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Optimal control and homogenization in a mixture
of fluids separated by a rapidly oscillating
interface *

Hakima Zoubairi

Abstract

We study the limiting behaviour of the solution to optimal control
problems in a mathematical mixture of two homogeneous viscous fluids.
These fluids are separated by a rapidly oscillating periodic interface with
constant amplitude. We show that the limit of the optimal control is the
optimal control for the limiting problem

1 Introduction

The aim of this paper is to study the optimal control problem in a mixture of
fluids. More precisely, we consider a mixture of two viscous, homogeneous and
incompressible fluids occupying sub-domains of a bounded domain ¢ R"*!
(n =1 or 2). These fluids are separated by a given interface whose form is
determined using a rapidly oscillating function of period € > 0 and constant
amplitude h; > 0.

We assume that the velocity and pressure of both fluids satisfy the Stokes
equations. On the interface, we assume that the velocity is continuous and that
the normal forces that the fluids exert each other are equal in magnitude and
opposite in direction (hence, surface tension effects are neglected).

We associate an optimal control problem to these equations and our aim is
to study the limiting behaviour of the solutions when the oscillating period &
tends to 0. To do so, we use some homogenization tools (see Bensoussan-Lions-
Papanicolaou [4] and Sanchez-Palencia [15]) and Murat’s compactness result
[11].

This work is based on the mathematical framework of Baffico & Conca [3]
for the Stokes problem, of Brizzi [5] for the transmission problem, and of Baffico
& Conca [1, 2] for the transmission problem in elasticity.

The plan of this paper is as follows. In Section 2, we present the domain
with the rapidly oscillating interface, the Stokes problem posed in this domain
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and the definition of the associated optimal control problem. In Section 3,
we introduce the adjoint problem and present related convergence results. In
Section 4, we prove the results announced in the previous section. In Section 5,
we sketch the proof of the convergence results concerning the optimal control.
In Section 6, we present the case  C R2.

2 Setting of the problem

For n =1 or 2, let Y =]0,1[" and Q =]0, L;[™ with L; > 0, i =1,...,n. Let
h:Y — R,h > 0 be a smooth function such that

i) hlay = hy where hy = max{h(y) : y € Y} and hy > 0.
ii) Exists yo € Y such that h(yo) = 0 and V,h(yo) = 0.

For 2, € RT, define Q@ C Rrt+1 by Q = Qx] — 29, 20[ and T the boundary Q by
r=Qx {—Zo} U aQX] — Zo,Zo[UQ X {Zo}
To define the reference cell, we introduce the sub-domains:

A ={(y,2) €Y xR:h(y) <z < 2}
D ={(y,2) €Y xR: —25 <z < h(y)},

which are separated by the interface
I ={(y,2) €Y xR : h(y) = z}.
So that, we have the decomposition of the reference cell A (as in figure 2)
A=QuUTtUQ) = (Y x] — 20, 20])

When we intersect A with the hyperplane {Z = z}(0 < z < h;) we obtain
Y x {z} and the following decomposition for ¥ (as in figure 2)

Y =Y*(2) U~v(2) UO(z2),
where

Y*(z)={yeY :h(y) >z}, O(z) ={yeY:h(y) <z},
V(z) ={y €Y : h(y) = 2}.

Let € > 0 be a small positive parameter. We extend h by Y-periodicity to R",
we restrict this function to  (this function is still denoted by h). Let

Now we introduce

Q5 ={(z,2) eQxR:h(x) <2< 2}
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Figure 1: The reference cell A

Q5 ={(2,2) € QxR: —29 < z < h*(z)}
and the rapidly oscillating interface is therefore defined by
I°={(z,2) e QxR:he(z) = z}.
So that, we obtain the following decomposition of Q (see figure 2):
Q=0;UI*uQs.
Finally, as in figure 2, we set 0 = ﬁx]hl, 2ol, Qm = (NZX]O, hil, Qo = ﬁx]—zo,O[.

We notice that Q = Q; UQ,, UQs.

The Stokes Problem
Let the viscosity of the problem defined by

1 = p1xos + faxas,

where 1, 2 > 0, 1 # p2, and xqs correspond to the characteristic functions
of Qf (1 =1,2).

We denote by ¥ = (v,vn41), a vector of R"*1. Throughout this paper, C
denotes various real positive constants independent of e. We also denote by |- |
the n-dimensional Lebesgue measure and by (ej)1<k<n the canonical basis of
R™ (y is the k-th component of y € R™ in this basis).
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Figure 2: Decomposition of Y when n =1 (left) and when n = 2 (rigut)
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Figure 3: Rapidly oscillating interface (left) and its homogenized version (right)
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We define the optimal control as follows. Let U,q C L*(2)"*! be a closed

non empty convex subset. Let NV > 0 be a given constant. For e U,yq the state
equation is given by the Stokes problem

—div(2ufe(@®)) = fF = Vp°+0 inQ
divic =0 in Q (2.1)
i =0 on 0N.

where (u°, p®) are respectively the velocity and the pressure of the fluid, g is the
control and f% is a density of external forces defined by f& = f! Xos; + PXQ;
with fi € L2(Q)"*1(i = 1,2). The rate-of-strain tensor e(@*) is

(Vi + var).

DN | =

e(@) =

The cost function is
L1 N [ -
J.(6) = —/e(ﬂ’s):e(ﬁa)dm—i——/ 72dz. (2.2)
2 Jo 2 /g

The optimal control é:f is the function in U4 which minimizes Js(é) for § € Uya,
in other words
Jo(02) = min J.(6). (2.3)
0cUyq
This problem is standard and admits an unique optimal solution 93 € Unq (see
Lions [10]). Our aim is to study the limiting behaviour of 6 as ¢ — 0. In
particular, it can be shown that (for a subsequence)

0° — 0, weakly in L2(Q)".

Our objective is to characterize 91 as the optimal control of a similar problem
with limiting tensors .4 and B and to identify these tensors. The homogenization
of the problem (2.1) is thanks to Baffico & Conca [3]. About the optimal control,
Saint Jean Paulin & Zoubairi [12] studied the problem of a mixture of two fluids
periodically distributed one in the other. Also this type of problem has been
studied by Kesavan & Vanninathan [9] in the periodic case for a problem which
the state equation is a second order elliptic problem with rapidly oscillating
coefficients and by Kesavan & Saint Jean Paulin [7] and [8] in the general case
(with H-convergence).

In this paper, we adapt these methods to the Stokes problem following the
technique used by Baffico & Conca [2] and [3], by Kesavan & Saint Jean Paulin
[7] and [8], and by Saint Jean Paulin & Zoubairi [12].

Definition We define L3(£2) by

I3 = {s € @) | glu)dy =0},
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The problem (2.1)—(2.3) can be reduced to a system of equations by introducing
the adjoint state (75,p®) € HY(Q)"*! x L3(Q). Thus we get

—div(2pfe(@)) = fE—Vp° +6 inQ
div(2pfe(v7) — e(u®)) = —Vp® in Q
divi®t =dive® =0 in Q

i =u°=0 on 09,
the optimal control 9?; is characterized by the variationnal inequality

05 €Uyg and | (T5 4+ NO).(6 — 6°)dz > OVE € Uyg.
Q

3 Convergence results

The homogenized adjoint problem

Let = p(y, z) (where y € Y and z €]0, hq[), be the variable viscosity given by

(Y, 2) = p1Xo() (y) + Xy« (=) (Y)-

Let us introduce some functions as solution of the Stokes problem defined on Y.
These functions, introduced by Baffico & Conca [3], are associated to the state

equation.
Let 1 < k,I <n, and let (x*',7}') be the solution of

—div(2ue, (—x* + P = v, ¥ iny
Y X

divy* =0 inY (3.1)
v X

Xkl,r’fl Y -periodic,
where P* = %(kal +lek)- We define M* the n x n matrix by M* = ey(ﬂkl).
We notice that [M*];; = %(52‘1@5]‘1 + 050;%) for all 1 < 4,45,k,1 < n. We also
define the n + 1 x n + 1 matrix

1
[Ekl}ij = 5(5#@5]! =+ 5il5jk) V1l < i,j, k’,l <n+1.

For each z €]0, h1], problem (3.1) admits an unique solution in (Hﬁ1 (Y)"/R) x
L3(Y) (see Sanchez-Palencia [15] or Baffico & Conca [6]).
Now, we consider the periodic problem

—div(uVy (=" +2y4)) =0 inY
v (3.2)

©*  Y-periodic.

For each z €]0, hy[ fixed, problem (3.2) has an unique solution in H*(Y) up to
an additive constant.
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Let A(z) be the fourth-order tensor whose coefficients are defined by

2/J,1 [Ekl]ij hy <z < 2z
Qijkl = § Qijki 0<z<h 1<4,5,kl<n+1 (3.3)
QMQ[EM]Z']' —20 <z < hi

with
fY 2,u[ey(fzkl +£kl)Ljdy 1<i4,5,k1<n
%fyp%lfy’“)dy 1<ik<n jl=n+1
%fyu%ﬁy’)dy 1<il<n jk=n+1
Aijrl = %fyua(_%%;'%k)dy 1<jik<n il=n+1 (3.4)

%fyu%;f‘y’)dy 1<4l<n i,k=n+1

3 Jy 2udy i, 5, kl=n+1

0 otherwise.

This tensor (introduced by Baffico & Conca [3]) is the homogenized tensor
associated to the state equation. By the same way, we introduce other test
functions which will be associated to the adjoint state.

Let (¢¥*, r5!) be the solution of

- dziJV(QNey(%kl) + ey(_xkl + Bkl)) = —Vyrgl nY
divy™ =0 inY (3.5)
vy

r, r§l Y -periodic,

For each z €]0, hy[, problem (3.5) has an unique solution in (H;(Y)”/R) X
L§(Y).
As we did for the problem (3.2), we introduce the scalar problem

— d;v(QpVywk + V(=" +2y1)) =0 inY (36)
3.6
Y*  Y-periodic.

For z €]0, hy| fixed, this problem admits an unique solution in H*(Y’) up to an
additive constant.

Let B(z) be the fourth order tensor which coefficients are given by

[Ej]ij h1 <z < 2

bijki =  bijke 0 <z<h 1<4,j,kl<n+1 (3.7)
[Ekl}ij —20 <z < hl



8 Optimal control and homogenization EJDE-2002/27

with
Jy (2M6y(¢’“l)]u+[ J(=X A+ PPYGYdy 1< gkl <n
ify( 6(%+2yk)dy 1<i,k<n jl=n+1
ifY(M@vt %zyl))dy 1<il<n jk=n+1
bigkt =4 1 [y (20 +M)dy 1<jk<n il=n+1
Tl 2 %M)dy 1<jl<n d4k=n+1
1 ij kI =n+1
0 otherwise.
(3.8)

Now we give a result concerning some properties of tensor A.

Proposition 3.1 (Baffico & Conca [3]) The coefficients of A in (3.3) sat-
isfy:

a) aijri(2) = ariij(2) = aijin(z) V1 <id,5,k, 1 <n+1, Vze€]— 2,2

b) there exists a > 0 such that for all £, n+ 1 x n+ 1 symmetric matriz,

A(R)E:E>af € Yz €]l — 20,20

Now we give a result concerning some symmetry and ellipticity properties
of the tensor B.

Proposition 3.2 The coefficients of B (voir (3.7)) are such that:
a) bijri(2) = briij(2) = biji(z) for 1 <i,j,k,1 <n+1, for all z €] — 29, 20|
b) There exists B > 0 such that for all £, the n + 1 x n+ 1 symmetric matriz,

B(2)¢: 6> PE:E Yz €] — 20, 20|

Proof. Throughout this proof, we adopt the convention of summation over
repeated indices. To prove a), we first study the coefficients of tensor B with
indexes 1 < i4,7,k,l < n. The symmetry of these coefficients is evident when
z €]h1, z0] and z €] — 29, h1].

Let study the case where z €]0, hy[. In this case (cf (3.8))

bijki = bfl;/kl = /Y (20 [ey(@kl)]ij + [ey(_Xkl +Bkl)}ij)dy' (3.9)

Following the ideas in [7, 12, 14], we transform the above expression to obtain
a symmetric form. Let (Y*, r5) be the solution of

—div(2ue, (~YF + PF)) = —v 7kl in Y
Yy
divY" =0 inY (3.10)
Yy

Y* kY _periodic,
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Introducing Y™ the solution of the previous local problem, the coefficients (3.9)
can be rewritten as

b = [ e+ P iy + | @uley @], = fen = Y], ).
(3.11)

The first term of the second integral of the right-hand side of this equation is

evaluated as follows (using the fact that [e, (%kl)] = [ey (gkl)] )

[ 2ules @] yn = [ 2mley @), 506000
:/Yﬂ[ey(@kl)}ﬂm(aﬁi(smj +6350mi)dy
= [ 2les @), fen (P 0

Using successively (3.1),(3.5) and (3.10), we have

= /Y ey (X = P)] 4, [ey (X)) 4,y
= /Y ey ™ = Y™)] 4, [es(X)] 4,0
Moreover using (3.10), we can rewrite the last integral as
J Lt = Y], ey )]
:/Y [ey(xkl _Xkl)]ﬁm [ey(g‘j _ Xij)]ﬁmdy
+/Y ey (6 = Y], e, (V)] dy
:/Y [ey(zkl N Xkl)]ﬁm [%(Xij _ Xij)]ﬁmdy
+/y [ey(Xkl _Xkl)]ﬂm[ey(ﬁij)]gmdy
:/Y [ey(Kkl _ Xkl)]gm [6y(fj _ Kij)]ﬁmdy +/Y [ey(xkl _ Kkl)}ijdy
Thus the second integral of the right-hand side of (3.11) can be rewritten as

/Y (2 [ey(ykl)]ij — [es (X" - Xkl)]ij)dy]

:\/;/[ey(zkl _Xkl)]ﬁm[ey(xij _X”)]gmdy
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Let us now consider the first integral in (3.11). Multiplying the first equation
of (3.10) by Y% and integrating by parts we have

/Y ey (<Y + P ey (V)] dy =,

Using the fact that [ey (Bij)]ﬂm = %(55i(5mj + 5,@j5mi), we obtain

/Y ey (=YM 4+ PY] | (e, (<Y 4+ PY)] dy
_ /Y ey (<YM 4 PH)] (e, (B, dy
= / [ey (=Y + )] dy.

Y

Then using definition (3.11), we derive

bijhi = / ey (Y 4P ey (Y 4P dy+ / ey (XF' =YH) ey (X7 —Y ) dy.

i i (3.12)
It is immediate from the above form that the coefficients of B satisfy b;;l = bkAlZ
On the other hand, since e, (P*) = ¢, (P'"") then by uniqueness of problem (3.1),
we have x* = x'* (up to an additive constant) and then bijki = bijik-

We now study the coefficients b;;,; withi =k =n+1and 1 < 7,1 <n. From
the definition of B (cf (3.7)), these coefficients are symmetric when z €]hq, 2|
and z €] — 29, h1[. To prove the symmetry when z €]0, hy[, we proceed as we
did before. These coefficients are as follows

1 (=& +2u1) ot
bpt1in = - — = 4+ 2u—)dy. 3.13
+1jn+11 4/ ( oy, + u@yj) Y ( )
Let 7% be the solution of
—Ay(—m* +2y) =0 InY
2 N e) (3.14)

7% Y-périodic.

The expression (3.13) can be rewritten as follows (using 7!):

1 [ o(—7"+2y) 1 ot (et — 1)
bpstins = - | ————Tdy + = 2U—— — =" dy. (3.15
et 4/Y dy; y+4/y( "oy, dy; Jdy.  (315)

Using exactly the same technique used above, we obtain (using (3.2), (3.6) and
(3.14))

0y 1/ o(¢' — ') 9(¢’ —79) /8(<pl—fl)
pJ R dy+ | =F—2dy.
/Y 'uayj 2)y Oy Y Y Y Ay, Y
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Therefore,

ot At =7 1 / (e — 1" B! —77)
/Y( uayj 0y, )y 2 )y Ou Oy, Y

Concerning the first integral in (3.15), we consider 7! the solution of (3.14):
multiplying the first equation by 77 and integrating by parts, we have

—dy = 07

/ o(—7' +2y,) 077
v Oy Oy

so we derive

_ Al ] . 1
/ O(—7" +2y;) O(—7 +2y])dy:2/ o(—1 +2yl)dy.
% Yk Yk % Jy;

Finally, we obtain the following expression

1 . 1 ) )
bot1jnt1l = 3 /Y V(—Tl—Fle).V(—TJ —|—2yj)dy—|—§ /Y V(gpl—TZ).V(cpj —77)dy.

(3.16)
From the form of (3.16), it is evident that bp41n+11 = bnt1int1;- By construc-

tion of B, we also have by111n+1; = bnt11jn+1. For the other nonzero terms, the
same method can be used to obtain

bint+1kn+1 = brntiint1 = ingintik

bin+1n+1l == bin+1ln+1 == bn+1lin+1

bnt1jkn+1 = bntijnt1k = Okntint1j-

To prove part b), we first notice that the coerciveness of B when z €]hq, o[
and z €] —2zo, hq[is evident. When z €]0, hy[, from the form of b, 1 < 4,5, k,1 <

—_~—

n (see (3.12)) and the form of b,y1jn+11 < j,1 < n (see (3.16), we have that B
is elliptic. O

Now we introduce the homogenized problem. Let (u,p) and (¥,p’) be in
(H' ()" x L%(Q))2 and be the solution of

(3.17)

where f is the weak limit of f% in L2(€2)"*! and we precise it later, (4.10).
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Remark 3.3 Since Propositions 3.1 and 3.2 hold, problem (3.17) admits an
unique solution.

Now we state the main result of this paper, and we will prove it in the next
section.

Theorem 3.3 Under some regularity hypotheses concerning the solutions of
(8.1), (3.2), (3.5), and (3.6) (detailed in Section 4) the solutions (u,p®) and
(75,p'%) of (2.4) are such that @€ — @ weakly in H'(Q)" T, & — @ weakly in
HY Q)" p° — p weakly in L3(Y), p'® — p’ weakly in LE(Q), where (@, p) and
(U,p") are the unique solutions of (3.17).

4 Proof of the convergence result

A priori estimates Let

£ = 2ute(ic), (4.1
q° =2pufe(v°) — e(u®). (4.2)

Proposition 4.1 The sequences (¢, p®), (U5,p'), £ and ¢° are such that (up
to subsequences)

i — @ weakly in H(Q)"! T — ¥ weakly in H'(Q)"H!
p° — p weakly in L3(Y)  p'® — p weakly in L3(Q)
€ — & weakly in L2(Q)" T gf g weakly in L2(Q) 1L

Proof. Using 4 as a test function in the first equation of (2.4), we can easily
see that there exists a constant C' > 0 independent of ¢ such that

1° || g1 @yt < C (4.3)
therefore, we have for a subsequence (still denoted by ¢)
i — i weakly in H'(Q)" !, (4.4)

Similarly, multiplying the second equation of (2.4) by %, integrating by parts
and using (4.3), we obtain

||'U€HH1(Q)"+1 <,
so we have (for a subsequence)
7 — ¥ weakly in H'(Q)" (4.5)

Now since ||div (2u°e(t®)) || g-1(qyn+1 is bounded, we have ||Vp®|| g1 (qyn+1 < C,
this implies (see Temam [16]) |p®[12(q) < C, we derive (for a subsequence),

p° — p weakly in Lg (Q).
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Also by similar arguments, we get
p'® — p’ weakly in L3(Q).

The boundedness of [[£°[|2(qm+n2 provides from (4.3) and we derive by ex-
traction of subsequences

€& — ¢ weakly in L2(Q)("+D7,

Similarly, the boundedness of [|¢%|| 12 (g n+12 provides from (4.3) and (4.1.6), so
we can extract a subsequence such that

q° — q weakly in LQ(Q)("'H)z. (4.6)
O

,p'¢) are solutions of (2.4) and since Proposition 4.1
), (U,p'), € and ¢ satisfy in the distribution sense

Oid

Since (u°,pf) and (
holds, we obtain that (,
—div (&) = f—-Vp+0 inQ
div (¢) = =Vp' in Q
divi=divi=0 1in Q

U=v=0 on 09,

(4.7)

where f is the weak limit of f& in L2(Q)"*1. This limit can be identified
explicitly (cf [3] or [5]). Indeed, the characteristic functions yq: (i = 1,2) are
such that

xa: — pand xo; — (1 —p) weakly « in L*(Q), (4.8)
where
1 in Q4
p(z,2) = |%(,Z|)| in Q, (4.9)
0 in Qg.

Then we have
F& = F= fip+ f2(1 — p) weakly in L2(Q)" . (4.10)

Proposition 4.2 (Baffico & Conca [3]) Under the hypotheses (4.12), (4.15)
and (4.28) (introduced in the next subsections), £ = Ae(@), where A is defined

by (3.4).
To prove Theorem 3.3, we have to show that ¢, « and ¢ are related by
q = Ae(V) — Be(w). (4.11)

Using the same method as Baffico & Conca[3], we show that the identifi-
cation of ¢ is carried out in 2,2, and 5 independently. In €y and s, this
identification will pose no particular problem. In €,,, following the ideas of
Baffico & Conca ([3]), there is three steps: we first identify the components [g];;
of ¢ for 1 < 4,5 < n, and then [g],41; for 1 < j < n and finally we identify
[q)n+1n+1. To do so, we use some suitable test functions and the energy method
( cf Bensoussan, Lions & Papanicolaou [4] or Sanchez-Palencia [15]).
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Identification of [¢];;1 <4,j <n in (,

In what follows, we construct at first the test functions which allow us the
identification of [g];j, then we introduce the regularity conditions that these
functions must satisfy and finally we establish the identification.

Let w® = —x* + P and o* = 2pe, (w*) where (x*',74') be the solution

of (3.1). We assume that (x*, rf), as function of (y,z) € Y'x]0, hy[, satisfies
the regularity hypothesis

a) X" e L (0,h, H{ (Y)") N (L], (10, by [xR™))" N

9 . ) o ) 1<i,j<n (4.12)
b) 55 (X)) € L0, b, LE(Y)™) N L, (0, A [XR)
We define the following functions by extension by Y-periodicity to R**! and by
restriction to 2,,:

wa,kl(i,7 Z) _ Ewkl(f’ Z)
IS

oM (2, 2) = r’fl(g, 2) (4.13)
Ufs,kl(x7 Z) _ gkl(§7 Z)
It is easy to check that
div(e®F) = =V, in Q,,
‘T (4.14)

div(w®*) = div(P*) = 6 in Q.
We also need the Murat’s compactness result [11].

Lemma 4.3 If the sequence (gy)n belongs to a bounded subset of W—1P(Q) for
some p > 2, and (gn)n > 0 in the following sense i.e., for all ¢ € D(Q) such
that ¢ > 0 then for all n > 0{(gn,d) > 0. Then (gn)n belongs to a compact
subset of H=(Q).

If we suppose that 5% satisfy

a) Ti’kl er?

lOC(Qm) for some p > 2, locally bounded

0 ek (4.15)
b) = (r{"™) > 0 in distribution sense,

0z
Then using Lemma 4.3 and hypothesis (4.12), we have the following result.

Proposition 4.4 (Baffico & Conca [3]) If (4.12) and (4.15) hold. Then for
all ' CC Qy, we have the following convergence

a) wH — P* weakly in H ()"
b) & ((w=*);) — 0 strongly in L*(Q)", 1 <i<n
c) ri’kl — 0 weakly in L?(Y)" (4.16)
@) 3 (r7™) — 0 strongly in H-H(Q)", 1< i<n

e) o=M — o*l = my (2ue, (W) weakly in L?(QV)"*".
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In the same way, we assume that the solution (%kl,r’gl) of (3.5) satisfies the
following convergence hypothesis:

a) o € L (0, HE(Y)") 0 (L, 00, b [XR™))"
0
b) g, () € Lo (0, LE(Y)™) 0 Lo, (10, 7 [<R)
We define

1<ij<n (417)

ys,kl(%z) — Egkl(§7z)’ and 7"; kl(azz) = T’gl(g Z) (4-18)

so we obtain

—div (2;4561.@5””) + ey (W) = —Vrs™ in Q,,

(4.19)
divy*™ =0 in Q,
If we suppose that T;’kl satisfy
a) Le Lf C(Qm) for some p > 2, locally bounded
. (4.20)
b) gy (7’; ) > 0 in distribution sense,
2z
then using Lemma 4.3, we derive
9 (154 . 0 strongly in B~ (@)".1 < i <
8z(r2 )—> strongly in (Q)"1<i<n

We have the following result concerning these functions

Proposition 4.5 If (4.12) and (4.15) hold. Then for all Q' CC Q,,, we have
a) = M0 weakly in H'(Q')"

82 (v~ kl)l) — 0 strongly in L*(Q)", 1<i<n (4.21)

Sk~ 0 weakly in L2(Q)".

To prove this proposition, we use well-known results concerning the convergence
of periodic functions.

We shall prove now the principal result of this section

Proposition 4.6 If (4.12), (4.15), (4.17), and (4.20) hold, then [¢]x — [q|m
weakly in L*(Qy,) (up to a subsequence) for all 1 < k,1 < n where

[k = % z_: {/Y 2pley(—x" + P7)|udy} [6(77>L-j

|Y| Z {/ 2pley (=0 )i + ey (=X + Pl dy } [e(@)]

1,j=1
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Proof. Let ¢ € D(£,,) and w** = (w** 0). Multiplying the second equation
of (2.4) by ¢w=*! integrating by parts and using (4.2), we obtain

- / V' (o= ) dadz
Q

m

=-— / (¢°V ). dudz + / e(@) : Vi gpdadz
Qo Qi

—/ 2ufe(7°) : V- pdrdz.
Qp,

Developing the second and third integral of the right-hand side of the above
equation,

—/ Vp'e . pwE* dadz
in

i
-,
(4.22)

Let ¢F = (ga’kl, 0). Multiplying the first equation of (2.4) by (M?EJ”, integrat-
ing by parts and using definition (4.1), we obtain (after algebraic developments)

(V)=  dxdz + / ez (u®) : ep (W) pdadz

m Qi

2pfes(vF) : ep(w M )pdadz — /Q Sl i1y o (), o

m m j:1

/ (ff = Vp° +0).900" dxdz
Qm

= / (E°Ve).=H + / 2pfen (u°) : eq (V) pdadz
Qi

Qm

+ /Q Z[fa]nJrlj % (@E’kl)j)qﬁdmdz.

m j:1

Integrating by parts now the second integral of the right-hand side, we have
/ (fF = Vp° + 0).00"  dudz
Qp

= [ vt - [ div (e, (). (w6 duds
Qm Qm 7

€ ekl € - € 2 e,kly
- [ e Vaoutdnd + [ 3 le i 5 (5 oo

m j=1

Using the equation that yg’kl satisfy (see (4.19)),

/ (fF = Vp° + 0).00"  dudz
Qo
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:/ (£5V¢).J5’kl—/ u d1V (ex(w Ekl))qﬁdmdz—i—/ Vors™ (ouf)dzdz
rm U

_/Q (QM s (wskl)v ¢) dedz—l—/ Z nHJ(‘)a ((ws kl) )¢dxdz

mJI

Integrating again by parts the second integral,
/ (fs +6— Vpa).qﬁz/;s’kldxdz
Qi

:/ (§€V¢).JE’M —/ e (u®) : ex(ya’kl)qﬁdzdz
Qi

m

+ /Qm Vo5 (¢uf)dzdz _/1 (2,u561.(y5’kl)vx¢) wfdrdz

—/Q (ex(w )V, sdatzalz—l—/ Zfs n+1]8 Ekl)j)(z)dxdz.

Adding (4.22) and the above equation, we obtain

/ (fF +0).00" dadz — | Vp©. ¢ dadz — / V' .= * drd
Qo Qo

Qo

/ V). M dxdz —/ 2ufe,(v°) : em(ws’kl)(bda:dz

O
/ z_: n+1]a Ekl) )¢d$d2’+/ﬂm(§sv¢>-ﬁs’kl (4.23)
/ ek (pus )dxdz—/ (b°MV 2 0) 1 dadz
Qi

/ Z b s o (), ).

where
ba,kl _ 2#561(%&"“) + ex(we,kl)' (424)

We obtain easily that (using Problem (3.5))

dlv(bE My = —V rs™ in Q.

We now pass to the limit in (4.23) as ¢ tends to 0. In order to do so, we need
some preliminaries results.

By Definition (4.24) and classical arguments concerning the convergence of
periodic functions, we conclude that for all Q' CC Q,,,

bR — b = my (2ue, (PM) + e, (W) weakly in L2(Q)"*"

4.25
and  div(b") =0 in Q,,. (425)
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By the convergence (4.16) a), we have
@k — P = (PM,0) strongly in L?(€)"*1.
Also by (4.21) a), we get
¢=* — 0 strongly in L?(Q')"*1.

Now passing to the limit in (4.23) taking into account the precedent convergence
results, we obtain

- / vy .pP*dxdz
Qim

=— / (qV¢).P*dxdz — / ot e, (v)pdadz — / (BM'V ,¢).udzdz
Qi Qo

Qi

Integrating by parts the right-hand side of the above expression, using the second
equation of (4.1.14) and the expression (4.25), we obtain

0 :/ q: e(P*Yodadz f/ ot e, (v)pdrdz +/ ee(u) : bl pdrdz
Q Q Q

m m m

Since [e(]skl)]ij = [M’“l]ij, then we obtain in the distribution sense

n

[ = > ("] lea@)] ;= D0 1] [ea @]

i,j=1

Now since (4.16) e), (4.25) hold and since [e,(v)] . = [e(f;’)Lj and [e,(u)] . =

1] ©J
[e(ﬁ)]ij for all 1 <i,5 < n, we get

o =57 32 2wl + Pl

4,j=1

R .
— > { [ @uley (=" + ey (—x* + PM)ij)dy} [e(@)],
Y| g Y /
(4.26)
Also since the following symmetry property holds (see Proposition 3.1)

/ 2pfe, (=X + P*))idy :/ 2uley (=X + PY)]dy,
Y Y
and the following’s one holds too (see Proposition 3.2)

/Y (2n[ey (=™ + ey (XM + )] )dy

- /y (2“ [69(_fj) + ey(_iij + Eij)] kl)dy7 (4.27)
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we conclude that

i =n 32 | 2utetor + 2t} e,

3,7=1

- % > {/Y (2uley (—)a + [ey (X7 + P7)u)dy} [e(@)]

1,7=1

This completes the proof. O

Identification of [¢],,+1j, 1 < j <nin ),

Let ¢ be the solution of Problem (3.2). We assume that ¢* = ©*(y, 2) satisfy
the regularity hypotheses

a) ¢* e L (0,h, HY(Y)) N Li (]0,hi[xR")

" 102C 2 1(2) n (4.28)
b) 22 e L2 (0,hi, L3(Y)) N L2, (0, b [xR")

Let us define ¢*¥ = —¢* + 2y, and ﬂk = uV,C¢*. We also define the following
functions by Y-periodicity:
Ha,z) =eCH(Z,2), 1@, 2) = nt(5,2) (4.29)
€ - - €

It is easy to see that —div, QEJ“ = 0 in Q,,. We introduce a supplementary
hypothesis concerning Qa’k:

a) {(Qe’k)j}8>o C LfOC(Qm) for some p > 2, locally bounded

o (4.30)
b) P (ﬂe’k)j > 0 in the distribution sense.

Then we have the following result.

Proposition 4.7 (Baffico & Conca [3]) Assume (4.28) and (4.30). Then
for all ' CC Qy,, we have

a) ¢=F = 2y; weakly in H (%)
b) 2 (¢5F) — 0 strongly in L*(SY)
c) ﬁs,k N Qk = my(ﬁk) weakly in Lz(Ql)n

d) %(ﬂe’k)j — %(ﬂk)j strongly in H=Y(Q), 1 < j < n.

(4.31)

In view of (4.3.5) ¢) and (4.3.3), we get —div, n* = 0 in Q,,. Similarly we
assume that ¥, the solution of (3.6), satisfies

a) ¢" e L (0,hy, Hy (Y)) N Li (10, by [xR™)

8’(/Jk ) ) ) . (4.32)
b) e € LIO(:(O’hl’Lﬁ (Y)) ﬁLlOC(]O,hl[XR )
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Let
Ve (x, 2) =w’“(§z) and  d7" =27V, 05k + V¢, (4.33)

then using (3.6), (4.29) and (4.33), we get

—divd®™" =0 in Q. (4.34)

We assume that d°" satisfies the regularity conditions:

a) {(c_ia’k) .}E>0 C Lloc(Qm) for some p > 2, locally bounded
9 (4.35)
b) 7 (dE k) > 0 in the distribution sense.

We have the following result.

Proposition 4.8 Assume hypotheses (4.3.7) and (4.35) hold. Then for all
Q' cc Q,,, we have

a) 5% — 0 weakly in H' ()
b) ag(wg’k) — 0 strongly in L*(Q)

o (4.36)
c)

dF = d* = my (2uV* + V,,¢*) weakly in L*(Q)"
0 ek 4 k ; 1700/ .
d) &(d )j — a(d )j strongly in H-'()), 1 <j <n.
Remark 4.9 From (4.34) and (4.36) c), we have —div, d* = 0 in Q,,

Proof of Proposition 4.8 Using classical arguments concerning convergence
of periodic functions, we can prove the three first assertions. For the last one,
we use the compactness Lemma 4.3 (the hypotheses of this lemma hold since
we suppose that (4.35) is satisfied). O

Proposition 4.10 If (1.28), (4.30), (4.32) and (4.35) hold, then up to a sub-
sequence, we have [¢F]ni1x — [@lni1x weakly in L?(Qy,) V1 < j < n, where

[qlnt1k = IYIZ{/ @+2yld}[ ()]
P S

Proof. Let ¢ € D(Q,,) and 55’k = (0,¢**). Multiplying the second equation
of (2.4) by ¢¢*F, integrating by parts and using (4.2), we obtain

- / Vp'e. (R pdadz = — / (°V¢).CoFdudz + / (@) : Vo Fpdadz
Qm Qo

Qm
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—/ 2ufe(tF) : st’k¢dxdz.
Qm

After some elementary computations on the second and third integral of the
right-hand side of the above equation,

= / Vp'e.(5F pdadz
Qi

S / (°V).CFdadz — / pEV 05 1 V(TR pdadz
9

m

/ Z 8v 6C€k¢d dz + / Votis o1 Vol odrdz

mzl
a acek
/ Z Inttnss ¢dmdz+ / Z Ui C ~dads.
m]]. mzl
(4.37)

Let 155”“ = (0,9%*). Multiplying the first equation of (2.4) by d)ﬁf’k, integrating
by parts and using Definition (4.1), we get

| F =V B odads = [ (Vo5 [ el Vi odads
Qi Qm

m

Rewriting the second integral of the right-hand side differently, the above ex-
pression becomes

/ (fF = Vp° + 0) A pdadz
Q’"Z

= /Q (EVe).5=F + /Q WV tts 4y Vo™  pddz (4.38)
/ Z a“ 87’” —odudz + / Z anHaw bdzdz.
7” =1 "" =1

Integrating by parts the second integral of the right-hand side of the above
equation and using (4.33) and(4.3.10), we derive

/ pEV gl Vo=  pdadz
Qi

1 i € € e, € e
=3 /Quiﬂ déV(ZM Vb ’k)qﬁdxdz —/ IRTARARON R, E dpda

m

1

:5 /Q u2+1 div(vxcs,k)qﬁdxdz — / HEU2+1vx¢-Vx1/)€’kdxdz

m m

Now, integrating by parts the first integral of the right-hand side of the above
equation and using (4.33), we get

/ pEV s, 1 Vo= pdrdz
Qi
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1 1
—— 5 [ Vewaactodeds — 5 [ un @4V, 0)ded:
QTTL

m

Therefore the expression (4.38) becomes

= 9 ) e
/ (&V9) W——/ Vot 1. ValF pdudz

e,k
—5/Q ul 4 (d° Vq’)dxdz—i—/ Z 8“ a¢ —odud:

m Qm =1

+f S st 2

nL,L 1

¢dxdz.

Adding (4.37) and the above equation, we have (using Definition (4.33))
/ (ff = Vp® + 0) " pdudz — / Vp'e.C5F pdadz
Qm Qm

= _/ ( Ev¢) EE kd;vdz _/Q Qs’k~vzvi+1¢dfbd2

m

e,k

e,k
/ Z 8(]2 acl‘ d)d dZ . / Z n+1n+1 5C ¢d$dZ

m, i=1 m J 1 (439)
/ Z dfk Vspdrdz + / £V )"
7n =1 Qn

e,k

€, 81& ’
_ 5/Q n+1(d k $¢ d$d2+/ Z n+1n+1 82; ¢d17dz

m ml 1

We now pass to the limit in the above equation as € — 0. To do so, we need
some preliminary results. From convergence (4.3.5) a), we have

G & = (0,290) weakly in L3(2,).
and from (4.3.12) a), we get JE”“ — 0 weakly in L2(Q,,)" .

Now passing to the limit in (4.3.22) taking into account the precedent con-
vergence results, we obtain

/ Vp’.g?k(bdxdz:—/ (qVqﬁ).C_kdxdz—/ ﬂk.vxvn+1¢d$d2
Qi Q Q

m m

_/ ;(ﬂk 81ﬂ¢d dz — %/Qm “n+1(dk-vz¢)dxdz
>

2,

dk

MlH

’NL =1
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Integrating by parts the above expression, we derive

0:/ q:e Ek (;Sdasdzf/ 22 ") n+1lq§dmdz
Qm Qo i=1 B

/ Z (d")i[e(@)],, , ,,6dzdz.

Qm =1

Using the fact that ¢ : e(C¥) = 2[g],11x, e obtain, in the distribution sense,

n

[@lnt1k = Z(ﬂk)z [6(6)]n+1i 9 Z@k)i [e(ﬁ)}nﬂi.

i=1 i=1

Also by Definition (4.31) c) and (4.36) c) of n* and of d*, we have

ntlk = \Y| Z{/ 50 +2yk A8+ 200 g [e(a ]n+1i

1 < 201) (4.40)
—E A(—¢" + 2y, .
- U 7T IR )
2|Y| — {/Y( 'u(f?yi + 0 )dy}[e(u)]nﬂl
Hence, since Proposition 3.1 holds,
I(—p* +2 (=o' + 2y,
/uwdy:/ u%d% (4.41)
Y Yi Y Yk

and since Proposition 3.2 holds,

oF A=k + 2y) / ot A(—p' + 2y;)
2 4T TRy = 2 + T ARGy (4.42
/y( a Oyi 0y; )y y( Mayk Oy Yy (442)

Finally using (4.41) and (4.42) in (4.40) we obtain the announced result, i.e.,

[a)nt1k = |Y‘ Z{/ SD +2yl B — }[ ]nJrli
oy Z{/ ”ayk % Hyz o W@l

Since the matrix ¢° is symmetric, this implies that ¢ is symmetric. Hence
[q]n+1k = [@]kn+1 which completes the proof. O

Identification of [¢], 1,41 in 2,

The following proposition gives a result concerning the identification of the last
component of q.

Proposition 4.11 [¢°], 11041 — [@lniine1 weakly in L?(2,) (up to a subse-
quence), where

[q]n+ln+1 = {|—)1,| /Y 2udy} [e(ﬁ)]n+1n+1 - [e(ﬁ)]n+1n+1'
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Proof. To prove this result, we proceed as in [1, 2]; We use the method
8U7EL+1 aufwrl

of Brizzi [5]. From (4.2) we have [¢%]ni1n41 = 2u°—3F+ — —32+ and p° =
H1XQ:NQ,, T H2X05nQ,, s hence

[qs]’rL+1n+1

d(vy, o(vg o(ué O(us
o A T R B !

where (ug,1)i = uj1los, (Vn41)i = vhi1les(@ = 1,2) and P; represent the
extension by 0 in 2\ Q5(¢i = 1,2).
It is easy to see that PZ-(M) and Pi(a(vg—;l)"') are bounded in L?(£2,,).

0z
Therefore (up to a subsequence), there exists v; and v; € L?*(Q,,) such that
O(u5 1)
Pi(%) — v; weakly in L?(Q,,), (4.43)
z
o(v5 1)
PZ(%) — ; weakly in L%(Q,,). (4.44)
Z

We now proceed to identify these limits. Concerning v;, we have

8un-|-1

Qntr (1= p(a, 2) 5 (4.45)

0z '’

where p is defined by (4.9) (see Baffico & Conca [3]).
In the same way, we can find explicitly v;: Let ¢ € D(Q2), then

v = p(x, z)

0
H-1(0) <& (X0:n9, ) ¢UZ+1>H3(Q’)

0o (V5 41)i
S e U DPdrdz — | P bddz. (4.46
. oot godnds — [ PTG gad=. (146

m

Using Lemma 4.3 for the sequence {%(Xgimgm)}s>o, it is shown that this
sequence satisfies the hypotheses required [1, 5]. Using (4.5), we can pass to the
limit in the left-hand side of (4.46). For the right-hand side, from (4.4), (4.8)

and (4.44), in the limit, we have

1,0, 0 O
H(Q )<&(| |1(/7))7¢Un+1>H3(Q’)

O 0
:—/Q (l |5(/Z|))vn+1a—fdxdz—/ﬂ Y1pdrdz

and developing the duality product in the last equation, we obtain in the
distribution sense the identity

vy,
v = p(z, 2) 3;1' (4.47)
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In the same way, passing to the limit in <%(ngmgm)7 $v5 1) and using again
the compactness Lemma, we get

1= (1= pla,2) 2L (4.48)

From (4.43) and (4.44), we have [q]nt1n+1 = 20171 + 2p272 — v1 — v2. Hence
using (4.4.5), (4.47) and (4.48), we conclude

Ovpg1 Ounys

[q]n-‘rln-l-l = 2(/,61,0(33, Z) + p2 (1 - p(JU, Z))) oz Oz

which gives the announced result, that is

b = {7 2699} ] s~ )]

Hence Proposition 4.11 is proved. O

Identification of ¢ in €2; and €2,

a, weakly in L2(Qn)"*Y (up to a

i

Proposition 4.12 For i = 1,2 ¢°
subsequence), where

Q — 9

qlQ; = 2/“”6(5 QL) - e(ﬁ Ql>

Proof. From (4.2), we have
¢"la; = 2pie(7o,) — e(@q, ).

From the convergence (4.4), (4.5), and (4.6), we easily obtain the result of
Proposition 4.12. O

Conclusion From Propositions 4.6, 4.10, 4.11, and 4.12, from the definition of
tensors A and B, we conclude that ¢, @, and ¢ are related by (4.11). Therefore,
since ¢ satisfies (4.7) by Proposition 4.2, we have that (u,p) and (¥,p) are
solutions of (3.16).

From the properties of the tensors .4 and B, problem (3.16) admits a unique
solution and hence, the whole sequence %* and v converge weakly to & and ¢
respectively. This completes the proof of Theorem 3.3. O

5 Optimal control

The following theorem gives a convergence result of the optimal control.
Theorem 5.1 For 0 fized in Uyq, we consider (i, p) as the solution of
—div(Ae(@)) = f—Vp+0 inQ
divi=0 1inQ (5.1)
©=0 on 0.
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The cost function is

L1 o N [ -

Jo(0) = = | Be(d) : e(d)dzdz + — [ |0]*dxdz.
2 Ja 2 Jo

Then the optimal control 8 of problem (2.1)-(2.3) satisfies
0 — 0, strongly in L*(Q)"+

and 0, satisfies the optimality condition

Jo(6,) = min Jo(6), (5.2)
0cUyq

Furthermore there is convergence of the minimal cost, i.e.,

lim, J(65) = Jo(6,,). (5.3)

Proof. Step 1: A priori estimates By the optimal control definition, we
have for all 0 in U,q

—

N, - -
5||9i||L2(Q)n+1 < J(65) < J.(0) < C,

so 62 is bounded in L2(€2)™ and is such that (for a subsequence)
6° — @, weakly in L?(Q)"1. (5.4)

We will show later in the proof that the above weakly convergence is in fact a
7€

strong convergence (cf 5.14). Let (@,pS) and (7%, pf) the optimal state and
the corresponding adjoint state respectively associated to 9_:“; By the same
arguments as those used in the proof of Theorem 3.3 (the fact that gis replaced
by é:f poses no problem), we get

@S — i, weakly in H'(Q)"*,  pS — p, weakly in LZ(),

!’ 5-5
7 — ¥, weakly in H'(Q)" ™!, pf — pl weakly in L2(Q) (5:5)
where (@, px) and (¥, pl) satisfy
—div (Ae(@,)) = f = Vp, + 0, inQ
div (Ae(7,) — Be(i,)) = —Vp), dans Q (5.6)

divi, =div, =0 in Q

the optimal control g, is characterized by the variationnal inequality

b, cUp and / (T + NG)(T— ) > 090 € Uy,
Q
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Step 2: Energy convergence Using integration by parts and the first equa-
tion of (2.4), we have

/e(ﬁi):e(ﬁi)dxdz:—/div(e(ﬁi)).ﬁidxdz
¢ o (5.7)
:—/div(2,uae(17i)).ﬁidxdz—/fo.ﬁid;vdz.
Q Q

Integrating now by parts the right-hand side of the above equation and using
the second equation of (2.4),

/Qe(ﬁi) s e(u)dzdz :A2uee(qf) s e(s)dxdz
:/QQMEe(ﬁi) : e(T5)dxdz
=— /Qdiv(Quee(ﬁi)).ﬁidxdz
_ /Q(f‘s _VpE + )i ded.

Using (4.10),(5.5) and (5.6), we have

/ e(is) : e(i)dxdz — / (f — Vs + 0,).Tdadz.
Q Q

Using the first equation of (5.6) and integrating by parts in the right-hand side
of the above equation, we get (using the symmetry properties of A),

/Q (F— Vps + 0.).5dadz = — /Q div(Ae(i,)). 7, dad>
_ /Q Ac(ii,) : e(5,)dzdz
__ /Q (@) : Ac(®,)dudz
__ /Q div(Ae(5,)).@, dzd=.

Using now the second equation of (5.7) and integrating by parts in the last
integral of (5.9),

— [ div(Ae(¥,)).ddrdz = — [ div(Be(iiy)). dxdxdz + | V' .id.drdz
Q Q Q

:—/div(Be(ﬁ*)).ﬁ*dazdz
Q

:/ Be(i,) : e(ty)dzdz.
Q
(5.10)
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Finally, by (5.8)-(5.10), we have the energy convergence

/ e(u3) : e(us)dxdz — / Be(ty) : e(ty)dxdz. (5.11)

Q Q

Step 3 Taking into account the definition of optimal control (5.2), we have
VO €Uy J.(0) > J.(65).

Now passing to the limit in inequality (4.38) and using (4.37), we get

/Be e(ty)dxdz + —hmsup/ 6% P dadz. (5.12)

e—0

Thus taking g = 9* in the above equation, we have
limsup/ 6% Pdadz < / |0, | dadz.
e—0 Q Q

By (5.4) and the above equation, we obtain
lim [ |6¢)dadz = / |0, |2 dzdz. (5.13)
e—0 Jo Q

From (5.12) and the above equation, we have (5.2). Now from (5.11) and the
above equation, we get (5.3).
Finally from (5.4) and (5.13), we derive

—

6 — 6, strongly in L*(Q)"'. (5.14)

This completes the proof. O

6 The case ) C R?

When Q C R2?, it is possible to find explicit functions which are solutions of
(3.1), (3.2), (3.5), and (3.6) and satisfies hypotheses (4.12), (4.15), (4.17), (4.20),
(4.28), (4.30), (4.32) and (4.35).

In this case Y =|0,1[ is as in figure 2 (left) and Problems (3.1) and (3.2)
become

fdiy@ud%(*wy)) = *% in J0, 1
dx _ . . (6.1)
ay =0 in]0,1]
x(0) = x(1),71(0) = 71 (1)
and
d d .
7d7y('ud7y(7¢ + 2y)) =0 in]0,1] (6.2)

¢(0) = ¢(1).
We have the following result (see Baffico & Conca [3]):
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Proposition 6.1 For z € [0, hy[ fized. Let x =0, r1 =2 and

2-2)y if y €]0,a(2)[
ply) =3 2— Dy +als —2) if y €la(z),b(z)[
=Lyt @-b(E-2) ifyelb(=)1]

with a = a(2), b = b(z), and

1 1 -1
C=C(z)=2(= | —-d .
(|Y| y H )
Then (x,r1) and ¢ are the unique solution (up to an additive constant) of Prob-
lems (6.1) and (6.2). O

Remark 6.2 We can calculate the value of C(z) (see [2, 3]), we get

21 pho
C(z) = :
& = G0 — ) +
Studying the regularity of the solutions of Problems (6.1) and (6.2) and sup-
posing that ps < py, hypotheses (4.12), (4.15), (4.28) and (4.30) are satisfied
(cf [3]).

Let study now Problems (3.5) and (3.6), they becomes

—%(%% + d%(—ery)) = —Czl—r; in ]0, 1
A (6.3)
i 0 in]0,1]
A(0) = A(1),72(0) = r3(1)
and
d, dy d P
$(0) = »(1).

Proposition 6.3 For z fized in [0,hi[, Let X = ¢1, ro = co, where ¢y and ¢y
are constants, and let

5 (K =)y if y €10, a(2)[
) = s (K =y +a((z; — 5i) = (52 — 7)) iy €la2),b(2)]
57 (K — D)y
+a=5)((g5; — 3) — (552 — 37) if y €1b(2), 1]
with

K=K()= 5 (2 + ) - C)

and the constant C defined in Proposition 6.1. Then (\,r2) and ¢ are the unique
solutions (up to an additive constant) of Problems (6.3) and (6.4).
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Remark 6.4 The hypotheses (4.17), (4.20), (4.32) and (4.35) are satisfied as

shown next.

From Proposition 6.3, it is easy to check that A\ = ¢; verifies hypothesis (4.17).

It is no longer necessary to suppose hypothesis (4.20), since we can pass to
the limit in (a%rg, u;, 1) using the explicit form of ry and 5.

By the form of ¢ (see Proposition 6.3), and since the function h satisfies i)
and ii) (see Section 2), we show that ¢ =¥ (y,z) € Hlloc(Y x [0, h1[) (using the
implicit function theorem). Therefore, Hypothesis (4.3.7) is fulfilled.

Concerning Hypothesis (4.35), since we can calculate explicitly % and g—‘;,
the expression (4.33) becomes d° = K (z) where K is defined in Proposition 6.3.

Part a) of (4.35) follows from regularity of K(z) which follows from the
regularity of C(z).

Concerning part b), we must show that %—f > 0 in the distributions sense,
ie Py
<8—,¢> >0. YopeD(),p>0

z
Indeed, from the form of K and after elementary computations, we get

O 6 = —ca)(

11 C(2)? 9¢
- Jr - — ,
pro g2’ 2uipe 0z

).

From [3], if pa < p1, we have —(C(z), %) > 0, and since 1, uo > 0, hence

1 1, 0¢
—{C(z)(—+ —),=—)>0.
O )5
Also (20#(1222, %> > 0; therefore, %—f > 0 in the distribution sense. O

Remark 6.5 Propositions 6.1 and 6.3 allow us to compute explicitly the coef-
ficients of the tensors A and B.

For tensor A (cf [3]), we have

2u1 ifhy <z < 2
1111 = G2222 = { 2% if0<z <My
2us if —zg<2<0

M1 if h1 < z< 2z
ai212 = Q1221 = A2112 = ag121 S pt 0 <z < hy
pe if —zp<z<0

where p* = ﬁ [y pdy, pt = (ﬁ v I%dy)fl = @ and the rest of the coeffi-

cients of A are 0.
For tensor B, we derive

b1111 = bgoas =1 Vz E} — ZQ,ZQ[
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1 ifhy <z< 2
bi212 = b1221 = ba112 = b2121 @ if0<z<hy
1 if —20<2<0

and the rest of the coefficients of B are 0.
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