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EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR
A CLASS OF ASYMPTOTICALLY PERIODIC
SCHRODINGER-POISSON SYSTEMS

DA-BIN WANG, HUA-FEI XIE, WEN GUAN

Commumnicated by Claudianor O. Alves

ABSTRACT. In this article, by using variational method, we study the existence
of a positive ground state solution for the Schrédinger-Poisson system

—A¢ = K(z)u?, =z cR3

where V(z), K(z) and f(z,u) are asymptotically periodic functions in = at
infinity.

1. INTRODUCTION AND STATEMENT OF RESULTS

For past decades, much attention has been paid to the nonlinear Schrodinger-
Poisson system

o R » s
zh—:—2—A\II+U(;U)\I/+¢($)\I!—|\II\Q U, zeR’, teR
m

ot (1.1)

—A¢ = |V]?, zeR3,

where A is the Planck constant. Equation (1.1)) derived from quantum mechanics.
For this equation, the existence of stationary wave solutions is often sought, that
is, the following form of solution

U(x,t) = e'u(r),z € R? tcR.

Therefore, the existence of the standing wave solution of the equation (1.1)) is
equivalent to finding the solution of the following system (m = 1, h =1, V(z) =
U(x)+1)

—Au+V(x)u+ ¢u = |u|Ttu, xR,
—A¢p =u?, zeR:
As far as we know, the first result on Schréodinger-Poisson system was obtained

in [6]. Thereafter, using the variational method, there is a series of work to discuss
the existence, non existence, radially symmetric solutions, non-radially symmetric

(1.2)
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solutions and ground state to Schrodinger-Poisson system ((1.2)) [I, BL 4, 51 6] 8 O]

(0} (1) (12} 15, 16, 17, 19) 20, 21, 32, 33, 37, 40, 41}, 44) 45, 47, 48], 149].
To the best of our knowledge, Azzollini and Pomponio [5] firstly obtained the

ground state solution to the Schrodinger-Poisson system . The conclusion they
got was that if V' is a positive constant and 2 < ¢ < 5, or V' is non-constant, possibly
unbounded below and 3 < ¢ < 5, system has a ground state solution.

Alves, Souto and Soares [I] studied Schrodinger-Poisson system

—Au+V(z)u+ ou= f(u), z¢eR?
—Adp=u?, zeR3
where V' is bounded locally Holder continuous and satisfies:
(1) V(z) >a >0,z cR?
(2) limy| oo |V () — Vo(z)| = 0, where Vj satisfy Vo(z) = Vo(z + y) for all
z € R? and all y € Z3;
(3) V(z) < Vo(x) for all z € R3, and there exists an open set Q C R? with
m(§2) > 0 such that V(z) < Vp(z) for all z € Q.
Alves et al. studied the ground state solutions to system (1.3]) in case the asymp-
totically periodic condition under conditions (1)—(3).
In case p € (3,5), Cerami and Vaira [9] studied the existence of positive solutions
for the following non-autonomous Schrédinger-Poisson system
~Au+u+ K(x)p(x)u = a(x)|ulP"tu, =R,
—A¢ = K(z)u?, x€R3,

(1.3)

(1.4)

where a, K are nonnegative functions such that limj,; . a(z) = as > 0, and
Zhang, Xu and Zhang [48] considered existence of positive ground state solution
for the Schrodinger-Poisson system

—Au+V(2)u+ K(x)pu = f(z,u), zcR3
~A¢p = K(z)u?, =R
In their paper, V and K satisfy:

o V,K € L>®(R3), infgs V > 0, infgs K >0, and V —V,,, K — K, € F, where
V, and K, satisfy V,(z + 2) = V,(z), K,(z + 2) = Kp(z) for all x € R?
and z € Z3, here F = {g € L>(R3) : Ve > 0}, the set {x € R3 : |g(z)| >
¢} has finite Lebesgue measure}.

On the other hand, when K = 0 the Schrédinger-Poisson system (|1.5)) becomes
the standard Schrodinger equation (replace R? with RY)

—Au+V(z)u= f(z,u), xcRY. (1.6)

The Schrodinger equation has been widely investigated by many authors, see
[2, 17, 13, 14 (18], 23], 291 24] [34, 35|, 386}, [42] 43], [46] and reference their. Especially,
in [23] 29, 34, [42], [43], they studied the nontrivial solution and ground state solution
for problem in which V' or f satisfy the asymptotically periodic condition. In
the other context about asymptotically periodic condition, we refer the reader to
[22], 25, [26] [39] and reference their.

Motivated by above results, in this paper we study positive ground state solutions
to system under reformative condition about asymptotically periodic case of
V,K and f at infinity.

(1.5)
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To state our main results, we assume that:
(A1) V, V, € L®(R3), 0 < V(z) < Vp(z) and V(z)
{k(z) : for any ¢ > 0, m{z € Bi(y) : |k(z)

— Vp(z) € Ag, where Aj :=
> e} — 0as|y| — oo} and

|
z€Z3 K, K, € L>=(R?), 0<K() (; (x)—K( ) € Ap and K,

V, satisfies Vo := inf,egs Vp, > 0 and V,,(z + 2) = V,(z) for all z € R3 and
satisfies Ko := inf,eps K, > 0 and K (x +2) = Kp(x) for all z € R3 and
2z € 73;

and f € C(R3 x RT,R) satisfies
(A2) lim,_, g+ @ = 0 uniformly for z € R3,
(A3) hmsaﬂ,o f(fss) = 0 uniformly for z € R3,
(A4) wgs) is nondecreasing on (0, +00),
(A5) there exists f, € C(R* x RT,R) such that
(i) f(z,8) > fy(z,s) for all (z,s) € R® x RT and f(z,s) — fp(z,s) € A,
where A := {h(z,s) : for any ¢ > 0, m{z € Bi(y) : |h(z,s)| > ¢} —
Oas |y| — oo uniformly for |s|bounded},
(ii) fp(z +2,8) = fp(z,s) for all (z,s) € R® x RT and z € Z3,
(iii) % is nondecreasing on (0, +00),
(iv) limg— oo W = 400 uniformly for € R3, where
Fp(‘rv s) = fos fp(xv t)dt.

Remark 1.1. (i) Functional sets Ag in (A1) and A in (A5) were introduced by [29]
in which Liu, Liao and Tang studied positive ground state solution to Schrodinger

equation (1.6)).

(ii) Since F C Ag, our assumptions on V and K are weaker than in [48]. Fur-
thermore, in our paper V(z) > 0 but in [48] they assumed V(z) > 0.

(iii) In [48], to obtain the positive ground state to system ([1.5)), they firstly
consider the periodic system

—Au+ Vy(2)u + Kp(x)pu = fp(z,u) x€R?,
~A¢ = Kp(z)u? z€R3.

Then a solution of system (|1.5)) was obtained by applying inequality between the
energy of periodic system ([1.7)) and that of system (1.5). In this paper, we do not

(1.7)

using methods that of [48] and we proof the Theorem directly.

Since we are looking for a positive solution, we may assume that f(z,s) =
fp(x,s) =0 for all (x,s) € (R® x R™). The next theorems are the main results of
the present paper.

Theorem 1.2. Suppose that (A1)-(A5) are satisfied. Then system (L.5) has a
positive ground state solution.

Theorem 1.3. Suppose that V(z) = V,(z), K(z) = Kp(z) satisfy (Al), and
flz,s) = fp(z,s) satisfies (A2)—(A5). Then system . has a positive ground

state solution.

2. VARIATIONAL FRAMEWORK AND PRELIMINARY RESULTS

The letter C' and C; will be repeatedly used to denote various positive constants
whose exact values are irrelevant. Bg(z) denotes the open ball centered at z with
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radius R. We denote the standard norm of L” by |ul, = ( [s |u|Pdz)'/P and |u|s =
€SS SUP, cps |U|.
The Sobolev space H'(R?) is endowed with the norm

|2, = /Rg(|Vu|2 +u?)da.

The space D1'?(R3) is endowed with the standard norm

lull2nz = /]R Vul?dz.

Let E := {u € L°(R3) : |[Vu| € L*(R3) and [, V(z)u?dz < oo} be the Sobolev
space endowed with the norm

ful? = [ (Va4 Vaut)de

Lemma 2.1. [29] Suppose (A1) holds. Then there exists two positive constants Cy
and Cy such that Cy||ul|% < |jul| < C||lu||% for allw € E. Moreover, E — LP(R?)
for any p € [2,6] is continuous.

System (|1.5) can be transformed into a Schrédinger equation with a nonlocal
term. In fact, for all u € E (then u € H'(R3)), considering the linear functional
L, defined in D'2(R3) by

L,(v) = . K (z)u*vdz.

According to the Hélder inequality and lemma (2.1]), one has that
|Lu(0)] < [K|solulty/slvls < Cllull? o] pra. (2.1)

So, by the Lax-Milgram theorem exists an unique ¢, € D?(R3) such that

Vo - Vodr = (¢u,v)pre = Ly (v) = K (z)uv dz,
R3 R3
for any v € DY2(R3) and ||¢y || pr.2 < C||lul|?>. Namely, ¢, is the unique solution of
—A¢ = K(x)u?, v € R

Moreover, ¢, can be expressed as

K 2
b= C W W) .
r: | — Yl
Substituting ¢, into the system ([1.5]), we obtain
— Au+V(2)u+ K(x)pu = f(r,u), =cR> (2.2)
By (2.1), we get
| [ K@outdsl < Clul. (23)
R3
So the energy functional I : H!(R3) — R corresponding to (2.2) is given by
1 1
I(u) == / (|\Vu|®* + V(2)u?)de + = | K(x)pu*de — | F(x,u)dz,
2 R3 4 R3 R3

where F(z,s) = [, f(z,t)dt.
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Moreover, under our condition, I belongs to C!, so the Fréchet derivative of I is
K(z)pyuvdr — / flz,u)vdz
RS RS

and (u,¢) € HY(R?) x DY2(R3) is a solution of system (1.5 if and only if u €
H'(R3) is a critical point of I and ¢ = ¢,.
For all u € E, let ¢, € DV?(R3) is unique solution of the following equation

~A¢ = Kp(z)u?, xR

(I'(u),v) = /]R3 (Vu- Vv + V(z)uv)dr +

Moreover, ¢,, can be expressed as

~ K 2
R3 |$ - 3/|
Let
1 1 ~
I(u) = 7/ (Vul? + Vy(@)u2)de + = | K, (2)duu’da —/ Fy (e, u)dz,
2 RS 4 R?’ R3

where F,(z,s) = fos fp(z,t)dt. Then I, is the energy functional corresponding to
the equation

— Au+ Vy(z)u + Kp(m)auu = fplz,u), z€R3 (2.4)
It is easy to see that (u,¢) € H'(R3) x DV2(R3) is a solution of periodic system
(1.7) if and only if uw € H*(R?) is a critical point of I, and ¢ = ¢,.
Lemma 2.2. Suppose (A1) holds. Then
/]R3 Kp(x)au(,ﬂ)uz(. + 2)dx = » Kp(x)gguﬁdx, Vz € Z3ucE.
Lemma 2.3. Suppose that (A2), (A4), (A5) hold. Then
(i) $f(z,s)s > F(z,s) >0 for all (z,s) € R3 x R,
(i) 1/fp(z,8)s > Fy(z,s) >0 for all (z,s) € R® x R.

The proof of the above lemma is similar to that in [31], so we omitted here.

Lemma 2.4. Operator I' is weakly sequentially continuous. Namely if u, — u in
E, I'(up) — I'(u) in E~L.

The proof of the above lemma is similar to that of in [48], so we omitted here.

Lemma 2.5 ([29]). Suppose that (A2), (A3), (A5)(i) hold. Assume that {u,} is
bounded in E and u, — 0 in Lﬁ)C(R?’), for any s € [2,6). Then up to a subsequence,
one has

/ (Fla,un) — Fy(z,un))dz = on(1).
RS

Lemma 2.6 ([29]). Suppose that (A1), (A2), (A3) (A5)(i) hold. Assume that {u,}
is bounded in E and |z,| — co. Then any ¢ € C§°(R3), one has

050 = V@i = )i = 0,1,

[ () = fylasua)ot = 2o = 0,(1),
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Lemma 2.7. Suppose that (A1), (A2), (A3), (A5)(i) hold. Assume that u, — 0 in
E. Then up to a subsequence, one has

[ @)l = 20) = Kol (- = 2))de = 0,1,
where |z,| — 0o and ¢ € C§°(R3).

Proof. Set h(z) := K(z) — K,(x). By (Al), we have h(z) € Ap. Then for any
€ > 0, there exists R. > 0 such that
mi{z € Bi(y) : ()| > e} <&, for any |y] > Re.

We cover R by balls Bi(y;), i € N. In such a way that each point of R? is
contained in at most N + 1 balls. Without any loss of generality, we suppose that
lyil| < Re, i=1,2,...,n. and |y;| > Re,i =n. + 1,n. +2,n. +3,...,4+00. Then

@l = 20) = K@), ol = 20))da

_ Kp(y)un(y)p(y — 2n) 2 () d
—/R3 | P o) o)

Ky (y)u (y) o
* /]R3 R3 Wdyh(x)un(x)ﬂﬁ(x n)d

+/R3/R3 |x_y| dyh( ) n( )4,0( n)d

= El + E2 + E3
As in [48], we define
H(z) == Ky (y)un(y)ply — Zn)dy
R3 |z —y|
:/ Ky (y)un(y) ey — zn)dy
{y:le—y|<1} |z —yl
+/ KP(Z/)un(y)(p(y - zn)dy
{y:lz—y|>1} |z =yl

By the Holder inequality and the Sobolev embedding, we have

1 1/2
@) < Ky lelunlslelo( [ )

{y:|lz—y|<1} |z —y|?

1 1/4
1 ool )

{y:|lz—y|>1} ‘.’L’ - y|4

1 1/2 1 1/4
{z:]z|<1} |2| {z:]z|>1} |2

So, sup,cps |H(x)| < co. Then, we obtain

E, = H(z)h(x)u? (z)dz
R3

H(z)h(z)u? (z)|dz H() ()2 (2)|da
<o @@+ [ [ )b ()

{z:|h(z)|<e}
=01+ Q2
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Q1 = / |H () h(z)u2 ()| dz
{z:|h(x)|>e}

-/ |H (2)h(2)u2 ()| da
{z:|h(z)|>e,|z|>R+1}

+ [H (@) (e ()| d
{a:|h(2)|>e.[e| <R.+1}

<> [ |H (2)h(2)u? (x)da

no+1 7 {z€B1(ys):|h(x)|>e,|x[> R +1}

2s0p H@IK e [ Jun(a) e
rER3 Re+1

= Q1 + Q12

oo

0n=3

ne+1

<2 sup |H ()] Koo Z / [u2 (z)|da

ne+1 {z€B1(yi):|h(z)|>e,|z|>R+1}

<cC Z (mfz € Biw) : Ih(2)] = 5})2/3

ne+1

/ \H (2)h(z )i ()| de
{w€B1 (o) |h(x)|>e 2> Re+1}

1/3
<(f u () )
{z€B1(yi):|h(z)|2e,|x[>Re+1}

g C1€2/3
ne+1

<Oy (N + 1)52/3/ (|Vtn|? +u2)de < Coe?/3.
R3

/ (|Vtn|? 4 u?)dx
{z€B1(y:):|h(z)| 2¢,|z[> R 41}

Letting € — 0, we obtain Q11 — 0.
Since u,, — 0, one has that Q12 — 0. So, Q1 = Q11 + Q12 — 0.

Q- [H(@)h(a)u ()| dz
{z:|h(z)|<e}
<Esup |H (x |/ |u? (z)|dx < Ce.

Let € — 0, we have Q2 — 0. Therefore, from the above fact we get that £y — 0.
In the same way, we can prove Fy — 0 and F3 — 0. (Il

We define N := {u € E\{0} : (I'(u),u) = 0}. Then A is a Nehari type associate
to I, and set ¢ := infyenl. Let F:={u € E : u" # 0}, where u* = max{#u, 0}.
In fact

N ={ueF:(I'(u)),u) =0}

Lemma 2.8. Suppose that (A1)—(A5) hold. For any u € F, there is a unique
ty, > 0 such that t,u € N'. Moreover, the mazimum of I(tu) for t > 0 is achieved.
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Proof. Define g(t) := I(tu), t > 0. Using (A2), (A3) and (A5), we can prove that
g(0) =0, g(t) > 0 for ¢t small and g(¢) < 0 for ¢t large. In fact, by (A2) and (A3),
for all € > 0 there exists a C. > 0 such that

C
Pl <l + CelsP, |F@.s)| < Sl + Solaft, s e R
Then
12 t
g(t) = = |jul* + —/ K(z)p udr — F(z,tu)dx
2 4 Js

R3

t? t*
—||ul|® + 7/ K(2)pyude — | F(zx,tu)dr
2 4 Jgs s

2
] 5t2/ lu?dx — CEtG/ |u|dx
2 R3 R3

t2
S llul® = Cet?[[ul|* — Cet®|lu]®.

Vv

\%

Hence, ¢(0) = 0, g(t) > 0 for ¢t small.
Set Q := {z € R? : u(x) > 0}, by using Fatou lemma and (A5), we have

F F
lim inf/ (xi’iu)u‘ldx > lim inf/ Mu4d$ = +400.
o (tu) Q

t— o0 t— 400 (tu)4
Hence
4

lim sup =+ g( )

t——+o0
F(x,t

= hmbup 57 ||uH4 / K (z)¢,u*dx — liminf de

— 400 t——+oo R3 t

F(z,t

= 11msup 57 ||uH4 +3 /]RS K(2)pyu’dr — ltlin_ﬁgl;f A mu‘ld:p = —00,

which deduces g(t) — —oo as t — +oo. Therefore, there exists a ¢, such that
I(tyu) = max¢~o I(tu) and t,u € N. Suppose that there exist ¢/, > t,, > 0 such
that ¢, u, t,u € N. Then, We have

1 2 2 f(@, 1, U)
K WU dr = 7(1
g+ [ Katts= | S
and this identity is also true if ¢, is replaced by t,. Therefore,

Lo Ly fatie)  fta), o
(7~ @) X @) (e

which is absurd in view of (A4) and ¢/, > ¢, > 0. O
Remark 2.9. As in [36] 46], we have

= inf I(u) = inf maxI(tu) = inf I(y(t
c¢= inf I(u) = inf maxI(tu) | e (v()) >0

where
I = {7 € C(10,1], B) : 7(0) = 0, I((1)) < 0}.

Lemma 2.10. Suppose that (A1), (A2)—(A5) hold. Then there exists a nonnegative
and bounded sequence {u,} € E such that

I(up) — ¢ and ||I'(up)|g-1 — 0.
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Proof. From the proof of Lemma [2.8] it is easy to see that I satisfies the moun-
tain pass geometry. By [38], there exists an {u,} such that I(u,) — ¢ and
(1 + lun) I (un)||g-+ — 0. By Lemma (2.3), we have

c=1I(u) — %(I’(un)mn) + 0, (1)
= i”un”2 + /Rg(if(x,un)un — F(z,uy))dx + 0, (1)

1
> 1||un||2 + 0, (1).

Therefore, {u,} is bounded. Moreover, we have
Iz} = |+ [ K)o, (1o = 0u(1),
R3

Then [[u,, [|* = o(1) and [s K(x)¢, - (u,,)* = o(1). Therefore, we can infer that
I(uf) — ¢ and [[I'(u;)})||[g-1 — 0. Hence, we may always assume that {u,} is

nonnegative and the prove is fished. O

Lemma 2.11. Suppose that (A1)—(A5) hold. If u € N and I(u) = ¢, then u is a
solution of system (|1.5)).

Proof. The proof is similar to that of [29] [30]. Suppose by contradiction, that u is
not a solution of system (|1.5)). Hence, there exists ¢ € E such that

(I'(u),p) < —1.

Choose € € (0, 1) small enough such that for all [t — 1| < ¢ and |o| < ¢,

1

(I'(tutop),p) < =3

Let ¢(t) € [0,1] satisfies ((t) = 1 for [t — 1| < § and ((t) = 0 for |t — 1| > €. for all

t > 0, let v(t) be a curve such that v(t) = tu for [t — 1| > ¢ and v(t) = tu + e (t)p

for |t — 1| < e. Obviously, v(¢) is a continuous curve, furthermore, ||y(¢)|| > 0 for

|t — 1] < e in which & small enough. Next we will prove I(y(t)) < ¢, for all ¢ > 0.

In fact, if [t — 1| > e, I(y(t)) = I(tu) < I(u) = c. If |t — 1] < g, for all o € [0,¢],

we define A : o — I(tu + o((t)p). Obviously, A € C'. By the mean value therm,
there exists @ € (0, ¢) such that

I(tu -+ e(t)g) = I(tu) + (I'(tu + 0C(t)p), C()g) < I(tw) — SC(1) < e

Set v(u) := (I'(u),u), then v(y(1 —¢)) = v((1 —e)u) > 0 and v(y(1 +¢)) =
v((1 +¢e)u) < 0. According to the continuity of ¢ — v(~(t)), there exists ¢’ €
(1 —¢,1+¢) such that v(y(¢')) = 0. Thus v(¢') € N and I(y(t')) < ¢, which is a
contradiction. O

Define

Np =A{u e F\{0}: (I,(u),u) = 0} and ¢, = uleri\f/p

In fact, ¢, = inf, e p max;so I, (tw).
Remark 2.12. For any u € F, by Lemma there exists ¢, > 0 such that

tyu € N and then I(t,u) > c. Using V(z) < V,(z) and F(z,s) > F,(z, s), we have
c < I(tyu) < Ip(t,u) < maxysoIp(tu). Then we obtain ¢ < ¢,.
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3. PROOF OF MAIN RESULTS

Proof. According to Lemma [2.10] there exist a nonnegative and bounded sequence
{un} € E such that I(u,) — cand ||[I'(u,)||g-1 — 0. Then there exists u € E such
that, up to a subsequence, u, — u in E, u, — u in L _(R?®) and u,(z) — u(x)
a.e. in R%. By lemma we have that

0= (I'(un),v) + on(1) = (I'(u),v), Yo € E,

that is w is a solution of system (|1.5). We next distinguish the following two case
to prove system (|1.5)) have a nonnegative ground state solution.
Case 1: w # 0. Then I(u) > ¢. By Lemma and the Fatou lemma, we obtain

¢ = liminf(7(u,) ! I'(un), un))

n— o0 B Z<

1 1
= liminf (Z|\un\|2 + /3(Zf(x,un)un - F(m,un))dx)
n—oo R

> Jll® + [ (G = Fau)da

= Iw) ~ 3 ('(u),u) = I(u).

Therefore, I(u) = ¢ and I'(u) = 0.
Case 2: u =0. Let
[ := limsup sup / uidw.
n—oo z€R3 JB;(z)

If 3 = 0, by using the Lions lemma [27, 28], we have u,, — 0 in L(R?) for all
q € (2,6). From the conditions of (A2) and (A3), for all € > 0 there exists C. > 0
such that 1 f(z, u)u — F(z,u) < e(|ul* + |u|®) + Cc|u|* for any (z,s) € R* x R and
a € (2,6). Let £ small enough, we have that

¢ = I(uy) — %(I'(un), ) + on (1)

= —1 K(m)gbunuidx + / (lf(x, Up )Up, — F(x,up))dz + 0,(1)
4 R3 ]R3 2
1

< -7 K () ¢y, upda +/ (e(fun? + [un|®) + Celun|*)dz + 0, (1) <0,
4 Jgs R3

which is a contradiction with ¢ > 0. So 8 > 0. Up to a subsequence, there exists
R >0 and {z,} C Z? such that

/ U (x + 2p) % da = / u?dx > ﬁ
Bn Br(zn) 2
Set wy, := un,(x + 2,). Hence, there exists a nonnegative function w € F such that,

up to a subsequence, w, — w in E, w, — w in L2 (R?) and w,(z) — w(z) a.e. in

R3. Obviously, w # 0. If {2,} is bounded, 3 R’ such that
/ uddr > / udr > é,
By (0) Br(zn) 2
which contradicts with the fact u,, — 0 in L (R?). Hence {2,} is unbounded. Up
to a subsequence, we have z, — oco. For all p € C§°(R?), by Lemmas and

we have

0= (I'(un, o(- = 2n))) + on(1)



EJDE—2017/231 EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS 11
= / (vun : V‘P(' - Zn)dx + V(I)unw(' - Zn))dz + K($)¢unun‘p( - Zn)dl'
R3 R3

- f(@,un)o(- — zn)dz + 0,(1)
R3

= [ (T Vol = 2) Vool = 2)da + [ K)ol = z0)do

- /RS fo(@,un)@(- — zn)dz + 0n(1)
:/ (Vw,, - V¢+Vp(x)wn<p)dm+/ Kp(x)gwnwn@dx
R3 R3

_ /RS Fola, wn)pdz + 0,(1)

= (I, (w), ¢),

that is, w is a solution of periodic system (L.7). By Lemma (2.3), Lemma[2.5] (A5)
and Fatou lemma, we have

¢ = Iup) — (T (un), un) + 0n(1)

4
=l 4 [ G, = P u)dz + o)
> P+ [ Gl = Fyla,u))de -+ on(1)
= Gl + [ G, = B w)de -+ on()
> Jlll + [ Gl = Fy(o.w)do + on(1)
= 1) — {T(w), w)
— L) > 0,

Using Remark , I,(w) = ¢, = ¢. By the properties of ¢ and N, there exits
tw > 0 such that t,,w € N. Thus, we obtain ¢ < I(t,w) < I,(t,w) < I(w) = c.
So c is achieved by t,w. By Lemma we have I’ (t,w) = 0. Therefore, u = t,,w
is a nonnegative ground state solution for system . Similar to that of discussed
in [48], by the maximum principle discussed , u > 0. O
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