
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 231, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR
A CLASS OF ASYMPTOTICALLY PERIODIC
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Abstract. In this article, by using variational method, we study the existence

of a positive ground state solution for the Schrödinger-Poisson system

−∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

where V (x),K(x) and f(x, u) are asymptotically periodic functions in x at

infinity.

1. Introduction and statement of results

For past decades, much attention has been paid to the nonlinear Schrödinger-
Poisson system

i~
∂Ψ
∂t

= − ~2

2m
∆Ψ + U(x)Ψ + φ(x)Ψ− |Ψ|q−1Ψ, x ∈ R3, t ∈ R

−∆φ = |Ψ|2, x ∈ R3,

(1.1)

where ~ is the Planck constant. Equation (1.1) derived from quantum mechanics.
For this equation, the existence of stationary wave solutions is often sought, that
is, the following form of solution

Ψ(x, t) = eitu(x), x ∈ R3, t ∈ R.

Therefore, the existence of the standing wave solution of the equation (1.1) is
equivalent to finding the solution of the following system (m = 1

2 , ~ = 1, V (x) =
U(x) + 1)

−∆u+ V (x)u+ φu = |u|q−1u, x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.2)

As far as we know, the first result on Schrödinger-Poisson system was obtained
in [6]. Thereafter, using the variational method, there is a series of work to discuss
the existence, non existence, radially symmetric solutions, non-radially symmetric
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solutions and ground state to Schrödinger-Poisson system (1.2) [1, 3, 4, 5, 6, 8, 9,
10, 11, 12, 15, 16, 17, 19, 20, 21, 32, 33, 37, 40, 41, 44, 45, 47, 48, 49].

To the best of our knowledge, Azzollini and Pomponio [5] firstly obtained the
ground state solution to the Schrödinger-Poisson system (1.2). The conclusion they
got was that if V is a positive constant and 2 < q < 5, or V is non-constant, possibly
unbounded below and 3 < q < 5, system (1.2) has a ground state solution.

Alves, Souto and Soares [1] studied Schrödinger-Poisson system

−∆u+ V (x)u+ φu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.3)

where V is bounded locally Hölder continuous and satisfies:
(1) V (x) ≥ α > 0, x ∈ R3;
(2) lim|x|→∞ |V (x) − V0(x)| = 0, where V0 satisfy V0(x) = V0(x + y) for all

x ∈ R3 and all y ∈ Z3;
(3) V (x) ≤ V0(x) for all x ∈ R3, and there exists an open set Ω ⊂ R3 with

m(Ω) > 0 such that V (x) < V0(x) for all x ∈ Ω.
Alves et al. studied the ground state solutions to system (1.3) in case the asymp-
totically periodic condition under conditions (1)–(3).

In case p ∈ (3, 5), Cerami and Vaira [9] studied the existence of positive solutions
for the following non-autonomous Schrödinger-Poisson system

−∆u+ u+K(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(1.4)

where a,K are nonnegative functions such that lim|x|→∞ a(x) = a∞ > 0, and
lim|x|→∞K(x) = 0.

Zhang, Xu and Zhang [48] considered existence of positive ground state solution
for the Schrödinger-Poisson system

−∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.5)

In their paper, V and K satisfy:
• V,K ∈ L∞(R3), infR3 V > 0, infR3 K > 0, and V − Vp,K −Kp ∈ F , where
Vp and Kp satisfy Vp(x + z) = Vp(x), Kp(x + z) = Kp(x) for all x ∈ R3

and z ∈ Z3, here F = {g ∈ L∞(R3) : ∀ε > 0}, the set {x ∈ R3 : |g(x)| ≥
ε} has finite Lebesgue measure}.

On the other hand, when K = 0 the Schrödinger-Poisson system (1.5) becomes
the standard Schrödinger equation (replace R3 with RN )

−∆u+ V (x)u = f(x, u), x ∈ RN . (1.6)

The Schrödinger equation (1.6) has been widely investigated by many authors, see
[2, 7, 13, 14, 18, 23, 29, 24, 34, 35, 36, 42, 43, 46] and reference their. Especially,
in [23, 29, 34, 42, 43], they studied the nontrivial solution and ground state solution
for problem (1.6) in which V or f satisfy the asymptotically periodic condition. In
the other context about asymptotically periodic condition, we refer the reader to
[22, 25, 26, 39] and reference their.

Motivated by above results, in this paper we study positive ground state solutions
to system (1.5) under reformative condition about asymptotically periodic case of
V,K and f at infinity.



EJDE-2017/231 EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS 3

To state our main results, we assume that:
(A1) V, Vp ∈ L∞(R3), 0 ≤ V (x) ≤ Vp(x) and V (x) − Vp(x) ∈ A0, where A0 :=

{k(x) : for any ε > 0, m{x ∈ B1(y) : |k(x)| ≥ ε} → 0 as |y| → ∞} and
Vp satisfies V0 := infx∈R3 Vp > 0 and Vp(x+ z) = Vp(x) for all x ∈ R3 and
z ∈ Z3. K, Kp ∈ L∞(R3), 0 < K(x) ≤ Kp(x), K(x)−Kp(x) ∈ A0 and Kp

satisfies K0 := infx∈R3 Kp > 0 and Kp(x + z) = Kp(x) for all x ∈ R3 and
z ∈ Z3;

and f ∈ C(R3 × R+,R) satisfies

(A2) lims→0+
f(x,s)
s = 0 uniformly for x ∈ R3,

(A3) lims→+∞
f(x,s)
s5 = 0 uniformly for x ∈ R3,

(A4) f(x,s)
s3 is nondecreasing on (0,+∞),

(A5) there exists fp ∈ C(R3 × R+,R) such that
(i) f(x, s) ≥ fp(x, s) for all (x, s) ∈ R3 × R+ and f(x, s) − fp(x, s) ∈ A,

where A := {h(x, s) : for any ε > 0, m{x ∈ B1(y) : |h(x, s)| ≥ ε} →
0as |y| → ∞ uniformly for |s|bounded},

(ii) fp(x+ z, s) = fp(x, s) for all (x, s) ∈ R3 × R+ and z ∈ Z3,
(iii) fp(x,s)

s3 is nondecreasing on (0,+∞),
(iv) lims→+∞

Fp(x,s)
s4 = +∞ uniformly for x ∈ R3, where

Fp(x, s) =
∫ s

0
fp(x, t)dt.

Remark 1.1. (i) Functional sets A0 in (A1) and A in (A5) were introduced by [29]
in which Liu, Liao and Tang studied positive ground state solution to Schrödinger
equation (1.6).

(ii) Since F ⊂ A0, our assumptions on V and K are weaker than in [48]. Fur-
thermore, in our paper V (x) ≥ 0 but in [48] they assumed V (x) > 0.

(iii) In [48], to obtain the positive ground state to system (1.5), they firstly
consider the periodic system

−∆u+ Vp(x)u+Kp(x)φu = fp(x, u) x ∈ R3,

−∆φ = Kp(x)u2 x ∈ R3.
(1.7)

Then a solution of system (1.5) was obtained by applying inequality between the
energy of periodic system (1.7) and that of system (1.5). In this paper, we do not
using methods that of [48] and we proof the Theorem 1.2 directly.

Since we are looking for a positive solution, we may assume that f(x, s) =
fp(x, s) = 0 for all (x, s) ∈ (R3 × R−). The next theorems are the main results of
the present paper.

Theorem 1.2. Suppose that (A1)–(A5) are satisfied. Then system (1.5) has a
positive ground state solution.

Theorem 1.3. Suppose that V (x) ≡ Vp(x), K(x) ≡ Kp(x) satisfy (A1), and
f(x, s) ≡ fp(x, s) satisfies (A2)–(A5). Then system (1.5) has a positive ground
state solution.

2. Variational framework and preliminary results

The letter C and Ci will be repeatedly used to denote various positive constants
whose exact values are irrelevant. BR(z) denotes the open ball centered at z with
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radius R. We denote the standard norm of Lp by |u|p = (
∫

R3 |u|pdx)1/p and |u|∞ =
ess supx∈R3 |u|.

The Sobolev space H1(R3) is endowed with the norm

‖u‖2H :=
∫

R3
(|∇u|2 + u2)dx.

The space D1,2(R3) is endowed with the standard norm

‖u‖2D1,2 :=
∫

R3
|∇u|2dx.

Let E := {u ∈ L6(R3) : |∇u| ∈ L2(R3) and
∫

R3 V (x)u2dx < ∞} be the Sobolev
space endowed with the norm

‖u‖2 :=
∫

R3
(|∇u|2 + V (x)u2)dx.

Lemma 2.1. [29] Suppose (A1) holds. Then there exists two positive constants C1

and C2 such that C1‖u‖2H ≤ ‖u‖ ≤ C2‖u‖2H for all u ∈ E. Moreover, E ↪→ Lp(R3)
for any p ∈ [2, 6] is continuous.

System (1.5) can be transformed into a Schrödinger equation with a nonlocal
term. In fact, for all u ∈ E (then u ∈ H1(R3)), considering the linear functional
Lu defined in D1,2(R3) by

Lu(v) =
∫

R3
K(x)u2vdx.

According to the Hölder inequality and lemma (2.1), one has that

|Lu(v)| ≤ |K|∞|u|212/5|v|6 ≤ C‖u‖
2‖v‖D1,2 . (2.1)

So, by the Lax-Milgram theorem exists an unique φu ∈ D1,2(R3) such that∫
R3
∇φu · ∇v dx = (φu, v)D1,2 = Lu(v) =

∫
R3
K(x)u2v dx,

for any v ∈ D1,2(R3) and ‖φu‖D1,2 ≤ C‖u‖2. Namely, φu is the unique solution of

−∆φ = K(x)u2, x ∈ R3.

Moreover, φu can be expressed as

φu = C

∫
R3

K(y)u2(y)
|x− y|

dy.

Substituting φu into the system (1.5), we obtain

−∆u+ V (x)u+K(x)φuu = f(x, u), x ∈ R3. (2.2)

By (2.1), we get

|
∫

R3
K(x)φuu2dx| ≤ C‖u‖4. (2.3)

So the energy functional I : H1(R3)→ R corresponding to (2.2) is given by

I(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2)dx+
1
4

∫
R3
K(x)φuu2dx−

∫
R3
F (x, u)dx,

where F (x, s) =
∫ s

0
f(x, t)dt.
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Moreover, under our condition, I belongs to C1, so the Fréchet derivative of I is

〈I ′(u), v〉 =
∫

R3
(∇u · ∇v + V (x)uv)dx+

∫
R3
K(x)φuuvdx−

∫
R3
f(x, u)vdx

and (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of system (1.5) if and only if u ∈
H1(R3) is a critical point of I and φ = φu.

For all u ∈ E, let φ̃u ∈ D1,2(R3) is unique solution of the following equation

−∆φ = Kp(x)u2, x ∈ R3.

Moreover, φ̃u can be expressed as

φ̃u = C

∫
R3

Kp(y)u2(y)
|x− y|

dy.

Let

Ip(u) =
1
2

∫
R3

(|∇u|2 + Vp(x)u2)dx+
1
4

∫
R3
Kp(x)φ̃uu2dx−

∫
R3
Fp(x, u)dx,

where Fp(x, s) =
∫ s

0
fp(x, t)dt. Then Ip is the energy functional corresponding to

the equation

−∆u+ Vp(x)u+Kp(x)φ̃uu = fp(x, u), x ∈ R3. (2.4)

It is easy to see that (u, φ) ∈ H1(R3)×D1,2(R3) is a solution of periodic system
(1.7) if and only if u ∈ H1(R3) is a critical point of Ip and φ = φ̃u.

Lemma 2.2. Suppose (A1) holds. Then∫
R3
Kp(x)φ̃u(·+z)u

2(·+ z)dx =
∫

R3
Kp(x)φ̃uu2dx, ∀z ∈ Z3, u ∈ E.

Lemma 2.3. Suppose that (A2), (A4), (A5) hold. Then
(i) 1

4f(x, s)s ≥ F (x, s) ≥ 0 for all (x, s) ∈ R3 × R,
(ii) 1

4fp(x, s)s ≥ Fp(x, s) ≥ 0 for all (x, s) ∈ R3 × R.

The proof of the above lemma is similar to that in [31], so we omitted here.

Lemma 2.4. Operator I ′ is weakly sequentially continuous. Namely if un ⇀ u in
E, I ′(un) ⇀ I ′(u) in E−1.

The proof of the above lemma is similar to that of in [48], so we omitted here.

Lemma 2.5 ([29]). Suppose that (A2), (A3), (A5)(i) hold. Assume that {un} is
bounded in E and un → 0 in Lsloc(R3), for any s ∈ [2, 6). Then up to a subsequence,
one has ∫

R3
(F (x, un)− Fp(x, un))dx = on(1).

Lemma 2.6 ([29]). Suppose that (A1), (A2), (A3) (A5)(i) hold. Assume that {un}
is bounded in E and |zn| → ∞. Then any ϕ ∈ C∞0 (R3), one has∫

R3
(Vp(x)− V (x))unϕ(· − zn)dx = on(1),∫

R3
(f(x, un)− fp(x, un))ϕ(· − zn)dx = on(1).
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Lemma 2.7. Suppose that (A1), (A2), (A3), (A5)(i) hold. Assume that un ⇀ 0 in
E. Then up to a subsequence, one has∫

R3
(K(x)φununϕ(· − zn)−Kp(x)φ̃ununϕ(· − zn))dx = on(1),

where |zn| → ∞ and ϕ ∈ C∞0 (R3).

Proof. Set h(x) := K(x) − Kp(x). By (A1), we have h(x) ∈ A0. Then for any
ε > 0, there exists Rε > 0 such that

m{x ∈ B1(y) : |h(x)| ≥ ε} < ε, for any |y| ≥ Rε.

We cover R3 by balls B1(yi), i ∈ N. In such a way that each point of R3 is
contained in at most N + 1 balls. Without any loss of generality, we suppose that
|yi| < Rε, i = 1, 2, . . . , nε and |yi| ≥ Rε, i = nε + 1, nε + 2, nε + 3, . . . ,+∞. Then∫

R3
(K(x)φununϕ(· − zn)−Kp(x)φ̃ununϕ(· − zn))dx

=
∫

R3

∫
R3

Kp(y)un(y)ϕ(y − zn)
|x− y|

dyh(x)u2
n(x)dx

+
∫

R3

∫
R3

Kp(y)u2
n(y)

|x− y|
dyh(x)un(x)ϕ(x− zn)dx

+
∫

R3

∫
R3

h(y)u2
n(y)

|x− y|
dyh(x)un(x)ϕ(x− zn)dx

:= E1 + E2 + E3

As in [48], we define

H(x) :=
∫

R3

Kp(y)un(y)ϕ(y − zn)
|x− y|

dy

=
∫
{y:|x−y|≤1}

Kp(y)un(y)ϕ(y − zn)
|x− y|

dy

+
∫
{y:|x−y|>1}

Kp(y)un(y)ϕ(y − zn)
|x− y|

dy.

By the Hölder inequality and the Sobolev embedding, we have

|H(x)| ≤ |Kp|∞|un|3|ϕ|6
(∫
{y:|x−y|≤1}

1
|x− y|2

dy
)1/2

+ |Kp|∞|un|2|ϕ|4
(∫
{y:|x−y|>1}

1
|x− y|4

dy
)1/4

≤ C
(∫
{z:|z|≤1}

1
|z|2

dz
)1/2

+ C
(∫
{z:|z|>1}

1
|z|4

dz
)1/4

.

So, supx∈R3 |H(x)| <∞. Then, we obtain

E1 =
∫

R3
H(x)h(x)u2

n(x)dx

≤
∫
{x:|h(x)|≥ε}

|H(x)h(x)u2
n(x)|dx+

∫
{x:|h(x)|<ε}

|H(x)h(x)u2
n(x)|dx

:= Q1 +Q2
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Q1 =
∫
{x:|h(x)|≥ε}

|H(x)h(x)u2
n(x)|dx

=
∫
{x:|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx

+
∫
{x:|h(x)|≥ε,|x|≤Rε+1}

|H(x)h(x)u2
n(x)|dx

≤
∞∑

nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx

+ 2 sup
x∈R3

|H(x)‖Kp|∞
∫
BRε+1

|un(x)|2dx

:= Q11 +Q12

Q11 =
∞∑

nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx

≤ 2 sup
x∈R3

|H(x)‖Kp|∞
∞∑

nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|u2
n(x)|dx

≤ C
∞∑

nε+1

(
m{x ∈ B1(y) : |h(x)| ≥ ε}

)2/3

×
(∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|u6
n(x)|dx

)1/3

≤ C1ε
2/3

∞∑
nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

(|∇un|2 + u2
n)dx

≤ C1(N + 1)ε2/3

∫
R3

(|∇un|2 + u2
n)dx ≤ C2ε

2/3.

Letting ε→ 0, we obtain Q11 → 0.
Since un ⇀ 0, one has that Q12 → 0. So, Q1 = Q11 +Q12 → 0.

Q2 =
∫
{x:|h(x)|<ε}

|H(x)h(x)u2
n(x)|dx

≤ ε sup
x∈R3

|H(x)|
∫

R3
|u2
n(x)|dx ≤ Cε.

Let ε → 0, we have Q2 → 0. Therefore, from the above fact we get that E1 → 0.
In the same way, we can prove E2 → 0 and E3 → 0. �

We define N := {u ∈ E\{0} : (I ′(u), u) = 0}. Then N is a Nehari type associate
to I, and set c := infu∈N I. Let F := {u ∈ E : u+ 6= 0}, where u± = max{±u, 0}.
In fact

N = {u ∈ F : (I ′(u), u) = 0}.

Lemma 2.8. Suppose that (A1)–(A5) hold. For any u ∈ F , there is a unique
tu > 0 such that tuu ∈ N . Moreover, the maximum of I(tu) for t ≥ 0 is achieved.
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Proof. Define g(t) := I(tu), t ≥ 0. Using (A2), (A3) and (A5), we can prove that
g(0) = 0, g(t) > 0 for t small and g(t) < 0 for t large. In fact, by (A2) and (A3),
for all ε > 0 there exists a Cε > 0 such that

|f(x, s)| ≤ ε|s|+ Cε|s|5, |F (x, s)| ≤ ε

2
|s|2 +

Cε
6
|s|6, s ∈ R.

Then

g(t) =
t2

2
‖u‖2 +

t4

4

∫
R3
K(x)φuu2dx−

∫
R3
F (x, tu)dx

=
t2

2
‖u‖2 +

t4

4

∫
R3
K(x)φuu2dx−

∫
R3
F (x, tu)dx

≥ t2

2
‖u‖2 − εt2

∫
R3
|u|2dx− Cεt6

∫
R3
|u|6dx

≥ t2

2
‖u‖2 − Cεt2‖u‖2 − Cεt6‖u‖6.

Hence, g(0) = 0, g(t) > 0 for t small.
Set Ω := {x ∈ R3 : u(x) > 0}, by using Fatou lemma and (A5), we have

lim inf
t→+∞

∫
Ω

F (x, tu)
(tu)4

u4dx ≥ lim inf
t→+∞

∫
Ω

Fp(x, tu)
(tu)4

u4dx = +∞.

Hence

lim sup
t→+∞

g(t)
t4

= lim sup
t→+∞

1
2t2
‖u‖4 +

1
4

∫
R3
K(x)φuu2dx− lim inf

t→+∞

∫
R3

F (x, tu)
t4

dx

= lim sup
t→+∞

1
2t2
‖u‖4 +

1
4

∫
R3
K(x)φuu2dx− lim inf

t→+∞

∫
Ω

F (x, tu)
(tu)4

u4dx = −∞,

which deduces g(t) → −∞ as t → +∞. Therefore, there exists a tu such that
I(tuu) = maxt>0 I(tu) and tuu ∈ N . Suppose that there exist t′u > tu > 0 such
that t′uu, tuu ∈ N . Then, We have

1
(t′u)2

‖u‖2 +
∫

R3
K(x)φuu2dx =

∫
R3

f(x, t′uu)u4

(t′uu)3
dx

and this identity is also true if t′u is replaced by tu. Therefore,( 1
(t′u)2

− 1
(tu)2

)
‖u‖2 =

∫
R3

(
f(x, t′uu)

(t′uu)3
− f(x, tuu)

(tuu)3
)u4dx,

which is absurd in view of (A4) and t′u > tu > 0. �

Remark 2.9. As in [36, 46], we have

c = inf
u∈N

I(u) = inf
u∈F

max
t>0

I(tu) = inf
γ(t)∈Γ

max
t∈[0,1]

I(γ(t)) > 0

where
Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.

Lemma 2.10. Suppose that (A1), (A2)–(A5) hold. Then there exists a nonnegative
and bounded sequence {un} ∈ E such that

I(un)→ c and ‖I ′(un)‖E−1 → 0.
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Proof. From the proof of Lemma 2.8, it is easy to see that I satisfies the moun-
tain pass geometry. By [38], there exists an {un} such that I(un) → c and
(1 + ‖un‖)‖I ′(un)‖E−1 → 0. By Lemma (2.3), we have

c = I(u)− 1
4
〈I ′(un), un〉+ on(1)

=
1
4
‖un‖2 +

∫
R3

(
1
4
f(x, un)un − F (x, un))dx+ on(1)

≥ 1
4
‖un‖2 + on(1).

Therefore, {un} is bounded. Moreover, we have

〈I ′(un), u−n 〉 = ‖u−n ‖2 +
∫

R3
K(x)φun

(u−n )2dx = on(1).

Then ‖u−n ‖2 = o(1) and
∫

R3 K(x)φu−n (u−n )2 = o(1). Therefore, we can infer that
I(u+

n ) → c and ‖I ′(u+
n )‖E−1 → 0. Hence, we may always assume that {un} is

nonnegative and the prove is fished. �

Lemma 2.11. Suppose that (A1)–(A5) hold. If u ∈ N and I(u) = c, then u is a
solution of system (1.5).

Proof. The proof is similar to that of [29, 30]. Suppose by contradiction, that u is
not a solution of system (1.5). Hence, there exists ϕ ∈ E such that

〈I ′(u), ϕ〉 < −1.

Choose ε ∈ (0, 1) small enough such that for all |t− 1| ≤ ε and |σ| ≤ ε,

〈I ′(tu+ σϕ), ϕ〉 ≤ −1
2
.

Let ζ(t) ∈ [0, 1] satisfies ζ(t) = 1 for |t− 1| ≤ ε
2 and ζ(t) = 0 for |t− 1| ≥ ε. for all

t > 0, let γ(t) be a curve such that γ(t) = tu for |t− 1| ≥ ε and γ(t) = tu+ εζ(t)ϕ
for |t − 1| < ε. Obviously, γ(t) is a continuous curve, furthermore, ‖γ(t)‖ > 0 for
|t − 1| < ε in which ε small enough. Next we will prove I(γ(t)) < c, for all t > 0.
In fact, if |t − 1| ≥ ε, I(γ(t)) = I(tu) < I(u) = c. If |t − 1| < ε, for all σ ∈ [0, ε],
we define A : σ 7→ I(tu + σζ(t)ϕ). Obviously, A ∈ C1. By the mean value therm,
there exists σ ∈ (0, ε) such that

I(tu+ εζ(t)ϕ) = I(tu) + 〈I ′(tu+ σζ(t)ϕ), εζ(t)ϕ〉 ≤ I(tu)− ε

2
ζ(t) < c.

Set ν(u) := 〈I ′(u), u〉, then ν(γ(1 − ε)) = ν((1 − ε)u) > 0 and ν(γ(1 + ε)) =
ν((1 + ε)u) < 0. According to the continuity of t → ν(γ(t)), there exists t′ ∈
(1 − ε, 1 + ε) such that ν(γ(t′)) = 0. Thus γ(t′) ∈ N and I(γ(t′)) < c, which is a
contradiction. �

Define
Np = {u ∈ F \ {0} : 〈I ′p(u), u〉 = 0} and cp = inf

u∈Np

.

In fact, cp = infu∈F maxt>0 Ip(tu).

Remark 2.12. For any u ∈ F , by Lemma 2.8, there exists tu > 0 such that
tuu ∈ N and then I(tuu) ≥ c. Using V (x) ≤ Vp(x) and F (x, s) ≥ Fp(x, s), we have
c ≤ I(tuu) ≤ Ip(tuu) ≤ maxt>0 Ip(tu). Then we obtain c ≤ cp.
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3. Proof of main results

Proof. According to Lemma 2.10, there exist a nonnegative and bounded sequence
{un} ∈ E such that I(un)→ c and ‖I ′(un)‖E−1 → 0. Then there exists u ∈ E such
that, up to a subsequence, un ⇀ u in E, un → u in L2

loc(R3) and un(x) → u(x)
a.e. in R3. By lemma 2.4, we have that

0 = 〈I ′(un), v〉+ on(1) = 〈I ′(u), v〉, ∀v ∈ E,
that is u is a solution of system (1.5). We next distinguish the following two case
to prove system (1.5) have a nonnegative ground state solution.

Case 1: u 6= 0. Then I(u) ≥ c. By Lemma 2.3 and the Fatou lemma, we obtain

c = lim inf
n→∞

(I(un)− 1
4
〈I ′(un), un〉)

= lim inf
n→∞

(1
4
‖un‖2 +

∫
R3

(
1
4
f(x, un)un − F (x, un))dx

)
≥ 1

4
‖u‖2 +

∫
R3

(
1
4
f(x, u)u− F (x, u))dx

= I(u)− 1
4
〈I ′(u), u〉 = I(u).

Therefore, I(u) = c and I ′(u) = 0.
Case 2: u = 0. Let

β := lim sup
n→∞

sup
z∈R3

∫
B1(z)

u2
ndx.

If β = 0, by using the Lions lemma [27, 28], we have un → 0 in Lq(R3) for all
q ∈ (2, 6). From the conditions of (A2) and (A3), for all ε > 0 there exists Cε > 0
such that 1

2f(x, u)u− F (x, u) ≤ ε(|u|2 + |u|6) +Cε|u|α for any (x, s) ∈ R3 ×R and
α ∈ (2, 6). Let ε small enough, we have that

c = I(un)− 1
2
〈I ′(un), un〉+ on(1)

= −1
4

∫
R3
K(x)φunu

2
ndx+

∫
R3

(
1
2
f(x, un)un − F (x, un))dx+ on(1)

≤ −1
4

∫
R3
K(x)φun

u2
ndx+

∫
R3

(ε(|un|2 + |un|6) + Cε|un|α)dx+ on(1) ≤ 0,

which is a contradiction with c > 0. So β > 0. Up to a subsequence, there exists
R > 0 and {zn} ⊂ Z3 such that∫

BR

un(x+ zn)2dx =
∫
BR(zn)

u2
ndx >

β

2
.

Set wn := un(x+ zn). Hence, there exists a nonnegative function w ∈ E such that,
up to a subsequence, wn ⇀ w in E, wn → w in L2

loc(R3) and wn(x)→ w(x) a.e. in
R3. Obviously, w 6= 0. If {zn} is bounded, ∃ R′ such that∫

BR′ (0)

u2
ndx ≥

∫
BR(zn)

u2
ndx ≥

β

2
,

which contradicts with the fact un → 0 in L2
loc(R3). Hence {zn} is unbounded. Up

to a subsequence, we have zn →∞. For all ϕ ∈ C∞0 (R3), by Lemmas 2.6 and 2.7,
we have

0 = 〈I ′(un, ϕ(· − zn))〉+ on(1)
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=
∫

R3
(∇un · ∇ϕ(· − zn)dx+ V (x)unϕ(· − zn))dx+

∫
R3
K(x)φun

unϕ(· − zn)dx

−
∫

R3
f(x, un)ϕ(· − zn)dx+ on(1)

=
∫

R3
(∇un · ∇ϕ(· − zn) + Vp(x)unϕ(· − zn))dx+

∫
R3
Kp(x)φ̃un

unϕ(· − zn)dx

−
∫

R3
fp(x, un)ϕ(· − zn)dx+ on(1)

=
∫

R3
(∇wn · ∇ϕ+ Vp(x)wnϕ)dx+

∫
R3
Kp(x)φ̃wnwnϕdx

−
∫

R3
fp(x,wn)ϕdx+ on(1)

= 〈I ′p(w), ϕ〉,

that is, w is a solution of periodic system (1.7). By Lemma (2.3), Lemma 2.5, (A5)
and Fatou lemma, we have

c = I(un)− 1
4
〈I ′(un), un〉+ on(1)

=
1
4
‖un‖2 +

∫
R3

(
1
4
f(x, un)un − F (x, un))dx+ on(1)

≥ 1
4
‖un‖2 +

∫
R3

(
1
4
fp(x, un)un − Fp(x, un))dx+ on(1)

=
1
4
‖wn‖2 +

∫
R3

(
1
4
fp(x,wn)wn − Fp(x,wn))dx+ on(1)

≥ 1
4
‖w‖2 +

∫
R3

(
1
4
fp(x,w)w − Fp(x,w))dx+ on(1)

= Ip(w)− 1
4
〈I ′p(w), w〉

= Ip(w) ≥ cp.

Using Remark (2.12), Ip(w) = cp = c. By the properties of c and N , there exits
tw > 0 such that tww ∈ N . Thus, we obtain c ≤ I(tww) ≤ Ip(tww) ≤ Ip(w) = c.
So c is achieved by tww. By Lemma 2.11, we have I ′(tww) = 0. Therefore, u = tww
is a nonnegative ground state solution for system (1.5). Similar to that of discussed
in [48], by the maximum principle discussed , u > 0. �
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