
USING TCL AND SWIG TO CREATE A RAPID

APPLICATION DEVELOPMENT ENVIRONMENT

THESIS

Presented to the Graduate Council of
Southwest Texas State University

in Partial Fulfillment of
the Requirements

For the Degree

Master of Science

By

Beam Seog Hwang

San Marcos, Texas
May 2001

Table of Contents

LIST OF FIGURES .. V

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 3

BACKGROUND ... 3

2.1. SCRIPfINGLANGUAGES .. 3

2.1.1.

2.1.2.

2.1.3.

Perl ... 6

Python ... 6

Tel ... 7

2.2. MECHANISMS FOR EX'I'ENDING SCRIPfING LANGUAGES••.............................•............................. 7

2.3. EX'I'ENSION BUILDING TOOLS ••..•...•...•.....•...•.•...........•....................•...........•......•.•..............•.••......... 9

2.3.1.

2.3.2.

2.3.3.

2.3.4.

SWIG ... 12

jWrap .. 13

Mktclapp ... 13

SILOON .. 13

CHAPTER 3 ... 14

SCRIPTING IN RAD ... 14

3.1. CHOOSING A SCRIPfING LANGUAGE AND A TOOL •.•••..••••..••..••..........•....•....•.•.•..•...•••••••••••••.•••••••... 15

Selection Cnteria .. 15 3.1.1.

3.2. WHYTCL •...........................•.......•••.•••••...•.........•.•..............•....•......•..•.•..•.........................•........•.•.. 16

3.3. WHYSWIG•....••••.••••••••••••...•........•...........•........•••••••••••••••.•• : 17

3.4. SCRIPrING RAD MODEL .•.......•...•.•..........••••••••.•...•.........................•..••.•••••••••..............................• 18

CHAPTER 4 ... 21

CASE STUDY ... 21

4.1. PLATFORMS •.•.........•...................................•...•.•.......•.....•....•....•..•......•........•.•..•....•...........•...•.•..... 21

III

4.1.1.

4.1.2.

First Platform ... 21

Second Platform ... 22

4.2. RAY TRACER •..........................•.•............•............................••••..•..•••.••.••••••••••.••••••••..•••••••.••••••••••••• 22

4.2.1. Development of Ray Tracer .. 23

4.3. VORONOIDIAGRAMS•...................•......•...•.....•.....•.......••..•.... 29

4.3.1. Working with the Voronoi code ... 30

4.3.2. Tel Voronoi Script and Helper Functions .. 31

CHAPTER 5 ... 34

SIDE ... 34

5.1. SIMPLE INTEGRATED DEVEWPMENT ENVIRONMENT•....•....•......................•.•.•.•...••.....•...• 34

5.2. GENERATING DYNAMIC-LINK LIBRARIES •...•...•....•......•...••...............•.............•.•..•................•........ 38

5.3. SETIINGUPTIIBDEVEWPMENTENVIRONMENT•.•....................•..••.......•..•.•••••••.•••...••••••.•••••••••• 40

5.4. SIDE INTEGRATION PLAN •........•....•..•.••••.••.•..•••••••..••..••.....•...••.•.........•....•.•........•.............•........•... 41

CHAPTER 6 ... 42

CONCLUSION ... 42

6.1. SUMMARY ...••.•••••.•.•.••.••••.••.••.•..••.•.•••••..•.......•..........•.••.•••••••••••••••• 42

6.2. FuTuRE WORK .. 43

APPEND IX ... 44

REFERENCES ... 47

IV

List of Figures

FIGURE. 2.3.1

FIGURE. 5.1.1

FIGURE. 5.1.2

FIGURE. 5.1.3

FIGURE. 5.1.4

FIGURE. 5.1.5

INTERFACE ... 9

SIDE ... 35

INITIAL PROGRAM SCREEN .. 36

SETTING THE INCLUDE FILE & PATH .. 37

SETTING THE COMPILE OPTIONS .. 37

BUILDING A SHARED OBJECT .. 38

V

CHAPTER 1

INTRODUCTION

Rapid Application Development (RAD) is a software development methodology that

was developed to respond to the need to deliver systems very fast. RAD utilizes multiple

languages, reusable components through an Application Programming Interface (API),

and project management tactics to speed up the development process. Since RAD uses

high-level languages that are not suitable to produce CPU intensive application, RAD

sacrifices execution speed to achieve a faster development time than traditional

development. Yet to achieve usable runtime performance, existing RAD tools, such as

Visual Basic and Delphi, use components through Component Object Model (COM) and

Common Object Request Broker Architecture (CORBA). The idea of using middleware

like COM and CORBA may contribute to universal compatibility but it requires extensive

programming experience and knowledge. The goal of this project is to create a simpler

RAD environment that requires less programming knowledge and work than existing

RAD tools by using a scripting language and a tool that allows reuse of code. This RAD

environment may be more appropriate in problem domains where testing and developing

algorithms are more important than producing commercial software.

Using scripting languages to integrate or glue applications is not a new idea.

Extending scripting languages with components written in compiled languages is not new

either. In this work we adapt both ideas to create a RAD model that achieves code

1

2

reusability and run time efficiency.

First, we review three scripting languages, Tel, Perl, and Python, and several tools

that extend them, including SWIG We focus on finding a suitable scripting environment

for RAD, especially where intensive CPU utilization is required, and adopt Tel and SWIG

for our development environment.

Second, we examine the role and the usability of Tel and SWIG for RAD with case

studies. Through these case studies we demonstrate that utilization of a scripting

environment has several advantages, such as shortened development time, effective

debugging environment and code reusability.

Last, we develop a system, SIDE (Simple Integrated Development Environment) to

simplify and speed up the process of building extensions. We have also sketch a plan to

improve SIDE to form a full-featured Integrated Development Environment (IDE) for

RAD.

CHAPTER2

BACKGROUND

In recent years, because of a more powerful computing environment, the

sophistication of scripting languages has improved dramatically. But creating applications

using just a scripting language may be not so feasible in applications where intensive

computation is required, due to the run time inefficiency of scripting languages [l].

Application development may be done in a much faster and convenient way by

adapting the power of scripting that is, gluing components together. By using existing

code written in CIC++, extensions may be easily built and used within the scripting

environment to develop applications without run time performance degradation, and

without having to go through details of the compiled language programming [l, 2, 3].

Previously, David M. Beazley at the University of Utah applied this technique, using

a scripting language to control components written in compiled languages, to his research

on physics application development, in particular, molecular-dynamics simulations. He

used Python to control components developed with C. The application achieved 10

Gflops sustained performance [4, 5].

2.1. Scripting Languages

In this paper, by scripting, we refer to programming with scripting languages.

3

Compiled languages refer to programming languages that employ compilers to produce

machine dependent binary code, such as C and C++.

Scripting is more of a programming methodology than a technical term. Thus

classifying scripting languages into any of the traditional language paradigms [6] is

inappropriate. People have their own understanding of scripting languages, and here are

some of those.

Scripting languages support doing programmatically what otherwise is done directly by

the user through direct commands [7].

Speaking as a computer scientist, my answer is: These are not (yet) technical terms.

Speaking as a linguist, my answer is: These words (like most words) are defined by

prototype, not by boundary. A script is what you give the actors, and a program is what

you give the audience [8].

A programming language that is supported by and specific to a particular program. Note:

A scripting program is normally used to automate complex or advanced features or

procedures within the program [9].

4

Even though it is difficult to categorize scripting languages, there are some common

characteristics shared among many scripting languages [7].

Scripting languages often follow the syntax and semantics of command languages. For

instance, many scripting languages do not require quoting of string literals, but rather

require explicit evaluation of variables. ,

Scripting languages make it easy to call system commands, prepare their arguments, and

manipulate their results. They generally have some built-in primitives for manipulating

file and directory names, argument lists, environment variables etc.

Scripting languages generally are good at handling strings, and don't emphasize

numerical manipulation.

Since calling system commands is generally much more expensive than script execution

itself, there is little emphasis on run-time efficiency, therefore they are often

implemented using interpreters, byte-code interpreters, or macro processors.

5

Scripting is different from programming with other languages, and scripting is better

considered as part of a development framework rather than understanding it as a stand

alone development method. Some of the reasons are as follows.

First, scripting languages assume that there are available components to handle

complicated operations. Because of this reason, scripting languages often have facilities

to extend themselves to be used with components written in compiled languages.

Compiled languages offer better run time performance than scripting languages. But

coding with compiled languages is less productive and requires more care [1].

Second, scripting languages are often syntactically simpler than most compiled

languages, since the number of built in operators and data types are not comparable to

those of compiled languages. Simpler syntax encourages readability and manageability.

Thus adapting scripting into a development environment may add higher-level

abstraction to codes written in compiled languages while achieving good manageability.

There is always a demand for a simple programming language to be used in a

specific problem domain. Such a language is a bit more powerful than shell programming,

but without the complicated learning process and development overhead of compiled

languages, such as C and C++. Scripting languages are often developed to serve this need,

and some of them evolve into full-fledged languages. Perl, Python, and Tel are the most

widely used full-fledged scripting languages.

6

2.1.1. Perl

Created by Larry Wall in the late 1980s to extract text from news messages, Perl

stands for Practical Extraction and Report Language. Its use of powerful regular

expressions makes Perl a good tool for text manipulation. That is why Perl became a

model for CGI (Common Interface Gateway) language, which is used to control server

side inclusion and to perform various server side operations by doing massive text

manipulation. Perl serves this purpose very well as it is quite fast in such operations

among scripting languages [1, 10]. Even though it is a powerful and widely used scripting

language, many often criticize its syntax, which does not promote good readability.

Examples and explanations about the problematic Perl syntax are presented in details at

Perl website [11].

2.1.2. Python

Created by Guido van Rossum in the early 1990s, Python was designed as an object

oriented language to link shell and C programs. Its easy syntax, elaborate library,

portability, extensibility and embeddability make this language very popular. Python is a

portable, interpreted, object-oriented programming language. The language has an

elegant yet rich syntax and a small number of powerful high-level data types. Python can

be extended in a systematic fashion by adding new modules implemented in a compiled

language such as C or C++. Such extension modules can define new functions and

variables as well as new object types [12].

7

2.1.3. Tel

John Ousterhout created Tel in the late 1980s as an embeddable command language

for interactive tools. When supplemented with the Tk toolkit, it became popular as the

fastest way to build graphical user interfaces on Unix [13]. Following are the design

goals of Tel from John Ousterhout [14].

The language must be extensible: it must be very easy for each application to add its

own features to the basic features of the language, and the application-specific features

should appear natural, as if they had been designed into the language from the start.

The language must be very simple and generic, so that it can work easily with many

different applications and so that it doesn't restrict the features that applications can

provide.

Since most of the interesting functionality will come from the application, the primary

purpose of the language is to integrate or "glue together" the extensions. Thus the

language must have good facilities for integration.

2.2. Mechanisms for Extending Scripting Languages

Programming languages may offer extensibility through one or more of the

following three mechanisms [15].

The first option is LISP's way of offering extensibility. New commands are

implemented with the language itself and become the part of the language. This

mechanism might be convenient, since there is no external Application Programming

Interface (API) to take care. But considering that the purpose here is to find a way to

build a RAD environment using existing CIC++ libraries, this mechanism is not

applicable in our research.

8

The second option is to extend the language with other languages through a well

defined API. Since built in commands of programming languages are implemented with

compiled languages, extensions are also implemented using compiled languages. Upon

implementing extensions, extensions are compiled with the language itself to become the

part of the language as built in commands.

The third option is dynamic loading of extensions. Dynamic loading allows dynamic

inclusion of an implementation through defined APis with compiled extensions during

run time.

The second and the third options are more appropriate in our research, since both

allow the use of CIC++ libraries. Extensions built with the second option are called static

extensions, while with the third option are called dynamic extensions. Advantages and

disadvantages of static and dynamic extensions are as follows;

Static Extensions.

Advantages:

• Extensions become part of language and that changes syntax as desired.

• Faster execution, since external data mappings and conversions are not required

during run-time.

• Single distribution package with all extensions.

Disadvantages:

• Statically linked runtime may not be compatible with some extensions.

• Statically linked runtime can cause namespace or global symbol table collision.

• Statically linked runtime is often not compatible with integration tool kits.

Applicable situation:

• Building a proprietary scripting environment for a certain application that does not

require modification or integration.

9

Dynamic Extensions.

Advantages:

• These extensions are much easier to manage since they are in the form of packages.

• Object oriented programming up to a certain level can be achieved by organizing

packages.

• Managing symbol tables and global variables is easier since each module has its own

space to store this information.

Disadvantage:

• Compiling dynamic extensions is difficult. See Chapter 5.

Applicable situation:

• Dynamic extension mechanism may apply to any situation as long as the target

system supports loading dynamic extensions.

2.3. Extension Building Tools

Extensions may be built with compiled languages using API provided by scripting

languages. Or extensions can be created using existing source code with interfaces, which

translate between source code and scripts. Interfaces allow a scripting language to call

compiled objects by specifying how a scripting language makes a call to a function

within an extension, or how variables are passed between a scripting language and an

extension.

Scripts developed Compiled CIC++

using scripting - I Interface I - Implementations c;._ -,.. IC ~ - - I I - -
languages

Figure. 2.3.1 Interface

Figure. 2.3.1 shows the role of the interface in scripting environment. Scripting

languages that we have reviewed have their own method to implement interfaces to

existing CIC++, source code or compiled binary code. An interface is also called a

wrapper.

A wrapper can be made either manually or automatically, using wrapper generators.

There are some advantages to using wrapper generators. First, coding a wrapper often

requires understanding of details. Second, manual wrapping may require changes in

source code, and that can introduce new bugs into source. Finally, manual wrapping

makes big projects hard to maintain since language evolution often changes the interface

protocol. If that happens, manually written parts need to be updated.

Here is an example of a wrapper for Tel. Consider the following C function:

int foo(int num) {

return 0;

}

In order to make the above function available to Tel, a wrapper should collect

argument information, invoke the function, and provide a return value that is recognized

by Tel. A sample wrapper for above function is as follows.

int wrap_foo(ClientData clientData, Tcl_lnterp *interp, int argc, char *argv□) {
int _result;

int_arg0;

if (argc != 2) {

}

interp->result = "wrong # args";

return TCL_ERROR;

_arg0 = atoi(argv[1]);

_result = foo(_arg0);

10

sprintf(interp->result, "%d", _result);

return TCL_OK;

In addition to the above wrapper, an initialization portion of code also needs to be

provided. An initialization function is a must. It tells Tel about newly added commands.

Whenever an extension is loaded into Tel, Tel searches for an initialization function. If

the initialization function is not found, Tel returns an error. An example initialization

function for the function Joo is as follows.

int Wrap_lnit(Tcl_lnterp *interp) {

}

Tcl_CreateCommand(interp, "foo", wrap_foo, (ClientData) NULL,

(Tcl_CmdDeleteProc *) NULL);

return TCL_OK;

11

Once all the above three functions are compiled , linked, either statically or

dynamically, and properly loaded into Tel, function Joo is available as if it were a built in

command.

Wrapper generating tools may require an input to generate a wrapper. The input is

often referred to as interface definitions. Interface definitions consist of a header and a

body. The header contains attributes that apply to the entire interface, and the body

contains the remaining interface definitions. Interface definitions may be considered as

rules to generate wrappers.

Interface Definition Language (IDL) is the most popular language to create interface

definitions for COM and CORBA components. Both COM and CORBA are software

architectures that allow applications to be built from binary software components and are

12

used in most RAD tools, such as Microsoft Visual Basic and Borland Delphi.

Using IDL and advanced programming architectures like COM and CORBA would

help increasing security and portability, but there are two reasons why IDL and such

RAD tools are not appropriate in certain RAD environments where testing an idea or an

algorithm is more important than developing a stable commercial product. First, learning

and using IDL takes too much time. Second, most existing RAD tools use IDL compilers

to generate skeleton code from IDL files, but users need to fill in major portions of the

generated files.

There are many wrapper generators that can be used with CIC++ libraries, such as

SWIG, jWrap, Mktclapp, and SILOON. Unlike IDL compilers, these tools do not require

any modification of the interface that is generated by the tools.

2.3.1. SWIG

SWIG stands for Simplified Wrapper and Interface Generator. Initially developed by

David M. Beazley at University of Chicago while he was doing research on Lightweight

Computational Steering of Very Large Scale Molecular Dynamics Simulations at Los

Alamos National Laboratory. SWIG takes an existing CIC++ library and makes an

interface to many different scripting languages. By generating wrappers from the given

CIC++ header files, SWIG allows scripting languages to access the underlying CIC++

code. Currently SWIG supports Unix, Windows and Macintosh environment with any

ANSI compliant CIC++ compiler [16].

2.3.2. jWrap

jWrap is very similar to SWIG, but it only supports Tel. JWrap understands more

C++ advanced features than SWIG JWrap can handle structures of structures and

polymorphism. Unfortunately, jWrap is not maintained [17].

2.3.3. Mktclapp

13

Mktclapp was developed by D. Richard Hipp to create standalone executables from

Tel script and CIC++ code. For a CIC++ program, and an associated Tel script, Mktclapp

makes a combined binary executable. But for the interactive development or scripting

with CIC++ libraries, this tool is not quite suitable. This tool becomes very handy when

programmers want to generate distribution packages or give scripting capability to CIC++

code [18].

2.3.4. SILOON

SILOON stands for Scripting Interface Languages for Object-Oriented Numerics. It

is a project at Advanced Computing Laboratory to make object-oriented numeric class

libraries externally accessible via run-time scripting. Sil . .OON has a very ambitious goal:

making a huge set of libraries available to scripting languages without manually

analyzing sources. For that reason, the SILOON project is focused on establishing a

networked connection with an automatic code analyzer and library repository. In order to

use SII..OON users must download the Program Database Toolkit, which does CIC++

source code analysis [19]. Currently SII..OON makes interfaces to Perl and Python.

CHAPTER3

SCRIPTING IN RAD

Initially, our goal was to design a simple programming language to be used in the

computational geometry field as a prototyping tool. Our considerations on designing a

language focused on following two aspects: first, limiting the number of built in operators

and data types to give the user an easier environment in which to develop algorithms

rather than spending time on learning a language to test his or her idea; and second,

allowing the use of CIC++ libraries to provide more a flexible and programmable

environment. While designing such a language, we discovered some problems associated

with data type conversions during operations performed through external APis. In order

to find solutions to such problems, we studied existing extension mechanisms from

various scripting languages and found many different approaches to the problems. Later,

we changed our plan to use an existing scripting language and an interface generating

tool to meet our design considerations to have a more stable development environment

with sufficient support from both the language community and the tool community. Our

initial design of a programming language helped us in choosing a scripting language and

a tool for our RAD model.

14

15

3.1. Choosing a Scripting Language and a Tool

In our RAD model, extensions are considered as inputs and these may be divided

into inputs, functions or applications. Input level components represent data types or data

structures implemented in CIC++, such as classes, linked lists, or trees. Function level

components are operations using input level components, such as copying structures,

merging linked lists, and printing trees. Applications level input consists of algorithm

implementations that use a collection of functions, data structures and data types.

3.1.1. Selection Criteria

Our selection criteria are based on universal usability. In other words, we have

preferred simplicity of grammar and ease of use to extra functionality or better support

for advanced programming concepts. Complicated data structures and procedures may be

built with CIC++ as extensions. As such, the two major criteria are simplicity and

extensibility.

• Simplicity of grammar: The number of operators and readability of syntax may

measure the simplicity of a grammar. Similarity with widely used programming

languages does not necessarily mean simplicity.

• Extensibility: Specific support for CIC++ libraries, since CIC++ are heavily used

to develop components for CPU intensive operations. Supporting use of such

available resources will speed up the development process as well as achieve

better run-time performance.

Also there are some minor issues in choosing a language. These features are

desirable but not mandatory. They are embeddability and availability of contributed

16

repository.

• Embeddability: If a language offers embeddability, developers can easily

produce distribution packages converting scripts into system programming

languages. Furthermore, application-specific scripting environments may be

created easily by using the embeddable part, run-time to be exact, even after

packaging.

• Contributed repository: If a well-maintained repository is available, many tasks

can be easily automated by using existing scripts with minimal modification. This

may cut down development time since finding necessary modules and/or scripts

does not take long. Also beginners can learn how to program by looking at scripts

from a repository as examples.

3.2. Why Tel

Since Tel was developed to control components written in compiled languages, Tel

provide a more convenient and easier way of extending the language itself as well as

embedding itself into other projects done with compiled languages.

We selected Tel for our RAD model because of the following reasons.

• Simplicity: Tel is a simple language to learn and use. Even though people

criticize its syntax due to unusual style with respect to other system programming

languages, most of them agree that the syntax of Tel is easier and simpler than
'

other scripting languages [20, 21, 22]. Tel has fewer data types. Although this

often is a cause of run-time inefficiency due to massive type conversion, fewer

data types make scripting a lot easier and more convenient than using compiled

languages with many data types.

• Extensibility: Tel supports both static and dynamic extensions [23].

• Script Repository: Tel has the central repository maintained by Scriptics for the

contributed scripts, which covers variety of different problem domains [24].

17

• Tk: Tk is a graphical user interface (GUI) extension originally developed for Tel.

Even though many other scripting languages ported Tk into their languages, since

Tk was developed for Tel, users can take advantage of many existing Tk widgets

not available for other platforms when it is used with Tel.

• TclPro: Recently Interwoven acquired Ajuba Solutions, previously Scriptics, and

put TelPro into the public domain. TelPro is a commercial version of Tel, which

comes with powerful development tools, such as the Tel compiler and a GUI

debugger.

3.3. Why SWIG

After reviewing some of the possible tools that could be used to create extensions

from CIC++ libraries, we decided to use SWIG Even though SWIG does not support

C++ advanced features such as template and polymorphism, there are more reasons to

use SWIG over the other tools that we reviewed [25, 26].

The following summarizes key features of SWIG

• SWIG runs on Unix, Windows and Macintosh and interfaces with five popular

scripting languages. The other tools that we have reviewed mostly support one or

two scripting languages.

• SWIG may be used with any ANSI compliant CIC++ compilers, and it requires

minimal programming knowledge to use. SWIG only requires CIC++ header file

to generate wrapper while the other tools are more tied to implementation parts.

• SWIG requires simpler input than any other existing tools with sufficient help

documentation. SWIG uses ANSI standard CIC++ style input. Compared to the

other tools, it is has the simplest interface requirement.

3.4. Scripting RAD Model

A RAD environment can be created with a scripting language and a tool extending

the language. Such a RAD environment may become simpler, yet more programmable

and flexible than popular RAD tools. Differences between the approach of traditional

RAD tools and our RAD model are as follows.

18

First, traditional RAD tools require an interface definition with IDL, a new language

that has over 140 keywords and takes significant time and effort to learn, while our RAD

model takes an ANSI C style interface definition that is an input to SWIG An example of

an IDL file may look like this.

uuid (ba209999-0c6c-11 d2-97cf-00c04f8eea45),

version(1.0),

pointer_default(unique)

interface cxhndl

{

typedef [context_handle] void *PCONTEXT _HANDLE_ TYPE;

short RemoteOpen(

);

[out] PCONTEXT _HANDLE_ TYPE *pphContext,

[in, string] unsigned char *pszFile

short RemoteClose([in, out] PCONTEXT _HANDLE_ TYPE *pphContext);

void Shutdown(void);

And the equivalent input for SWIG may look like this.

%module cxhndl

%typedef void *PCONTEXT _HANDLE_ TYPE;

extern short RemoteOpen(PCONTEXT_HANDLE_TYPE*, unsigned char*);

extern short RemoteClose(PCONTEXT _HANDLE_ TYPE*);

extern void Shutdown(vo1d);

Second, interfaces generated from IDL require further work, since IDL compilers

generate only skeleton code. On the other hand the interface generated from SWIG does

not require any modification and it is ready to use. Thus we can take one step further to

connect this to automatic extension generation.

Overall, traditional RAD tools require both source code preparation and interface

coding along with interface definition, while our RAD model only requires small

modifications on source code and interface definition.

In addition to the above differences, using a scripting language adds the following

characteristics to our RAD model;

19

• Programming: A scripting language serves as a host in our RAD environment,

which simplifies programming effort and cuts development time. A scripting

language is used to control and layout components of all levels.

• Abstraction: A scripting language can add higher-level abstraction to an

application while hiding details of code within extensions.

• Tools Integration: Scripting languages often come with facilities to perform

tools integration, since this was the main purpose to begin with. When application

level components are used in our RAD model, users may easily integrate those

components with simple scripting.

• Encapsulation: Extensions are in form of compiled modules. All data member

and operations related to a module are encapsulated within a compiled

component.

• Deployment: Developed applications may be distributed in the form of scripts or

20

compiled byte-code, along with compiled extensions. A programmer may need to

provide different extensions for different operating systems.

CHAPTER4

CASE STUDY

We have implemented applications to explore the use of tools that we chose. The

possibility of using these tools to solve real world problems was examined through the

application development process.

The first application is to examine the practical usability of Tel and SWIG as an

application development environment, and the second application is to see if SWIG

handles C implementations without requiring users to modify source code in detail.

4.1. Platforms

To ensure the usability of the scripting environment that we have selected,

application development is done on the two systems described below. Applications have

been thoroughly tested and run without error.

4.1.1. First Platform

• Computer: Intel Pentium ill 600MHz

• Memory: 256MB

• OS: Red Hat Linux Release 6.2 <Zoot> Kernel Version 2.2.14-5.0

• Compiler: GCC version egcs-2.91.66 19990314/Linux <egcs-1.1.2 release>

• SWIG: version l.3u-20001025-2235 <Alpha 1> compiled with GCC

• Tel: 8.0

21

22

4.1.2. Second Platform

• Computer: Intel Pentium III 500MHz

• Memory: 128MB

• OS: Microsoft Windows 2000 Professional

• Compiler: GCC version 2.95.2 for Mingw32

• SWIG: version 1.1-883 compiled with Microsoft Visual C++ 6.0

• Tel: 8.3 with Mingw32 patch

4.2. Ray Tracer

A ray tracer is an application to draw photo-realistic 3 dimensional images by testing

the relationship among rays, objects and lights. For this testing, a huge number of

computations are required on points, vectors, and objects. That is the reason that we

chose this application to check the possibility of using a selected scripting environment as

an application development tool. For our experiment, we used a six hundred by six

hundred pixel scene and one object with neither visual effects nor speed up algorithms,

such as specular reflection or scan line ray tracing, respectively. The algorithm

implemented for the experiment is as follows [28].

Set up a sphere == Sph;

Set up a position of viewer == V;

Set up a location of light == L;

Set up a screen == S;

For 1=0 to l==Width of screen in pixel -1

For J=O to J==Height of screen in pixel -1

If a ray from V thru S(l,J) hits Sph

Set brightness on S(l,J);

Else Set brightness to background color;

23

4.2.1. Development of Ray Tracer

We chose five C++ libraries written by Wilbon Davis to build data structures and

essential operations as shared objects to implement the Ray tracer algorithm [29]. To

work with SWIG, we modified these libraries because SWIG does not support private

attributes, friend functions, and polymorphism. The libraries are point, vector, ray, sphere,

and psgray. We used a simple gray scale Postscript library for visualization of output.

Here is an example header file that we have changed.

Before changes:

class point3 {

float x, y, z;

public:

};

point3(float, float, float);

point3(void);

float abs();

float xx();

float yy();

float zz();

friend vector3 operator-(const point3 &, canst point3 &);

friend point3 operator+(const point3 &, canst vector3 &);

friend point3 operator+(const vector3 &, canst point3 &);

After changes:

class point{

public:

float x, y, z;

point(float, float, float);

point(){};

void setpoint(point);

float abs();

};

vector point_sub(point, point);

point vector_add(point, vector);

24

We manually changed all data members and methods to public components, for two

reasons. One is to prevent access violations due to the limitations of SWIG SWIG

bypasses all private members and methods when it wraps a class, and SWIG does not

work with friend functions [25]. The other is to retain some level of data encapsulation by

keeping methods within a class, which provides an object like interface to a scripting

language.

In case of constructors, SWIG only wraps the first to be accessed from a script. We

include a dummy default constructor in the header file to cheat the C++ compiler. C++

compilers do not compile sources if an object has overloaded constructors but no

explicitly defined default constructor.

We manually renamed overloaded operators and functions. SWIG offers many

different ways to perform these tasks [25], such as renaming overloaded function names

during wrapping and adding a function to translate overloaded function names during

run-time. We renamed friend vetor3 operator-(const point3&, const point3&) to

point_sub,friend point3 operator+(const point3&, const vector3&) to vector _add, and

removedfriend point3 operator+(const vector3 &, const point3 &). Another example

shows what changes we have applied to the implementation files according to changes on

header files.

Before changes:

point3::point3(float a, float b, float c){

x = a; y = b; z = c;}

point3::point3(void){

X =Y= z = O;}

vector3 operator-(const pomt3 & p, const pomt3 & q){

return vector3(p.x-q.x, p.y-q.y, p.z-q.z);}

float point3::abs(void){

return sqrt(x*x + y*y + z*z);}

After Changes:

pomt::point(float a, float b, float c){

x = a; y = b; z = c;};

void point: :setpoint(point p){

x = p.x; y = p.y; z = p.z;};

float point: :abs(){

return sqrt(x*x + y*y + z*z);};

vector point_sub(point p, point q){

return vector(p.x-q.x, p.y-q.y, p.z-q.z);};

point vector_add(point p, vector d){

return point(p.x+d.x, p.y+d.y, p.z+d.z);};

25

Since SWIG does not support function overloading, we chose just one of the

constructors, which is point(jloat, float, float), because this is the only constructor

invoked by external clients to initialize point class. We have added a function void

setpoint(point) to replace the default constructor, and point vector _add(point, vector) was

moved from the vector library to the point library.

Point library has a data structure to store x, y, and z values and functions which

perform arithmetic operations with its data structure. Once we wrap the point library with

SWIG, the following functions are created either from the library or by SWIG

Module Point:

point_x_set self x

point_x_get self

point_y_set self y

[Member data: returns float]

point_y_get self

point_z_set self z

point_z_get self

new_point { float } { float } { float }

point_setpoint self { point * }

point_abs self

point_sub { point * } { point * }

vector _add { point * } { vector * }

[Member data: returns float

[Member data: returns float

[Constructor: returns point *]

[Member : returns void

[Member : returns float

[returns vector]

[returns point]

26

Except new _point and vector _add, all the other function names start with point. This

naming convention will give the users a better idea about which call belongs to which

library. Since all the functions listed above were packed as a shared object module,

utilizing SWIG's naming convention along with careful function naming can create

object oriented programming environment, at least from the interface point of view.

After compiling all the libraries into shared object modules, we developed a ray

tracer with Tel. We loaded those modules into Tel and implemented the algorithm

presented earlier. While implementing the algorithm, we could take great advantage of

the Tel interpreter. Tel run-time gave us prompt responses upon each statement,

significantly speeding up development. The Tel interpreter contributed in two ways. First,

we were able to fix syntactic errors within Tel run time without going through source

code to find mistakes or arguments incompatible to a function. Second, in case we

wanted to see a function return, we were able to examine the function without writing a

driver part as we do in CIC++.

Using extensions from Tel environment may start with loading extensions to Tel

environment like this.

% load ./vector.so

% load ./point.so

Upon successful loading, we can check newly added commands by invoking the

info function from Tel environment. The return of the command serves as a simple

reference of newly added commands.

% info command point*

27

point_x_get point_z_get point_x_set point_z_set point_setpoInt point_y_get point_y_set

point_abs point_sub

% info command vector*

vector_x_get vector_z_get vector_x_set vector_z_set vector_mul vector_diff vector_abs

vector_y_get vector_add vector_norm vector_y_set vector_setvector vector_sum

When a command is used with missing arguments or incompatible data type

arguments, the Tel environment returns error messages as follows.

% point_setpoint

Wrong # args. :point_setpoint self { point * } argument O

% set A_vector [new_vector 1.5 1.5 2.5]

8062528 vector _p

% point_x_get $A_vector

Type error. Expected _point_p:point_x_get self argument 0

Here is a script that implements the ray tracing algorithm.

set Obs [new_point O O 12]

set Center [new_point .3 .4 -6]

set Light [vector_norm [new_vector 2 10 51]

set sphptr [new_sphere $Center 2.5]

set screen [new_psgray 600 600 6 6]

for {set i O} {$i < 600} {incr i 1} {

for {set j O} {$j < 600} {incr j 1} {

set a [new_point [expr $i*.01-3] [expr $j*.01-3] O]

}

set a [point_sub $a $Obs]

set rayptr [new_ray $Obs [vector_norm $a]]

set t [intersect $sphptr $rayptr]

if {$t==-1.0} {

set B .3

} else {

set a [ray_at $rayptr $t]

set a [point_sub $a $Center]

set a [dot_product [vector_norm $a] $Light]

set a [max O $a]

set B [expr .64*$a+.16]

}

psgray_setpixel $screen $i $j $8

28

To investigate run time efficiency we also developed the same ray tracer using C++.

The C++ version of the ray tracer outperforms the Tel version as we expected. But once

we rebuilt an extension with the ray tracer algorithm implemented in C++, the difference

between execution time of the compiled executable and the extension invoked within Tel

almost disappeared. Execution times measured under the Windows 2000 system is as

follows.

• Tel Version with the algorithm implemented in Tel 102 seconds

• Tel Version with the algorithm implemented in C++ 1.5 seconds

• C++ Version 1.3 seconds

Also we measured execution times under Linux system.

• Tel Version with the algorithm implemented in Tel 53 seconds

• Tel Version with the algorithm implemented in C++ 1.2 seconds

• C++ Version 0.8 seconds

29

The first Tel version uses input level components and implements the algorithm

within the Tel environment. The algorithm uses a doubly nested for loop with many calls

to external components. This demonstrates that the level of abstraction of the source

classes and methods determines the runtime performance of applications written with a

generated interface. High frequency calls to extensions can easily lead to unsatisfactory

runtime performance. Thus it will be necessary to provide higher-level inputs that

combine the necessary components so that high frequency calls are not needed by the

scripts.

4.3. Voronoi diagrams

In the first application we modified the source codes written in C++ because SWIG

does not support advanced features of C++. On the other hand, SWIG claims to be

compatible with C [25]. So in the second application we examined whether C sources can

work with SWIG without requiring users to understand source code.

The code used in our second experiment was written by Steven Fortune to compute

Voronoi diagrams [30, 31]. This is a widely used 2D code for Voronoi diagrams and

Delauney triangulations, based on Steven Fortune's sweepline algorithm. Voronoi

diagrams are useful for various problem domains, such as nearest neighbor search,

facility location, largest empty circle, and path planning. A Voronoi diagram is a

geometric structure that represents proximity information about a set of points. The

program computes Voronoi diagram with a set S of points p_l, ... ,p_n, and program

returns the answer that is a decomposition of space into regions around each point, such

that all the points in the region around p _i are closer top _i than any other point in S [32,

30

33].

4.3.1. Working with the Voronoi code

We realized that the original Kernighan & Ritchie coding style function headers [34]

used throughout the Voronoi code were not recognized by SWIG We solved this problem

by replacing those function headers with ANSI standard style headers.

Before change:

voronoi(triangulate, nextsite)

int triangulate;

struct Site *(*nextsite)();{ ... }

After change:

voronoi(int triangulate, struct Site* (*nextsite)()){ ... }

Even though SWIG was able to understand sources there were still two more

problems. One was due to a complex pointer, such as function pointer, and the other was

caused by arrays. We solved the first problem by adding a typedef to replace the function

pointer with a void pointer, and the second problem by adding type-mapping codes to

access array contents [25]. SWIG works smoothly after above modifications and we

generated a dynamic linked library on our second attempt.

Code added to Voronoi interface file voronoi.i:

%include typemaps.i

o/otypemap(memberin)struct Site * [2] {

$target=$source;

}

%typedef struct Site* (*NS_FUNC)();

Code added to Voronoi.c:

#ifdef SWIG

void vorono1(mt triangulate, NS_FUNC nextsite)

#endif

#ifndef SWIG

void voronoi(int triangulate, struct Site* (*nextsite)())

#endif

31

When we tried to load the Voronoi extension into Tel shell, we found that Tel did not

load a module with function declarations that lacked definitions. After we commented out

non-defined function declarations, extension loaded properly and we were able to use

functions from the voronoi source code.

4.3.2. Tel Voronoi Script and Helper Functions

Upon loading the Voronoi extension to Tel shell, we discovered small problems

when we were trying to call the main() function from the Tel environment. One was

related with top level C function main() and the other was with the arguments of the

main().

The main() problem was solved during compilation of the extension by turning on

the -Dmain option, which most of compilers have, and replaced the name main() with

another name [35].

In order to pass arguments of the main() from Tel we developed helper functions and

a script. The helper functions were defined using SWIG's inline function defining facility

to create a C style array, and the script was written with Tel to change a Tel list into a C

style array. By doing this we could pass options to the C pre-compiled module as if they

are int argc and char **argv [25].

Voronoi.tcl:

load ./vorono1.so

load ./carray.so

proc voronoi {option channel} {

set argptr ''\-$option $channel"

cvoronoi 1 $[ChlistToArray argptr]

}

proc ChlistToArray {I} {

set length [llength $1]

set a [ch_array $length]

setiO

foreach item $1 {

return a

ch_set $a $i $item

incr i 1

Carray.i:

%inline%{

char *ch_array(int size) {

return (char *) malloc(size*sizeof(char));}

char ch_get(char *a, int index) {

return a[index];}

char ch_set(char *a, int index, char value) {

return (a[index] = value);}

%}

o/oname(ch_destroy) void free(void *);

Voronoi.tcl takes an option and passes it to cvoronoi, which is equivalent to the top

level C function main(). When it passes arguments to cvoronoi, it calls ChListToArray,

which is actually a C implementation, to convert a list to a character array.

32

33

Upon experimenting the Voronoi code, we have tested a few CIC++

implementations from Weisses Data Structures [36]. Those are linked list, stack, and

queue. We were able to generate DLLs from this source code. Generating Dils from this

code did not require any modification or helper function. This shows the possibility of

using the system without any modification on source code.

CHAPTERS

SIDE

5.1. Simple Integrated Development Environment

SIDE is an add-on utility to existing scripting languages and SWIG to provide more

convenient and accessible development environment that we have explored. SIDE uses

SWIG, scripting languages supported by SWIG, and an ANSI C compiler to form an IDE

for RAD.

We initially developed SIDE for two purposes. First, it was developed as a stub

generator to create interface templates that users can fill in easily. Second, under the

Windows environment, SIDE works as a Dynamic-Llnk Library (DLL) generator that

requires as little as two mouse button clicks. The current version of SIDE supports not

only these but also following features.

• SIDE was developed using Tclffk, which allows porting it to other operating

systems.

• It has a clean and easy to understand GUI.

• It can load and save interface files from/to a file.

• It can select a preferred documentation form.

• It has built-in html style help file system.

• Navigation-help system is built into main window.

34

C/C++ Header

and/or Source

Files

CIC++ Compiler

Object code from

C/C++ Source

Linker

Interface Template

SWIG

Wrapped Interface

Object code from

Wrapped Interface

Shared Object

Figure. 5.1 .1 SIDE

SIDE

Tcl/Tk Runtime

Figure 5.1.1 shows the layout of SIDE. SIDE includes SWIG, a C/C++ compiler,

and a Linker to provide one simple development environment to users. SIDE takes

existing CIC++ headers and/or implementations as inputs and generates a shared object

as an output. Internally when input is given to SIDE, SIDE generates an interface

template and provides it to SWIG as an input that is required by SWIG in order to

35

generate a wrapper. When the build command is issued by a user, SIDE generates a

shared object by invoking SWIG, the CIC++ compiler and linker calls in appropriate

order.

SIDE may be used in two different ways, as shown below.

36

The first scenario is to start from an existing interface file. In this case, load the

existing interface file from menu option Load under File section, as shown in figure 5.1.2,

set path and library include information, as shown in figure 5.1.3, set compile options as

shown in figure 5.1.4, and build a shared object by choosing menu option Build under

File section, as shown in figure 5.1.5.

load

SWI

Eldl

Loedmtqiilllf-=-ie

Figure. 5.1 .2 Initial Program Screen

Figure. 5.1.3 Setting the Include File & Path

COIIIPler Tp==~

G:· GNUC

Borland

Doculmtmallon Type

C LaTeX

Figure. 5.1 .4 Setting the Compile options

37

EJdl

8uid a shared blf)I ftom Cl.11.-t ..uings

Figure. 5.1.5 Building a shared object

The second possibility is to start from ground zero and build a shared object. In this

case, open SIDE and select Add Library or Add Functions from menu option CIC++.

Upon reading a CIC++ source code, SIDE will display an interface file template on the

.main screen. In many cases, the user may build shared objects without editing this

template interface file by choosing Build under menu option File. The user can edit

contents in the main window, but the changes will not be saved unless the user selects

Save or Build.

5.2. Generating Dynamic-Link Libraries

38

A Dynamic-Link Library (DLL) is a collection of modules that contain functions

and data. It is the form of the scripting language extension under the Windows

environment in our project. A DLL is loaded at run time by the scripting language. Under

39

UNIX systems, a shared object is the counter part of a DLL. It is fairly simple to generate

shared objects under UNIX systems, but in the Windows environment there is no simple

way to generate DLLs. One of the main functions of SIDE is automatic DLL generation.

DLL generation requires resolving dependencies, including appropriate precompiled

objects, and invoking many compiler and linker commands. The number of commands

need to be invoked depends on the compiler. In our project we use the GNU ported

Ming32 CIC++ compiler. In order to generate a DLL for Tel from a simple hello world

program written in C++, we need to invoke at least seven compiler and linker commands

as follows [35].

swig -tel -c++ helloworld.i

c++ -DBUILDING_DLL=1 -g -c -l<Tcl_lnclude> helloworld.cpp

c++ -Wl,--base-file,<base_file> -mdll -Wl,-e,_DIIMainCRTStartup@12 \

-o helloworld.dll helloworld.o helloworld_wrap.o <Tcl_Lib>

dlltool --base-file <base_file> --output-exp <exp_file> \

--def helloworld.def

c++ -Wl,--base-file,<base_file> <exp_file> -mdll \

-Wl,-e,_DIIMainCRTStartup@12 \

-o helloworld.dll helloworld.o helloworld_wrap.o <Tcl_Lib>

dlltool --base-file <base_file> --output-exp <exp_file> \

--def helloworld.def

c++ <exp_file> -mdll -Wl,-e,_DIIMainCRTStartup@12 \

-o helloworld.dll helloworld.o helloworld_wrap.o <Tcl_Lib>

SIDE replaces these calls with as little as one mouse button click by resolving file

40

dependencies and library inclusions upon adding a C/C++ file into the system. Detailed

information about DLL specifications can be found in the Microsoft Developer Network

Library [37, 38].

5.3. Setting up the Development Environment

We developed SIDE to be used under the Windows platform. The following steps

show how to set up the development environment for Windows.

Download and install TclPro. Since SIDE uses many extensions in TclPro, installing

TclPro would prevent most errors due to missing packages. Alternatively, install Tel and

add [incr Tel J, TclX, and [incr Widgets J. TclPro and extensions are available at Tel

homepage [13].

Download a stable version of SWIG, not the latest version or beta version.

Experimental versions often cause problems with compilers and operating systems.

Compiling SWIG under the Windows system requires a makefile modification unless

compiler is Microsoft Visual C++ or Borland C, since SWIG provides makefile templates

for those two compilers.

Since SIDE invokes the compiler from a command line interface, the environment

variables, such as bin path, include path, and lib path, must set correctly. SIDE gets

default lib path and include paths from system variables. Default path variables may be

changed within SIDE but SIDE will not change the system variables permanently. If the

bin path for the scripting language and compiler are not found from environment

variables than SIDE will fail to build shared objects.

5.4. SIDE integration plan

While developing SIDE, we identified some features which may be added to the

system later. These possible improvements in next version of SIDE are as follows.

• Platform independence by implementing OS checking and extending

initialization to cover various environments.

41

• Semi-automatic interface template generation that overcomes the limitations of

SWIG by validating the source code. For instance, if a source contains a complex

function definition, then SIDE will generate a stub to replace the complex

function definition with a pointer.

• Database facility to keep track of shared objects created by SIDE.

l
• Project template to expedite application development by providing shared objects

from the database.

6.1. Summary

CHAPTERS

CONCLUSION

We have demonstrated that the scripting RAD model using SWIG and Tel could be

used to build extensions from existing C++ libraries and to develop a CPU intensive

application like RayTracer.

Total development time of the Tel version of RayTracer including time taken to

prepare the modules is roughly half of the time taken to develop the C++ version of the

same application. Although total development time may depend on developer's

experience and expertise with the given development environment and problem domain,

our result is consistent with a recent article comparing development times of scripting

languages and compiled languages [1].

Even though the Voronoi code that we have used here is a highly recommended

program in computational geometry field, since it was developed quite a while ago, the

code itself was not easy to understand due to its use of different style of programming.

But without understanding the details of the Voronoi diagram algorithm, by using

mechanisms provided by SWIG, we were able to build a shared object to be used as an

extension within Tel. SWIG could handle C very well, which confirms usability of this

tool in a RAD environment.

42

43

Overall, we conclude that the use of a scripting language, Tel in particular here, and

SWIG may serve as an efficient alternative to existing RAD tools, such as Microsoft

Visual Basic and Borland Delphi.

6.2. Future Work

The next version of Tel will include finer Tel], either as a plug-in extension or as a

built-in feature [39]. With this improvement, Tel will support object oriented

programming and complex data structures.

It is possible to overcome the limitations of SWIG by applying techniques described

in the SWIG manual, or by obtaining solutions from the SWIG community. The SWIG

community often provides surprising solutions for the limitations of SWIG, such as

polymorphism. SWIG will directly support these techniques in the future. But since

SWIG is solely a voluntary work it is hard to say when those techniques will be added to

the system. Meanwhile the techniques from either the SWIG manual or the SWIG

community will be implemented in SIDE.

SIDE may be used to expedite the application development process by shortening

the time required for building extensions, and once SIDE is improved, as we described in

Chapter 5, it will become a full-fledged IDE for RAD.

Appendix

Attached disk contains following files.

Examples

Ray Tracer

Executable

C_RayTracer.tcl

Tcl_RayTracer.tcl

RayTracer.exe

Extensions

Linux

point.so

psgray.so

ray.so

Ray Tracer.so

sphere.so

vector.so

Windows

Interface Files

point.di!

psgray.dll

ray.dll

RayTracer.dll

sphere.di!

vector.di!

point.i

psgray.i

ray.i

RayTracer.i

44

Voronoi

sphere.i

vector.i

Modified Source code

C_RayTracer.cpp

point.cpp

point.h

psgray.cpp

psgray.h

ray.cpp

ray.h

RayTracer.cpp

RayTracer.h

sphere.cpp

sphere.h

vector.cpp

vector.h

Original Source code

point.cpp

point.h

psgray.cpp

psgray.h

ray.cpp

ray.h

sphere.cpp

sphere.h

vector.cpp

vector.h

Extensions

carray.so

voronoi.so

Interface Files

45

SIDE

SWIG

Tel83

SIDE0.1.tcl

carray.i

voronoi.i

Contains Pre-compiled SWIG for Windows

Contains Tel 8.3 with patch for Ming32 GNU compiler

46

SIDE expects to be used with Ming32 GNU compiler in current version. Ming32

GNU compiler may be obtained from http://www.xraylith.wisc.edu/~khan/software/gnu

win32/index.html.

Tel folder and SWIG folder may be copied over to a target machine. Please make

sure that the SWIG folder copied into C:\SWIG or append the path with whatever the

directory SWIG is located, and update Tel folder location within SIDE.

References

[1] Lutz Prechelt. An empirical comparison of C, C++, Java, Perl, Python, Rexx, and

Tel for a search/string-processing program Technical Report 2000-5, 34 pages,

Universitat Karlsruhe, Fakultat fiir Informatik, Germany, March 2000

[2] John K. Ousterhout. Scripting: Higher Level Programming for the 21st Century,

IEEE Computer magazine, March 1998

[3] David M. Beazley: (1996) SWIG: An Easy to Use Tool for Integrating Scripting

Languages with C and C++, Proceedings of the USENIX Fourth Annual Tcl/Tk

Workshop, Monterey, California, July 1996

[4] David M. Beazley: (1996) Lightweight Computational Steering of Very Large Scale

Molecular Dynamics Simulations, Supercomputing '96 Conference Proceeding,

Pittsburgh, PA. November 17-22, 1996

[5] David M. Beazley: (1997) Feeding a Large-scale Physics Application to Python,

Presented at the 6th International Python Conference, San Jose, California. October

14-17, 1997

[6] Doris Appleby: (1991), Programming Languages: Paradigm and Practice, McGraw-

Hill, Inc.

[7] Stavros Macrakis. Usenet message from comp.compilers, Mar 1995

[8] Larry Wall. Usenet message from comp.compilers, Mar 1995

[9] Bahorsky, R. (ed.), Official Internet Dictionary, Government Institutes. 1998

47

[10] The www.perl.com home page, http://www.perl.com

[11] Perl4 Gotchas, http://www.perl.com/CPAN-local/doc/misc/ancient/Gotchas4

[12] Python language home page, http://www.python.org

[13] Tcl/Tk home page, http://www.scriptics.com

[14] John K. Ousterhout. History of Tel,

http://dev.scriptics.com/advocacy/tclHistory.html

[15] Juergen Wagner. Re: GNU Extension Language Plans, Usenet message from

comp.lang.tel, October 1994

[16] SWIG homepage, http://www.swig.org

[17] jWrap homepage, http://www.fridu.com/Html/jWrap.html

[18] Mktclapp homepage, http://www.hwaci.com/sw/mktelapp/index.html

[19] SILOON homepage, http://www.acl.lanl.gov/siloon/index.html

[20] Richard Stallman. Why you should not use Tel, Usenet message

<94092323 l 4.AA29957@mole.gnu.ai.mit.edu>, September 1994

[21] John Ousterhout. Re: Why you should not use Tel, Usenet message

<367307$1un@engnews2.Eng.Sun.COM>, September 1994

[22] Cameron Laird and Kathryn Soraiz. Choosing a scripting language; Perl, Tel, and

Python: they're not your father's scripting languages, Sun World Online -

http://www.sunworld.com/swol-10-1997 /swol-10-scripting.html, October 1997

[23] Brent Welch and Michael Thomas. Tel Extension Architecture. Presented at the

Tcl/2k conference, February, 2000

[24] Tel Software Resources, http://dev.scriptics.com/software/

[25] SWIG online user manual, http://www.swig.org/Docl .1/HTMIJContents.html

[26] David M. Beazley: (1998) Using SWIG to Control, Prototype, and Debug C

48

Programs with Python, 4th International Python Conference

[27] Geometry in Action, http://www.ics.uci.edu/~eppstein/geom.html

[28] Wilbon Davis. Ray tracer algorithm, October 1999

[29] Wilbon Davis. Point3, Vector3, Ray3, Sphere, Psgray Libraries, October 1999

[30] Steven Fortune. A sweepline Algorithm for Voronoi Diagrams, Algorithmica 2:

153~174, 1987

[31] Steven Fortune. Voronoi Code. http://netlib.bell-labs.com/netlib/voronoi

[32] Steven S. Skiena. The Algorithm Design Manual, November 1997

[33] Joseph ORourke. Computational Geometry in C 2nd ed, September 1998

49

[34] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second

Edition, Prentice Hall, Inc., 1988

[35] GCC user manual, http://gcc.gnu.org/onlinedocs/gcc_toc.html

[36] C Language Implementations; Weisses Data Structures,

http://www.cs.sunysb.edu/~algorith/implement/c.shtml

[37] Dynamic-Link Libraries, MSDN SOK,

http://msdn.microsoft.com/library/psdk/winbase/dll_512r.htm

[38] Ruediger R. Asche. Rebasing Win32 DLLs: The Whole Story.

http://msdn.microsoft.com/library/techart/msdn_pagetest.htm, September 1995

[39] Tel Improvement Proposal: (2000), http://www.cs.man.ac.uk/fellowsd-bin/TIP/

