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ABSTRACT. The main goal of the present paper is to study the asymptotic be-
haviour of eigenvalues and eigenfunctions of a discontinuous boundary-value
problem with retarded argument with a finite number of transmission condi-
tions.

1. INTRODUCTION

Spectral properties of boundary-value problems with retarded argument and with
discontinuities inside the interval are studied by many authors [1 4, [5] [7], [10] [I7)
18, 19, 23]. Following these studies, in this work, we consider the boundary-value
problem for the differential equation

y"(2) + q(x)y(z — Az)) + p’y(x) =0 (L.1)

on [0,71) U (r1,7m2) U+ -+ U (rm, ], with boundary conditions
d1y(0) + d2y'(0) = 0, (1.2)
y'(m) + pPy(m) = 0, (1.3)

and transmission conditions

y(r; —0) = dy(r; +0) =0, =1,m, (1.4)
y'(ri —0) =8y (ri+0)=0, i=1,m (1.5)

where the real-valued function ¢(z) is continuous in [0,71) U (r1,72) U -« U (74, 7]
and has finite limits

q(r; £0) = $i1Trfli0 q(x),

the real valued function A(z) > 0 continuous in [0,71) U (r1,72) U+« - U (ry,, 7| and
has finite limits
A(r; £0) = lim A(z),

x—1r; 0
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x—A(x) >0ifz € [0,r1); v — Alx) > r, if @ € (r1,72);..., € — Ax) > 1,
if ¢ € (rpm,m); pis a real positive eigenparameter; r;,d; # 0 are arbitrary real
numbers such that 0 < r; <79 <--- <1y <7 and didy # 0.

The goal of this article is to obtain asymptotic formulas for eigenvalues of eigen-
functions for problem f. To this aim, first, the principal term of asymp-
totic distribution of eigenvalues and eigenfunctions of (L.I)~(L.5) was obtained up
to O(1/N), but, afterwards under some additional conditions we improve these for-
mulas up to O(1/N?). Thus, when the number of points of discontinuity is more
than one, we see how the asymptotic behaviour of eigenvalues and eigenfunctions
of a boundary-value problem with retarded argument which contains a spectral
parameter in the boundary conditions change. We point out that our results are
extension and/or generalization to those in [3, [, 1T}, 12} T3], 14} 15| 19, 20, 21]. For
example, if the retardation function A = 0 in and §; =1 (i =1,m); or d; # 1
and 6; =1 (i=2,m);or 812 # 1 and §; =1 (i = 3,m); or 6; # 1 (i = 1,m) results
obtained in this paper coincide with the results of [9, 111 14 [20], respectively.

Differential equations with deviating argument, in particular differential equa-
tions with retarded argument, describe processes with aftereffect; they find many
applications, particularly in the theory of automatic control, in the theory of self-
oscillatory systems, in the study of problems connected with combustion in rocket
engines (see [16] and the references therein).

Boundary value problems containing a spectral parameter in the boundary con-
ditions have many interesting applications, especially in mathematical physics (e.g.
[22, pp. 146-152]). It must be also noted that recently boundary-value problems
with transmission conditions attracted much attention in connection with the in-
verse acoustic scattering problem (see, e.g., [2] 6] 8] and the references therein).

Let wy (z, A) be a solution of on [0, hq], satisfying the initial conditions

wi(0, 1) =dy and  wi(0,u) = —d;. (1.6)

The conditions (1.6)) define a unique solution of (1.1) on [0, k4] [I6, p. 12].
After defining the above solution, then we shall define the solution w; 1 (x, u) of
(1.1) on [r;,7;+1] by means of the solution w;(z, 1) using the initial conditions

wiJrl(rivﬂ) = 5;1wi(ri’u)and w£+1(rivﬂ) = (5;1102(7‘2',[1,), t=2m-—1 (17)

The conditions (|1.7) define a unique solution of (1.1)) on [r;, 7i4+1]-
Continuing in this manner we may define the solution w,11(x, 1) of (L.1) on
[rm, 7] by means of the solution w,,(x, 1) using the initial conditions

W41 (T 18) = O Wi (T, p)and iy oy (P, 1) = 81 W0 (1 1) (1.8)

The conditions (1.8)) define a unique solution of (L.1) on [r,, 7.
Consequently, the function w(z, u) is defined on [0,71) U (r1,7r2) U -+ U (74, 7]
by the equality

wy (z, @), x € [0,r),
w(z, \) = w;(z, 1), x € (ri,riq1), 1=2,m— 1,

wm+1(x7/~‘(')a HAIS (Tmaﬂ']

is a solution of (1.1) on [0,71) U (ry,72) U -+ U (rym, 7]; which satisfies one of the
boundary conditions and transmission conditions.
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Lemma 1.1. Let w(z, ) be a solution of (1.1). Then the following integral equa-
tions hold:

d
wy (z, p) = da cos px — ;1 sin pux

. (19)
—i%;ﬂﬂ$nmx—ﬂwﬂ7—ﬁﬁ%mdﬂ
i) = (i) cosle = ) + 2 s — )
i i (1.10)
- % /rl q(T)sins(x — T)wip1 (7 — A(7), 1) dr,

Proof. To prove this lemma, it suffices to substitute —pu?wy (7, 1) — wy (7, p) and
11
41

—pPwit1 (T, 1) — wiy (7, 1) by —q(T)wi(r — A(7), p) and —q(T)wis1 (1T — A(7), )
in the integrals in (|1.9)), (1.10) respectively, and then integrate by parts twice. [

2. AN EXISTENCE THEOREM

In this chapter, we show that the characteristic function of the problem ([1.1))—
(1.5) has an infinite set of roots.

Theorem 2.1. Problem (L.1)-(1.5) can have only simple eigenvalues.

Proof. Let i be an eigenvalue of (1.1)-(L.5) and

n(z, 1), x €10,71),
y(z, p) =
§m+1(xaﬁ)v UAS (vaﬂ]
be a corresponding eigenfunction. Then, from and , it follows that the

determinant 0.7)

~ 0~ ~ v (0,)  do
Wly1(0, i2), w1 (0, )] = 70,0 —dy

and the functions y;(x, 1) and w;(x, 1) are linearly dependent on [0,71]. We can

also prove that the functions g;11(z, 1) and w;y1(x, i) are linearly dependent on

[ri,riv1], @ = 2,m — 1 and Ypp1(x, 1) and w41 (z, @) are linearly dependent on

[rm, 7]. Hence

)

Gilw, i) = Kawy(a, i) (i = Tm+1) (2.1)
for some K; # 0. We must show that K; = K,;11. From the equalities ([1.4) and
(2.1), we have

y(ri = 0,0) = 6:y(ri + 0, &) = yi(rs, ) — 05yit1 (i, [t)
= Kyw;(ri, ) — 0 Ky 1w (i, 1)
= K;0;wi1(hi, p) — Kit16;wit1 (R, 1)
= 0;(K; — Kiy1)wiyr(hs, i) = 0.
Since 6;(K; — K;+1) # 0 it follows that
wit1(ri, 1) = 0. (22)
By the same procedure from equality (1.5)) we can derive that
wi (i, 1) = 0. (2.3)
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From the fact that w;(x, it) is a solution of the differential (L.1)) on [r;, ;1] and sat-
isfies the initial conditions (2.2) and (2.3 it follows that w;11(z, 1) = 0 identically

on [r;, 7.
By using this method, we may also find

wm+1(ri7 /j) = w;’n-i-l(’ri’ /'7) =0.

From the latter discussions of wy,y1(x, it) it follows that wy, (z, &) = 0, w;(z, @) = 0,
wy (z, 1) = 0 identically on (rpy—1,7m), (ri—1,7;) and [0,71). But this contradicts
(1.6)), thus completing the proof. a

The function w(z, p) is defined in introduction is a nontrivial solution of (1.1))
satisfying conditions (1.2]) and (1.4)-(1.5). Putting w(x, ) into (1.3]), we get the

characteristic equation
H(p) = w (1) + 1i2w(m, 1) = 0. (2.4)

By Theorem the set of eigenvalues of boundary-value problem ([1.1))-(1.5))
coincides with the set of real roots of ([2.7)). Let

1 T iy
m=/ mmm,%:/ mmwywﬂz/mmmmzzm
0 Ti1 T

i— m

Lemma 2.2. (1) Let p > 2qy. Then for the solution wi(z, 1) of (2.1)), the following

inequality holds:
1
|wy (z, 1)] < q—\/4q%d% +d?, z€l0,r]. (2.5)
1

(2) Let p > max{2q1,2q2,-..,2¢m+1}- Then for the solution w;yi(x,u) (i =1,m)
of (2.2)), the following inequality holds:

4i
(Wit (2, p)| € —————1/4qid3 +di, x € [r1,m2]. (2.6)
@ [T;=1 1951

The proof of the above lemma is similar to that of [19, Lemma 2].

Theorem 2.3. Problem (L.1)-(1.5) has an infinite set of positive eigenvalues.

Proof. We readily see that

8 2 7 19
%wiﬂ(m,u) = —(%wi(m,u) sin pu(x —r;) + W

— /x q(7) cos p(x — T)wip1 (T — A(T), p) dr.

k2

cos p(x — ;)
(2.7)

Let p be sufficiently big. With the helps of (1.8), (L.9)), (2.6), (2.7), (2.4) and
(2.5), Equation (2.7) can be reduced to the form

weosum + O(1) = 0. (2.8)

Obviously, for big p, (2.8) has an infinite set of roots. Thus, the proof of theorem
is complete. (I
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3. ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions.
In the following we shall assume that u is sufficiently big. From (1.9) and (2.5]), we
obtain

wy(z, ) =0(1) on [0,rq]. (3.1)

Equations (|1.10) and , lead to
wit1(z,p) =0(1), (i=1,m—1) on [ririq]. (32)
Wyt (z, p) = O(1)  on [ry,, . (3.3)

The existence and continuity of the derivatives %wl(x, w) for 0 <z <ry,|pul < oo,
(%wiﬂ(x,,u) for r; <2 < wrip1 (= 1,m—1),|p < oo and E%wmﬂ(x,,u) for
rm < <, |pu| < oo follows from [16] Theorem 1.4.1].

Lemma 3.1. The following statements hold:

0
afuwl(z,u) =0(1), =zel0,n], (3.4)
0 R
%wiﬂ(ﬂi,u) =0(1), (i=Lm-1)x€ [rrnl], (3.5)
0
@wmﬂ(m,u) =0(1), z€lrm,m. (3.6)
Proof. By differentiating with respect to u, we get, by 1)
0 1 /w . 0
— W1 (T, ) = —— sin u(x — 7) =—wm, — A(7),
o +1(2, 1) 0l q(7)sinp(z —7) o +1(7 = A(7), 1) (3.7)

Let D, = maxp. |E%wm+1(x, p)]. Then the existence of D,, follows from conti-
nuity of derivation for z € [ry,, 7]. From (3.7))

1
D, < ;(Im+1Du + Ro.

Now let pt > 2¢y41. Then D, < 2Ry and the validity of the asymptotic formula
(3.6) follows. Formulas (3.4) and (3.5) may be proved analogically. d

Theorem 3.2. Let N be a natural number. For each sufficiently big N there is
exactly one eigenvalue of the problem — near N2.

Proof. We consider the expression which is denoted by O(1) in . If formulas
- are taken into consideration, it can be shown by differentiation with
respect to p that for big p this expression has bounded derivative. We shall show
that, for big N, only one root lies near to each N. We consider the function
d(p) = peospur + O(1). Its derivative, which has the form %(b(u) = cospum —
pmsin pm + O(1), does not vanish for p close toNfor sufficiently big N. Thus our
assertion follows by Rolle’s Theorem. O

Let N be sufficiently big. In what follows we shall denote by p? the eigenvalue
of the problem (1.1))-(1.5) situated near N2. We set ux = N + % 4+ dn. Then from
[2-8) it follows that 65 = O(%;). Consequently

1 1
MN:N+§+O(N), (3.8)
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Formula (3.8)) make it possible to obtain asymptotic expressions for eigenfunction

of the problem (|1.1)-(1.5). From (1.9)), (3.1), we get
1

wy (z, 1) = da cos;m—i—O(u). (3.9)
From expressions of (1.10)), (3.5)), (3.9)), we easily see that
d 1
wig1(T, 1) = = 2 cos px + o(=), (@=T1,m). (3.10)
Hj:l 0, K

By substituting (3.8) in (3.9) and (3.10), we find that
1

1
Uin = wi(z, un) = da cos ((N + i)z) + O(N),
1 1
Uisyn = wit1(z, uy) = ———cos (N + 2)z) + O(+), (i =T,m).
H]’:1 6j 2 N

Under some additional conditions the more exact asymptotic formulas which de-
pend upon the retardation may be obtained. Let us assume that the following
conditions are fulfilled:

(a) The derivatives ¢'(z) and A”(z) exist and are bounded in [0,7r1) U (r1,r2) U

-+ U (rm, 7] and have finite limits ¢’(r; £ 0) = limg_,, 40 ¢ (x), and A" (r; £0) =

limg 10 A”(z) (i = 1,m).

(b) A'(z) < 1in [0,71) U (r1,re) U+ U (rm, 7], A0) =0, limy—p, 40 A(z) =0
and lim, ., 40 A(z) =0 (i = 1,m).

It is easy to see that, using (b)

x—A(z) >0, z€[0,r), (3.11)
x—A(z) >r, x € (ry,rip1) (E=1,m—1), (3.12)
x—Ax) > 1y, T € (rm, (3.13)
are obtained. By —, we have

wy (17— A(7), 1) = dy cos (T — A(7)) + O(i), (3.14)

1
i1 (T — A7), p) = —— — A(7)) + O(= 3.15
wi1 (T — A7), 1) T cos u(T — A(7)) (M) (3.15)

on [0,71), (ri,7i+1) (i =1,m — 1) and (r,,, 7] respectively.
Under conditions (a) and (b) the following two formulas

/ " y(r) cos p(2r — A()) dr = O(1p),
0 (3.16)

/OJC q(T)sinp(27 — A(7))dr = O(1/p)

can be proved by the same technique in [I6, Lemma 3.3.3].
Using (3.14)), (3.15) and (3.16]), after long operations we have

di +dy . da dosinpmr [T
— = sin um + — COS UTT — ————— q(7) cos pA(T) dr
Hj:l 5j Hj:l 6j 2 Hj:l 5j 0
dg cos pum /” . 1
—_— q(7) sin pA(T) dr + O(—) = 0.
2 Hj:l 4; Jo 2
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Again, if we take uy = N + 5 + 8y, for sufficiently big N, we obtain

1 dy 1/ 1
e 3| am)cos (N + AM) dr) +0(1/N)
and finally
1 1 dy 1 /" 1

(3.17)
Thus, we have proven the following theorem.

Theorem 3.3. If conditions (a) and (b) are satisfied then, the eigenvalues un of
the problem (L1.1))-(1.5) have the (3.17) asymptotic formula for N — oo.

Now, we may obtain sharper asymptotic formulas for the eigenfunctions. From
(1.9)). (3-14), (3.16) and replacing p by puy we have

uin(x) = dz{sm((]jvj;é)x) [(% + % /Ow q(7) cos((N + %)A(T)) d7)7r

4 (% - ;/OW o) cos (N + %)A(T)) dr)]
+cos (N + %)x) [1 + % Ox g(7)sin (N + %)A(T)) dT} } +O(1/N?).
From (T.10), (3.15) and (B-16), and replacing 4 by uy we have
winn (@) = Hfléj{ cos (N + )a) [14 5 ; () sin (N + 2)A(r) dr]
MRS L2 (3 -1- ;/OW ) cos (N + )A(r)) dr )

_ (% ¥ % /Off q(7) cos (N + %)A(T)) ar)|} +0(/N?).
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