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Abstract

Proportional-integral—-derivative control system has been widely used in industrial applications. For complex systems,
tuning controller parameters to satisfy the process requirements is very challenging. Different methods have been pro-
posed to solve the problem. However these methods suffer several problems, such as dealing with system complexity,
minimizing tuning effort and balancing different performance indices including rise time, settling time, steady-state error
and overshoot. In this paper, we develop an automatic controller parameter optimization method based on Gaussian
process regression Bayesian optimization algorithm. A non-parametric model is constructed using Gaussian process
regression. By combining Gaussian process regression with Bayesian optimization algorithm, potential candidate can be
predicted and applied to guide the optimization process. Both experiments and simulation were performed to demon-
strate the effectiveness of the proposed method.
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tuning process could be affected by disturbances and
noise. For complex dynamic systems, it is even harder
to achieve optimal system performance using rule-
based methods.

To overcome the problems of rule-based methods,
some optimal parameter optimization methods are
explored. Based on a soft computing optimization
method, Matousek et al.®> developed an optimal PID
controller parameter tuning method. Compared to
some existing methods, the proposed method is quite
effective. Particle swarm optimization method and
genetic algorithms are also proposed? to tune controller

Introduction

In industrial applications, Proportional-integral-deri-
vative (PID) control is deployed in over 90% systems
because it is very easy to use and relatively robust.
However, tuning the PID parameters to achieve
required process requirements is not an easy task due
to the following reasons: (1) several performance
indices, including overshoot, rise time, steady-state
error and settling time must be evaluated at the same
time; (2) the relationship between the PID parameters
and these performance indices is unknown; (3) it is not

realistic to perform many experiments to tune control-
ler parameters due to cost and safety-related issues.
Therefore, developing an efficient method to tune PID
controller parameters is worth investigating.

There are some rule-based methods developed to
tune PID controller parameters, such as Tyreus—
Luyben method, Cohen and Coon method, Ziegler—
Nichols method, Ciancone-Marline method, internal
model control (IMC) method and C-H-R method.
Some disadvantages of these methods are as follows:
(1) obtaining optimal PID controller parameters is
challenging; (2) it is difficult to consider all perfor-
mance indices simultaneously; (3) controller parameter

parameters. However, these methods are implemented
offline and local optimal parameters could be
identified.

Some machine-learning methods are also investi-
gated to automatically tune the controller parameters.
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For some critical systems, automatic parameter tuning
may cause safety issues;* hence, a safety critical control-
ler parameter tuning method is investigated using safe
Bayesian optimization method. Because neural net-
works are very powerful to construct a model, they are
used to explore optimal controller parameters.™®
However, many data sets must be collected to train the
networks. For industrial applications, it is not a good
idea to perform many experiments considering the man-
ufacturing cost, labor, safety and so on. Chan et al.”
proposed a Gaussian process to predict the optimal per-
formance of a system. It is a very interesting method;
however, the balancing method between modeling and
prediction is not discussed; furthermore, the perfor-
mance indices are not evaluated simultaneously.

Since the PID controller parameters must be tuned
on the real system, it would be ideal if the controller
parameters could be obtained by performing a few
experiments. Hence, it is worth investigating a more
efficient parameter optimization method. However,
tuning the PID controller parameters online is very
challenging due to the following reasons:

e Industrial processes are typically very complex.
It is very difficult to obtain optimal controller
parameters;

e Constructing a model using a few data sets to
predict optimal parameters is a good way to
solve the problem, but local minima could be
generated if the data sets cannot represent the
system;

e There are always uncertainties and noise in the
data collection;

e  Multiple performance indices must be considered
simultaneously in parameter tuning process.

Considering the challenges and requirements in PID
controller parameter tuning, we propose a new method
based on Gaussian Process Regression (GPR) and
Bayesian optimization algorithm (BOA). By combining
these two methods, a system model can be constructed
iteratively using GPR, and potential candidate can be
predicted at each iteration using BOA. Hence, the com-
bined GPRBOA method can guide the optimization
process and thus reduce the number of experiments. To
avoid local convergence, a method to investigate unex-
plored region is developed. In order to validate the

Feedback Control
! |
Complex
Controller »  Systemwith
Disturbance
T Optimal Parameters v
Optimization Method | Performance
based on GPRBOA Evaluation

Figure |I. Framework of proposed controller parameter
optimization method.

proposed method, we performed simulation as well as
experiments. Multiple performance indices including
settling time, steady-state error, rise time and over-
shoot are evaluated during the optimization process.
A multi-objective optimization problem is formulated
to consider all performance indices simultaneously.
Uncertainties and noise were added to the simulation
and experiments. The results demonstrate that the
proposed method is very effective in PID controller
parameter optimization.

Proposed solution

The proposed framework of optimizing PID controller
parameters is illustrated in Figure 1.

Given a set of PID controller parameters, the output
of a complex system can be obtained. The performance
indices such as rise time, overshoot, steady-state errors
and settling time can then be evaluated. Based on the
performance evaluation, GPRBOA can generate a
potential optimal candidate to perform the experiment
again. When the system response satisfies the desired
system performance requirements, the process stops.
Hence, there are two major problems we have to deal
with: evaluation of performance indices and controller
parameter optimization method based on GPRBOA.

Performance indices

When considering the controller parameters as the
input to a complex system, the structure of the system
with multiple input and output can be illustrated in
Figure 2.
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Figure 2. The structure of a system with multiple input and multiple output.
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For a system with several performance indices, they
must be balanced. Considering safety-related issues, we
may need to stop experiment when some performance
indices are out of range or the system becomes unstable.
Hence a multi-objective optimization problem with
constraints is formulated

F(x) = {F1(x), F2(x), ..., Fy(x)}

» 1
Subject to : F'" < F; < F™* m

where F; is the ith performance index (i=1, ...,n);
FMin and F# are the minimum and maximum values
of the performance indices, respectively. Different
methods can be applied to solve the constraint multi-
objective optimization problem. In this paper, the fol-
lowing method is adopted to convert the constraint
multi-objective optimization problem into a single
objective optimization problem

y(x) = Z wiFi(x) — Z Umin (0, F;(x) — F?‘i“)

=1 i=1

— Z Jmin (0, Frax — F,;(x))

i=1
(2)

where y(x) is the output; w; is the weight; U; and V; are
large random numbers used to deal with the issue that
the performance indices are out of range. w; can be
assigned such that some performance indices are
emphasized.

GPR

GPR is an effective tool to construct models for com-
plex systems.®® It is a non-parametric method which
can deal with uncertainties and noisy observations.'”

For a complex process with PID control, we assume
that the relationship between the output (performance
indices) and the input (PID controller parameters) can
be written as

y = f{x) + € with e~N(O,o-2) (3)
f(x) is a Gaussian process which can be defined as
J(x)~GP(m(x), k(x,x)) (4)

where GP represents Gaussian process; m(x) is the
mean function; k(x, x') is the covariance function; and
x and x’ are two sets of controller parameters. The cov-
ariance function is defined as

k(x, %) = E[(m(x) = fx))(m(x') = fAx")] ~ (5)

After performing a series of experiments, the output
of a system with PID control can be evaluated using
equation 2. We can then obtain a set of data (X, y) with

. xm}

¥ = [i(x1),y2(x2), -

X = [Xl,)Q, ..
)] (6)

The covariance function is very important in con-
structing a model and predicting system output. Given
a data set (X, y) and a data set to be predicted (X*, y*),
their covariance function can be described as

v] (XX + 02 KX, XY)
PR ] o

where K(X’, X”) is the covariance matrix whose element
ki = k(x}, x]).

By deriving the conditional distribution, we can pre-
dict the mean and variance of the system output

VIXp, X ~N(u(y"), V(")) (8)
n(*) = KX, X)A™"y o)
V() = K(X*, X°) — K(X*, X)A " K(X, X°)

with

A =KX, X)+ oI (10)

where w(y*) is the predicted mean and V(y*) is the pre-
dicted variance for y*.

Equation (9) tells that the covariance function
k(x,x") is the key to predict the output of a complex
system with PID control. Different covariance func-
tions can be used for GPR. In this paper, we combine
different covariance functions: constant valued covar-
iance function (Cov;), squared exponential covariance
function with isotropic distance measure (Cov,) and
white noise covariance function (Covs).'° The combina-
tion method is

k(x,x") = A1 Covi + XaCovy + A3Cov3 (11)

where A;(i = 1,2, 3) are arbitrary constants. In the cov-
ariance function, there are hyperparameters 6. In order
to obtain the best fit to the observed data set (X, y), 6
must be optimized. Considering the hyperparameters
and given data set, the posterior probability of the func-
tion f{x) can be computed using

_ pUIX.[0)p(f1X.6)
p(v|X.0)

The marginal likelihood can be calculated using

p(f1X..6) (12)

p(yIX.60) = jp<y|X,f, Op(IX.0)d  (13)

Because the system is assumed to be a Gaussian pro-
cess, the log marginal likelihood can be solved analyti-
cally. The following equation is then obtained

1 _ 1 n
logp(y|X.0) = — 3" (A)"y — Slog|A| — S log(27)
(14)

By maximizing the marginal log likelihood, we can
obtain the optimal hyperparameters

6" = argmaxlogp(y|X, 6) (15)
0
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Once the hyperparameters are determined, the cov-
ariance function k(x, x’, 0) is known. For a set of PID
parameters x*, we can then predict y* using equation 9.
The mean and variance of y* can be obtained.

Performance evaluation

Once the mean and variance of y* are obtained for a
given set of input x*, the problem becomes how to
explore an optimal set of PID controller parameters
based on the mean and variance. An acquisition func-
tion is adopted to evaluate the system performance.
There are different methods to formulate an acquisition
function such as probability of improvement,''
expected improvement'? and upper confidence bound
(UCB)." In this paper, we use UCB to evaluate the
system performance based on the mean and variance.
The UCB is defined as

UCB(x)A = u(x) + ¢ o(x) (16)

where { is a scaling factor. When UCB is minimized,
the output of the system is minimized. A set of optimal
PID controller parameters is identified.

Exploration and exploitation

When building a model using Gaussian process, a few
data sets are required at the beginning to make sure the
model is reasonable; meanwhile, local convergence
must be avoided during the optimization process. In
order to solve the problem, we must generate some data
sets based on exploration. To minimize the number of
experiments and expedite the optimization process, we
must generate candidate set of controller parameters
based on predicted optimal controller parameters.
Therefore, these two processes must be balanced.
GPRBOA can switch between the exploration process
and exploitation process to update the system model
and perform optimization. For the exploitation process
using equation 16, the prior information is required,
but it is unknown when the system model is not avail-
able. Hence, a balancing method is proposed in this
paper to control the exploration process and exploita-
tion process to generate candidate set of controller
parameters

rand(1) >
otherwise

. { argminUCB(x) (17)

v argmaxys(x)

where B is updated during the optimization process
using the hyperparameters

|1
B_{AO otherwise (18)

where 6th is a threshold; A# is computed using the fol-
lowing equation

|6k — 1]
- Ominl

Ab =

| Omax

(19)
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Figure 3. Implementation of GPRBOA for PID controller
parameter optimization.

where 0 is the hyperparameters at the kth iteration;
Omin and 0.« are the minimum and maximum values
in the optimization process. When A6 > 6th, the
unsampled parameter region will be explored. ¥(x) is
applied to find a candidate by exploring the unsampled
region

P(x) = (20)

i = )
where d(x — x;) is defined using two PID parameter sets
x and x;. At each iteration, if rand(1) < B, the candi-
date is exploited based on equation 16 by minimizing
UCB; otherwise, it is generated by exploring the farth-
est unsampled region.

GPRBOA implementation

GPRBOA balances the exploration process and exploi-
tation process. At each iteration, new data sets are
added into the existing data sets to update the system
model. The updated model is then used to predict the
mean and variance of the system output. The process
of implementing GPRBOA is shown in Figure 3.

After performing experiments using the initial set of
parameters, the system output is evaluated using equa-
tion 16. If the system performance does not satisfy the
desired system requirements, the system model is
updated using the data sets. The hyperparameters are
then evaluated to balance the exploration and exploita-
tion processes. A new candidate is then generated.
Using the new set of controller parameters, the experi-
ment is performed again. The process stops once an
optimal set of controller parameters is found.

Simulation results

In order to validate the proposed method, we per-
formed simulation first. Even though a linear system
was used for simulation, we added random noise to
each model parameter. The added noise makes the sys-
tem nonlinear. The simulation was implemented using
MATLAB. The implemented transfer function is

azsz + ais + ap

G =
(S) b5S5 + bys* + b3S3 + bys? + bys + by

(1)
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Figure 4. The step response for a system with noise.

with

ap = 3;a1 = 15;612 = 10,
by = 3;b1 = 25;by = 1;b3 = 20; b4 = 3;b5 = 0.5.
(22)

In the simulation, a white noise (signal-to-noise ratio
30dB) is added to the model parameters (g; and b;). A
30dB noise is also added to the system output to simu-
lation the output noise and uncertainties.

The ranges of the PID parameters are set as

K, € [1020]; K; € [515]; Ky € [120] (23)

The step size is 0.5. We used the following weights in

order to minimize the steady-state error

wp = 0.01; wy =0.05; w3 =0.1; wg = 0.84 (24)
The step response of the system with noise is shown
in Figure 4. The optimal set of PID parameters are

K, =10.5; K;=9.5; K;=11.5 (25)

The performance indices are as follows: overshoot
53.5%; settling time 3.7s; rise time 0.08 s and steady-
state error in the simulation range is —0.0018.

The optimization process is shown in Figure 5.
There are exploration and exploitation processes in the
experiments. The optimal set of controller parameters
was found using 10 simulations. The simulation contin-
ued using the identified optimal controller parameters
with random noise added to the model parameters. If
the system was not stable, a random number greater
than two was added to the output.

Different transfer functions with added noise were
also simulated. Even though the number of experi-
ments exploring optimal set of parameters may be dif-
ferent, the performance of the proposed method is
quite consistent.

Figure 5. The controller parameter optimization process
for a system with noise. The optimal set of parameters were
identified using 10 experiments.

Power Supply Adjustable Payload Servo Motor

Figure 6. The motor control system used to demonstrate the
proposed method.

Experimental results

Experiments were also performed to evaluate the pro-
posed method. A servo motor position control system
was developed to demonstrate the controller parameter
tuning process. The experimental system is shown in
Figure 6. The servo motor (Smart Motor SM34405D)
with a 4:1 high precision gear box is mounted on a work
table. An arm with a fixed weight is installed on the
motor shaft. The proposed method is implemented on a
computer, which receives the system response from the
controller and generates candidates for the controller.
To demonstrate the robustness of the proposed method,
an adjustable weight to change the motor payload is
added. The location of the adjustable weight can be
changed to simulate the disturbance to the controller.
The ranges of the PID controller parameters are set in
the computer program.
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Table I. Ranges of performance indices.

Fi(s)

Fa(s)

F3 ()

Fa ()

[0 1

[0, 5]

[0, 3]

[0, 0.5]

Table 2. PID controller parameters and four performance

indices.

KP K,' Kd F| F2 F3 F4 y(X)

| 0.1 2 0200 0383 0640 0.000 0.186
10 |1 50 0204 0291 0120 0.053 0.105
10 0.l | 0212 0498 0.070 0.032 0.104
| | 26 0.285 1.000  7.010 0530 1.849
9 0.9 2 018 0520 0760 0201 0343
2 02 50 0206 0303 0.160 0.042 0.108
5 05 20 0206 0303 0220 0.000 0.095
5 05 20 0212 0244 0260 0074 0.142
7 05 50 0219 0450 0330 0.170 0235
5 05 20 0204 0300 0230 0.000 0.096
7 0.1 2 0423 0550 0410 0053 0211
5 05 20 0206 0296 0230 0.000 0.096
5 05 20 0207 0.301 0220 0.000  0.095
5 05 20 0209 0300 0220 0.000 0.095
5 05 20 0206 0299 0220 0.000 0.095

351 [\ - 1

Response (°)
o
o o

\

o

oY I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Note: The values of Kj, K; and K; in Table 2 should multiply by 1000. F,
is the rise time (s); F, settling time (s); F3 overshoot (°) and F4 steady-
state error (°).

At each experiment, the motor moves about 3.6°
using a fixed velocity and acceleration. The maximum
velocity is set to be 3.75 rev/s while maximum accelera-
tion 2.5rev/s?. We recorded the response of the system.
The rise time (F)), settling time (F,), overshoot (F3) and
steady-state error (F,) were obtained from the recorded
data. Based on these performance indices, the perfor-
mance index of the system is evaluated using equation
2. U; and V; are set to be 100. Table 1 shows the mini-
mum and maximum values of each performance index.

Because the steady-state error is more important
than the other performance indices, we used the follow-
ing weights

wi = 0.1; wo = 0.1; w3 =0.2; wg = 0.6 (26)

To generate new candidate, the range of each PID
controller parameter must be set

K, € [100010000]; K; € [1001000]; K, € [200050000]

The step size is important for computational time.
The step sizes of the three PID controller parameters
are 1000, 100 and 2000 for proportional gain, integral
gain and derivative gain, respectively.

After an experiment is performed, its performance
index is evaluated using equation 2. The result is then
sent to the computer. The proposed method will gener-
ate a new candidate set of controller parameters and
the candidate set is sent to the robot controller. The

Figure 7. The step response using optimal parameters
obtained using GPRBOA for a system with noise.
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Figure 8. The position-tracking error using optimal
parameters.

experiment will be performed again. This process con-
tinues until a set of optimal controller parameters is
identified.

Table 2 shows the experimental results. For some
cases, such as K, = 1000; K; = 1000 and K; = 26, 000,
the system is not stable and not settled down. A large
random number is then added to the output.

The system response using optimal set of controller
parameters is shown in Figure 7. The optimal set of
PID controller parameters is

K, = 5000; K; = 500 and K; = 20,000 (27)

The position tracking error of the optimal set of con-
troller parameters is shown in Figure 8. The rise time is
0.21s, settling time 0.3s, overshoot 0.22° and steady
state error 0. The performance index is 0.095.
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Figure 9. The experimental results for PID controller
parameter optimization process. An optimal set of controlled
parameters was identified using | | experiments.

Figure 9 shows the performance indices and the
number of experiments performed to find the optimal
PID parameters (11 experiments). We can see that the
exploration and exploitation processes are involved in
parameter optimization process. Once the optimal set
of PID parameters is found, the experiment continues
to verify the performance of the optimal set of control-
ler parameters for the system with random payload.

We performed many experiments using different
payloads and the results are quite consistent. Therefore,
the proposed method is an effective tool to explore an
optimal set of controller parameters to satisfy system
performance requirements.

Compared to other existing methods, our proposed
method has several advantages:

e Compared to the method developed by Chan et
al.,” our method considers several performance
indices simultaneously and develops a balancing
method to avoid local convergence.

e Compared to the methods based on neural net-
work,™® our method guides the optimization
process, thus requires fewer experiments.

e Compared to the rule-based methods,! our
method does not require human involvement
and can achieve optimal solution.

Conclusion

In this paper, an online PID controller parameter opti-
mization method is developed based on GPRBOA. The
system model and potential optimal candidate are
updated iteratively. The exploration and exploitation
processes are balanced using a proposed acquisition
function method. A multi-objective optimization

method is formulated. To validate the proposed meth-
ods, both simulation and experiment were performed.
The results demonstrate the proposed method can be
used to guide the PID controller parameter tuning pro-
cess to achieve optimal output. The proposed method
is based on non-parametric modeling and optimization
algorithms, thus it can be applied to optimize process
parameters for other complex systems.
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