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POSITIVE SOLUTIONS FOR KIRCHHOFF-SCHRODINGER
EQUATIONS VIA POHOZAEV MANIFOLD

XIAN HU, YONG-YI LAN

ABSTRACT. In this article we consider the Kirchhoff-Schrédinger equation
—((a + b/ |V dx)Au = k(@) f(u), «€R3,
R3

where v € H'(R3), A > 0, a > 0, b > 0 are real constants, k : R3 — R and
f € C(R,R). To overcome the difficulties that k is non-symmetric and the
non-linear, and that f is non-homogeneous, we prove the existence a positive
solution using projections on a general Pohozaev type manifold, and the linking
theorem.

1. INTRODUCTION AND MAIN RESULTS

This article concerns the Kirchhoff-Schrédinger equation
- ((a+b |Vu|2dx>Au+)\u:k(x)f(u), z € R?, (1.1)
R3

where u € HY(R3), A > 0, a > 0, b > 0 real constants, k: R> - R and f: R — R.
We use the following assumptions:

(H1) k € CY(R3,[0,00]), with ko = inf,eps k(z) > 0;
2) koo = hm|y‘ﬁoo k‘(y) < 005
) t+ k(tz) + 1Vk(tz) - (tz) is nondecreasing on (0,00) for all z € R%;
4) Vk(z) -z >0 and k(z) + 3 VE(z) - © < (£)kso, for all z € R
5) supgs [keo — k(z)| < Bo([gs F(w)dz)~!, where Sy is the unique positive

root of the equation

252/3 + 2(m00)1/3t _ (moo)2/3;
(H6) f e C(R,R), tf(t) >0, and there exist g € (2,6) such that
limygy o0 £(£)/]81771 = 0;

(HT) lims—q f()/t = 0;

(H8) f(t)t —4F(t) > 0 for all t € R\{0}, where F(t) = [} f(s)ds.

We look for the weak solutions of which are the same as the critical points
of the functional defined in H!(R?) by

I(u) = %/Rg(aWuF + M?) dz + Z(/R3 \Vu|2dx)2 — /R3 k(x)F(u)dz. (1.2)
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If k(x) = koo, then (1.1)) reduces to the autonomous form
- ((a—i—b/ |Vu|2dm)Au+)\u:koof(u), r € R3, (1.3)
R3
with u € H*(R3). Its energy functional is
1 b
I°(u) = f/ (a|Vu|2+)\u2)dx—|—f(/ |Vul?dz)? — koo [ F(u)dz. (1.4)
2 R3 4 R3 R3
Problem (|1.1)) is related to the stationary analogue of the equation
u — (@ + b/ |Vu|? dz)Au = 0
R3

which was proposed by Kirchhoff [§] as an extension of classical D’Alembert’s wave
equation. It has been applied widely to model various physics problems and ap-
pears in some biological systems. The nonlocal term ([ps |[Vu|? dz)Au, arises in
various models of physical and biological systems, and the research for related is-
sues gives rise to more mathematical difficulties and challenges; for more details
and backgrounds, we refer the reader to [, [3, [6] and references therein. After the
pioneer work of Lions [12], Kirchhoff type problems began to attract the attention
of mathematicians, see for example [10} 1T}, 21].

Recently, a lots of interesting results for problem or similar problems have
been obtained, see for example [2, [12] [16] 17, I8, 20] for the radial symmetry case,
and [4} [5 @, [13], 4] 19, 22], 23] for the non-radial symmetry case. As we known, the
radial symmetry plays a crucial role since which can restore the compactness of the
(PS)-sequence for the energy functional I. Salvatore [I6] established the existence
of multiple radially symmetric solutions with the radially symmetric case where V'
depends on |z|. Wang et al [20] obtained a least-energy sign-changing (or nodal)
solution by using constraint variational method and the quantitative deformation
lemma. When b = 0, the existence of solution was obtain by Strauss [I7] and Lions
[12] if f is superlinear at infinity, also in [2} 18] if f is asymptotically linear at
infinity.

For non-radial symmetry case, problem with k(z) > ke > 0 was also
solved in [I3] by constrained minimization and concentration-compactness argu-
ments. There the role played by the inequality k(x) > ko in restoring compactness
in RY is used. However, in case k(r) < (#)koo and f is superlinear at infinity,
nonsymmetric problem cannot be solved by minimization [4]. Che and Chen
[5] considered existence and multiplicity of positive solutions by using the Nehari
manifold technique and the Ljusternik Schnirelmann category theory. Under proper
assumptions, Wang and Zhang [23] obtained a ground state solution for the above
problem with the help of Nehari manifold. In [I4} [19], the authors studied the
existence of ground state solutions of Nehari-Pohozaev type. When b = 0, [9] 22]
studied a class of nonlinear Schrodinger equations by using concentration compact-
ness arguments and projections on a general Pohozaev type manifold.

Motivated by [9 [I4] 19, 22], we investigate the existence of nontrivial solutions
of problem . In this article, the main obstacle is that the geometrical hy-
potheses on the potential k(x) does not allow us to use concentration compactness
arguments as in [4, [13]. In general, this difficulty is circumvented by assuming
symmetry properties of k(x). Our objective is to prove the existence of a positive
solution of under k(x) < (#)koo and koo = lim; o0 k(7), but not requiring
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any symmetry properties. Another obstacle is that the nonlinear term in is
non-homogeneous and non-autonomous. Projections on Nehari manifold are not
possible in general, thus one is motivated to use the more suitable projections on
the set of points which satisfy the Pohozaev identity [I5], the so-called the Pohozaev

manifold of (|1.1)).
Let @ > 0 and b > 0 be fixed. Throughout the paper we use the following
notation:

H'(R3) denotes the usual Sobolev space equipped with the norm
Jully = [ (@lVa? + ) .
R3

L*(R3) (1 < s < o) denotes the Lebesgue space with the norm

Julls = [ Jul*da.
R3

For u € HY(R3)\{0}, u¢(z) = u(z/t) for t > 0. For x € R3 and r > 0, B.(z) =
{y € R3 : |y — x| < r}. We denote various positive constants as ¢, c;,C,C; (i =
0,1,2,3,...).

To state our results, we define two functionals on H'(R?) as follows:

_¢ 2 Q/ 2 9/ 2 40)
P(u)_Q/Rs|vu| drt g [ do+ 3 ( [ Ivu dz)

(1.5)
— / [Bk(x) + VE(z) - ] F(u) dx ,
R3
2
P> (u) = E/ |Vu|? dz + %/ u?dz + 9(/ |Vul? dx)
2 R3 2 R3 2 R3 (16)
— 3koo / F(u)dz.
R3
We define the Pohozaev manifold associated with and by
M = {uc H'(R*\{0} : P(u) = 0}, (1.7)
M = {u € H (R*)\{0} : P=(u) = 0}. (1.8)

We are now in position to state and prove our main result.
Theorem 1.1. Under assumptions (H1)—(HS8), problem (L.1) has a positive solu-
tion u € HY(R3)\{0}.

2. PROOF OF THEOREM [L.1]

Lemma 2.1. Suppose that fR3[’\—“2‘2 — koo F(u)]dz < 0. Then there exists unique

ty >0 and ty~ > 0 such that v, € M and v, € M™>.

Proof. First we define the function

Y(t) = 1(w)

at A3 bt? 2
=— Vul|?dz + — 2de + — / Vul?d
2/}1&?" u|*dx + 5 /Rsu x + 1 ( R3| ul 1:)

— t3/ k(tx)F(u)dx.
RS
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Taking the derivative of 1 (t), we obtain

, a 5 3)\t2/ 9 bt/ 9 1 \2
t) == dz + 22— dz + — d
W (t) 2/}Rg|vu| k=g [ a:+2(]R3|Vu| v)

— 3t? / E(tx)F(u)de —t3 | Vk(tz) - 2F(u)dx
R3 R3
a Au?

bt 2
_ 2 22 2 2 AU
= 2/}RB|Vu| dz + 2(/RS|VU| da:) + 3t /RS[ 5 k(tz)F(u)]dz

—t3 | Vk(tz) - zF(u)dz.
R3

By the Lebesgue Dominated Convergence Theorem,

u? u?
lim [)\T — k(tz)F(u)]dz = /RS[)\— — koo F(u)]dz < 0.

t—o00 R3 2

By (H2) and (H4), we have
Vk(z) -z —0, as|z|]— occ. (2.1)
Using again the Lebesgue Dominated Convergence Theorem,

lim Vk(tx) - (tz)F(u)dz = 0.

t—o00 R3
where we have used (H6) and (H7). Therefore, if ¢ > 0 is sufficiently large, then
'(t) < 0. On the other hand, taking ¢ > 0 sufficiently small in the expression of
Y’ (t), we obtain ¢’(¢) > 0. Since ¢’ is continuous, there exists at least one t,, > 0
such that ¢’(¢,) = 0. Then P(us,) = ty'(t,) = 0 so that u, € M.
Moreover (H3) implies that

3t[k(z) — k(tx)] 4+ (t* — 1)Vk(z) -2 <0, Vt>0, x € R (2.2)
By this inequality, (H6) and (H7), for any u € H!(R3),¢ > 0, one has
I(u) — I(ut)
a(l—t A1 -3 b(1 —t2
= D g+ A gz M oy
- / [k(x) — t3k(tx)] F(u) do
R3
1—¢3 a(t® — 3t +2 b(2t3 — 312 + 1 (2.3)
= D p(y + W3 D gy o PR3 gy
1
- g/ 363 (k(x) — k(tz)) + (£ — 1)Vk(z) - 2] F(u) de
]RB
11— a(t® —3t+2 b(2t3 —3t2 +1
> 1D p(u) + W30 Dygy g YEE S0 gy

Next we claim that ¢, is unique. In fact, for any given w satisfies ng[’\T“? -
koo F(u)]dz < 0. Let t1,t2 > 0 such that us,,ur, € M. Then P(uy, ) = P(ug,) = 0.

From this and (2.3)), we have

3 — 3 a(2t3 — 33ty + 13
Tu) > Iuy) + 22 Py + W3 8) |5 e
33 63
b(3t* — 3122 — 213 + 23
n (3t} 1t3 1+ 2t3) 1V, ||

12¢2
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a(2t3 — 33ty +13) b(3t§ — 3t3t3 — 213 + 2t3)

= I(ur,) + o IVur, I3 + 12 Va3
and
13— 3 a(2t3 — 33t + 13
I(uey) > I(ug,) + 252 Plug,) + (213 271 ) [V, |12
3t3 6t3
b(3t4 — 322 — 213 + 2t3) 4
+ 12t% ”VutzHQ
a(2t3 — 3t3ty + 3 b(3td — 3t2t2 — 23 + 243
= () + QB0 AN g ey DT B0 2 H ) g e
6t3 1213

These inequalities above imply t; = t5. Therefore, ¢, > 0 is unique.
Similarly, we define the function

90()—1°° (ue)

2 2 bt® 21 )? 3
|V | dx—i— U dx—&——( [Vul dx) — koot F(u)dz.
4 R3 R3

Takmg the derlvatlve of ¢( ), we obtain

o' (t) = / |Vu|? dz + BALZ / 2da + b;( |Vu? dx) —3t%ks [ F(u)dz

/ Vu |2dx+ / |Vu|2da: +3t2/ [——k F(u )]djg

Therefore, if t > 0 is sufﬁmently large then ¢'(t) < 0. Taking ¢ > 0 sufficiently
small, we obtain ¢’(t) > 0. Since ¢’ is continuous, there exists at least one t,~ > 0
such that ¢'(t,-) = 0. Then P> (u,,.) = t¢'(ty+) = 0 so that v, . € M>. For any
u € HY(R?),t > 0, one has

I°°(u) — I*°(ut)
a(l—1t)

A1 —t%) b(1 —t?)

= =5 IVl + Sl + == Vull3

— k(1 -1 F(u)d

( ) s (u)dz (2.4)

11—t a(t® — 3t +2) 5 b(2t3 —3t2+1)
= P+ T v+ S v

11—t a(t®> —3t+2 b(2t3 — 3t +1
= Py gy PRI Y g

Now we claim that ¢, is unique. In fact, each u satisfies [, [%“2 —kooF'(u)] da <

0. Let t3,t4 > 0 such that uy,,ur, € M. Then P*°(us,) = P*(ut,) = 0. From
this and (2.4)), we have

17 (ug,)
= 17 (u,) + t33t3 P () + it _§f§t4 + ) [V, |13
N b(3td — 3t§gtg 2t3 + 2t3) V|1
(a4 a(2t3 — 3tity +t3) IV, |2 + b(3td — 3t3t2 — 213 + 2t3) V|1

6t3 123
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and
Ioo(um)
- th—t3 a(2t] — 3t5ts +t3)
= () + PR, + DT vy, 3
4 1
b(3t] — 3332 — 213 + 2t3) 4
- = 7,
- a(2t3 — 3t3ts + t3 b(3t3 — 3t3t3 — 2t3 + 23
= () + AT ) g 2 VOGS )G, s
1 1
The two inequalities above imply t3 = t4. Therefore, t,~ > 0 is unique. [
Lemma 2.2. If u € M, then there exists t,, > 1 such that us, € M.
Proof. Since u € M, we have
a 3\ b
P(u) = 21 Vull + S llull3 + 5 [ Vulld - 3h / Fwdr=0.  (25)

In view of Lemma 2.1, there exists t,, > 0 such that u;, € M. From (H4), (H6),
and (HT), one has
0= P(Utu)

aty, 33 bt2
SEIVall3 + =S full3 + S Vulls - / [B(tu@) + Vk(t,2) - (t,2))F(u) da

2
aty, 9 3, @ 5 b 4
= S Tul+ 6 (S IVul — S IVl + 3k [ Flu)d)
R3

BTl — [ [3h0) D) ()

afty —t3) b(t2
- 2

ﬂHVUH%
2
+ ti/ [B(koo — k(tyx)) — VE(tyx) - (tu2)|F(u) dx
]RS
_altu— ) b(t2 — £2)
- 2 2
which implies ¢, > 1. O

IVull3 +

IVull3 + [V7ull3,

Lemma 2.3. If u € M, then there exists t,, € (0,1] such that us;, € M.

Proof. Since u € M, we have
a 3\ b
Pw) = §IVul3 + 5wl + 5 IVully = [ [3h(e) + V() -2l F(u) do = .
In view of Lemma there exists t,, > 0 such that u;, € M. From (H4), (H6)
and (H7), one has
0= Poo(utu)
3N bt

8l + [ Vuld — koo [ Flu)d
R3

aty,
= THVUH% +

aty a b
= SV Ul + (= 5IulE = 3IVull + [ [3k(o) + Vi(z) - a]F(u) da)
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bt2 4
+ | Vull; — koo F(u)dz
2 s

ty — b(t2 — 3

2 2
+ ti/ B(k(x) — koo) + VE(2) - ] F(u) dz
RS
ol ) g M)
- 2 2
which implies ¢,, < 1. Therefore t,, € (0, 1]. O

[Vull3

IVull3 + [Vl

Lemma 2.4. Ifu € M, then u(- —y) € M for ally € R3. Moreover, for every
y € R3, there exists t,, > 1 such that ug, (- —y) € M and limy o t, = 1.

Proof. If u € M, then from the translation invariance of I°° it follows that
u(- —y) € M for all y € R3. Furthermore, from Lemma there exists t, > 1
such that us, (- —y) € M. By (2.1) and the Lebesgue Dominated Convergence
Theorem, we have
0 = liminf t;‘?P(uty(- —-y))

lyl—oo °

o at7? 3\ bt !
— tininf[ "2 [Vl + 5 ul} + 2L |Vl

y|—o0

— lim inf/ [Bk(tyx +y) + Vk(tyx +y) - (tyx + y)|F(u) dz
R3

ly|—o0
at 2 bt 1 b
= liminf[—2— || Vu||3 + —2||Vul)5 — g||VU||§ — || Vull3 + 3/ koo (x) F(u) do]
~lim inf / Btz +y) + Vk(tyz +y) - (ty2 + )] F(u) de
y|l—oo JRr3
a(t-2 -1 bt —1
Ctimint 2 T gz M Y gy
ly|—o0 2 2

1
+ lim inf/ koo — k(tyz +y) — §Vk(tyx +y) - (tyr +y)|F(u) dx
R3

ly|—o0
b
— 2iminf ;2 — 1)Vl + = (iminf £, " — 1) Vull3
2 ly|—o0 2 ly|—o0

which implies lim SUP|y| o0 by = 1, and so limy| o0ty = 1. [l

From Jeanjean and Tanaka [7] have that

inf I°°(u) = m™.
W T =

Lemma 2.5. m = m*°.

Proof. Let u € H'(R?) be the ground state solution (which is positive and radially
symmetric) of the problem at infinity, v € M and I*°(u) = m™. From the
translation invariance of the integrals, given any y € R3 such that u(- —y) € M,
I*®°(u(- — y)) = m*. From Lemma for any y € R®, there exists a ¢, > 1 such
that us, (- —y) € M. Therefore,

[ (ut, - (=y)) —m™]|
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— (- (~9) = (- ()
alt, — b(t2 — A(t3 —
= 1= Dy + vt + 270 [ 2a

+ / (koo — E3k(tyz + y))F (u) da
R3
a(ty, —1 )\(tB —1)
< | =Dyl + |2 [ el + [ e = b0+ i) da.
R3 R3

Since t, — 1 as |y| — oo, it follows that

(e, - (~y)) — m™] < 0,(1) + 0,1 /\k Kz + )| F(w) da.

and since k(x + y) — ko as |y| — oo, it follows that

lim I(ug, - (—y)) =m™
ly|—o0
Therefore, m = inf,c g I(u) < m™>

On the other hand, we consider v € M and 0 < t, < 1 such that ut, € M,
Since u € M, then P(u) =0 and u satisfies

a A
= 1) = 31l + Sl + IVl = [ b)F
1 a
= 3P(w) + IVl + 5 |Vu||2 / Vh(z) - 2F(u) do
at bt?
> %)+ 2 vl
1
Z [Oo(uty) — gPOO(’ILty)
= Ioo(uty)
>m™

where we have used (H4) and (H6). Thus, for any u € M, I(u) > m® and hence
inf,em I(u) > m>. We conclude that m = m™. O

Lemma 2.6. The functional I satisfies condition (Ce) at level d € (m®,2m).
Proof. Since {u,} C H'(R3) is a Cerami sequence (Ce)q, by (H8), we have

A+ 0(1) = I(n) = 701" (tn), )

1 1
- / alVu,|? + M do + 7/ a(f(up)u, —4F (uy)) dr
4 ]R3 4 RS

1
> llenl3.

This shows {u,} is bounded in H'(R?). Applying the splitting lemma cite[Lemma
4.6]11, up to subsequences, we have

Zu] (x—yl) —u in H'(R?),



EJDE-2022/75 KIRCHHOFF-SCHRODINGER EQUATIONS 9

where u/ is a weak solution of the problem at infinity, |y/| — oo and u is a weak
solution of (1.1). Moreover,

k
I(un) = I(uw) + Y T®(u;) + o0n(1).
j=1

Since d < 2m®, it follows that k < 2. If £ = 1, we have two cases to distinguish:

(1) uw # 0, which implies I(u) > m®> and hence I(u,) > 2m®.

(2) uw =0, which yields I(u,) = I*°(uy).
In both cases we arrive at a contradiction with the fact that d € (m®,2m™).
Therefore, we must have & = 0 and the convergence u,, — u follows. O

Definition 2.7. Define the barycenter function of a given function v € H'(R?)\{0}

as follows: let .
pl)@) = = [ July)ldy,
| 1| Bi(z)

with p(u) € L>°(R3)) and p is a continuous function. Subsequently, take

() = [a(u) () — 5 mas )]

It follows that @ € Co(R?). Now define the barycenter of u by
1
B(u)()

= — [ za(z)dr € R3.
lall Jes
Since @ has compact support, by definition, S(u) is well defined.

Now we define
b=inf{I(u):ue M, f(u) =0}
It is clear that b > m®°.

Lemma 2.8. b > m®™.

Proof. By contradiction, suppose that b = m°°. By the definition of b, there exists
a (minimizing) sequence {u,} € {u € M, B(u) = 0} such that I(u,) — b. By
Lemma the sequence {u,} is bounded. Since m = m® by Lemma then
{un} is also a minimizing sequence of I on M. By Ekeland Variational Principle
[24, Theorem 8.5] there exists another sequence {@,} € M such that:

(i) I(an) — m;

(i) I'(tn) — 0;

(iil) ||@pn — un| — 0.

Moreover, {u,} is bounded, 8(u,) = 0 and ||@, — u,| — 0 imply that the sequence
{ty,} is bounded and |B(@,) — B(u,)| — 0, since S is a continuous function. So we
have that (@) is bounded.

Therefore, the sequence {,} satisfies the assumptions of [9, Corollary 4.8] and
since m = m® and is not attained, then the splitting lemma holds with k = 1.
This yields

fin(2) = ! (& — ),
where y,, € R3, |y| — oo, and u! is a solution of the problem at infinity. By making
a translation, we obtain

ﬁn(m + yn) = ul(x) + On(l)
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Calculating the barycenter function on both sides, we have

6(17%(93 + yn)) = ﬂ(ﬂn) — Yn,
where (t,) is bounded and
Bu'(z) + 0n(1)) = B(u' (2)),
since A is a continuous function. On one side, 3(u'(z)) is a fixed real value and,

on the other, |y,| — oo so we arrive at a contradiction. Therefore, we must have
b>m>. (]

Inspired by [9], let w € H*(R?) be the positive, radially symmetric, ground state
solution of ([1.3). We define the operator II : R® — M by

My () = w(x;yy

Proof of Theorem[1.1 By Lemma [2.2] for any w € M®°, then there exists t, > 1
such that we, = I[y] € M. Therefore P(Il[y]) = 0 for any y € R3, and we have

I(I[y])

= SIVIIIE + SIMBIE + IVIS — [ k)Pl da

) = wi, (x = y).

= 3P + §I T + 55 VTl + 5 || Vhie) - 2P () ds

3 (2.6)

= SIVIIE + 5 IVIBIIE + 5 [ Vka) 2P (1) da

at
= a4 Tl + 2 [ ke ) Gy s p)F)
Moreover, since w € M™>, we have

o 1 at
I®=3P (w)+7yHVwII2+*yHV 12

at, bt?
= w3 + 2 vy
Combing (2.6) and the above equality yields

tS
I(Ty]) = I + gy /]R3 VE(tyz +vy) - (tyz +y)F(w) de.

By (2.2), it follows that I(II[y]) — m®, as |y| — oo. In view of Lemma we
have b > m®. Then there exists p > 0 such that for every p > p,

m*> < max I(I1[y]) < b.
lyl=p

To apply the Linking Theorem, we take @@ = II(B5(0)) and S = {u € M : g(u) =
0}. From [9, Lemma 4.13], we have
BII)(x)) =y, Yy €R.

If w € S, then S(u) = 0, and if v € 0Q, then S(u) = y # 0, because of equality
ly| = p; therefore 9Q N S = .

For any h € H = {h € C(Q, M) : hlpg = id}, we define T : By — R® as
Tly] = 8o hollly]. The function T is continuous. Moreover, for any |y| = p, we
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have II[y] € 0Q, thus h o H[y] = [y], T (y) = B(I[y]) = y. By Brouwer’s Fixed
Point Theorem we conclude that there exists § € B5(0) such that 7(g) = 0, which
implies h(II[g]) € S. Therefore h(Q) NS # O and S and 9Q link.

If h is fixed, then there exists z € S such that z also belongs to h(Q), which
means that z = h(v) form some v € II(B;(0)). Therefore,

I(z) > irelg I(u) and quleac}z(j(h(u)) > I(h(v)).

This gives
I(h >1(h =1I(z) > inf I(u) =b
max (h(u)) 2 I(h(v)) = I(2) = nf I(u) =,
and hence
d = inf maxI(h(u)) >b>m™.
heH ueqQ
Since w € M> and m™ = I*°(w), it follows that m> = %||Vwl|3 + ||Vw|3, and
o a 3\ b
P=(w) = 51wl + 5wl + 51 Vul - 3he [ Flw)do=o.
R3
We set
mOO
t, = [————]'/2
[ —25,]
Since fy is the unique positive root of (H5), then 1 < ¢, < co. Hence
aty ) A v 4 _ 43
) = GVl + 52+ ZVuls = [ bty + )P do
a(3ty —t3 b(3t2 — 2t
— 8P+ L2 =0 oy 4 X2y gy )
6 12
+ tZ/ (koo — k(tyz + y)]F(w) dx
R3
a(3t, —t3) b(3t2 — 2t3)
< B W 3 4 BT s 4 o
a(3t, —t b(3t2 — 2t2
< W2t guz 4 PO 20 g 4
a 2 i 4 _ m— .30
< §ITwl} + S5 IVwl + fol

= 2m*°.
Furthermore, if we take h = id, then

d = inf max I(h(u)) < maxI(u) < 2m®>.
heH ueqQ ueqQ

Then we have d € (m®,2m®), thus from Lemma (Ce) condition is satisfied
at level d. Therefore, we can apply the Linking Theorem and conclude that d is
a critical level for the functional I . This guarantees the existence of a nontrivial
solution u € H'(R?) of . Reasoning as usual, because of the hypotheses on f,
and using the maximum principle we may conclude that u is positive, which implies
the proof. O
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