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Abstract. The main goal of the present paper is to study the asymptotic be-
haviour of eigenvalues and eigenfunctions of a discontinuous boundary-value

problem with retarded argument with a finite number of transmission condi-

tions.

1. Introduction

Spectral properties of boundary-value problems with retarded argument and with
discontinuities inside the interval are studied by many authors [1, 4, 5, 7, 10, 17,
18, 19, 23]. Following these studies, in this work, we consider the boundary-value
problem for the differential equation

y′′(x) + q(x)y(x−∆(x)) + µ2y(x) = 0 (1.1)

on [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π], with boundary conditions

d1y(0) + d2y
′(0) = 0, (1.2)

y′(π) + µ2y(π) = 0, (1.3)

and transmission conditions

y(ri − 0)− δiy(ri + 0) = 0, i = 1,m, (1.4)

y′(ri − 0)− δiy′(ri + 0) = 0, i = 1,m (1.5)

where the real-valued function q(x) is continuous in [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π]
and has finite limits

q(ri ± 0) = lim
x→ri±0

q(x),

the real valued function ∆(x) ≥ 0 continuous in [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π] and
has finite limits

∆(ri ± 0) = lim
x→ri±0

∆(x),
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x − ∆(x) ≥ 0 if x ∈ [0, r1); x − ∆(x) ≥ r1, if x ∈ (r1, r2);. . . , x − ∆(x) ≥ rm−1,
if x ∈ (rm, π); µ is a real positive eigenparameter; ri, δi 6= 0 are arbitrary real
numbers such that 0 < r1 < r2 < · · · < rm < π and d1d2 6= 0.

The goal of this article is to obtain asymptotic formulas for eigenvalues of eigen-
functions for problem (1.1)–(1.5). To this aim, first, the principal term of asymp-
totic distribution of eigenvalues and eigenfunctions of (1.1)–(1.5) was obtained up
to O(1/N), but, afterwards under some additional conditions we improve these for-
mulas up to O(1/N2). Thus, when the number of points of discontinuity is more
than one, we see how the asymptotic behaviour of eigenvalues and eigenfunctions
of a boundary-value problem with retarded argument which contains a spectral
parameter in the boundary conditions change. We point out that our results are
extension and/or generalization to those in [3, 9, 11, 12, 13, 14, 15, 19, 20, 21]. For
example, if the retardation function ∆ ≡ 0 in (1.1) and δi = 1 (i = 1,m); or δ1 6= 1
and δi = 1 (i = 2,m); or δ1,2 6= 1 and δi = 1 (i = 3,m); or δi 6= 1 (i = 1,m) results
obtained in this paper coincide with the results of [9, 11, 14, 20], respectively.

Differential equations with deviating argument, in particular differential equa-
tions with retarded argument, describe processes with aftereffect; they find many
applications, particularly in the theory of automatic control, in the theory of self-
oscillatory systems, in the study of problems connected with combustion in rocket
engines (see [16] and the references therein).

Boundary value problems containing a spectral parameter in the boundary con-
ditions have many interesting applications, especially in mathematical physics (e.g.
[22, pp. 146-152]). It must be also noted that recently boundary-value problems
with transmission conditions attracted much attention in connection with the in-
verse acoustic scattering problem (see, e.g., [2, 6, 8] and the references therein).

Let w1(x, λ) be a solution of (1.1) on [0, h1], satisfying the initial conditions

w1(0, µ) = d2 and w′1(0, µ) = −d1. (1.6)

The conditions (1.6) define a unique solution of (1.1) on [0, h1] [16, p. 12].
After defining the above solution, then we shall define the solution wi+1(x, µ) of

(1.1) on [ri, ri+1] by means of the solution wi(x, µ) using the initial conditions

wi+1(ri, µ) = δ−1
i wi(ri, µ)and w′i+1(ri, µ) = δ−1

i w′i(ri, µ), i = 2,m− 1 (1.7)

The conditions (1.7) define a unique solution of (1.1) on [ri, ri+1].
Continuing in this manner we may define the solution wm+1(x, µ) of (1.1) on

[rm, π] by means of the solution wm(x, µ) using the initial conditions

wm+1(rm, µ) = δ−1
m wm(rm, µ)and w′m+1(rm, µ) = δ−1

m w′m(rm, µ). (1.8)

The conditions (1.8) define a unique solution of (1.1) on [rm, π].
Consequently, the function w(x, µ) is defined on [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π]

by the equality

w(x, λ) =


w1(x, µ), x ∈ [0, r1),
wi(x, µ), x ∈ (ri, ri+1), i = 2,m− 1,
wm+1(x, µ), x ∈ (rm, π]

is a solution of (1.1) on [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π]; which satisfies one of the
boundary conditions and transmission conditions.
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Lemma 1.1. Let w(x, µ) be a solution of (1.1). Then the following integral equa-
tions hold:

w1(x, µ) = d2 cosµx− d1

µ
sinµx

− 1
µ

∫ x

0

q(τ) sinµ(x− τ)w1(τ −∆(τ), µ) dτ,
(1.9)

wi+1(x, µ) =
1
δi
wi(ri, µ) cosµ(x− ri) +

w′i(ri, λ)
µδi

sinµ(x− ri)

− 1
µ

∫ x

ri

q(τ) sin s(x− τ)wi+1(τ −∆(τ), µ) dτ,
(1.10)

Proof. To prove this lemma, it suffices to substitute −µ2w1(τ, µ) − w′′1 (τ, µ) and
−µ2wi+1(τ, µ) − w′′i+1(τ, µ) by −q(τ)w1(τ −∆(τ), µ) and −q(τ)wi+1(τ −∆(τ), µ)
in the integrals in (1.9), (1.10) respectively, and then integrate by parts twice. �

2. An existence theorem

In this chapter, we show that the characteristic function of the problem (1.1)–
(1.5) has an infinite set of roots.

Theorem 2.1. Problem (1.1)-(1.5) can have only simple eigenvalues.

Proof. Let µ̃ be an eigenvalue of (1.1)-(1.5) and

ỹ(x, µ̃) =


ỹ1(x, µ̃), x ∈ [0, r1),
. . .

ỹm+1(x, µ̃), x ∈ (rm, π]

be a corresponding eigenfunction. Then, from (1.2) and (1.6), it follows that the
determinant

W [ỹ1(0, µ̃), w1(0, µ̃)] =
∣∣∣∣ỹ1(0, µ̃) d2

ỹ′1(0, µ̃) −d1

∣∣∣∣ = 0,

and the functions ỹ1(x, µ̃) and w1(x, µ̃) are linearly dependent on [0, r1]. We can
also prove that the functions ỹi+1(x, µ̃) and wi+1(x, µ̃) are linearly dependent on
[ri, ri+1], i = 2,m− 1 and ỹm+1(x, µ̃) and wm+1(x, µ̃) are linearly dependent on
[rm, π]. Hence

ỹi(x, µ̃) = Kiwi(x, µ̃) (i = 1,m+ 1) (2.1)
for some Ki 6= 0. We must show that Ki = Ki+1. From the equalities (1.4) and
(2.1), we have

ỹ(ri − 0, µ̃)− δiỹ(ri + 0, µ̃) = ỹi(ri, µ̃)− δiỹi+1(ri, µ̃)

= Kiwi(ri, µ̃)− δiKi+1wi+1(ri, µ̃)

= Kiδiwi+1(hi, µ̃)−Ki+1δiwi+1(hi, µ̃)

= δi(Ki −Ki+1)wi+1(hi, µ̃) = 0.

Since δi(Ki −Ki+1) 6= 0 it follows that

wi+1(ri, µ̃) = 0. (2.2)

By the same procedure from equality (1.5) we can derive that

w′i+1(ri, µ̃) = 0. (2.3)
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From the fact that wi(x, µ̃) is a solution of the differential (1.1) on [ri, ri+1] and sat-
isfies the initial conditions (2.2) and (2.3) it follows that wi+1(x, µ̃) = 0 identically
on [ri, π].

By using this method, we may also find

wm+1(ri, µ̃) = w′m+1(ri, µ̃) = 0.

From the latter discussions of wm+1(x, µ̃) it follows that wm(x, µ̃) = 0, wi(x, µ̃) = 0,
w1(x, µ̃) = 0 identically on (rm−1, rm), (ri−1, ri) and [0, r1). But this contradicts
(1.6), thus completing the proof. �

The function w(x, µ) is defined in introduction is a nontrivial solution of (1.1)
satisfying conditions (1.2) and (1.4)-(1.5). Putting w(x, µ) into (1.3), we get the
characteristic equation

H(µ) ≡ w′(π, µ) + µ2w(π, µ) = 0. (2.4)

By Theorem 2.1 the set of eigenvalues of boundary-value problem (1.1)-(1.5)
coincides with the set of real roots of (2.7). Let

q1 =
∫ r1

0

|q(τ)| dτ, qi =
∫ ri

ri−1

|q(τ)| dτ, qm+1 =
∫ π

rm

|q(τ)| dτ, i = 2,m

Lemma 2.2. (1) Let µ ≥ 2q1. Then for the solution w1(x, µ) of (2.1), the following
inequality holds:

|w1(x, µ)| ≤ 1
q1

√
4q2

1d
2
2 + d2

1, x ∈ [0, r1]. (2.5)

(2) Let µ ≥ max{2q1, 2q2, . . . , 2qm+1}. Then for the solution wi+1(x, µ) (i = 1,m)
of (2.2), the following inequality holds:

|wi+1(x, µ)| ≤ 4i

q1

∏i
j=1 |δj |

√
4q2

1d
2
2 + d2

1, x ∈ [r1, r2]. (2.6)

The proof of the above lemma is similar to that of [19, Lemma 2].

Theorem 2.3. Problem (1.1)-(1.5) has an infinite set of positive eigenvalues.

Proof. We readily see that

∂

∂x
wi+1(x, µ) = − µ

δi
wi(ri, µ) sinµ(x− ri) +

∂
∂xwi+1(ri, µ)

δi
cosµ(x− ri)

−
∫ x

ri

q(τ) cosµ(x− τ)wi+1(τ −∆(τ), µ) dτ.
(2.7)

Let µ be sufficiently big. With the helps of (1.8), (1.9)), (2.6), (2.7), (2.4) and
(2.5), Equation (2.7) can be reduced to the form

µ cosµπ +O(1) = 0. (2.8)

Obviously, for big µ, (2.8) has an infinite set of roots. Thus, the proof of theorem
is complete. �
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3. Asymptotic formulas for eigenvalues and eigenfunctions

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions.
In the following we shall assume that µ is sufficiently big. From (1.9) and (2.5), we
obtain

w1(x, µ) = O(1) on [0, r1]. (3.1)
Equations (1.10) and (2.6), lead to

wi+1(x, µ) = O(1), (i = 1,m− 1) on [ri, ri+1]. (3.2)

wm+1(x, µ) = O(1) on [rm, π]. (3.3)

The existence and continuity of the derivatives ∂
∂µw1(x, µ) for 0 ≤ x ≤ r1, |µ| <∞,

∂
∂µwi+1(x, µ) for ri ≤ x ≤ ri+1 (i = 1,m− 1), |µ| < ∞ and ∂

∂µwm+1(x, µ) for
rm ≤ x ≤ π, |µ| <∞ follows from [16, Theorem 1.4.1].

Lemma 3.1. The following statements hold:
∂

∂µ
w1(x, µ) = O(1), x ∈ [0, r1], (3.4)

∂

∂µ
wi+1(x, µ) = O(1), (i = 1,m− 1) x ∈ [ri, ri+1], (3.5)

∂

∂µ
wm+1(x, µ) = O(1), x ∈ [rm, π]. (3.6)

Proof. By differentiating (1.9) with respect to µ, we get, by (3.1)-(3.3)
∂

∂µ
wm+1(x, µ) = − 1

µ

∫ x

rm

q(τ) sinµ(x− τ)
∂

∂µ
wm+1(τ −∆(τ), µ)

+R(x, µ), (|R(x, µ)| ≤ R0).
(3.7)

Let Dµ = max[rm,π] | ∂∂µwm+1(x, µ)|. Then the existence of Dµ follows from conti-
nuity of derivation for x ∈ [rm, π]. From (3.7)

Dµ ≤
1
µ
qm+1Dµ +R0.

Now let µ ≥ 2qm+1. Then Dµ ≤ 2R0 and the validity of the asymptotic formula
(3.6) follows. Formulas (3.4) and (3.5) may be proved analogically. �

Theorem 3.2. Let N be a natural number. For each sufficiently big N there is
exactly one eigenvalue of the problem (1.1)-(1.5) near N2.

Proof. We consider the expression which is denoted by O(1) in (2.8). If formulas
(3.1)-(3.6) are taken into consideration, it can be shown by differentiation with
respect to µ that for big µ this expression has bounded derivative. We shall show
that, for big N , only one root (2.8) lies near to each N . We consider the function
φ(µ) = µ cosµπ + O(1). Its derivative, which has the form ∂

∂µφ(µ) = cosµπ −
µπ sinµπ + O(1), does not vanish for µ close toN for sufficiently big N . Thus our
assertion follows by Rolle’s Theorem. �

Let N be sufficiently big. In what follows we shall denote by µ2
n the eigenvalue

of the problem (1.1)-(1.5) situated near N2. We set µN = N + 1
2 + δN . Then from

(2.8) it follows that δN = O( 1
N ). Consequently

µN = N +
1
2

+O
( 1
N

)
, (3.8)
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Formula (3.8) make it possible to obtain asymptotic expressions for eigenfunction
of the problem (1.1)-(1.5). From (1.9), (3.1), we get

w1(x, µ) = d2 cosµx+O
( 1
µ

)
. (3.9)

From expressions of (1.10), (3.5), (3.9), we easily see that

wi+1(x, µ) =
d2∏i
j=1 δj

cosµx+O
( 1
µ

)
, (i = 1,m). (3.10)

By substituting (3.8) in (3.9) and (3.10), we find that

U1N = w1(x, µN ) = d2 cos
(
(N +

1
2

)x
)

+O
( 1
N

)
,

U(i+1)N = wi+1(x, µN ) =
d2∏i
j=1 δj

cos
(
(N +

1
2

)x
)

+O
( 1
N

)
, (i = 1,m).

Under some additional conditions the more exact asymptotic formulas which de-
pend upon the retardation may be obtained. Let us assume that the following
conditions are fulfilled:

(a) The derivatives q′(x) and ∆′′(x) exist and are bounded in [0, r1) ∪ (r1, r2) ∪
· · · ∪ (rm, π] and have finite limits q′(ri ± 0) = limx→ri±0 q

′(x), and ∆′′(ri ± 0) =
limx→ri±0 ∆′′(x) (i = 1,m).

(b) ∆′(x) ≤ 1 in [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rm, π], ∆(0) = 0, limx→h1+0 ∆(x) = 0
and limx→ri+0 ∆(x) = 0 (i = 1,m).

It is easy to see that, using (b)

x−∆(x) ≥ 0, x ∈ [0, r1), (3.11)

x−∆(x) ≥ ri, x ∈ (ri, ri+1) (i = 1,m− 1), (3.12)

x−∆(x) ≥ rm, x ∈ (rm, π] (3.13)

are obtained. By (3.9)-(3.13), we have

w1(τ −∆(τ), µ) = d2 cosµ(τ −∆(τ)) +O(
1
µ

), (3.14)

wi+1(τ −∆(τ), µ) =
d2∏i
j=1 δj

cosµ(τ −∆(τ)) +O(
1
µ

) (3.15)

on [0, r1), (ri, ri+1) (i = 1,m− 1) and (rm, π] respectively.
Under conditions (a) and (b) the following two formulas∫ x

0

q(τ) cosµ(2τ −∆(τ)) dτ = O(1µ),∫ x

0

q(τ) sinµ(2τ −∆(τ)) dτ = O(1/µ)
(3.16)

can be proved by the same technique in [16, Lemma 3.3.3].
Using (3.14), (3.15) and (3.16), after long operations we have

− d1 + d2∏m
j=1 δj

sinµπ +
µd2∏m
j=1 δj

cosµπ − d2 sinµπ
2
∏m
j=1 δj

∫ π

0

q(τ) cosµ∆(τ) dτ

+
d2 cosµπ
2
∏m
j=1 δj

∫ π

0

q(τ) sinµ∆(τ) dτ +O(
1
µ

) = 0.
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Again, if we take µN = N + 1
2 + δN , for sufficiently big N , we obtain

δN =
1

(N + 1
2 )π

(d1

d2
− 1− 1

2

∫ π

0

q(τ) cos
(
(N +

1
2

)∆(τ)
)
dτ
)

+O(1/N2)

and finally

µN = N +
1
2

+
1

(N + 1
2 )π

(
d1

d2
− 1− 1

2

∫ π

0

q(τ) cos
(
(N +

1
2

)∆(τ)
)
dτ) +O(1/N2).

(3.17)
Thus, we have proven the following theorem.

Theorem 3.3. If conditions (a) and (b) are satisfied then, the eigenvalues µN of
the problem (1.1)-(1.5) have the (3.17) asymptotic formula for N →∞.

Now, we may obtain sharper asymptotic formulas for the eigenfunctions. From
(1.9)), (3.14), (3.16) and replacing µ by µN we have

u1N (x) = d2

{ sin((N + 1
2 )x)

Nπ

[(d1

d2
+

1
2

∫ x

0

q(τ) cos((N +
1
2

)∆(τ)) dτ
)
π

+
(d1

d2
− 1− 1

2

∫ π

0

q(τ) cos
(

(N +
1
2

)∆(τ)
)
dτ
)
x
]

+ cos
(
(N +

1
2

)x
)[

1 +
1

2N

∫ x

0

q(τ) sin
(
(N +

1
2

)∆(τ)
)
dτ
]}

+O(1/N2).

From (1.10), (3.15) and (3.16), and replacing µ by µN we have

u(i+1)N (x) =
d2∏i
j=1 δj

{
cos
(
(N +

1
2

)x
)[

1 +
1

2N

∫ x

0

q(τ) sin
(
(N +

1
2

)∆(τ)
)
dτ
]

+
sin
(
(N + 1

2 )x
)

Nπ

[(d1

d2
− 1− 1

2

∫ π

0

q(τ) cos
(
(N +

1
2

)∆(τ)
)
dτ
)
x

−
(d1

d2
+

1
2

∫ x

0

q(τ) cos
(
(N +

1
2

)∆(τ)
)
dτ
)
π
]}

+O(1/N2).
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