + c3,

η = (F1t(t) + c1)y + F2(t),

τ = F1(t),

φ = (F1t(t) + 3c1)u− (F1tt(t)y − c2 + F2t(t))x+
1

6
F1ttt(t)y

3 +
1

2
F2tt(t)y

2

+ F3t(t)y + F4(t),

(2.7)

where ci (i = 1, 2, 3) are arbitrary constants and Fi(t) (i = 1, 2, 3, 4) are arbitrary
functions with regard to t. For convenience, we assume that

F1(t) = c4t+ c8, F2(t) = c5t+ c9, F3(t) = c6t+ c10, F4(t) = c7t+ c11. (2.8)

Therefore, the Lie algebra of infinitesimal symmetries of equation (1.1) is spanned
by the vector field

V1 = 2x
∂

∂x
+ y

∂

∂y
+ 3u

∂

∂u
, V2 =

1

2
y
∂

∂x
+ x

∂

∂u
,

V3 =
∂

∂x
, V4 = x

∂

∂x
+ y

∂

∂y
+ t

∂

∂t
+ u

∂

∂u
,

V5 = −y ∂
∂x

+ t
∂

∂y
− x ∂

∂u
, V6 = −t ∂

∂x
+ y

∂

∂u
,

V7 = t
∂

∂u
, V8 =

∂

∂t
, V9 =

∂

∂y
, V10 = − ∂

∂x
, V11 =

∂

∂u
.

(2.9)

We apply the Lie bracket [Vi, Vj ] = ViVj−VjVi, with the (i, j)-th entry representing
[Vi, Vj ] to get the commutator table listed in Table 1.

Table 1. Lie bracket of equation (1.1)

Lie V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V1 0 −V2 −2V3 0 −V5 −2V6 −3V7 0 −V9 −2V10 −3V11

V2 V2 0 −V11 0 1
2V6 V7 0 0 1

2V10 V11 0

V3 2V3 V11 0 −V10 −V11 0 0 0 0 0 0

V4 0 0 −V3 0 0 0 −V7 −V8 −V9 −V10 −V11

V5 V5 − 1
2V6 V11 0 0 0 0 −V9 −V10 −V11 0

V6 2V6 −V7 0 0 0 0 0 −V10 −V11 0 0

V7 3V7 0 0 V7 0 0 0 −V11 0 0 0

V8 0 0 0 V8 V9 V10 V11 0 0 0 0

V9 V9 − 1
2V10 0 V9 V10 V11 0 0 0 0 0

V10 −2V3 −V11 0 V10 V11 0 0 0 0 0 0

V11 3V3 0 0 V11 0 0 0 0 0 0 0
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Next, using Table 1 and the Lie series

Ad(exp(εVi))Vj = Vj − ε[Vi, Vj ] +
1

2
ε2[Vi, [Vi, Vj ]]− . . . , (2.10)

where ε is a real number and [·, ·] is the Lie bracket. The adjoint representation is
shown in Table 2.

Table 2. Adjoint representation of equation (1.1).

Ad V1 V2 V3 V4 V5 V6

V1 V1 V2e
ε V1e

2ε V4 V5e
ε V6e

2ε

V2 V1 − εV2 V2 V3 + εV11 V4 V5 − ε
2V6 + ε2

4 V7 V6 − εV7

V3 V1 − 2εV3 V2 − εV11 V3 V4 + εV10 V5 + εV11 V6

V4 V1 V2 V3e
ε V4 V5 V6

V5 V1 − εV5 V2 + ε
2V6 V3 − εV11 V4 V5 V6

V6 V1 − 2εV6 V2 + εV7 V3 V4 V5 V6

V7 V1 − 3εV7 V2 V3 V4 − εV7 V5 V6

V8 V1 V2 V3 V4 − εV8 V5 − εV9 V6 + εV3

V9 V1 − εV9 V2 − 1
2 εV3 V3 V4 − εV9 V5 + εV3 V6 − εV11

V10 V1 − 2εV10 V2 + εV11 V3 V4 − εV10 V5 − εV11 V6

V11 V1e
−3ε V2 V3 V4 − εV11 V5 V6

Ad V7 V8 V9 V10 V11

V1 V7e
3ε V8 V9e

ε V10e
2ε V11e

3ε

V2 V7 V8 V9 − ε
2V10 + ε2

4 V11 V10 − εV11 V11

V3 V7 V8 V9 V10 V11

V4 V7e
ε V8e

ε V9e
ε V10e

ε V11e
ε

V5 V7 V8 + εV9 + ε2

2 V10 + ε3

3! V11 V9 + εV10 + ε2

2 V11 V10 + εV11 V11

V6 V7 V8 + εV10 V9 + εV11 V10 V11

V7 V7 V8 + εV11 V9 V10 V11

V8 V7 − εV11 V8 V9 V10 V11

V9 V7 V8 V9 V10 V11

V10 V7 V8 V9 V10 V11

V11 V7 V8 V9 V10 V11

The one-parameter symmetry groups gi (1 ≤ i ≤ 11) generated by the corre-
sponding infinitesimal generators Vi (1 ≤ i ≤ 11) will be obtained

g1 : (x, y, t, u)→ (e2εx, eεy, t, e3εu),

g2 : (x, y, t, u)→ (
1

2
yε+ x, y, t,

1

4
yε2 + xε+ u),

g3 : (x, y, t, u)→ (x+ ε, y, t, u), g4 : (x, y, t, u)→ (eεx, eεy, eεt, eεu),

g5 : (x, y, t, u)→ (−ε
2

2
t− εy + x, εt+ y, t,

ε3

6
t+

ε2

2
y − εx+ u),

g6 : (x, y, t, u)→ (x− tε, y, t, u+ εy), g7 : (x, y, t, u)→ (x, y, t, u+ εt),

g8 : (x, y, t, u)→ (x, y, t+ ε, u), g9 : (x, y, t, u)→ (x, y + ε, t, u),

g10 : (x, y, t, u)→ (−ε+ x, y, t, u), g11 : (x, y, t, u)→ (x, y, t, u+ ε),

(2.11)

where g3, g9 are space translations, g8 is a time translation, g11 is a dependent
variable translation, g4 is a scaling transformation, and g5 is a generalized Galilean
transformation. According to the above one-parameter symmetry groups gi (i =
1, 2, . . . , 11), it implies that if u = f(x, y, t) is a solution of (1.1), then u(j) (1 ≤
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j ≤ 11) are also solutions of (1.1)

u(1) = e3εf(xe−2ε, ye−ε, t), u(2) = −ε
2

4
y + xε+ f(x− ε

2
y, y, t),

u(3) = f(x− ε, y, t), u(4) = eεf(xe−ε, ye−ε, te−ε),

u(5) = −εx− ε2

2
y +

ε3

6
t+ f(x+ εy − ε2

2
t, y − εt, t),

u(6) = εy + f(x+ tε, y, t), u(7) = εt+ f(x, y, t),

u(8) = f(x, y, t− ε), u(9) = f(x, y − ε, t),

u(10) = f(x+ ε, y, t), u(11) = ε+ f(x, y, t),

(2.12)

where ε is an arbitrary real number.

3. Similarity reductions and exact solutions

The similarity reductions of the given equations can be identified by solving the
characteristic equation

dt

F1(t)
=

dx

(F1t(t) + 2c1)x− 1
2F1tt(t)y2 + 1

2 (−2F2t(t) + c2)y − F3(t) + c3

=
dy

(F1t(t) + c1) · y + F2(t)

=
(

(F1t(t) + 3c1)u− (F1tt(t)y − c2 + F2t(t))x+
1

6
F1ttt(t)y

3

+
1

2
F2tt(t)y

2 + F3t(t)y + F4(t)
)−1

du.

(3.1)

Here, we give the corresponding similarity reduction and provide some exact solu-
tions of the original equation (1.1).

Case 1. Taking F1(t) = 0, F2(t) = 0, F3(t) = 0, F4(t) = 0, c1 6= 0, c2 = 0, c3 = 0
in (3.2) yields

dt

0
=

dx

2c1x
=

dy

c1y
=

du

3c1u
, (3.2)

where the expression dt
0 means that the first integral of time t is a constant. Solving

(3.2) provides

v = t, w = yx−1/2, u = f(v, w)x3/2. (3.3)

Substituting (3.3) into (1.1), we obtain the following (1+1)-dimensional nonlinear
PDE with variable coefficients

4fww + 6fv − 2wfwv + 3ffw − 3wffww + wf2
w = 0. (3.4)

Case 2. If we take F1(t) = 0, F2(t) = 0, F3(t) = 0, F4(t) = 0, c1 = 0, c2 6= 0,
c3 = 0 in (3.2), then we obtain

dt

0
=

dx
1
2c2y

=
dy

0
=

du

c2x
. (3.5)

Solving this equation, we obtain the similarity variables and the group-invariant
solution

v = t, w = y, u = f(w, v) +
x2

y
. (3.6)
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Substituting (3.6) into (1.1), we derive reduced PDE with variable coefficients

fww − 2w−1fw = 0. (3.7)

Solving this equation, we obtain

f = F2(v)w3 + F1(v), (3.8)

where F1(v), F2(v) are arbitrary functions of v. Based on (3.6) and (3.8), we obtain
the exact solution of (1.1)

u = F2(t)y3 + F1(t) +
x2

y
, (3.9)

where F1(t), F2(t) are arbitrary functions of t.

Case 3. Letting F1(t) = d1, F2(t) = d2, F3(t) = 0, F4(t) = d4, c1 = 0, c2 = 0,
c3 6= 0, where d1, d2, and d4 are nonzero constants and we have

dt

d1
=
dx

c3
=
dy

d2
=
du

d4
. (3.10)

Solving (3.10), we obtain the similarity variables and group-invariant solution

v = d2x− c3y, w = d1x− c3t, u =
d4

c3
x+ f(w, v). (3.11)

Substituting (3.11) into (1.1) yields

(c23 + d2d4)fvv − c3d1fww + (d1d4 + c3d2)fvw + d2
1c3fwfwv

− d2
1c3fvfww − d1d2c3fvfwv + d1d2c3fwfvv = 0.

(3.12)

Letting d1 = d2 = d4 = c3 = 1, we obtain a reduced equation

− fww + 2fvv + fwfwv − fvfww − fvfwv + fwfvv = 0. (3.13)

Solving (3.13), the result is obtained

f = k3 tanh
(
− 1

2
k2v + k2w + k1

)3

+ k4 tanh
(
− 1

2
k2v + k2w + k1

)
+ k5, (3.14)

where k1, k2, k3, k4, k5 are arbitrary constants. Combining (3.11) and (3.14), one
can obtain

u = x+ k3 tanh
(k2

2
x+

k2

2
y − k2t+ k1

)3

+ k4 tanh
(k2

2
x+

k2

2
y − k2t+ k1

)
+ k5,

(3.15)

where k1, k2, k3, k4, and k5 are arbitrary constants.

Case 4. If we take F1(t) = F3(t) = 0, F2(t) = d2, F4(t) = t, c1 = c2 = 0, c3 6= 0
where d2 and c3 are nonzero constants. The defining equation is

dt

0
=
dx

c3
=
dy

d2
=
du

t
. (3.16)

Solving (3.16), we can obtain the similarity variables and the group-invariant solu-
tion

v = t, w = d2x− c3y, u =
t

c3
x+ f(w, v). (3.17)

Substituting (3.17) into (1.1), we obtain the following reduced PDE with variable
coefficients

c23fww + d2fvv − d2vfwv − c3d2
2

(
fvfw,v − fwfvv

)
+

1

c3
= 0 (3.18)
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Case 5. Taking F1(t) = d1, F2(t) = d2, F3(t) = d3, F4(t) = 0, c1 = 0, c2 = 0,
c3 6= 0, where d1 and d2, d3 are nonzero constants, the characteristic equation
becomes

dt

d1
=

dx

−d3 + c3
=
dy

d2
=
du

0
. (3.19)

Solving this equation, we obtain the corresponding similarity variables and a group-
invariant solution

v = d2t− d1y, w = (c3 − d3)t− d1x, u = f(w, v). (3.20)

Substituting (3.20) into (1.1), we have

d1fvv + (d3 − c3)fww − d2fwv − d2
1fwfvw + d2

1fvfww = 0. (3.21)

Solving this equation, we obtain

f = k7 tanh
(1

2

(
d2 +

√
−4d1d3 + 4d1c3 + d2

2

)
k2v

d1
+ k2w + k1

)3

+ k5 tanh
(1

2

(
d2 +

√
−4d1d3 + 4d1c3 + d2

2

)
k2v

d1
+ k2w + k1

)
+ k4,

(3.22)

where k1, k2, k4, k5, k7 are arbitrary constants. Combining (3.20) and (3.22), we
obtain the exact solution of (1.1),

u = k3 tanh
(1

2

(d2 +
√
−4d1d3 + 4d1c3 + d2

2)k2(d2t− d1y)

d1

+ k2[(c3 − d3)t− d1x] + k1

)3

+ k5 tanh
(1

2

(d2 +
√
−4d1d3 + 4d1c3 + d2

2)k2(d2t− d1y)

d1

+ k2[(c3 − d3)t− d1x] + k1

)
+ k4,

(3.23)

where k1, k2, k3, k4, k5 are arbitrary constants.

Case 6. Setting F1(t) = 0, F2(t) = 0, F3(t) = 0, F4(t) = 0, c1 6= 0, c2 = 0, c3 = 0,
the characteristic equation is

dt

0
=

dx

2c1x
=

dy

c1y
=

du

3c1u
. (3.24)

Solving this equation, the similarity variables and a group-invariant solution can
be obtained. They are

v = xy−2, w = t, u = y3f(w, v), (3.25)

Substituting (3.25) into (1.1), it is obvious that the reduced nonlinear PDE with
variable coefficients is

6f − 6vfv + 4v2fvv + fvw + f2
v − 3ffvv = 0. (3.26)

Case 7. Letting F1(t) = 0, F2(t) = d2, F3(t) = d3, F4(t) = d4, c1 = 0, c2 = 0,
c3 6= 0, where d2, d3, d4 are nonzero constants, then the characteristic equation
becomes

dt

0
=

dx

−d3 + c3
=
dy

d2
=
du

d4
. (3.27)
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Solving this equation, we obtain

v = (c3 − d3)y − d2x, w = t, u =
d4

d2
y + f(w, v). (3.28)

Substituting (3.28) into (1.1) yields a reduced PDE of (1.1) with constant coeffi-
cients (

(c3 − d3)2 − d2d4

)
fvv − d2fvw = 0. (3.29)

Case 8. Letting F1(t) = c4t + c5, F2(t) = 0, F3(t) = 0, F4(t) = 0, c1 = 0, c2 = 0,
c3 = 0, c4 6= 0, c5 6= 0 in (3.1), then we obtain

dt

c4t+ c5
=

dx

c4x
=

dy

c4y
=

du

c4u
. (3.30)

Solving (3.30), we can get the similarity variables and the group-invariant solution

v = xy−1, w = (c4t+ c5)x−1, u = f(v, w)x. (3.31)

Substituting (3.31) into (1.1), it is easily to obtain the reduced nonlinear PDE with
variable coefficients through a straight calculation

2v3fv + v4fvv + c4vfvw − c4wfww − 2v2ffv + wv2ffwv − v3ffvv

+ 2wv2fwfv − v2w2fwfwv − wv3fwfvv − wv3fvfwv + w2v2fvfww = 0.
(3.32)

(a) (b) (c)

Figure 1. Propagation of the exact solutions of (1.1) via (3.15)
with parameters: k1 = 4, k2 = 1, k3 = 3, k4 = −3, k5 = 0.
Perspective of the solutions with: (a) t = 0, (b) x = 0, (c) y = 0.

Case 9. If we set F1(t) = c4, F2(t) = c5, F3(t) = 0, F4(t) = 0, c1 = 0, c2 = 0,
c3 = 0, c4 6= 0, c5 6= 0, the defining equation is

dt

c4
=
dx

0
=
dy

c5
=
du

0
. (3.33)

Solving this equation, we obtain the similarity variables and the group-invariant
solution

v = c5t− c4y, w = x, u = f(w, v). (3.34)

Then, we obtain the reduced nonlinear PDE with constant coefficients

c24fvv + c5fwv − c4fwfwv + c4fvfww = 0. (3.35)
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(a) (b) (c)

Figure 2. Propagation of the exact solutions of (1.1) via (3.35)
with parameters: k1 = 0, k2 = −1, k3 = 4, k4 = 2, k5 = 1, c4 = 1,
c5 = 2. Perspective of the solutions with: (a) t = 0, (b) x = 0, (c)
y = 0.

(a) (b) (c)

(d) (e) (f)

Figure 3. Propagation of the exact solutions of (1.1) via (3.48)
with parameters: k1 = 1, k2 = 4, k3 = −1, k4 = 2, k5 = 1,
c4 = −2, c5 = 1, c6 = 2. Perspective of the solutions with: (a)
t = 0, (b) x = 0, (c) y = 0. Wave propagation pattern of the wave
along with: (d) the t axis, (e) the x axis, (f) the y axis.

Solving this equation gives

f = k2 tanh
(
k3v −

k3c
2
4

c5
w + k1

)3

+ k5 tanh
(
k3v −

k3c
2
4

c5
w + k1

)
+ k4, (3.36)
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where k1, k2, k3, k4, k5 are arbitrary constants. Combining (3.34) and (3.36), the
exact solution of (1.1) is presented,

u = k2 tanh
(
k3(−c4y+c5t)−

k3c
2
4x

c5
+ k1

)3

+ k5 tanh
(
k3(−c4y+c5t)−

k3c
2
4x

c5
+ k1

)
+ k4,

(3.37)

where k1, k2, k3, k4, k5 are arbitrary constants.

Case 10. If taking F1(t) = 0, F2(t) = t, F3(t) = 0, F4(t) = 0, c1 = 0, c2 = 0,
c3 = 0 in (3.1), then the characteristic equation becomes

dt

0
=
dx

−y
=
dy

t
=

du

−x
. (3.38)

Solving this equation, the similarity variables and the group-invariant solution are
presented as follows

v = tx+
1

2
y2, w = t, u = t−1f(w, v) +

1

6
t−2y3 − t−1xy − 1

2
t−2y3. (3.39)

Then, we obtain the PDE with variable coefficients

wfvw + 2vfvv = 0. (3.40)

Solving (3.40), we obtain

f = F2(w) + F1

( v

w2

)
w2, (3.41)

where F1( v
w2 ), F2(w) are arbitrary functions of variables v and w. Combining

(3.39) and (3.41), we obtain the exact solution of (1.1)

u = F2(t)t−1 + F1

(2tx+ y2

2t2

)
t− xyt−1 − 1

3
y3t−2, (3.42)

where F1 and F2 are arbitrary functions of variables x, t and y.

Case 11. Taking F1(t) = c4, F2(t) = t, F3(t) = 0, F4(t) = 0, c1 = 0, c2 = 0, c4 6= 0
in (3.1) yields

dt

c4
=
dx

−y
=
dy

t
=

du

−x
. (3.43)

Solving (3.43), we obtain the similarity variables and the group-invariant solution

v =
t3

3c4
− yt− c4x, w =

t2

2
− c4y, u = f(w, v) +

v

c24
t+

t4

24c34
− wt2

2c34
. (3.44)

Substituting (3.44) into (1.1) yields

c24fww − wfvv − c34fvfvw + c34fwfvv −
1

c4
= 0. (3.45)

Case 12. Letting F1(t) = c4, F2(t) = 0, F3(t) = c5t+ c6, F4(t) = 0, c1 = 0, c2 = 0,
c3 = 0, c4 6= 0, c5 6= 0, c6 6= 0 in (3.1), we can obtain

dt

c4
=

dx

−c5t− c6
=
dy

0
=

du

c5y
. (3.46)

Solving this equation we obtain the similarity variables and the group-invariant
solution

v = −c5
2
t2 − c6t− c4x, w = y, u = f(w, v) +

c5
c4
yt. (3.47)
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Substituting (3.47) into (1.1) yields nonlinear PDE with constant coefficients

fww + c4c6fvv + c24fvfvw − c24fwfvv = 0. (3.48)

Solving this equation we have

f = k3 tanh
(
− k2v√
−c4c6

+ k2w + k1

)3

+ k5 tanh
(
− k2v√
−c4c6

+ k2w + k1

)
+ k4,

(3.49)

where k1, k2, k3, k4, k5 are arbitrary constants. Combining (3.47) and (3.48), we
obtain the exact solutions of (1.1)

u = k3 tanh
(
−
k2(− c52 t

2 − c6t− c4x)
√
−c4c6

+ k2y + k1

)3

+ k5 tanh
(
−
k2(− c52 t

2 − c6t− c4x)
√
−c4c6

+ k2y + k1

)
+ k4 +

c5
c4
yt,

(3.50)

where k1, k2, k3, k4, k5 are arbitrary constants. The illustrative examples of exact
solutions to case 3, case 9 and case 12 are presented graphically.

4. Construction of conservation laws

In this section, we will construct conservation laws for the (2+1)-dimensional
Mikhalëv equation (1.1). The formal Lagrangian form of (1.1) is present by

ψ = v(uyy + uxt + uxuxy − uyuxx). (4.1)

Furthermore, the adjoint equation is written in this form

F ∗ = −2vxuxy + 2vyuxx + vxyux − vxxuy + vyy + vxt = 0. (4.2)

Let us consider a Lie point symmetry generator,

X = 7x
∂

∂x
+ 6y

∂

∂y
+ 5t

∂

∂t
+ 8u

∂

∂u
. (4.3)

Thus, the extension of (4.3) to v has the form

Y = 7x
∂

∂x
+ 6y

∂

∂y
+ 5t

∂

∂t
+ 8u

∂

∂u
− 14v

∂

∂v
. (4.4)

Theorem 4.1. Any infinitesimal symmetry

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα
(4.5)

of a nonlinearly self-adjoint system to differential equation (1.1) produces a conser-
vation law for this system,

[Di(C
i)](1.1) = 0 (4.6)

The components of the conserved vector are given by

Ci = ξiψ +Wα
[ ∂ψ
∂uαi

−Dj

( ∂ψ
∂uαij

)
+DjDk(

∂ψ

∂uαijk
)− · · ·

]
+Dj(W

α)
[ ∂ψ
∂uαij

−Dk

( ∂ψ

∂uαijk

)
+ · · ·

]
+DjDk(Wα)

[ ∂ψ

∂uαijk
− · · ·

]
,

(4.7)

where
Wα = ηα − ξjuαj , (4.8)
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and ψ is the formal Lagrangian.

In this case, we obtain the conservation laws

Dx(C1) +Dt(C
2) +Dy(C3) = 0, (4.9)

with the components of conserved vector C = (C1, C2, C3), where

C1 = 7xv(uyy + uxt + uxuxy − uyuxx) + (3ut − 7xuxt − 5tutt − 6yuty)v

− (ux − 7xuxx − 5tuxt − 6yuxy)(vuy) + (2uy − 7xuxy − 5tuty

− 6yuyy)(vux) + (8u− 7xux − 5tut − 6yuy)(vuxy

+ vxuy − vyux − vt),

(4.10)

C2 = 5tv(uyy + uxt + uxuxy − uyuxx)− 8uvx + 7xuxvx + 5tutvx

+ 6yuyvx + vux − 7xvuxx − 5tvuxt − 6yvuxy,
(4.11)

C3 = 6yv(uyy + uxt + uxuxy − uyuxx) + (2uy − 7xuxy − 5tuyt − 6yuyy)(v)

+ (8u− 7xux − 5tut − 6yuy)(−2vuxx + vy − vxux)

+ (ux − 7xuxx − 5tutx − 6yuyx)(vux).

(4.12)

This conserved vector includes an arbitrary solution v of the adjoint equation
F ∗ = −2vxuxy +2vyuxx+vxyux−vxxuy +vyy +vxt = 0, and it can derive infinitely
many conservation laws. For convenience, let us take v = t, then the components
of the conserved vector are simplified to the form

C1 = 7xt(uyy + uxt + uxuxy − uyuxx) + (8u− 7xux − 5tut − 6yuy)(tuxy)

− (ux − 7xuxx − 5tuxt − 6yuxy)(tuy) + (2uy − 7xuxy − 5tuty

− 6yuyy)(tux) + (3ut − 7xuxt − 5tutt − 6yuty)t,

(4.13)

C2 = 5t2(uyy + uxt + uxuxy − uyuxx) + tux − 7xtuxx − 5t2uxt − 6ytuxy, (4.14)

C3 = 6yt(uyy + uxt + uxuxy − uyuxx) + (8u− 7xux − 5tut − 6yuy)(−2tuxx)

+ (t)(2uy − 7xuxy − 5tuyt − 6yuyy) + (ux − 7xuxx − 5tutx − 6yuyx)(tux).

(4.15)

Then, we consider the point symmetry for the (2+1)-dimensional Mikhalëv equa-
tion (1.1),

X =
∂

∂y
+
∂

∂t
, (4.16)

and we obtain the conserved vector

C1 = (−uy − ut)(vxuy + vuxy − vyux − vt) + (uxy + uxt)(vuy)

− (uyy + uyt)(vux)− v(uty + utt),
(4.17)

C2 = (uy + ut)(vx) + (uyy + uxuxy − uyuxx − uyx)(v), (4.18)

C3 = uyvy + utvy + (uxuy + uxut)vx + (uyuxx

+ 2utuxx − uxuxt − uty + uxt)v.
(4.19)

Similarly, we take v = −1 and get simplified conserved vector

C1 = utuxy − uxtuy + uyt + utt + (uty + uyy)ux, (4.20)

C2 = uxt + uyx, (4.21)

C3 = −uyuxx − 2utuxx + uxuxt + uty − uxt. (4.22)
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We study a point symmetry for the (2+1)-dimensional Mikhalëv equation (1.1)

X =
∂

∂x
, (4.23)

and the conserved vector

C1 = (−2uxuxy − uxt + uyuxx)v + uxvt + u2
xvy − uxuyvx, (4.24)

C2 = uxvx − uxxv, (4.25)

C3 = (uxuxx − uxy)v + u2
xvx + uxvy. (4.26)

Taking the solution v = −1 of (4.2), the following vector can be obtained

C1 = (2uxuxy + uxt − uyuxx) = uxuxy − uyy, (4.27)

C2 = uxx, (4.28)

C3 = (uxuxx + uxy − 2uxuxx) = −uxuxx + uxy. (4.29)

Specially, the conservation laws for the vector (4.27)-(4.29) have the form

Dx(C1) +Dt(C
2) +Dy(C3)

= uxuxxy + 2uxxt − uyuxxx + uxyy = (F )x + uxxt = 0.
(4.30)

5. Conclusions and discussions

In this paper, we have presented the Lie symmetry analysis for the (2+1)-
dimensional Mikhalëv equation and applied the Ibragimov’s method to construct
its conservation laws. We have taken F1(t), F2(t), F3(t) and F4(t) as linear func-
tions and systematically shown the Lie bracket and the adjoint representation to
the Mikhalëv equation. Compared with [2], we have obtained several partial dif-
ferential equations with variable coefficients, such as, (3.7), (3.18), (3.40) and get
their solutions. Meanwhile, we also have derived the solutions of partial differential
equations with constant coefficients such as equations (3.12), (3.21), (3.35), (3.48).
Illustrative examples of solutions for the (2+1)-dimensional Mikhalëv equation are
exhibited.
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