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EXISTENCE OF SOLUTIONS TO NONLINEAR PARABOLIC
PROBLEMS WITH DELAY

DELIANG HSU

Abstract. We prove the existence and uniqueness of global solutions to semi-

linear parabolic equations with a nonlinear delay term. We study these prob-

lems in the whole space Rn, obtain classic solutions, and give a mass decay
result of the solution.

1. Introduction

This paper is devoted to the study of existence and uniqueness of solutions to
parabolic problems with delay in unbounded domains. Let Rn be Euclidean space,
n ≥ 1 and consider the problem

∂u

∂t
= ∆u+ µ|∇u|p + f(t, x, ut) x ∈ Rn

u(x, s) = φ(x, s) − r ≤ s ≤ 0, x ∈ Rn
(1.1)

where f : R+ × Rn × C → R is a locally Lipschitz functions with respect to
ut, C denotes the phase space will be defined in section 2, r > 0, µ 6= 0, and
ut = u(x, t+ θ), for −r ≤ θ ≤ 0, denotes the delay term, φ(x, s) ∈ C2(Rn× [−r, 0]).

In the recent years many authors have been concerned with the nonlinear partial
differential equations involving delay, for the examples we refer to the book [8] and
references cited therein. Generally speaking, this type of problems can be described
as an abstract nonlinear partial functional differential equation

du

dt
= ATu(t) + F (t, u, ut)

u(θ) = φ(θ), for − r ≤ θ ≤ 0

and then it can be written as an integral equation

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)F (s, u, us)ds

where T (t) is a strongly continuous semigroup of bounded linear operators with
AT its infinitesimal generator. Then many methods similar to those adopted in
ordinary equations can be used to study this type of problems in abstract space,
for the details we refer to [8]. However, the problem (1.1) we investigate here
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cannot be carried on along this line for at least in two reasons: first, the operator
∆ on Rn is not compact, so the related semigroup bear some more complexity than
the compact cases; second, the general nonlinear term F (t, u, ut) depend on ∇u,
which may cause some difficulty for the study of our problem. Many mechanic
and physical problems reduced to the problem (1.1), for the case of f(t, x, ut) = 0,
(1.1) has emerged in recent years in a number of interesting, and quite different
models, for example in the one-dimensional case and 1 < p < 2, it has been known
as the KPZ-equation, serving as a physical model of growth of surfaces, see Krug
and Spohn [6], [7]. In [1] the authors studied this problem in high dimension and
proved the existence results, and get some useful mass decay results. There also
has been a strong interest in the related equation

ut = ∆u+ µ|∇u|p + uq (1.2)

where p, q > 1, µ < 0, both in bounded and unbounded domains, see [4], [8] and
the references cited therein. In this paper, we focus on studying problem (1.1) by
using some estimates in parabolic equation involving the nonlinearity |∇u|p,which
is called the damping nonlinear gradient term. To our knowledge there are no
results about the problem we present here, even if in the case of µ = 0 the solution
of (1.1) may blow up in finite time. This paper is motivated by the recent results
in [1] and [4]. Our main results are the following theorem.

Theorem 1.1. Let φ ∈ C. Assume that p ≥ 1, f satisfies a Lipschitz-type condi-
tion,

|∇yf(t, x, y)| ≤ L|y| (1.3)

for some constant L > 0, then there exists a unique classical solution of (1.1) in
ΩT0 , where T0 = min

{
[2p+1Ce]−2, 1

2

}
> 0, and Ce will be defined later.

Theorem 1.2. Let f(t, x, ut) = g(t, u(t− r)), φ ∈ C, here g : R× R → R satisfies
the strong Lipschitz-condition

|gu(t, u)| ≤ L (1.4)

for any (t, u) ∈ R × R. Then (1.1) has a unique classical solution u(x, t) in Rn ×
[0, T ], where T > 0 is any real number, and for every t ∈ [0, T ], u(·, t) ∈ C2

b (Rn).

Theorem 1.3. Assume that 0 ≤ φ(0, x) ∈ C2
b (Rn) ∩ L1(Rn), µ < 0 , p < (n +

2)/(n+ 1) and f(t, x, u) ≤ 0 for any (t, u) ∈ R+ ×C. If u(x, t) is a C2 solution of
(1.1) in Rn × [0,∞), then it decays as t→ +∞ in the sense that

lim
t→+∞

∫
Rn

u(x, t)dx = 0.

2. Proof of Main Theorems

In what follows we set C = {u(·, t) ∈ C2
b (Rn), for any t ∈ [−r, 0]} as the phase

space with the norm

‖u(x, t)‖C = max
t
{‖u(x, t)‖L∞ + ‖∇u(x, t)‖L∞}

where

C2
b (Rn) = {u : u ∈ C2(Rn), u,∇u,∇2u ∈ L∞(Rn)},

Ωt = Rn × [−r, t], t ≥ 0 .
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To prove our theorems, we begin by establishing the existence of the solution
for a short time. The idea of the proof is inspired by the papers of Amour and
Ben-Artzi [5] and [1].

Proof of Theorem 1.1. Define

u0(x, t) =

{
φ(x, t) for t ∈ [−r, 0]∫

Rn G(x− y, t)φ(y, 0)dy for t ∈ (0, T0)

where the heat kernel is,

G(x, t) = (4πt)−
n
2 e−

|x|2
4t , t > 0,

which satisfies, ∫
Rn

G(x, t)dx = 1,
∫

Rn

|∇G(x, t)|dx = βt−1/2, (2.1)

with β =
∫

Rn |∇G(x, 1)|dx. Then we may solve by iterations the following linear
heat equation, with delay,

∂uk

∂t
−∆uk = µ|∇uk−1|p + f(t, x, uk−1

t )

uk(x, s) = φ(x, s) for − r ≤ s ≤ 0
(2.2)

k = 1, 2, 3, . . . . By Duhamel’s principle from (2.2), we get

uk(x, t) =
∫

Rn

G(x− y, t)φ(y, 0)dy + µ

∫
Rn

∫ t

0

G(x− y, t− s)|∇uk−1(y, s)|p dy ds

+
∫

Rn

∫ t

0

G(x− y, t− s)f(s, x, uk−1
s ) dy ds

uk(x, t) = φ(x, t) for t ∈ [−r, 0]
(2.3)

∇uk(x, t) =
∫

Rn

G(x− y, t)∇φ(y, 0)dy + µ

∫
Rn

∫ t

0

∇xG(x− y, t− s)|∇uk−1(y, s)|p dy ds

+
∫

Rn

∫ t

0

∇xG(x− y, t− s)f(s, x, uk−1
s ) dy ds

(2.4)
Setting Mk(t) = supΩt

|∇uk(x, t)|, and Uk(t) = supΩt
|uk(x, t)|, in view of (2.1),

(2.3), and (2.4), we have

Mk(t) ≤M0(t) + β|µ|
∫ t

0

(t− s)−1/2Mp
k−1(s)ds+ L

∫ t

0

(t− s)−1/2Uk−1(s)ds

(2.5)

Uk(t) ≤ U0(t) + β|µ|
∫ t

0

Mp
k−1(s)ds+ L

∫ t

0

Uk−1(s)ds . (2.6)

Since M0(t) ≤ ‖∇φ(x, t)‖C and Uk(t) ≤ ‖φ(x, t)‖C , it follows inductively from (2.5)
that for t ≤ T0,

‖∇uk(x, t)‖L∞(Rn) ≤ 2‖φ(x, t)‖C ,

‖uk(x, t)‖L∞(Rn) ≤ 2‖φ(x, t)‖C , k = 0, 1, 2, . . .
(2.7)
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To prove the convergence of the iterations, we need the following inequality∣∣|∇uk(x, t)|p − |∇uk−1(x, t)|p
∣∣ ≤ Cp‖φ(x, t)‖p−1

C |∇uk(x, t)−∇uk−1(x, t)| (2.8)

which can be derived by using (2.7) and the classical inequality: ap − bp ≤ Cp(a−
b)(ap−1 − bp−1), a > 0, b > 0. Now setting

Nk(t) = sup
Ωt

|∇uk(x, t)−∇uk−1(x, t)|, Vk(t) = sup
Ωt

|uk(x, t)− uk−1(x, t)|,

then from (2.3), (2.4) and (2.8), we have

Nk(t)

≤ |µ| sup
∫ t

0

∫
Rn

||∇uk−1(y, s)|p − |∇uk−2(y, s)|p||∇xG(x− y, t− s)| dy ds

+ L sup
∫ t

0

∫
Rn

|∇xG(x− y, t− s)||uk(y, s)− uk−1(y, s)| dy ds

≤ Cp|µ|‖φ(x, t)‖p−1
C β

∫ t

0

(t− s)−1/2Nk−1(s)ds+ Lβ

∫ t

0

(t− s)−1/2Vk−1(s)ds .

(2.9)

Vk(t) ≤ Cp|µ|‖φ(x, t)‖p−1
C

∫ t

0

Nk−1(s)ds+ L

∫ t

0

Vk−1(s)ds

≤ Cp|µ|‖φ(x, t)‖p−1
C

∫ t

0

(t− s)−1/2Nk−1(s)ds+ L

∫ t

0

(t− s)−1/2Vk−1(s)ds

(2.10)
Choosing Ce = max{Cp|µ|‖φ(x, t)‖p−1

C β, Lβ,Cp|µ|‖φ(x, t)‖p−1
C , L} > 0, from (2.9),

(2.10), we have

Nk(t) + Vk(t) ≤ Ce

∫ t

0

(t− s)−1/2[Nk−1(s) + Vk−1(s)]ds (2.11)

then it follows inductively that (see, [10, Chapter 3]),

Nk(t) + Vk(t) ≤ Ck
e t

k
2 Γ

(k + 2
2

)−1
. (2.12)

In particular,
∑

k(Nk(T0)+Vk(T0)) <∞ , we conclude that {∇uk}∞k=1 and {uk}∞k=1

converge uniformly in ΩT0 . Then we set

u(x, t) = lim
k→∞

uk(x, t) (2.13)

Next, we prove the uniform boundedness of {∇2uk}∞k=1 in ΩT0 , f ∈ C2 one has
|∇|∇f || ≤ Cn|∇2f |, hence also |∇|∇f |p| ≤ Cp,n|∇f |p−1|∇2f |, here Cn and Cp,n

depend only on n and p, n respectively. Denoting

Lk(t) = sup
Ωt

|∇2uk(x, t)|
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it follows from Duhamel’s principle and previous estimates that

∇2uk(x, t) =
∫

Rn

G(x− y, t)∇2φ(y, 0)dy

+ µ

∫
Rn

∫ t

0

∇xG(x− y, t− s)∇|∇uk−1(y, s)|p dy ds

+
∫

Rn

∫ t

0

∇xG(x− y, t− s)∇f(s, x, uk−1
s ) dy ds

(2.14)

then

Lk(t) ≤ L0(t) +Cp,n‖∇φ‖p−1
C β|µ|

∫ t

0

(t− s)−1/2Lk−1(s)ds+ 2Lβ‖φ‖Ct
1/2. (2.15)

If Λ > 0 is large so that

Cp,n‖φ‖p−1
C β|µ|

∫ T0

0

s−1/2e−Λsds <
1
2
,

then it follows inductively, using L0(t) ≤ ‖∇2φ‖C that

Lk(t) ≤ 2‖∇2φ‖C (2.16)

for t ∈ [−r, T0], k = 0, 1, 2, . . . .
Then the same argument as in the proof of [2, Proposition 2.4] shows that

{∇2uk}∞k=1 is equicontinuous in ΩT0 . Using the Arzela-Ascoli theorem and the
convergence of (2.13) we conclude from the standard regularity results of parabolic
equation that the solution of (2.13) satisfies the (1.1) in classic sense in ΩT0 .

If v(·, t) ∈ C2 is another classical solution in ΩT0 , v(x, t) = φ(x, t) for −r ≤ t ≤ 0,
then setting N1(t) = supΩt

|∇u−∇v|, N2(t) = supΩt
|u− v|, we obtain as in (2.11)

that

N1(t) +N2(t) ≤ C

∫ t

0

(t− s)−1/2(N1(s) +N2(s))ds,

for a sufficiently large constant C; this implies N1(t) +N2(t) ≡ 0 and u ≡ v. This
completes the proof of the Lemma. �

Proof of Theorem 1.2. By Theorem 1.1, there exists a local solution to (1.1). Hence
we just need to get an estimate of ∇u. Taking differential on both side we have

∂uj

∂t
−∆uj − gu(t, u(t− r))uj(t− r) =

n∑
i=1

ψi(x, t)
∂uj

∂xj

where uj = ∂u
∂xj

, and ψi(x, t) = µp|∇u|p−2 ∂u
∂xj

∈ L∞(ΩT ). By a maximum principle
of linear parabolic equation which was proved in the appendix of [1], we can obtain,
for 0 ≤ t ≤ r,

|uj(t, x)| ≤ C
(
|uj(0, x)|+ max

t∈[−r,0]
|φj(t, x)|

)
where C depends only on L, p, n. By reiterating the procedure above on [r, 2r],
[2r, 3r], . . . , we conclude that, for t ∈ [0, T ]

|uj(t, x)| ≤ C3e
rT

(
|uj(0, x)|+ max

t∈[−r,0]
|φj(t, x)|

)
,

that is
|∇u(t, x)| ≤ C3e

rT
(
|∇u(0, x)|+ max

t∈[−r,0]
|∇φ(t, x)|

)
.
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So from Theorem 1, we get the existence of a global solution, and this completes
the proof. �

Proof of Theorem 1.3. Let Q(t) =
∫

Rn u(x, t)dx. Integrating (1.1) and using the
Gauss formula, we have

d

dt
Q(t) ≤ 0. (2.17)

Let ũ(x, t) be the solution of the heat equation ∂ũ
∂t − ∆ũ = 0, having the same

initial data ũ(x, 0) = φ(x, 0). Since µ < 0, and f(t, x, ut) ≤ 0, it follows by
standard comparison principle that

0 ≤ u(x, t) ≤ ũ(x, t). (2.18)

Integrating (1.1) with respect to x and t yield

Q(T ) = Q(0) + µ

∫ T

0

∫
Rn

|∇u(y, s)|p dy ds+
∫ T

0

∫
Rn

f(s, x, us) dy ds

by (2.17) and f(t, x, u) ≤ 0 we can easily conclude that∫ ∞

0

∫
Rn

|∇u(x, t)|p dx dt <∞. (2.19)

Fix ε > 0. It follows from (2.19) that there exists a sequence 1 < t1 < t2 < · · · <
tm → +∞ such that ∫

Rn

|∇u(x, tj)|pdx ≤ εt−1
j ,

j = 1, 2, . . . . Using the Sobolev inequality we have∫
Rn

u(x, tj)p?

dx ≤ Cp(εt−1
j )p?/p (2.20)

where p? = np/(n − p). Now using the condition p < (n + 2)/(n + 1) it is easy to
see that one can choose δ > 0 such that

−1
p

+ (
1
2

+ δ)n(1− 1
p?

) < 0, (2.21)

then the Hölder inequality and (2.20) imply∫
|x|≤t

1
2 +δ

j

u(x, tj)dx ≤ Cp,nε
1
p t
− 1

p

j t
( 1
2+δ)n(1− 1

p? )

j ,

j = 1, 2, . . . , so that by (2.21) we have∫
|x|≤t

1
2 +δ

j

u(x, tj)dx ≤ Cp,nε
1/p. (2.22)

By standard linear parabolic theory, it is easy to see that∫
|x|≤t

1
2 +δ

j

ũ(x, tj)dx→ 0 (2.23)

as j →∞, which in conjunction with (2.17), (2.18) and (2.22) gives

lim
t→∞

∫
Rn

u(x, t)dx = 0 .

This completes the proof. �
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Remark 2.1. In the paper [4], the authors give the decay results in the critical
case p = (n+ 2)/(n+ 1) when f(t, u) ≡ 0. We think the same result will be true in
the critical case, we will study this problem in a later work.
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