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EXISTENCE RESULTS FOR HAMILTONIAN ELLIPTIC

SYSTEMS WITH NONLINEAR BOUNDARY CONDITIONS

JULIÁN FERNÁNDEZ BONDER, JUAN PABLO PINASCO, & JULIO D. ROSSI

Abstract. We prove the existence of nontrivial solutions to the system

∆u = u, ∆v = v,

on a bounded set of RN , with nonlinear coupling at the boundary given by

∂u/∂η = Hv , ∂v/∂η = Hu .

The proof is done under suitable assumptions on the Hamiltonian H, and based
on a variational argument that is a generalization of the mountain pass theo-
rem. Under further assumptions on the Hamiltonian, we prove the existence
of positive solutions.

1. Introduction.

In this paper we study the existence of nontrivial solutions of the elliptic system

∆u = u

∆v = v in Ω,
(1.1)

with nonlinear coupling at the boundary given by

∂u

∂η
=Hv(x, u, v)

∂v

∂η
=Hu(x, u, v) x ∈ ∂Ω .

(1.2)

Here Ω is a bounded domain in RN with smooth boundary (say C2,α), ∂
∂η
is the

outer normal derivative and H : ∂Ω × R × R → R is a smooth positive function
(say C1) with growth control on H and its first derivatives.
Existence results for nonlinear elliptic systems have created a great deal of in-

terest in recent years, in particular when the nonlinear term appears as a source
in the equation with Dirichlet boundary conditions. For this type of result see,
among others, [2, 3, 4, 6, 7, 9] and the survey [5]. There are two major classes of
systems that can be treated variationally: Hamiltonian and gradient systems. Here
we deal with a Hamiltonian problem. Problems with no variational structure can
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be treated via fixed-point arguments. For example (1.1) with nonlinear boundary
conditions and without variational assumptions has been studied in [10].
This work is inspired by the article [6] where the authors study

−∆u = Hv(x, u, v)

−∆v = Hu(x, u, v),

with Dirichlet boundary conditions (see also [12]). They prove existence of strong
solutions using the same variational arguments as we use here and, as in our case,
they were forced to impose similar growth restrictions on H .
The crucial part here is to find the proper functional setting for (1.1)-(1.2) that

allows us to treat our problem variationally. We accomplish this by defining a self-
adjoint operator that takes into account the boundary conditions together with the
equations and considering its fractional powers that satisfy a suitable “integration
by parts” formula. Once we have done this the proof follows the steps used in [6],
but we include here the arguments in order to make the paper self contained. For
the proof we use a linking theorem in a version due to Felmer [8]. Linking theorems
have been a useful tool in obtaining existence results for elliptic problems; see for
example [1].
We observe that the techniques used here can be applied to the semilinear system

−∆u+ u = Gv(x, u, v)

−∆v + v = Gu(x, u, v) x ∈ Ω ,

with boundary conditions (1.2). However, for clarity of exposition we state and
prove our results for (1.1)-(1.2). The general case requires hypotheses on G that
are similar to those in [6].
The precise assumptions on the Hamiltonian H are

|H(x, u, v)| ≤ C
(
|u|p+1 + |v|q+1 + 1

)
, (1.3)

and for small positive r, if |(u, v)| ≤ r, then

|H(x, u, v)| ≤ C
(
|u|α + |v|β

)
, (1.4)

where the exponents satisfy p+ 1 ≥ α > p > 0 and q + 1 ≥ β > q > 0 with

1 >
1

α
+
1

β
, (1.5)

max

{
p

α
+
q

β
;

q

q + 1

p+ 1

α
+

p

p+ 1

q + 1

β

}
< 1 +

1

N − 1
, (1.6)

p

p+ 1

q + 1

β
< 1 and

q

q + 1

p+ 1

α
< 1 . (1.7)

If N ≥ 4, we have to impose the additional hypothesis

max

{
p

α
;
q

β
;

q

q + 1

p+ 1

α
;

p

p+ 1

q + 1

β

}
<

N + 1

2(N − 1)
. (1.8)

When α = p+ 1 and β = q + 1, conditions (1.5), (1.6) and (1.8) become

1 >
1

p+ 1
+
1

q + 1
> 1−

1

N − 1
, (1.9)

p, q ≤
N + 1

N − 3
if N ≥ 4. (1.10)
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Remark 1.1. These hypothesis and (1.5)-(1.8), imply that there exists s and t with
s+ t = 1, s, t > 1/4 such that

α− p

α
>
1

2
−
2s− 1/2

N − 1
,

β − q

β
>
1

2
−
2t− 1/2

N − 1
,

1−
p(q + 1)

β(p+ 1)
>
1

2
−
2s− 1/2

N − 1
, 1−

q(p+ 1)

α(q + 1)
>
1

2
−
2t− 1/2

N − 1
.

On the derivatives of H we impose the following:

∣∣∂H
∂u
(x, u, v)

∣∣ ≤ C (|u|p + |v|p(q+1)/(p+1) + 1) ,
∣∣∂H
∂v
(x, u, v)

∣∣ ≤ C (|u|q(p+1)/(q+1) + |v|q + 1) .
(1.11)

And for R large, if |(u, v)| ≥ R,

1

α

∂H

∂u
(x, u, v)u +

1

β

∂H

∂v
(x, u, v)v ≥ H(x, u, v) > 0, (1.12)

We observe that from (1.12), it follows that (see [8])

|H(x, u, v)| ≥ c
(
|u|α + |v|β

)
− C. (1.13)

The main result in this paper is the following Theorem.

Theorem 1.1. Assume that H : ∂Ω×R×R→ R satisfies (1.3)-(1.12). Then there
exists a nontrivial strong solution to (1.1)-(1.2).

Next, we look for positive solutions. If we also impose

∂H

∂u
(x, u, v),

∂H

∂v
(x, u, v) ≥ 0, for all u, v ≥ 0, (1.14)

∂H

∂u
(x, u, v) = 0, when u = 0,

∂H

∂v
(x, u, v) = 0, when v = 0,

(1.15)

we can prove the following.

Theorem 1.2. If H : ∂Ω × R × R → R satisfies (1.3)-(1.12) and (1.14)-(1.15),
then there exists at least one positive strong solution to (1.1)-(1.2).

This paper is organized as follows, in Section 2 we establish the functional setting
in which the problem will be posed, give the definition of weak solution and prove
a regularity result (weak solutions are in fact strong). In Section 3, we prove the
existence of a weak solution by means of a minimax Theorem due to Felmer. Finally,
in Section 4 we discuss the existence of positive solutions of (1.1)-(1.2).

2. The functional setting

In this section we describe the functional setting that allows us to treat (1.1)-(1.2)
variationally.

Let us consider the space L2(Ω) × L2(∂Ω) which is a Hilbert space with inner
product, that we will denote by 〈·, ·〉, given by

〈(u, v), (φ, ψ)〉 =

∫
Ω

uφ+

∫
∂Ω

vψ.
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Now, let A : D(A) ⊂ L2(Ω) × L2(∂Ω) → L2(Ω) × L2(∂Ω) be the operator defined
by

A(u, u |∂Ω) = (−∆u+ u,
∂u

∂η
),

where D(A) = {(u, u |∂Ω)/u ∈ H2(Ω)}. We claim that D(A) is dense in L2(Ω) ×
L2(∂Ω). In fact, let (f, g) ∈ C(Ω) × C(∂Ω), take ε > 0 and consider Ωε = {x ∈
Ω/dist(x, ∂Ω) > ε}. Now we choose u ∈ C2(Ωε) such that ‖u − f‖L2(Ωε) is small.

As ∂Ω is smooth, we can extend u to the whole Ω in such a way that u ∈ C2(Ω)
and ‖u − g‖L2(∂Ω) is also small. As ε is arbitrary and C(Ω) × C(∂Ω) is dense in
L2(Ω)× L2(∂Ω) the claim follows.
We observe that A is invertible with inverse given by

A−1(f, g) = (u, u |∂Ω),

where u is the solution of
−∆u+ u =f in Ω,

∂u

∂η
=g on ∂Ω.

(2.1)

By standard regularity theory, see [11, p. 214], it follows that A−1 is bounded
and compact. Therefore, R(A) = L2(Ω)×L2(∂Ω) thus in order to see that A (and
hence A−1) is selfadjoint it remains to check that A is symmetric [15, p. 512]. To
see this, let u, v ∈ D(A), by Green’s formula we have

〈Au, v〉 =

∫
Ω

(−∆u+ u)v +

∫
∂Ω

∂u

∂η
v

=

∫
Ω

u(−∆v + v) +

∫
∂Ω

u
∂v

∂η

= 〈u,Av〉;

therefore, A is symmetric. Moreover, A (and hence A−1) is positive. In fact, let
u ∈ D(A) and using again Green’s formula,

〈Au, u〉 =

∫
Ω

(−∆u+ u)u+

∫
∂Ω

∂u

∂η
u

=

∫
Ω

|∇u|2 + u2 ≥ 0

Therefore, there exists a sequence of eigenvalues (λn) ⊂ R with eigenfunctions
(φn, ψn) ∈ L2(Ω) × L2(∂Ω) such that 0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ... ↗ +∞ and
φn ∈ H2(Ω), φn |∂Ω= ψn,

−∆φn + φn =λnφn in Ω,

∂φn

∂η
=λnφn on ∂Ω.

(2.2)

Let us consider the fractional powers of A, namely for 0 < s < 1,

As : D(As)→ L2(Ω)× L2(∂Ω), with Asu =

∞∑
n=1

λsnan(φn, ψn),

where u =
∑
an(φn, ψn).

Let Es = D(As), which is a Hilbert space under the inner product

(u, φ)Es = 〈A
su,Asφ〉.
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Notice that Es ⊂ H2s(Ω). In fact, if we define A1 : H2(Ω) ⊂ L2(Ω)→ L2(Ω) by

A1u = −∆u+ u,

and A2 : H
2(Ω) ⊂ D(A2) ⊂ L2(∂Ω)→ L2(∂Ω) by

A2u =
∂u

∂η
,

then Ã = (A1, A2) satisfies

A = Ã |(u,u) u ∈ D(A1) ∩D(A2),

and hence

As = Ãs |(u,u) u ∈ D(As1) ∩D(A
s
2).

As D(A1) = H
2(Ω) ⊂ D(A2) we have, D(As1) ⊂ D(A

s
2), therefore

Es = D(As) = D(As1).

Now, by the results of [16, p. 187] (see also [13], [15]), as Ω is smooth, it follows
that Es = D(As1) ⊂ H

2s(Ω).
So we have the following inclusions

Es ↪→ H2s(Ω) ↪→ H2s−1/2(∂Ω) ↪→ Lp(∂Ω).

More precisely, we have the following immersion Theorem,

Theorem 2.1. Given s > 1/4 and p ≥ 1 so that 1
p
≥ 1
2 −

2s−1/2
N−1 the inclusion map

i : Es → Lp(∂Ω) is well defined and bounded. Moreover, if above we have strict
inequality, then the inclusion is compact.

Let us now set E = Es×Et where s+ t = 1, s, t given by Remark 1.1 and define
B : E × E → R by

B((u, v), (φ, ψ)) = 〈Asu,Atψ〉+ 〈Asφ,Atv〉.

E is a Hilbert space with the usual product structure, and hence B is a bounded,
bilinear, symmetric form. Therefore, there exists a unique bounded, selfadjoint,
linear operator L : E → E, such that

B(z, γ) = (Lz, γ)E.

Now we define

Q(z) =
1

2
B(z, z) =

1

2
(Lz, z)E = 〈A

su,Atv〉.

For future reference we state the following Lemma that gives us a characterization
of L,

Lemma 2.1. The operator L defined above can be written as

L(u, v) = (A−sAtv,A−tAsu).

Proof. Let z = (u, v), η = (φ, ψ) and Lz = (w, y). Then we have

(Lz, η)E = ((w, y), (φ, ψ))E = (w, φ)Es + (y, ψ)Et

= 〈Asw,Asφ〉 + 〈Aty,Ayψ〉.

On the other hand

(Lz, η)E = B(z, η) = 〈A
su,Atψ〉+ 〈Asφ,Atv〉.
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Now if we take ψ = 0 we obtain,

〈Asw,Asφ〉 = 〈Atv,Asφ〉,

then
〈Asw −Atv,Asφ〉 = 0.

As As is invertible, it follows that Asw = Atv and hence w = A−sAtv. Analogously,
y = A−tAsu.

Next, we consider the eigenvalue problem

Lz = λz. (2.3)

Using Lemma 2.1 we can rewrite (2.3) as

A−sAtv = λu, (2.4)

A−tAsu = λv, (2.5)

where z = (u, v). As As and At are isomorphisms, it follows that λ = 1 or λ = −1.
The associated eigenvectors are

for λ = 1, (u,A−tAsu) ∀u ∈ Es, (2.6)

for λ = −1, (u,−A−tAsu) ∀u ∈ Es. (2.7)

We can define the eigenspaces

E+ = {(u,A
−tAsu) / u ∈ Es}, (2.8)

E− = {(u,−A
−tAsu) / u ∈ Es}, (2.9)

which give a natural splitting E = E+ ⊕ E−.
For future references we state the following Lemma, that gives us expressions for

the projections over E±.

Lemma 2.2. The projections P± : E → E± are given by

P±(u, v) =
1

2
(u± A−sAtv, v ±A−tAsu). (2.10)

Proof. Immediate from definitions.

By (1.3), Remark 1.1 and Theorem 2.1 we can define the functional, H : E → R
as

H(u, v) =

∫
∂Ω

H(x, u, v).

Proposition 2.1. The functional H defined above is of class C1 and its derivative
is given by

H′(u, v)(φ, ψ) =

∫
∂Ω

Hu(x, u, v)φ +

∫
∂Ω

Hv(x, u, v)ψ. (2.11)

Moreover, H′ is compact.

Proof. From (1.11) we have∫
∂Ω

∣∣∣∣∂H∂u (x, u, v)φ
∣∣∣∣ ≤ C

∫
∂Ω

(
|u|p + |v|p(q+1)/(p+1) + 1

)
|φ|.

By Hölder inequality and Theorem 2.1 we have∫
∂Ω

∣∣∣∣∂H∂u (x, u, v)φ
∣∣∣∣ ≤ C

(
‖u‖pEs + ‖v‖

p(q+1)/(p+1)
Et + 1

)
‖φ‖Es .
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In a similar way we obtain the analogous inequality for Hv.
Thus H′ is well defined and bounded in E. Next, a standard argument gives

that H is Fréchet differentiable with H′ continuous. The fact that H′ is compact
comes from Theorem 2.1 (see [14] for the details).

Now we can define the functional F : E → R as

F(z) = Q(z)−H(z). (2.12)

F is of class C1 and in the next section we prove that it has the structure needed
in order to apply the minimax techniques.
Let us now give the definition of weak solution of (1.1)-(1.2).

Definition 2.1. We say that z = (u, v) ∈ E = Es × Et is an (s, t)−weak solution
of (1.1)-(1.2) if z is a critical point of F . In other words, for every (φ, ψ) ∈ E we
have

〈Asu,Atψ〉+ 〈Asφ,Atv〉 −

∫
∂Ω

Hu(x, u, v)φ−

∫
∂Ω

Hv(x, u, v)ψ = 0.
(2.13)

Now, we prove a Theorem that gives us the regularity of (s, t)-weak solutions.

Theorem 2.2. If (u, v) ∈ Es × Et is an (s, t)-weak solution of (1.1)-(1.2) then
u ∈ W 2,(q+1)/q(Ω), v ∈ W 2,(p+1)/p(Ω) and (u, v) is in fact a strong solution of
(1.1)-(1.2).

Proof. Let us first consider ψ = 0 in (2.13), then

〈Asφ,Atv〉 −

∫
∂Ω

Hu(x, u, v)φ = 0, (2.14)

for all φ ∈ Es. If we take φ ∈ H2(Ω), we have

〈Asφ,Atv〉 = 〈Aφ, v〉 =

∫
Ω

(−∆φ+ φ)v +

∫
∂Ω

∂φ

∂η
v. (2.15)

On the other hand, using (1.11) we find

Hu(x, u(x), v(x)) ∈ L
(p+1)/p(∂Ω).

Then from basic elliptic theory (see [11]), there exists a function w ∈ W 2,(p+1)/p(Ω)
such that

∆w = w in Ω,
∂w
∂η = Hu(x, u(x), v(x)) on ∂Ω.

Now, integration by parts gives us

0 =

∫
Ω

(−∆w + w)φ =

∫
Ω

w(−∆φ+ φ) +

∫
∂Ω

w
∂φ

∂η
−

∫
∂Ω

Hu(x, u, v)φ.
(2.16)

Combining (2.14),(2.15) and (2.16), we obtain

〈v − w,Aφ〉 =

∫
Ω

(v − w)(−∆φ + φ) +

∫
∂Ω

(v − w)
∂φ

∂η
= 0,

from where it follows that v = w. We argue similarly for u.
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3. Proof of Theorem 1.1

We want to apply a minimax Theorem due to Felmer [8] as it is used in [6].
First, we describe this Theorem and then we show how to use it in our situation.

Let E be a Hilbert space with inner product (·, ·)E and norm ‖ · ‖. We assume
that E has a splitting E = E+ ⊕ E−, not necessarily orthogonal. Let F : E → R
be a functional having the following form

F(u) =
1

2
(Lu, u)E −H(u),

with
(F1) L : E → E is a linear, bounded, selfadjoint operator.
(F2) H is C1 with H′ is compact.
(F3) There exists two linear bounded invertible operators B1, B2 : E → E such

that, if ω ≥ 0 then the linear operator

B̂(ω) = P−B
−1
1 exp(ωL)B2 : E− → E−,

is invertible (here P− is the projection over E− given by the splitting).
Let ρ > 0 and define

S = {B1z / ‖z‖ = ρ, z ∈ E−}.

For z− ∈ E−, z− 6= 0 we define

Q = {B2(τz− + z) / 0 ≤ τ ≤ σ, ‖z‖ ≤M, z ∈ E+},

for σ > ρ/‖B−11 B2z+‖ and M > ρ.
By ∂Q we denote the boundary of Q relative to the subspace

{B2(τz− + z) / τ ∈ R, z ∈ E+}.

Now we can state the following Theorem that gives the existence of critical points
of F .

Theorem 3.1. Let F : E → R be a C1 functional satisfying the Palais-Smale
condition, (F1),(F2) and (F3). Assume moreover that there exists a constant δ > 0
such that

F(z) ≥ δ ∀z ∈ S, (S)

F(z) ≤ 0 ∀z ∈ ∂Q. (Q)

Then F has a critical point with critical value C ≥ δ.

For the proof see [8]. The critical point given by this Theorem has the following
minimax characterization. Let us consider the class of functions

Γ = {h ∈ C(E × [0, 1], E) / h satisfies Γ1,Γ2 and Γ3}, (3.1)

where
(Γ1) h is given by h(z, t) = exp(ω(z, t)L)z+K(z, t), where ω : E×[0, 1]→ R≥0 is

continuous and transforms bounded sets into bounded sets, and K : E× [0, 1]→ E
is compact.
(Γ2) h(z, t) = z ∀z ∈ ∂Q, ∀t ∈ [0, 1].
(Γ3) h(z, 0) = z, ∀z ∈ Q.
Then the minimax value

C = inf
h∈Γ
sup
z∈Q
F(h(z, 1)),
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is the critical value given in Theorem 3.1.

Now, let us see that the functional F of Section 2 satisfies the hypothesis of
Theorem 3.1. (F1) and (F2) are consequences of Section 2.
Let µ, ν > 0 be such that,

µ+ ν < min{µα, νβ}. (3.2)

In order to verify the hypothesis of Theorem 3.1, we define B1 and B2 as,

B1(u, v) =(ρ
µ−1u, ρν−1v), (3.3)

B2(u, v) =(σ
µ−1u, σν−1v). (3.4)

Here, ρ and σ are positive constants to be determined. We observe that B1, B2 :
E → E are linear, bounded, invertible operators. To show that B̂(ω) is invertible
we prove the following formula for exp(ωL).

Lemma 3.1. Let ω ∈ R. Then the operator exp(ωL) : E → E is given by

exp(ωL)(u, v) = cosh(ω)(u, v) + sinh(ω)(A−sAtv,A−tAsu). (3.5)

Proof. We recall that
L(u, v) = (A−sAtv,A−tAsu).

Writing explicitly the exponential as a series and using this identity, the result
follows by reordering the terms.

With this Lemma we can prove that B̂(ω) is invertible in E−.

Proposition 3.1. The operator B̂(ω) : E− → E− is invertible.

Proof. Given z ∈ E− we have z = (u,−A−tAsu) with u ∈ Es. By (3.4), we have

B2(z) = (σ
µ−1u,−σν−1A−tAsu).

Therefore, using Lemma 3.1 if we write exp(ωL)B2(z) = (x, y) we have

x = (cosh(ω)σµ−1 − sinh(ω)σν−1)u,

y = (− cosh(ω)σν−1 + sinh(ω)σµ−1)A−tAsu.

Now, applying B−11 , by (3.3) we obtain, if we write B
−1
1 exp(ωL)B2(z) = (x, y),

x =
cosh(ω)σµ−1 − sinh(ω)σν−1

ρµ−1
u,

y =
− cosh(ω)σν−1 + sinh(ω)σµ−1

ρν−1
A−tAsu.

Finally, we project into E−. Now, calling B̂(ω)z = (φ, ψ) and using the projection
formula given by Lemma 2.2, we get

φ =

[
1

2

(
σµ−1

ρµ−1
+
σν−1

ρν−1

)
cosh(ω)−

1

2

(
σν−1

ρµ−1
+
σµ−1

ρν−1

)
sinh(ω)

]
u,

ψ = −

[
1

2

(
σµ−1

ρµ−1
+
σν−1

ρν−1

)
cosh(ω)−

1

2

(
σν−1

ρµ−1
+
σµ−1

ρν−1

)
sinh(ω)

]
A−tAsu.

In other words B̂(ω)z = mz. This constant m is positive if we assume that σ > 1
and ρ < 1, in fact

m ≥

(
σµ−1

ρµ−1
+
σν−1

ρν−1

)
−

(
σν−1

ρµ−1
+
σµ−1

ρν−1

)
=
(ρµ−1 − ρν−1)(σν−1 − σµ−1)

ρµ+ν−2
> 0,
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so that m is positive independently of the value of ω ∈ R. This implies that B̂(ω)
is invertible

Now we check the Palais-Smale condition for F .

Proposition 3.2. F satisfies the Palais-Smale condition.

Proof. Let (zn)n≥1 ⊂ E be a sequence such that

|F(zn)| ≤ c and F ′(zn)→ 0. (3.6)

Let us first prove that (3.6) implies that (zn) is bounded. From (3.6) it follows
that there exists a sequence εn → 0 such that

|F ′(zn)w| ≤ εn‖w‖E , ∀w ∈ E. (3.7)

Let us take

wn = ((wn)1, (wn)2) =
αβ

α+ β
(
1

α
un,
1

β
vn), where zn = (un, vn).

Now, using (3.6),

c+ εn‖wn‖E ≥ F(zn)−F
′(zn)wn

= 〈Asun, A
tvn〉 −

∫
∂Ω

H(x, un, vn)− 〈A
sun, A

t(wn)2〉

− 〈As(wn)1, A
tvn〉+

∫
∂Ω

Hu(x, un, vn)(wn)1 +

∫
∂Ω

Hv(x, un, vn)(wn)2

=
αβ

α+ β

∫
∂Ω

1

α
Hu(x, un, vn)un +

1

β
Hv(x, un, vn)vn −H(x, un, vn)

+

(
αβ

α+ β
− 1

)∫
∂Ω

H(x, un, vn).

(3.8)

Now, by (1.12) and (1.6) we obtain

c(1 + ‖zn‖E) ≥

∫
∂Ω

H(x, un, vn),

and then, by (1.13),∫
∂Ω

|un|
α + |vn|

β ≤ c(1 + ‖un‖Es + ‖vn‖Et). (3.9)

Next we consider w = (φ, 0), φ ∈ Es. From (3.7) we have

〈Asφ,Atvn〉 ≤

∫
∂Ω

|Hu(x, un, vn)φ|+ εn‖φ‖Es .

Now, by (1.11)∫
∂Ω

|Hu(x, un, vn)φ| ≤ c

(∫
∂Ω

|un|
p|φ|+ |vn|

p q+1p+1 |φ|+ |φ|

)
.

Using Hölder inequality the last term is bounded by

‖un‖
p
Lα(∂Ω)‖φ‖L

α
α−p (∂Ω)

+ ‖vn‖
p q+1p+1

Lβ(∂Ω)
‖φ‖

L
β(p+1)

β(p+1)−p(q+1) (∂Ω)
+ ‖φ‖L1(∂Ω).

Now, by Theorem 2.1, we get that the last equation is bounded by

‖un‖
p
Lα(∂Ω)‖φ‖Es + ‖vn‖

p q+1p+1

Lβ(∂Ω)
‖φ‖Es + ‖φ‖Es .
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Thus,

|〈Asφ,Atvn〉| ≤ c‖φ‖Es

(
‖un‖

p
Lα(∂Ω) + ‖vn‖

p q+1p+1

Lβ(∂Ω)
+ 1

)
.

By duality (As in invertible over Es) we get

‖vn‖Et ≤ c

(
‖un‖

p
Lα(∂Ω) + ‖vn‖

p q+1p+1

Lβ(∂Ω)
+ 1

)
. (3.10)

Analogously, we obtain

‖un‖Es ≤ c

(
‖vn‖

q
Lβ∂Ω)

+ ‖un‖
q p+1q+1

Lα(∂Ω) + 1

)
. (3.11)

Now combining (3.9), (3.10) and (3.11), we obtain

‖un‖Es + ‖vn‖Et ≤ c

(
‖un‖

p/α
Es + ‖vn‖

p q+1
β(p+1)

Et + ‖vn‖
q/β
Et + ‖un‖

q p+1
α(q+1)

Es + 1

)
,

and as all the exponents are less than one, we get that zn in bounded.
Now, by the compactness of H′ and the invertibility of L we can extract a

subsequence of zn that converges in E. In fact, we can take a subsequence znj that
converges weakly in E, as H′ is compact, it follows that H′(znj ) converges strongly
in E. Hence, using the fact that F ′(znj ) → 0 strongly and the invertibility of L,
the result follows.

In order to apply theorem 3.1, it remains to verify (S) and (Q). The following
Proposition gives (S).

Proposition 3.3. There exists ρ, δ > 0 such that F(z) ≥ δ, ∀z ∈ S, where
S = {B1(u, v) / ‖(u, v)‖E = ρ, (u, v) ∈ E+}.

Proof. Let z̃ = (u, v) ∈ E+ and z = B1z̃. As (u, v) ∈ E+, then v = A−tAsu and
equivalently u = A−sAtv. We have

Q(z) = 〈ρµ−1Asu, ρν−1Atv〉 = ρµ+ν−2〈Asu,Atv〉,

We observe that, if z = z+ + z−,

Q(z) =
1

2
‖z+‖

2
E −

1

2
‖z−‖

2
E ,

hence,

Q(z) =
1

2
ρµ+ν−2‖z̃‖2E . (3.12)

On the other hand, (1.3)-(1.4) implies that

H(x, u, v) ≤ c(|u|α + |v|β + |u|p+1 + |v|q+1),

therefore

H(z) ≤c

(
ρ(µ−1)α

∫
∂Ω

|u|α + ρ(ν−1)β
∫
∂Ω

|v|β

+ρ(µ−1)(p+1)
∫
∂Ω

|u|p+1 + ρ(ν−1)(q+1)
∫
∂Ω

|v|q+1
)
.

Now, by Theorem 2.1 we conclude that

H(z) ≤ C(ρ(µ−1)α‖z̃‖αE + ρ
(µ−1)(p+1)‖z̃‖p+1E + ρ(ν−1)β‖z̃‖βE + ρ

(ν−1)(q+1)‖z̃‖q+1E ).
(3.13)
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Using (3.12), (3.13) and the fact that ‖z̃‖E = ρ, we have

F(z) ≥
1

2
ρµ+ν − C(ρµα + ρνβ + ρµ(p+1) + ρν(q+1)). (3.14)

Since α ≤ p+ 1, β ≤ q + 1 and (3.2), we get F(z) ≥ 1
2ρ
µ+ν − C(ρµα + ρνβ) ≥ δ if

ρ is small enough.

Finally, the following Proposition gives (Q).

Proposition 3.4. There exists constants σ,M > 0 such that F(z) ≤ 0 ∀z ∈ ∂Q,
where Q = {B2(τz+ + z) / 0 ≤ τ ≤ σ, ‖z‖E ≤ M, z ∈ E−} z+ = (u+, v+) ∈ E+
with Au+ = λku+ for some λk and ‖z+‖E = 1.

Proof. For τ ∈ R+, z = (u, v) ∈ E− we set, z̃ = B2(τz+ + z). Using the definitions
of E± we have

v+ = A
−tAsu+ and v = −A−tAsu,

therefore

Q(z̃) = 〈τσµ−1Asu+ + σ
µ−1Asu, τσν−1Asu+ − σ

ν−1Asu〉

=
1

2
σµ+ν−2(τ2 − ‖z‖2E).

(3.15)

By (1.13),∫
∂Ω

H(x, z̃) ≥ C

(∫
∂Ω

(σα(µ−1)|τu+ + u|
α + σβ(ν−1)|τv+ + v|

β)− |∂Ω|

)
.
(3.16)

Now, every u can be decomposed as u = γu+ + û, where û is orthogonal to u+ in
L2(∂Ω) and γ ∈ R. By Hölder’s inequality we have,

(τ + γ)

∫
∂Ω

|u+|
2 =

∫
∂Ω

(τu+ + u)u+ ≤ ‖τu+ + u‖Lα(∂Ω)‖u+‖Lα′(∂Ω),

hence

τ + γ ≤ C‖τu+ + u‖Lα(∂Ω). (3.17)

Using the fact that A−tAsu+ = λ
−t+s
k u+ we have

λ−t+sk (τ − γ)

∫
∂Ω

|u+|
2 =

∫
∂Ω

(τv+ + v)u+ ≤ ‖τv+ + v‖Lβ(∂Ω)‖u+‖Lβ′(∂Ω),

therefore

τ − γ ≤ C‖τv+ + v‖Lβ(∂Ω). (3.18)

If γ ≥ 0 it follows from (3.15), (3.16) and (3.17) that

F(z̃) ≤
1

2
σµ+ν−2τ2 − cτασα(µ−1) + c|∂Ω|, (3.19)

and if γ < 0, from (3.15), (3.16) and (3.18) we have

F(z̃) ≤
1

2
σµ+ν−2τ2 − cτβσβ(ν−1) + c|∂Ω|. (3.20)

By the choice of µ and ν it follows from (3.19) and (3.20) that if we take τ = σ
large we have

F(z̃) ≤ 0.
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Now if ‖z‖E =M and 0 ≤ τ ≤ σ from (3.15) and (3.16) we obtain

F(z̃) ≤
1

2
σµ+ν −

1

2
σµ+ν−2M2 + c|∂Ω|,

then if we takeM large enough we find F(z̃) ≤ 0. To finish the proof we only observe
that when τ = 0 we also have F(z̃) ≤ 0 by the positivity of H and (3.15).

Proof of Theorem 1.1 By Propositions 3.2, 3.3 and 3.4, F satisfies the hypothesis
of Theorem 3.1. This provides us with a nontrivial (s, t)-weak solution of (1.1)-(1.2),
that is in fact a strong solution by Theorem 2.2.

4. Positive solutions. Theorem 1.2

In this section, we will show that under the hypothesis (1.14)-(1.15), there exists
a positive solution of (1.1)-(1.2). Again, we are using ideas from [6] under the
functional setting of Section 2.
In order to prove Theorem 1.2, we start by redefining the Hamiltonian. Let us

define H̃ : ∂Ω× R× R→ R by

H̃(x, u, v) =




H(x, u, v) if u, v ≥ 0,
H(x, 0, v) if u ≤ 0, v ≥ 0,
H(x, u, 0) if u ≥ 0, v ≤ 0,
0 if u, v ≤ 0.

(4.1)

We observe that if (u, v) is a nontrivial strong solution of

∆u =u

∆v =v in Ω ,
(4.2)

∂u

∂η
=H̃v(x, u, v)

∂v

∂η
=H̃u(x, u, v) x ∈ ∂Ω ,

(4.3)

then by the maximum principle and Hopf’s Lemma we have that u and v are
positive in Ω. Hence (u, v) is a strong solution of (1.1)-(1.2).

To find a nontrivial solution of (4.2)-(4.3) we want to apply the results of Section

3. By our assumption (1.15), the new Hamiltonian H̃ is regular. Also, it satisfies
(1.3), (1.4) and (1.11), but not (1.12). So in order to adapt the proof of Theorem
1.1 to this case we observe that (1.12) was only used in the proof of the Palais-Smale
condition and the condition (Q).
First, we want to prove the Palais-Smale condition for

F̃(u, v) = Q(u, v)−

∫
∂Ω

H̃(x, u, v).

Let (un, vn) be a sequence in E such that

|F̃(un, vn)| ≤ C and F̃ ′(un, vn)→ 0. (4.4)

Mimic the proof of Proposition 3.2, we only have to show that (4.4) implies that
(un, vn) is bounded. Again, as in Proposition 3.2, we get

C(1 + ‖(un, vn)‖E) ≥

∫
∂Ω

H̃(x, un, vn),
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using (1.12) restricted to u, v ≥ 0. Therefore, from (1.13) we conclude∫
∂Ω

|u+n |
α + |v+n |

β ≤ C(1 + ‖un‖Es + ‖vn‖Et),

and hence by the same arguments given in Proposition 3.2,

‖vn‖Et ≤ C(‖u
+
n ‖
p
Lα(∂Ω) + ‖v

+
n ‖
p(q+1)/(p+1)

Lβ(∂Ω)
+ 1),

and

‖un‖Es ≤ C(‖u
+
n ‖
q(p+1)/(q+1)
Lα(∂Ω) + ‖v+n ‖

q
Lβ(∂Ω)

+ 1).

Thus

‖u+n ‖
α
Lα(∂Ω) + ‖v

+
n ‖
β
Lβ(∂Ω)

≤ C(‖u+n ‖
p
Lα(∂Ω) + ‖v

+
n ‖
p(q+1)/(p+1)

Lβ(∂Ω)
+ ‖u+n ‖

q(p+1)/(q+1)
Lα(∂Ω) + ‖v+n ‖

q
Lβ(∂Ω)

+ 1).

By our assumptions on the exponents p, q, α and β we get that ‖u+n ‖Lα(∂Ω) and
‖v+n ‖Lβ(∂Ω) are bounded and hence ‖un‖Es and ‖vn‖Et are bounded as we wanted
to show.

Now, we prove (Q). We choose Q as in Section 3 with z+ = (u+, v+) ∈ E+ such
that u+ = φ1 and v+ = A−tAsφ1 = λ−t+s1 φ1 where φ1 is the first eigenfunction of

A. In particular φ1 > 0 in Ω.
We observe that (τφ1 + u)

+ = ((τ + γ)φ1 + û)
+ ≥ (τ + γ)φ1 + û. Proceeding as

in Proposition 3.4, we conclude the desired result (Q).
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