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Optimal control and homogenization in a mixture

of fluids separated by a rapidly oscillating

interface ∗

Hakima Zoubairi

Abstract

We study the limiting behaviour of the solution to optimal control
problems in a mathematical mixture of two homogeneous viscous fluids.
These fluids are separated by a rapidly oscillating periodic interface with
constant amplitude. We show that the limit of the optimal control is the
optimal control for the limiting problem

1 Introduction

The aim of this paper is to study the optimal control problem in a mixture of
fluids. More precisely, we consider a mixture of two viscous, homogeneous and
incompressible fluids occupying sub-domains of a bounded domain Ω ⊂ Rn+1

(n = 1 or 2). These fluids are separated by a given interface whose form is
determined using a rapidly oscillating function of period ε > 0 and constant
amplitude h1 > 0.

We assume that the velocity and pressure of both fluids satisfy the Stokes
equations. On the interface, we assume that the velocity is continuous and that
the normal forces that the fluids exert each other are equal in magnitude and
opposite in direction (hence, surface tension effects are neglected).

We associate an optimal control problem to these equations and our aim is
to study the limiting behaviour of the solutions when the oscillating period ε
tends to 0. To do so, we use some homogenization tools (see Bensoussan-Lions-
Papanicolaou [4] and Sanchez-Palencia [15]) and Murat’s compactness result
[11].

This work is based on the mathematical framework of Baffico & Conca [3]
for the Stokes problem, of Brizzi [5] for the transmission problem, and of Baffico
& Conca [1, 2] for the transmission problem in elasticity.

The plan of this paper is as follows. In Section 2, we present the domain
with the rapidly oscillating interface, the Stokes problem posed in this domain
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2 Optimal control and homogenization EJDE–2002/27

and the definition of the associated optimal control problem. In Section 3,
we introduce the adjoint problem and present related convergence results. In
Section 4, we prove the results announced in the previous section. In Section 5,
we sketch the proof of the convergence results concerning the optimal control.
In Section 6, we present the case Ω ⊂ R2.

2 Setting of the problem

For n = 1 or 2, let Y =]0, 1[n and Ω̃ =]0, Li[n with Li > 0, i = 1, . . . , n. Let
h : Ȳ → R, h ≥ 0 be a smooth function such that

i) h|∂Y = h1 where h1 = max{h(y) : y ∈ Ȳ } and h1 > 0.

ii) Exists y0 ∈ Y such that h(y0) = 0 and ∇yh(y0) = 0.

For zo ∈ R+, define Ω ⊂ Rn+1 by Ω = Ω̃×] − z0, z0[ and Γ the boundary Ω by
Γ = Ω̃× {−z0} ∪ ∂Ω̃×]− z0, z0[∪Ω̃× {z0}.

To define the reference cell, we introduce the sub-domains:

Ω1
1 = {(y, z) ∈ Y × R : h(y) < z < z0}

Ω1
2 = {(y, z) ∈ Y × R : −z0 < z < h(y)},

which are separated by the interface

Γ1 = {(y, z) ∈ Y × R : h(y) = z}.

So that, we have the decomposition of the reference cell Λ (as in figure 2)

Λ = Ω1
1 ∪ Γ1 ∪ Ω1

2 = (Y×]− z0, z0[)

When we intersect Λ with the hyperplane {Z = z}(0 < z < h1) we obtain
Y × {z} and the following decomposition for Y (as in figure 2)

Y = Y ?(z) ∪ γ(z) ∪O(z),

where

Y ?(z) = {y ∈ Y : h(y) > z}, O(z) = {y ∈ Y : h(y) < z},
γ(z) = {y ∈ Y : h(y) = z}.

Let ε > 0 be a small positive parameter. We extend h by Y -periodicity to Rn,
we restrict this function to Ω̃ (this function is still denoted by h). Let

hε(x) = h(
x

ε
) x ∈ Ω̃.

Now we introduce

Ωε1 = {(x, z) ∈ Ω̃× R : hε(x) < z < z0}
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Figure 1: The reference cell Λ

Ωε2 = {(x, z) ∈ Ω̃× R : −z0 < z < hε(x)}

and the rapidly oscillating interface is therefore defined by

Γε = {(x, z) ∈ Ω̃× R : hε(x) = z}.

So that, we obtain the following decomposition of Ω (see figure 2):

Ω = Ωε1 ∪ Γε ∪ Ωε2.

Finally, as in figure 2, we set Ω1 = Ω̃×]h1, z0[, Ωm = Ω̃×]0, h1[, Ω2 = Ω̃×]−z0, 0[.
We notice that Ω = Ω1 ∪ Ωm ∪ Ω2.

The Stokes Problem

Let the viscosity of the problem defined by

µε = µ1χΩε1
+ µ2χΩε2

,

where µ1, µ2 > 0, µ1 6= µ2, and χΩεi
correspond to the characteristic functions

of Ωεi (i = 1, 2).
We denote by ~v = (v, vn+1), a vector of Rn+1. Throughout this paper, C

denotes various real positive constants independent of ε. We also denote by | · |
the n-dimensional Lebesgue measure and by (ek)1≤k≤n the canonical basis of
R
n (yk is the k-th component of y ∈ Rn in this basis).
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Figure 2: Decomposition of Y when n = 1 (left) and when n = 2 (rigut)
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Figure 3: Rapidly oscillating interface (left) and its homogenized version (right)
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We define the optimal control as follows. Let Uad ⊂ L2(Ω)n+1 be a closed
non empty convex subset. Let N > 0 be a given constant. For ~θ ∈ Uad the state
equation is given by the Stokes problem

−div(2µεe(~uε)) = ~fε −∇pε + ~θ in Ω
div ~uε = 0 in Ω
~uε = 0 on ∂Ω.

(2.1)

where (~uε, pε) are respectively the velocity and the pressure of the fluid, ~θ is the
control and ~fε is a density of external forces defined by ~fε = ~f1χΩε1

+ ~f2χΩε2

with ~f i ∈ L2(Ω)n+1(i = 1, 2). The rate-of-strain tensor e(~uε) is

e(~uε) =
1
2
(
∇~uε +t ∇~uε

)
.

The cost function is

Jε(~θ) =
1
2

∫
Ω

e(~uε) : e(~uε)dx+
N

2

∫
Ω

|~θ|2dx. (2.2)

The optimal control ~θε? is the function in Uad which minimizes Jε(~θ) for ~θ ∈ Uad,
in other words

Jε(~θε?) = min
~θ∈Uad

Jε(~θ). (2.3)

This problem is standard and admits an unique optimal solution ~θε? ∈ Uad (see
Lions [10]). Our aim is to study the limiting behaviour of ~θε? as ε → 0. In
particular, it can be shown that (for a subsequence)

~θε? ⇀
~θ? weakly in L2(Ω)n+1.

Our objective is to characterize ~θ? as the optimal control of a similar problem
with limiting tensors A and B and to identify these tensors. The homogenization
of the problem (2.1) is thanks to Baffico & Conca [3]. About the optimal control,
Saint Jean Paulin & Zoubairi [12] studied the problem of a mixture of two fluids
periodically distributed one in the other. Also this type of problem has been
studied by Kesavan & Vanninathan [9] in the periodic case for a problem which
the state equation is a second order elliptic problem with rapidly oscillating
coefficients and by Kesavan & Saint Jean Paulin [7] and [8] in the general case
(with H-convergence).

In this paper, we adapt these methods to the Stokes problem following the
technique used by Baffico & Conca [2] and [3], by Kesavan & Saint Jean Paulin
[7] and [8], and by Saint Jean Paulin & Zoubairi [12].

Definition We define L2
0(Ω) by

L2
0(Ω) =

{
g ∈ L2(Ω) :

∫
Ω

g(y)dy = 0
}
.
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The problem (2.1)–(2.3) can be reduced to a system of equations by introducing
the adjoint state (~vε, p′ε) ∈ H1(Ω)n+1 × L2

0(Ω). Thus we get

−div(2µεe(~uε)) = ~fε −∇pε + ~θ in Ω
div(2µεe(~vε)− e(~uε)) = −∇p′ε in Ω

div ~uε = div~vε = 0 in Ω
~uε = ~vε = 0 on ∂Ω,

(2.4)

the optimal control ~θε? is characterized by the variationnal inequality

~θε? ∈ Uad and
∫

Ω

(~vε +N~θε?).(~θ − ~θε?)dx ≥ 0∀~θ ∈ Uad.

3 Convergence results

The homogenized adjoint problem

Let µ = µ(y, z) (where y ∈ Y and z ∈]0, h1[), be the variable viscosity given by

µ(y, z) = µ1χO(z)(y) + µ2χY ?(z)(y).

Let us introduce some functions as solution of the Stokes problem defined on Y .
These functions, introduced by Baffico & Conca [3], are associated to the state
equation.

Let 1 ≤ k, l ≤ n, and let (χkl, rkl1 ) be the solution of

−div
y

(2µey(−χkl + P kl)) = −∇yrkl1 in Y

div
y
χkl = 0 in Y

χkl, rkl1 Y -periodic,

(3.1)

where P kl = 1
2

(
ykel+ylek

)
. We define Mkl the n×n matrix by Mkl = ey(P kl).

We notice that [Mkl]ij = 1
2 (δikδjl + δilδjk) for all 1 ≤ i, j, k, l ≤ n. We also

define the n+ 1× n+ 1 matrix

[Ekl]ij =
1
2

(δikδjl + δilδjk) ∀1 ≤ i, j, k, l ≤ n+ 1.

For each z ∈]0, h1[, problem (3.1) admits an unique solution in
(
H1
] (Y )n/R

)
×

L2
0(Y ) (see Sanchez-Palencia [15] or Baffico & Conca [6]).

Now, we consider the periodic problem

−div
y

(µ∇y(−ϕk + 2yk)) = 0 in Y

ϕk Y -periodic.
(3.2)

For each z ∈]0, h1[ fixed, problem (3.2) has an unique solution in H1(Y ) up to
an additive constant.
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Let A(z) be the fourth-order tensor whose coefficients are defined by

aijkl =


2µ1[Ekl]ij h1 < z < z0

ãijkl 0 < z < h1

2µ2[Ekl]ij −z0 < z < h1

1 ≤ i, j, k, l ≤ n+ 1 (3.3)

with

ãijkl =



∫
Y

2µ
[
ey(−χkl + P kl)

]
ij
dy 1 ≤ i, j, k, l ≤ n

1
2

∫
Y
µ∂(−ϕk+2yk)

∂yi
dy 1 ≤ i, k ≤ n j, l = n+ 1

1
2

∫
Y
µ∂(−ϕl+2yl)

∂yi
dy 1 ≤ i, l ≤ n j, k = n+ 1

1
2

∫
Y
µ∂(−ϕk+2yk)

∂yj
dy 1 ≤ j, k ≤ n i, l = n+ 1

1
2

∫
Y
µ∂(−ϕl+2yl)

∂yj
dy 1 ≤ j, l ≤ n i, k = n+ 1

1
2

∫
Y

2µdy i, j, k, l = n+ 1
0 otherwise.

(3.4)

This tensor (introduced by Baffico & Conca [3]) is the homogenized tensor
associated to the state equation. By the same way, we introduce other test
functions which will be associated to the adjoint state.

Let (ψkl, rkl2 ) be the solution of

−div
y

(2µey(ψkl) + ey(−χkl + P kl)) = −∇yrkl2 in Y

div
y
ψkl = 0 in Y

ψkl, rkl2 Y -periodic,

(3.5)

For each z ∈]0, h1[, problem (3.5) has an unique solution in
(
H1
] (Y )n/R

)
×

L2
0(Y ).

As we did for the problem (3.2), we introduce the scalar problem

−div
y

(2µ∇yψk +∇y(−ϕk + 2yk)) = 0 in Y

ψk Y -periodic.
(3.6)

For z ∈]0, h1[ fixed, this problem admits an unique solution in H1(Y ) up to an
additive constant.

Let B(z) be the fourth order tensor which coefficients are given by

bijkl =


[Ekl]ij h1 < z < z0

b̃ijkl 0 < z < h1

[Ekl]ij −z0 < z < h1

1 ≤ i, j, k, l ≤ n+ 1 (3.7)
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with

b̃ijkl =



∫
Y

(
2µ[ey(ψkl)]ij + [ey(−χkl + P kl)]ij

)
dy 1 ≤ i, j, k, l ≤ n

1
4

∫
Y

(
2µ∂ψ

k

∂yi
+ ∂(−ϕk+2yk)

∂yi

)
dy 1 ≤ i, k ≤ n j, l = n+ 1

1
4

∫
Y

(
2µ∂ψ

l

∂yi
+ ∂(−ϕl+2yl)

∂yi

)
dy 1 ≤ i, l ≤ n j, k = n+ 1

1
4

∫
Y

(
2µ∂ψ

k

∂yj
+ ∂(−ϕk+2yk)

∂yj

)
dy 1 ≤ j, k ≤ n i, l = n+ 1

1
4

∫
Y

(
2µ∂ψ

l

∂yj
+ ∂(−ϕl+2yl)

∂yj

)
dy 1 ≤ j, l ≤ n i, k = n+ 1

1 i, j, k, l = n+ 1
0 otherwise.

(3.8)
Now we give a result concerning some properties of tensor A.

Proposition 3.1 (Baffico & Conca [3]) The coefficients of A in (3.3) sat-
isfy:
a) aijkl(z) = aklij(z) = aijlk(z) ∀1 ≤ i, j, k, l ≤ n+ 1, ∀z ∈]− z0, z0[
b) there exists α > 0 such that for all ξ, n+ 1× n+ 1 symmetric matrix,

A(z)ξ : ξ ≥ αξ : ξ ∀z ∈]− z0, z0[.

Now we give a result concerning some symmetry and ellipticity properties
of the tensor B.

Proposition 3.2 The coefficients of B (voir (3.7)) are such that:
a) bijkl(z) = bklij(z) = bijlk(z) for 1 ≤ i, j, k, l ≤ n+ 1, for all z ∈]− z0, z0[
b) There exists β > 0 such that for all ξ, the n+ 1× n+ 1 symmetric matrix,

B(z)ξ : ξ ≥ βξ : ξ ∀z ∈]− z0, z0[.

Proof. Throughout this proof, we adopt the convention of summation over
repeated indices. To prove a), we first study the coefficients of tensor B with
indexes 1 ≤ i, j, k, l ≤ n. The symmetry of these coefficients is evident when
z ∈]h1, z0[ and z ∈]− z0, h1[.

Let study the case where z ∈]0, h1[. In this case (cf (3.8))

bijkl = b̃ijkl =
∫
Y

(
2µ
[
ey(ψkl)

]
ij

+
[
ey(−χkl + P kl)

]
ij

)
dy. (3.9)

Following the ideas in [7, 12, 14], we transform the above expression to obtain
a symmetric form. Let (Y kl, rkl3 ) be the solution of

−div
y

(2µey(−Y kl + P kl)) = −∇yrkl3 in Y

div
y
Y kl = 0 in Y

Y kl, rkl1 Y -periodic,

(3.10)
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Introducing Y kl the solution of the previous local problem, the coefficients (3.9)
can be rewritten as

b̃ijkl =
∫
Y

[
ey(−Y kl + P kl)

]
ij
dy +

∫
Y

(
2µ
[
ey(ψkl)

]
ij
−
[
ey(χkl − Y kl)

]
ij

)
dy.

(3.11)
The first term of the second integral of the right-hand side of this equation is
evaluated as follows (using the fact that [ey(ψkl)

]
ij

= [ey(ψkl)
]
ji

)∫
Y

2µ
[
ey(ψkl)

]
ij
dy =

∫
Y

2µ
[
ey(ψkl)

]
βm
δβiδmjdy

=
∫
Y

µ
[
ey(ψkl)

]
βm

(δβiδmj + δβjδmi)dy

=
∫
Y

2µ
[
ey(ψkl)

]
βm

[
ey(P ij)

]
βm
dy.

Using successively (3.1),(3.5) and (3.10), we have∫
Y

2µ
[
ey(ψkl)

]
βm

[
ey(P ij)

]
βm
dy =

∫
Y

2µ
[
ey(ψkl)

]
βm

[
ey(χij)

]
βm
dy

=
∫
Y

[
ey(χkl − P kl)

]
βm

[
ey(χij)

]
βm
dy

=
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij)

]
βm
dy.

Moreover using (3.10), we can rewrite the last integral as∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij)

]
βm
dy

=
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij − Y ij)

]
βm
dy

+
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(Y ij)

]
βm
dy

=
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij − Y ij)

]
βm
dy

+
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(P ij)

]
βm
dy

=
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij − Y ij)

]
βm
dy +

∫
Y

[
ey(χkl − Y kl)

]
ij
dy

Thus the second integral of the right-hand side of (3.11) can be rewritten as∫
Y

(
2µ
[
ey(ψkl)

]
ij
−
[
ey(χkl − Y kl)

]
ij

)
dy
]

=
∫
Y

[
ey(χkl − Y kl)

]
βm

[
ey(χij − Y ij)

]
βm
dy.
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Let us now consider the first integral in (3.11). Multiplying the first equation
of (3.10) by Y ij and integrating by parts we have∫

Y

[
ey(−Y kl + P kl)

]
βm

[
ey(Y ij)

]
βm
dy = 0.

Using the fact that
[
ey(P ij)

]
βm

= 1
2

(
δβiδmj + δβjδmi

)
, we obtain∫

Y

[
ey(−Y kl + P kl)

]
βm

[
ey(−Y ij + P ij)

]
βm
dy

=
∫
Y

[
ey(−Y kl + P kl)

]
βm

[
ey(P ij)

]
βm
dy

=
∫
Y

[
ey(−Y kl + P kl)

]
ij
dy.

Then using definition (3.11), we derive

b̃ijkl =
∫
Y

ey(−Y kl+P kl) : ey(−Y ij+P ij)dy+
∫
Y

ey(χkl−Y kl) : ey(χij−Y ij)dy.

(3.12)
It is immediate from the above form that the coefficients of B satisfy b̃ijkl = b̃klij .
On the other hand, since ey(P kl) = ey(P lk) then by uniqueness of problem (3.1),
we have χkl = χlk (up to an additive constant) and then bijkl = bijlk.

We now study the coefficients bijkl with i = k = n+1 and 1 ≤ j, l ≤ n. From
the definition of B (cf (3.7)), these coefficients are symmetric when z ∈]h1, z0[
and z ∈] − z0, h1[. To prove the symmetry when z ∈]0, h1[, we proceed as we
did before. These coefficients are as follows

˜bn+1jn+1l =
1
4

∫
Y

(∂(−ϕl + 2yl)
∂yj

+ 2µ
∂ψl

∂yj

)
dy. (3.13)

Let τk be the solution of

−∆y(−τk + 2yk) = 0 in Y

τk Y -périodic.
(3.14)

The expression (3.13) can be rewritten as follows (using τ l):

˜bn+1jn+1l =
1
4

∫
Y

∂(−τ l + 2yl)
∂yj

dy +
1
4

∫
Y

(
2µ
∂ψl

∂yj
− ∂(ϕl − τ l)

∂yj

)
dy. (3.15)

Using exactly the same technique used above, we obtain (using (3.2), (3.6) and
(3.14)) ∫

Y

2µ
∂ψl

∂yj
=

1
2

∫
Y

∂(ϕl − τ l)
∂yk

∂(ϕj − τ j)
∂yk

dy +
∫
Y

∂(ϕl − τ l)
∂yj

dy.
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Therefore,∫
Y

(
2µ
∂ψl

∂yj
− ∂(ϕl − τ l)

∂yj

)
dy =

1
2

∫
Y

∂(ϕl − τ l)
∂yk

∂(ϕj − τ j)
∂yk

dy.

Concerning the first integral in (3.15), we consider τ l the solution of (3.14):
multiplying the first equation by τ j and integrating by parts, we have∫

Y

∂(−τ l + 2yl)
∂yk

∂τ j

∂yk
dy = 0,

so we derive∫
Y

∂(−τ l + 2yl)
∂yk

∂(−τ j + 2yj)
∂yk

dy = 2
∫
Y

∂(−τ l + 2yl)
∂yj

dy.

Finally, we obtain the following expression

˜bn+1jn+1l =
1
8

∫
Y

∇(−τ l+2yl).∇(−τ j +2yj)dy+
1
8

∫
Y

∇(ϕl−τ l).∇(ϕj−τ j)dy.

(3.16)
From the form of (3.16), it is evident that ˜bn+1jn+1l = ˜bn+1ln+1j . By construc-
tion of B, we also have ˜bn+1ln+1j = ˜bn+1ljn+1. For the other nonzero terms, the
same method can be used to obtain

˜bin+1kn+1 = ˜bkn+1in+1 = ˜bin+1n+1k

˜bin+1n+1l = ˜bin+1ln+1 = ˜bn+1lin+1

˜bn+1jkn+1 = ˜bn+1jn+1k = ˜bkn+1n+1j .

To prove part b), we first notice that the coerciveness of B when z ∈]h1, z0[
and z ∈]−z0, h1[ is evident. When z ∈]0, h1[, from the form of b̃ijkl1 ≤ i, j, k, l ≤
n (see (3.12)) and the form of ˜bn+1jn+1l1 ≤ j, l ≤ n (see (3.16), we have that B
is elliptic. �

Now we introduce the homogenized problem. Let (~u, p) and (~v, p′) be in(
H1(Ω)n+1 × L2

0(Ω)
)2 and be the solution of

−div
(
Ae(~u)

)
= ~f −∇p+ ~θ in Ω

div
(
Ae(~v)− Be(~u)

)
= −∇p′ in Ω

div ~u = div~v = 0 in Ω
~u = ~v = 0 on ∂Ω,

(3.17)

where ~f is the weak limit of ~fε in L2(Ω)n+1 and we precise it later, (4.10).
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Remark 3.3 Since Propositions 3.1 and 3.2 hold, problem (3.17) admits an
unique solution.

Now we state the main result of this paper, and we will prove it in the next
section.

Theorem 3.3 Under some regularity hypotheses concerning the solutions of
(3.1), (3.2), (3.5), and (3.6) (detailed in Section 4) the solutions (~uε, pε) and
(~vε, p′ε) of (2.4) are such that ~uε ⇀ ~u weakly in H1(Ω)n+1, ~vε ⇀ ~v weakly in
H1(Ω)n+1, pε ⇀ p weakly in L2

0(Ω), p′ε ⇀ p′ weakly in L2
0(Ω), where (~u, p) and

(~v, p′) are the unique solutions of (3.17).

4 Proof of the convergence result

A priori estimates Let

ξε = 2µεe(~uε), (4.1)
qε = 2µεe(~vε)− e(~uε). (4.2)

Proposition 4.1 The sequences (~uε, pε), (~vε, p′ε), ξε and qε are such that (up
to subsequences)

~uε ⇀ ~u weakly in H1(Ω)n+1 ~vε ⇀ ~v weakly in H1(Ω)n+1

pε ⇀ p weakly in L2
0(Ω) p′ε ⇀ p′ weakly in L2

0(Ω)

ξε ⇀ ξ weakly in L2(Ω)n+1×n+1 qε ⇀ q weakly in L2(Ω)n+1×n+1.

Proof. Using ~uε as a test function in the first equation of (2.4), we can easily
see that there exists a constant C > 0 independent of ε such that

‖~uε‖H1(Ω)n+1 ≤ C; (4.3)

therefore, we have for a subsequence (still denoted by ε)

~uε ⇀ ~u weakly in H1(Ω)n+1. (4.4)

Similarly, multiplying the second equation of (2.4) by ~vε, integrating by parts
and using (4.3), we obtain

‖~vε‖H1(Ω)n+1 ≤ C,

so we have (for a subsequence)

~vε ⇀ ~v weakly in H1(Ω)n+1. (4.5)

Now since ‖div (2µεe(~uε))‖H−1(Ω)n+1 is bounded, we have ‖∇pε‖H−1(Ω)n+1 ≤ C,
this implies (see Temam [16]) |pε|L2

0(Ω) ≤ C, we derive (for a subsequence),

pε ⇀ p weakly in L2
0(Ω).
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Also by similar arguments, we get

p′ε ⇀ p′ weakly in L2
0(Ω).

The boundedness of ‖ξε‖L2(Ω)(n+1)2 provides from (4.3) and we derive by ex-
traction of subsequences

ξε ⇀ ξ weakly in L2(Ω)(n+1)2
.

Similarly, the boundedness of ‖qε‖L2(Ω)(n+1)2 provides from (4.3) and (4.1.6), so
we can extract a subsequence such that

qε ⇀ q weakly in L2(Ω)(n+1)2
. (4.6)

�

Since (~uε, pε) and (~vε, p′ε) are solutions of (2.4) and since Proposition 4.1
holds, we obtain that (~u, p), (~v, p′), ξ and q satisfy in the distribution sense

−div
(
ξ
)

= ~f −∇p+ ~θ in Ω

div
(
q
)

= −∇p′ in Ω
div ~u = div~v = 0 in Ω
~u = ~v = 0 on ∂Ω,

(4.7)

where ~f is the weak limit of ~fε in L2(Ω)n+1. This limit can be identified
explicitly (cf [3] or [5]). Indeed, the characteristic functions χΩε1

(i = 1, 2) are
such that

χΩεi
⇀ ρ and χΩε2

⇀ (1− ρ) weakly ? in L∞(Ω), (4.8)

where

ρ(x, z) =


1 in Ω1
|O(z)|
|Y | in Ωm

0 in Ω2.

(4.9)

Then we have

~fε ⇀ ~f = ~f1ρ+ ~f2(1− ρ) weakly in L2(Ω)n+1. (4.10)

Proposition 4.2 (Baffico & Conca [3]) Under the hypotheses (4.12), (4.15)
and (4.28) (introduced in the next subsections), ξ = Ae(~u), where A is defined
by (3.4).

To prove Theorem 3.3, we have to show that q, ~u and ~v are related by

q = Ae(~v)− Be(~u). (4.11)

Using the same method as Baffico & Conca[3], we show that the identifi-
cation of q is carried out in Ω1,Ωm and Ω2 independently. In Ω1 and Ω2, this
identification will pose no particular problem. In Ωm, following the ideas of
Baffico & Conca ([3]), there is three steps: we first identify the components [q]ij
of q for 1 ≤ i, j ≤ n, and then [q]n+1j for 1 ≤ j ≤ n and finally we identify
[q]n+1n+1. To do so, we use some suitable test functions and the energy method
( cf Bensoussan, Lions & Papanicolaou [4] or Sanchez-Palencia [15]).
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Identification of [q]ij1 ≤ i, j ≤ n in Ωm

In what follows, we construct at first the test functions which allow us the
identification of [q]ij , then we introduce the regularity conditions that these
functions must satisfy and finally we establish the identification.

Let wkl = −χkl + P kl and σkl = 2µey(wkl) where (χkl, rkl1 ) be the solution
of (3.1). We assume that (χkl, rkl1 ), as function of (y, z) ∈ Y×]0, h1[, satisfies
the regularity hypothesis

a) χkl ∈ L2
loc(0, h1,H

1
] (Y )n) ∩ (L2

loc(]0, h1[×Rn))n

b)
∂

∂z

(
(χkl)i

)
∈ L2

loc(0, h1, L
2
] (Y )n) ∩ L2

loc(]0, h1[×R)
1 ≤ i, j ≤ n (4.12)

We define the following functions by extension by Y -periodicity to Rn+1 and by
restriction to Ωm:

wε,kl(x, z) = εwkl(
x

ε
, z)

rε,kl1 (x, z) = rkl1 (
x

ε
, z)

σε,kl(x, z) = σkl(
x

ε
, z)

(4.13)

It is easy to check that

div
x

(σε,kl) = −∇xrε,kl1 in Ωm

div
x

(wε,kl) = div
x

(P kl) = δkl in Ωm.
(4.14)

We also need the Murat’s compactness result [11].

Lemma 4.3 If the sequence (gn)n belongs to a bounded subset of W−1,p(Ω) for
some p > 2, and (gn)n ≥ 0 in the following sense i.e., for all φ ∈ D(Ω) such
that φ ≥ 0 then for all n > 0〈gn, φ〉 ≥ 0. Then (gn)n belongs to a compact
subset of H−1(Ω).

If we suppose that rε,kl1 satisfy

a) rε,kl1 ∈ Lploc(Ωm) for some p > 2, locally bounded

b)
∂

∂z

(
rε,kl1

)
≥ 0 in distribution sense,

(4.15)

Then using Lemma 4.3 and hypothesis (4.12), we have the following result.

Proposition 4.4 (Baffico & Conca [3]) If (4.12) and (4.15) hold. Then for
all Ω′ ⊂⊂ Ωm, we have the following convergence

a) wε,kl ⇀ P kl weakly in H1(Ω′)n

b) ∂
∂z

(
(wε,kl)i

)
→ 0 strongly in L2(Ω′)n, 1 ≤ i ≤ n

c) rε,kl1 → 0 weakly in L2(Ω′)n

d) ∂
∂z

(
rε,kl1

)
→ 0 strongly in H−1(Ω′)n, 1 ≤ i ≤ n

e) σε,kl ⇀ σkl = mY (2µey(wkl) weakly in L2(Ω′)n×n.

(4.16)
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In the same way, we assume that the solution (ψkl, rkl2 ) of (3.5) satisfies the
following convergence hypothesis:

a) ψkl ∈ L2
loc(0, h1,H

1
] (Y )n) ∩ (L2

loc(]0, h1[×Rn))n

b)
∂

∂z

(
(ψkl)i

)
∈ L2

loc(0, h1, L
2
] (Y )n) ∩ L2

loc(]0, h1[×R)
1 ≤ i, j ≤ n (4.17)

We define

ψε,kl(x, z) = εψkl(
x

ε
, z), and rε,kl2 (x, z) = rkl2 (

x

ε
, z) (4.18)

so we obtain

−div
x

(
2µεex(ψε,kl) + ex(wε,kl)

)
= −∇xrε,kl2 in Ωm

div
x
ψε,kl = 0 in Ωm

(4.19)

If we suppose that rε,kl2 satisfy

a) rε,kl2 ∈ Lploc(Ωm) for some p > 2, locally bounded

b)
∂

∂z

(
rε,kl2

)
≥ 0 in distribution sense,

(4.20)

then using Lemma 4.3, we derive

∂

∂z

(
rε,kl2

)
→ 0 strongly in H−1(Ω′)n.1 ≤ i ≤ n

We have the following result concerning these functions

Proposition 4.5 If (4.12) and (4.15) hold. Then for all Ω′ ⊂⊂ Ωm, we have

a) ψε,kl ⇀ 0 weakly in H1(Ω′)n

b)
∂

∂z

(
(ψε,kl)i

)
→ 0 strongly in L2(Ω′)n, 1 ≤ i ≤ n

c) rε,kl2 ⇀ 0 weakly in L2(Ω′)n.

(4.21)

To prove this proposition, we use well-known results concerning the convergence
of periodic functions.

We shall prove now the principal result of this section

Proposition 4.6 If (4.12), (4.15), (4.17), and (4.20) hold, then [qε]kl ⇀ [q]kl
weakly in L2(Ωm) (up to a subsequence) for all 1 ≤ k, l ≤ n where

[q]kl =
1
|Y |

n∑
i,j=1

{∫
Y

2µ[ey(−χij + P ij)]kldy
}[
e(~v)

]
ij

− 1
|Y |

n∑
i,j=1

{∫
Y

(
2µ[ey(−ψij)]kl + [ey(−χij + P ij)]kl

)
dy
}[
e(~u)

]
ij
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Proof. Let φ ∈ D(Ωm) and ~wε,kl = (wε,kl, 0). Multiplying the second equation
of (2.4) by φ~wε,kl, integrating by parts and using (4.2), we obtain

−
∫

Ωm

∇p′ε.(φ~wε,kl)dxdz

=−
∫

Ωm

(qε∇φ). ~wε,kldxdz +
∫

Ωm

e(~uε) : ∇~wε,klφdxdz

−
∫

Ωm

2µεe(~vε) : ∇~wε,klφdxdz.

Developing the second and third integral of the right-hand side of the above
equation,

−
∫

Ωm

∇p′ε.φ~wε,kldxdz

=−
∫

Ωm

(qε∇φ). ~wε,kldxdz +
∫

Ωm

ex(uε) : ex(wε,kl)φdxdz

−
∫

Ωm

2µεex(vε) : ex(wε,kl)φdxdz −
∫

Ωm

n∑
j=1

[qε]n+1j
∂

∂z

(
(wε,kl)j

)
φdxdz.

(4.22)
Let ~ψε,kl = (ψε,kl, 0). Multiplying the first equation of (2.4) by φ~ψε,kl, integrat-
ing by parts and using definition (4.1), we obtain (after algebraic developments)∫

Ωm

(~fε −∇pε + ~θ).φ~ψε,kldxdz

=
∫

Ωm

(ξε∇φ). ~ψε,kl +
∫

Ωm

2µεex(uε) : ex(ψε,kl)φdxdz

+
∫

Ωm

n∑
j=1

[ξε]n+1j
∂

∂z

(
(ψε,kl)j

)
φdxdz.

Integrating by parts now the second integral of the right-hand side, we have∫
Ωm

(~fε −∇pε + ~θ).φ~ψε,kldxdz

=
∫

Ωm

(ξε∇φ). ~ψε,kl −
∫

Ωm

div
x

(
2µεex(ψε,kl)

)
.(uεφ)dxdz

−
∫

Ωm

(2µεex(ψε,kl)∇xφ).uεdxdz +
∫

Ωm

n∑
j=1

[ξε]n+1j
∂

∂z

(
(ψε,kl)j

)
φdxdz.

Using the equation that ψε,kl satisfy (see (4.19)),∫
Ωm

(~fε −∇pε + ~θ).φ~ψε,kldxdz
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=
∫

Ωm

(ξε∇φ). ~ψε,kl −
∫

Ωm

uε div
x

(
ex(wε,kl)

)
φdxdz +

∫
Ωm

∇xrε,kl2 .(φuε)dxdz

−
∫

Ωm

(
2µεex(ψε,kl)∇xφ

)
.uεdxdz +

∫
Ωm

n∑
j=1

[ξε]n+1j
∂

∂z

(
(ψε,kl)j

)
φdxdz.

Integrating again by parts the second integral,∫
Ωm

(~fε + ~θ −∇pε).φ~ψε,kldxdz

=
∫

Ωm

(ξε∇φ). ~ψε,kl −
∫

Ωm

ex(uε) : ex(wε,kl)φdxdz

+
∫

Ωm

∇xrε,kl2 .(φuε)dxdz −
∫

Ωm

(
2µεex(ψε,kl)∇xφ

)
.uεdxdz

−
∫

Ωm

(
ex(wε,kl)∇xφ

)
.uεdxdz +

∫
Ωm

n∑
j=1

[ξε]n+1j
∂

∂z

(
(ψε,kl)j

)
φdxdz.

Adding (4.22) and the above equation, we obtain∫
Ωm

(~fε + ~θ).φ~ψε,kldxdz −
∫

Ωm

∇pε.φ~ψε,kldxdz −
∫

Ωm

∇p′ε.φ~wε,kldxdz

=−
∫

Ωm

(qε∇φ). ~wε,kldxdz −
∫

Ωm

2µεex(vε) : ex(wε,kl)φdxdz

−
∫

Ωm

n∑
j=1

[qε]n+1j
∂

∂z

(
(wε,kl)j

)
φdxdz +

∫
Ωm

(ξε∇φ). ~ψε,kl

+
∫

Ωm

∇xrε,kl2 .(φuε)dxdz −
∫

Ωm

(bε,kl∇xφ).uεdxdz

+
∫

Ωm

n∑
j=1

[ξε]n+1j
∂

∂z

(
(ψε,kl)j

)
φdxdz.

(4.23)

where
bε,kl = 2µεex(ψε,kl) + ex(wε,kl). (4.24)

We obtain easily that (using Problem (3.5))

div
x

(bε,kl) = −∇xrε,kl2 in Ωm.

We now pass to the limit in (4.23) as ε tends to 0. In order to do so, we need
some preliminaries results.

By Definition (4.24) and classical arguments concerning the convergence of
periodic functions, we conclude that for all Ω′ ⊂⊂ Ωm,

bε,kl ⇀ bkl = mY (2µey(ψkl) + ey(wkl)) weakly in L2(Ω′)n×n

and div
x

(bkl) = 0 in Ωm.
(4.25)
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By the convergence (4.16) a), we have

~wε,kl → ~P kl = (P kl, 0) strongly in L2(Ω′)n+1.

Also by (4.21) a), we get

~ψε,kl → 0 strongly in L2(Ω′)n+1.

Now passing to the limit in (4.23) taking into account the precedent convergence
results, we obtain

−
∫

Ωm

∇p′.φ ~P kldxdz

=−
∫

Ωm

(q∇φ). ~P kldxdz −
∫

Ωm

σkl : ex(v)φdxdz −
∫

Ωm

(bkl∇xφ).udxdz

Integrating by parts the right-hand side of the above expression, using the second
equation of (4.1.14) and the expression (4.25), we obtain

0 =
∫

Ωm

q : e(~P kl)φdxdz −
∫

Ωm

σkl : ex(v)φdxdz +
∫

Ωm

ex(u) : bklφdxdz

Since
[
e(~P kl)

]
ij

=
[
Mkl

]
ij

, then we obtain in the distribution sense

[q]kl =
n∑

i,j=1

[
σkl
]
ij

[
ex(v)

]
ij
−

n∑
i,j=1

[
bkl
]
ij

[
ex(u)

]
ij
.

Now since (4.16) e), (4.25) hold and since
[
ex(v)

]
ij

=
[
e(~v)

]
ij

and
[
ex(u)

]
ij

=[
e(~u)

]
ij

for all 1 ≤ i, j ≤ n, we get

[q]kl =
1
|Y |

n∑
i,j=1

{∫
Y

2µ[ey(−χkl + P kl)]ijdy
}[
e(~v)

]
ij

− 1
|Y |

n∑
i,j=1

{∫
Y

(
2µ[ey(−ψkl)]ij + [ey(−χkl + P kl)]ij

)
dy
}[
e(~u)

]
ij
.

(4.26)
Also since the following symmetry property holds (see Proposition 3.1)∫

Y

2µ[ey(−χkl + P kl)]ijdy =
∫
Y

2µ[ey(−χij + P ij)]kldy,

and the following’s one holds too (see Proposition 3.2)∫
Y

(
2µ
[
ey(−ψkl) + ey(−χkl + P kl)

]
ij

)
dy

=
∫
Y

(
2µ
[
ey(−ψij) + ey(−χij + P ij)

]
kl

)
dy, (4.27)
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we conclude that

[q]kl =
1
|Y |

n∑
i,j=1

{∫
Y

2µ[ey(−χij + P ij)]kldy
}[
e(~v)

]
ij

− 1
|Y |

n∑
i,j=1

{∫
Y

(
2µ[ey(−ψij)]kl + [ey(−χij + P ij)]kl

)
dy
}[
e(~u)

]
ij

This completes the proof. �

Identification of [q]n+1j, 1 ≤ j ≤ n in Ωm

Let ϕk be the solution of Problem (3.2). We assume that ϕk = ϕk(y, z) satisfy
the regularity hypotheses

a) ϕk ∈ L2
loc(0, h1,H

1
] (Y )) ∩ L2

loc(]0, h1[×Rn)

b) ∂ϕk

∂z ∈ L
2
loc(0, h1, L

2
] (Y )) ∩ L2

loc(]0, h1[×Rn)
(4.28)

Let us define ζk = −ϕk + 2yk and ηk = µ∇yζk. We also define the following
functions by Y -periodicity:

ζε,k(x, z) = εζk(
x

ε
, z), ηε,k(x, z) = ηk(

x

ε
, z) (4.29)

It is easy to see that −divx ηε,k = 0 in Ωm. We introduce a supplementary
hypothesis concerning ηε,k:

a) {
(
ηε,k

)
j
}ε>0 ⊂ Lploc(Ωm) for some p > 2, locally bounded

b)
∂

∂z

(
ηε,k

)
j
≥ 0 in the distribution sense.

(4.30)

Then we have the following result.

Proposition 4.7 (Baffico & Conca [3]) Assume (4.28) and (4.30). Then
for all Ω′ ⊂⊂ Ωm, we have

a) ζε,k ⇀ 2yk weakly in H1(Ω′)

b) ∂
∂z

(
ζε,k

)
→ 0 strongly in L2(Ω′)

c) ηε,k ⇀ ηk = mY (ηk) weakly in L2(Ω′)n

d) ∂
∂z

(
ηε,k

)
j
→ ∂

∂z

(
ηk
)
j

strongly in H−1(Ω′), 1 ≤ j ≤ n.

(4.31)

In view of (4.3.5) c) and (4.3.3), we get −divx ηk = 0 in Ωm. Similarly we
assume that ψk, the solution of (3.6), satisfies

a) ψk ∈ L2
loc(0, h1,H

1
] (Y )) ∩ L2

loc(]0, h1[×Rn)

b)
∂ψk

∂z
∈ L2

loc(0, h1, L
2
] (Y )) ∩ L2

loc(]0, h1[×Rn)
(4.32)
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Let
ψε,k(x, z) = ψk(

x

ε
, z) and dε,k = 2µε∇xψε,k +∇xζε,k, (4.33)

then using (3.6), (4.29) and (4.33), we get

−div
x
dε,k = 0 in Ωm. (4.34)

We assume that dε,k satisfies the regularity conditions:

a)
{(
dε,k

)
j

}
ε>0
⊂ Lploc(Ωm) for some p > 2, locally bounded

b)
∂

∂z

(
dε,k

)
j
≥ 0 in the distribution sense.

(4.35)

We have the following result.

Proposition 4.8 Assume hypotheses (4.3.7) and (4.35) hold. Then for all
Ω′ ⊂⊂ Ωm, we have

a) ψε,k ⇀ 0 weakly in H1(Ω′)

b)
∂

∂z

(
ψε,k

)
→ 0 strongly in L2(Ω′)

c) dε,k ⇀ dk = mY (2µ∇yψk +∇yζk) weakly in L2(Ω′)n

d)
∂

∂z

(
dε,k

)
j
→ ∂

∂z

(
dk
)
j

strongly in H−1(Ω′), 1 ≤ j ≤ n.

(4.36)

Remark 4.9 From (4.34) and (4.36) c), we have −divx dk = 0 in Ωm.

Proof of Proposition 4.8 Using classical arguments concerning convergence
of periodic functions, we can prove the three first assertions. For the last one,
we use the compactness Lemma 4.3 (the hypotheses of this lemma hold since
we suppose that (4.35) is satisfied). �

Proposition 4.10 If (4.28), (4.30), (4.32) and (4.35) hold, then up to a sub-
sequence, we have [qε]n+1k ⇀ [q]n+1k weakly in L2(Ωm) ∀1 ≤ j ≤ n, where

[q]n+1k =
1
|Y |

n∑
i=1

{∫
Y

µ
∂(−ϕi + 2yi)

∂yk
dy
}[
e(~v)

]
n+1i

− 1
2|Y |

n∑
i=1

{∫
Y

(
2µ
∂ψi

∂yk
+
∂(−ϕi + 2yi)

∂yk
dy
}[
e(~u)

]
n+1i

.

Proof. Let φ ∈ D(Ωm) and ~ζε,k = (0, ζε,k). Multiplying the second equation
of (2.4) by φ~ζε,k, integrating by parts and using (4.2), we obtain

−
∫

Ωm

∇p′ε.~ζε,kφdxdz =−
∫

Ωm

(qε∇φ).~ζε,kdxdz +
∫

Ωm

e(~uε) : ∇~ζε,kφdxdz
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−
∫

Ωm

2µεe(~vε) : ∇~ζε,kφdxdz.

After some elementary computations on the second and third integral of the
right-hand side of the above equation,

−
∫

Ωm

∇p′ε.~ζε,kφdxdz

=−
∫

Ωm

(qε∇φ).~ζε,kdxdz −
∫

Ωm

µε∇xvεn+1.∇xζε,kφdxdz

−
∫

Ωm

n∑
i=1

µε
∂vεi
∂z

∂ζε,k

∂xi
φdxdz +

1
2

∫
Ωm

∇xuεn+1.∇xζε,kφdxdz

−
∫

Ωm

n∑
j=1

[qε]n+1n+1
∂ζε,k

∂z
φdxdz +

1
2

∫
Ωm

n∑
i=1

µε
∂uεi
∂z

∂ζε,k

∂xi
φdxdz.

(4.37)
Let ~ψε,k = (0, ψε,k). Multiplying the first equation of (2.4) by φ~ψε,k, integrating
by parts and using Definition (4.1), we get∫

Ωm

(~fε −∇pε + ~θ). ~ψε,kφdxdz =
∫

Ωm

(ξε∇φ). ~ψε,k +
∫

Ωm

2µεe(~uε) : ∇~ψε,kφdxdz

Rewriting the second integral of the right-hand side differently, the above ex-
pression becomes∫

Ωm

(~fε −∇pε + ~θ). ~ψε,kφdxdz

=
∫

Ωm

(ξε∇φ). ~ψε,k +
∫

Ωm

µε∇xuεn+1.∇xψε,kφdxdz

+
∫

Ωm

n∑
i=1

(µε
∂uεi
∂z

)
∂ψε,k

∂xi
φdxdz +

∫
Ωm

n∑
i=1

[ξε]n+1n+1
∂ψε,k

∂z
φdxdz.

(4.38)

Integrating by parts the second integral of the right-hand side of the above
equation and using (4.33) and(4.3.10), we derive∫

Ωm

µε∇xuεn+1.∇xψε,kφdxdz

=− 1
2

∫
Ωm

uεn+1 div
x

(2µε∇xψε,k)φdxdz −
∫

Ωm

µεuεn+1∇xφ.∇xψε,kdxdz

=
1
2

∫
Ωm

uεn+1 div
x

(∇xζε,k)φdxdz −
∫

Ωm

µεuεn+1∇xφ.∇xψε,kdxdz

Now, integrating by parts the first integral of the right-hand side of the above
equation and using (4.33), we get∫

Ωm

µε∇xuεn+1.∇xψε,kφdxdz
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=− 1
2

∫
Ωm

∇xuεn+1.∇xζε,kφdxdz −
1
2

∫
Ωm

uεn+1(dε,k.∇xφ)dxdz

Therefore the expression (4.38) becomes∫
Ωm

(~fε −∇pε + ~θ). ~ψε,kφdxdz

=
∫

Ωm

(ξε∇φ). ~ψε,k − 1
2

∫
Ωm

∇xuεn+1.∇xζε,kφdxdz

− 1
2

∫
Ωm

uεn+1(dε,k.∇xφ)dxdz +
∫

Ωm

n∑
i=1

(µε
∂uεi
∂z

)
∂ψε,k

∂xi
φdxdz

+
∫

Ωm

n∑
i=1

[ξε]n+1n+1
∂ψε,k

∂z
φdxdz.

Adding (4.37) and the above equation, we have (using Definition (4.33))∫
Ωm

(~fε −∇pε + ~θ). ~ψε,kφdxdz −
∫

Ωm

∇p′ε.~ζε,kφdxdz

=−
∫

Ωm

(qε∇φ).~ζε,kdxdz −
∫

Ωm

ηε,k.∇xvεn+1φdxdz

−
∫

Ωm

n∑
i=1

µε
∂qεi
∂z

∂ζε,k

∂xi
φdxdz −

∫
Ωm

n∑
j=1

[qε]n+1n+1
∂ζε,k

∂z
φdxdz

+
1
2

∫
Ωm

n∑
i=1

∂uεi
∂z

(dε,k)iφdxdz +
∫

Ωm

(ξε∇φ). ~ψε,k

− 1
2

∫
Ωm

uεn+1(dε,k.∇xφ)dxdz +
∫

Ωm

n∑
i=1

[ξε]n+1n+1
∂ψε,k

∂z
φdxdz.

(4.39)

We now pass to the limit in the above equation as ε→ 0. To do so, we need
some preliminary results. From convergence (4.3.5) a), we have

~ζε,k → ~ζk = (0, 2yk) weakly in L2(Ωm)n+1.

and from (4.3.12) a), we get ~ψε,k → 0 weakly in L2(Ωm)n+1.
Now passing to the limit in (4.3.22) taking into account the precedent con-

vergence results, we obtain∫
Ωm

∇p′.~ζkφdxdz =−
∫

Ωm

(q∇φ).~ζkdxdz −
∫

Ωm

ηk.∇xvn+1φdxdz

−
∫

Ωm

n∑
i=1

(ηk)i
∂vi
∂z

φdxdz − 1
2

∫
Ωm

un+1(dk.∇xφ)dxdz

+
1
2

∫
Ωm

n∑
i=1

(dk)i
∂ui
∂z

φdxdz.
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Integrating by parts the above expression, we derive

0 =
∫

Ωm

q : e(~ζk)φdxdz −
∫

Ωm

n∑
i=1

2(ηk)i
[
e(~v)

]
n+1i

φdxdz

+
∫

Ωm

n∑
i=1

(dk)i
[
e(~u)

]
n+1i

φdxdz.

Using the fact that q : e(~ζk) = 2[q]n+1k, we obtain, in the distribution sense,

[q]n+1k =
n∑
i=1

(ηk)i
[
e(~v)

]
n+1i

− 1
2

n∑
i=1

(dk)i
[
e(~u)

]
n+1i

.

Also by Definition (4.31) c) and (4.36) c) of ηk and of dk, we have

n+1k =
1
|Y |

n∑
i=1

{∫
Y

µ
∂(−ϕk + 2yk)

∂yi
dy
}[
e(~v)

]
n+1i

− 1
2|Y |

n∑
i=1

{∫
Y

(
2µ
∂ψk

∂yi
+
∂(−ϕk + 2yk)

∂yi

)
dy
}[
e(~u)

]
n+1i

.

(4.40)

Hence, since Proposition 3.1 holds,∫
Y

µ
∂(−ϕk + 2yk)

∂yi
dy =

∫
Y

µ
∂(−ϕi + 2yi)

∂yk
dy, (4.41)

and since Proposition 3.2 holds,∫
Y

(
2µ
∂ψk

∂yi
+
∂(−ϕk + 2yk)

∂yi

)
dy =

∫
Y

(
2µ
∂ψi

∂yk
+
∂(−ϕi + 2yi)

∂yk

)
dy. (4.42)

Finally using (4.41) and (4.42) in (4.40) we obtain the announced result, i.e.,

[q]n+1k =
1
|Y |

n∑
i=1

{∫
Y

µ
∂(−ϕi + 2yi)

∂yk
dy
}[
e(~v)

]
n+1i

− 1
2|Y |

n∑
i=1

{∫
Y

(
2µ
∂ψi

∂yk
+
∂(−ϕi + 2yi)

∂yk
dy
}[
e(~u)

]
n+1i

.

Since the matrix qε is symmetric, this implies that q is symmetric. Hence
[q]n+1k = [q]kn+1 which completes the proof. �

Identification of [q]n+1n+1 in Ωm

The following proposition gives a result concerning the identification of the last
component of q.

Proposition 4.11 [qε]n+1n+1 → [q]n+1n+1 weakly in L2(Ωm) (up to a subse-
quence), where

[q]n+1n+1 =
{ 1
|Y |

∫
Y

2µdy
}[
e(~v)

]
n+1n+1

−
[
e(~u)

]
n+1n+1

.
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Proof. To prove this result, we proceed as in [1, 2]; We use the method
of Brizzi [5]. From (4.2) we have [qε]n+1n+1 = 2µε ∂v

ε
n+1
∂z − ∂uεn+1

∂z and µε =
µ1χΩε1∩Ωm + µ2χΩε2∩Ωm , hence

[qε]n+1n+1

= 2µ1P1

(∂(vεn+1)1

∂z

)
+ 2µ2P2

(∂(vεn+1)2

∂z

)
− P1

(∂(uεn+1)1

∂z

)
− P2

(∂(uεn+1)2

∂z

)
,

where (uεn+1)i = uεn+1|Ωεi , (v
ε
n+1)i = vεn+1|Ωεi (i = 1, 2) and Pi represent the

extension by 0 in Ω \ Ωεi (i = 1, 2).
It is easy to see that Pi

(∂(uεn+1)i
∂z

)
and Pi

(∂(vεn+1)i
∂z

)
are bounded in L2(Ωm).

Therefore (up to a subsequence), there exists νi and γi ∈ L2(Ωm) such that

Pi
(∂(uεn+1)i

∂z

)
⇀ νi weakly in L2(Ωm), (4.43)

Pi
(∂(vεn+1)i

∂z

)
⇀ γi weakly in L2(Ωm). (4.44)

We now proceed to identify these limits. Concerning νi, we have

ν1 = ρ(x, z)
∂un+1

∂z
, ν2 = (1− ρ(x, z))

∂un+1

∂z
(4.45)

where ρ is defined by (4.9) (see Baffico & Conca [3]).
In the same way, we can find explicitly γi: Let φ ∈ D(Ω), then

H−1(Ω′)〈
∂

∂z
(χΩε1∩Ωm), φvεn+1〉H1

0 (Ω′)

= −
∫

Ωm

χΩε1∩Ωmv
ε
n+1

∂φ

∂z
dxdz −

∫
Ωm

Pi
(∂(vεn+1)i

∂z

)
φdxdz. (4.46)

Using Lemma 4.3 for the sequence
{
∂
∂z (χΩε1∩Ωm)

}
ε>0

, it is shown that this
sequence satisfies the hypotheses required [1, 5]. Using (4.5), we can pass to the
limit in the left-hand side of (4.46). For the right-hand side, from (4.4), (4.8)
and (4.44), in the limit, we have

H−1(Ω′)〈 ∂
∂z

( |O(z)|
|Y |

)
, φvn+1〉H1

0 (Ω′)

= −
∫

Ωm

( |O(z)|
|Y |

)
vn+1

∂φ

∂z
dxdz −

∫
Ωm

γ1φdxdz

and developing the duality product in the last equation, we obtain in the
distribution sense the identity

γ1 = ρ(x, z)
∂vn+1

∂z
. (4.47)
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In the same way, passing to the limit in 〈 ∂∂z (χΩε2∩Ωm), φvεn+1〉 and using again
the compactness Lemma, we get

γ2 = (1− ρ(x, z))
∂vn+1

∂z
. (4.48)

From (4.43) and (4.44), we have [q]n+1n+1 = 2µ1γ1 + 2µ2γ2 − ν1 − ν2. Hence
using (4.4.5), (4.47) and (4.48), we conclude

[q]n+1n+1 = 2
(
µ1ρ(x, z) + µ2

(
1− ρ(x, z)

))∂vn+1

∂z
− ∂un+1

∂z
,

which gives the announced result, that is

[q]n+1n+1 =
{ 1
|Y |

∫
Y

2µdy
}[
e(~v)

]
n+1n+1

−
[
e(~u)

]
n+1n+1

.

Hence Proposition 4.11 is proved. �

Identification of q in Ω1 and Ω2

Proposition 4.12 For i = 1, 2 qε|Ωi ⇀ q|Ωi weakly in L2(Ωm)n+12
(up to a

subsequence), where
q|Ωi = 2µie(~v|Ωi)− e(~u|Ωi).

Proof. From (4.2), we have

qε|Ωi = 2µie(~vε|Ωi)− e(~uε|Ωi).

From the convergence (4.4), (4.5), and (4.6), we easily obtain the result of
Proposition 4.12. �

Conclusion From Propositions 4.6, 4.10, 4.11, and 4.12, from the definition of
tensors A and B, we conclude that q, ~u, and ~v are related by (4.11). Therefore,
since q satisfies (4.7) by Proposition 4.2, we have that (~u, p) and (~v, p) are
solutions of (3.16).

From the properties of the tensors A and B, problem (3.16) admits a unique
solution and hence, the whole sequence ~uε and ~vε converge weakly to ~u and ~v
respectively. This completes the proof of Theorem 3.3. �

5 Optimal control

The following theorem gives a convergence result of the optimal control.

Theorem 5.1 For θ fixed in Uad, we consider (~u, p) as the solution of

−div(Ae(~u)) = ~f −∇p+ ~θ in Ω
div ~u = 0 in Ω
~u = 0 on ∂Ω.

(5.1)
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The cost function is

J0(~θ) =
1
2

∫
Ω

Be(~u) : e(~u)dxdz +
N

2

∫
Ω

|~θ|2dxdz.

Then the optimal control ~θε? of problem (2.1)–(2.3) satisfies

~θε? → ~θ? strongly in L2(Ω)n+1

and ~θ? satisfies the optimality condition

J0(~θ?) = min
~θ∈Uad

J0(~θ), (5.2)

Furthermore there is convergence of the minimal cost, i.e.,

lim
ε→0

Jε(~θε?) = J0(~θ?). (5.3)

Proof. Step 1: A priori estimates By the optimal control definition, we
have for all ~θ in Uad

N

2
‖~θε?‖L2(Ω)n+1 ≤ Jε(~θε?) ≤ Jε(~θ) ≤ C,

so ~θε? is bounded in L2(Ω)n and is such that (for a subsequence)

~θε? ⇀
~θ? weakly in L2(Ω)n+1. (5.4)

We will show later in the proof that the above weakly convergence is in fact a
strong convergence (cf 5.14). Let (~uε?, p

ε
?) and (~vε?, p

′ε
? ) the optimal state and

the corresponding adjoint state respectively associated to ~θε?. By the same
arguments as those used in the proof of Theorem 3.3 (the fact that ~θ is replaced
by ~θε? poses no problem), we get

~uε? ⇀ ~u? weakly in H1(Ω)n+1, pε? ⇀ p? weakly in L2
0(Ω),

~vε? ⇀ ~v? weakly in H1(Ω)n+1, p
′ε
? ⇀ p′? weakly in L2

0(Ω)
(5.5)

where (~u?, p?) and (~v?, p′?) satisfy

−div
(
Ae(~u?)

)
= ~f −∇p? + ~θ? in Ω

div
(
Ae(~v?)− Be(~u?)

)
= −∇p′? dans Ω

div ~u? = div~v? = 0 in Ω
~u? = ~v? = 0 on ∂Ω,

(5.6)

the optimal control ~θ? is characterized by the variationnal inequality

~θ? ∈ Uad and
∫

Ω

(~v? +N~θ?).(~θ − ~θ?) ≥ 0 ∀~θ ∈ Uad.
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Step 2: Energy convergence Using integration by parts and the first equa-
tion of (2.4), we have∫

Ω

e(~uε?) : e(~uε?)dxdz =−
∫

Ω

div(e(~uε?)).~u
ε
?dxdz

=−
∫

Ω

div(2µεe(~vε?)).~u
ε
?dxdz −

∫
Ω

∇p
′ε
? .~u

ε
?dxdz.

(5.7)

Integrating now by parts the right-hand side of the above equation and using
the second equation of (2.4),∫

Ω

e(~uε?) : e(~uε?)dxdz =
∫

Ω

2µεe(~vε?) : e(~uε?)dxdz

=
∫

Ω

2µεe(~uε?) : e(~vε?)dxdz

=−
∫

Ω

div(2µεe(~uε?)).~v
ε
?dxdz

=
∫

Ω

(~fε −∇pε? + ~θε?).~v
ε
?dxdz.

(5.8)

Using (4.10),(5.5) and (5.6), we have∫
Ω

e(~uε?) : e(~uε?)dxdz →
∫

Ω

(~f −∇p? + ~θ?).~v?dxdz.

Using the first equation of (5.6) and integrating by parts in the right-hand side
of the above equation, we get (using the symmetry properties of A),∫

Ω

(~f −∇p? + ~θ?).~v?dxdz =−
∫

Ω

div(Ae(~u?)).~v?dxdz

=−
∫

Ω

Ae(~u?) : e(~v?)dxdz

=−
∫

Ω

e(~u?) : Ae(~v?)dxdz

=−
∫

Ω

div(Ae(~v?)).~u?dxdz.

(5.9)

Using now the second equation of (5.7) and integrating by parts in the last
integral of (5.9),

−
∫

Ω

div(Ae(~v?)).~u?dxdz =−
∫

Ω

div(Be(~u?)).~u?dxdz +
∫

Ω

∇p′?.~u?dxdz

=−
∫

Ω

div(Be(~u?)).~u?dxdz

=
∫

Ω

Be(~u?) : e(~u?)dxdz.

(5.10)
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Finally, by (5.8)-(5.10), we have the energy convergence∫
Ω

e(~uε?) : e(~uε?)dxdz →
∫

Ω

Be(~u?) : e(~u?)dxdz. (5.11)

Step 3 Taking into account the definition of optimal control (5.2), we have

∀~θ ∈ Uad Jε(~θ) ≥ Jε(~θε?).

Now passing to the limit in inequality (4.38) and using (4.37), we get

J0(~θ) ≥ 1
2

∫
Ω

Be(~u?) : e(~u?)dxdz +
N

2
lim sup
ε→0

∫
Ω

|~θε?|2dxdz. (5.12)

Thus taking ~θ = ~θ? in the above equation, we have

lim sup
ε→0

∫
Ω

|~θε?|2dxdz ≤
∫

Ω

|~θ?|2dxdz.

By (5.4) and the above equation, we obtain

lim
ε→0

∫
Ω

|~θε?|2dxdz =
∫

Ω

|~θ?|2dxdz. (5.13)

From (5.12) and the above equation, we have (5.2). Now from (5.11) and the
above equation, we get (5.3).

Finally from (5.4) and (5.13), we derive

~θε? → ~θ? strongly in L2(Ω)n+1. (5.14)

This completes the proof. �

6 The case Ω ⊂ R2

When Ω ⊂ R2, it is possible to find explicit functions which are solutions of
(3.1), (3.2), (3.5), and (3.6) and satisfies hypotheses (4.12), (4.15), (4.17), (4.20),
(4.28), (4.30), (4.32) and (4.35).

In this case Y =]0, 1[ is as in figure 2 (left) and Problems (3.1) and (3.2)
become

− d

dy

(
2µ

d

dy
(−χ+ y)

)
= −dr1

dy
in ]0, 1[

dχ

dy
= 0 in ]0, 1[

χ(0) = χ(1), r1(0) = r1(1)

(6.1)

and
− d

dy

(
µ
d

dy
(−ϕ+ 2y)

)
= 0 in ]0, 1[

ϕ(0) = ϕ(1).
(6.2)

We have the following result (see Baffico & Conca [3]):
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Proposition 6.1 For z ∈ [0, h1[ fixed. Let χ = 0, r1 = 2µ and

ϕ(y) =


(2− C

µ2
)y if y ∈]0, a(z)[

(2− C
µ1

)y + a( Cµ1
− C

µ2
) if y ∈]a(z), b(z)[

(2− C
µ2

)y + (a− b)( Cµ1
− C

µ2
) if y ∈]b(z), 1[

with a = a(z), b = b(z), and

C = C(z) = 2
( 1
|Y |

∫
Y

1
µ
dy
)−1

.

Then (χ, r1) and ϕ are the unique solution (up to an additive constant) of Prob-
lems (6.1) and (6.2). �

Remark 6.2 We can calculate the value of C(z) (see [2, 3]), we get

C(z) =
2µ1µ2

(µ2 − µ1)(b(z)− a(z)) + µ1
.

Studying the regularity of the solutions of Problems (6.1) and (6.2) and sup-
posing that µ2 < µ1, hypotheses (4.12), (4.15), (4.28) and (4.30) are satisfied
(cf [3]).

Let study now Problems (3.5) and (3.6), they becomes

− d

dy

(
2µ
dλ

dy
+

d

dy
(−χ+ y)

)
= −dr2

dy
in ]0, 1[

λ

dy
= 0 in ]0, 1[

λ(0) = λ(1), r2(0) = r2(1)

(6.3)

and
− d

dy

(
µ
dψ

dy
+

d

dy
(−ϕ+ 2y)

)
= 0 in ]0, 1[

ψ(0) = ψ(1).
(6.4)

Proposition 6.3 For z fixed in [0, h1[, Let λ = c1, r2 = c2, where c1 and c2
are constants, and let

ψ(y) =


1

2µ2
(K − C

µ2
)y if y ∈]0, a(z)[

1
2µ1

(K − C
µ1

)y + a
(
( K

2µ2
− K

2µ1
)− ( C

2µ2
2
− C

2µ2
1
)
)

if y ∈]a(z), b(z)[
1

2µ2
(K − C

µ1
)y

+(a− b)
(
( K

2µ2
− K

2µ1
)− ( C

2µ2
2
− C

2µ2
1
)
)

if y ∈]b(z), 1[

with
K = K(z) =

C

2µ1µ2

(
2(µ1 + µ2)− C

)
and the constant C defined in Proposition 6.1. Then (λ, r2) and ψ are the unique
solutions (up to an additive constant) of Problems (6.3) and (6.4).
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Remark 6.4 The hypotheses (4.17), (4.20), (4.32) and (4.35) are satisfied as
shown next.

From Proposition 6.3, it is easy to check that λ = c1 verifies hypothesis (4.17).
It is no longer necessary to suppose hypothesis (4.20), since we can pass to

the limit in 〈 ∂∂z r
ε
2, u

ε
n+1〉 using the explicit form of r2 and rε2.

By the form of ψ (see Proposition 6.3), and since the function h satisfies i)
and ii) (see Section 2), we show that ψ = ψ(y, z) ∈ H1

loc(Y × [0, h1[) (using the
implicit function theorem). Therefore, Hypothesis (4.3.7) is fulfilled.

Concerning Hypothesis (4.35), since we can calculate explicitly ∂ψ
∂y and ∂ϕ

∂y ,
the expression (4.33) becomes dε = K(z) where K is defined in Proposition 6.3.

Part a) of (4.35) follows from regularity of K(z) which follows from the
regularity of C(z).

Concerning part b), we must show that ∂dε

∂z ≥ 0 in the distributions sense,
i.e

〈∂d
ε

∂z
, φ〉 ≥ 0. ∀φ ∈ D(Ω), φ ≥ 0

Indeed, from the form of K and after elementary computations, we get

〈∂d
ε

∂z
, φ〉 = −〈C(z)

( 1
µ1

+
1
µ2

)
− C(z)2

2µ1µ2
,
∂φ

∂z
〉.

From [3], if µ2 < µ1, we have −〈C(z), ∂φ∂z 〉 ≥ 0, and since µ1, µ2 > 0, hence

−〈C(z)
( 1
µ1

+
1
µ2

)
,
∂φ

∂z
〉 ≥ 0.

Also 〈C(z)2

2µ1µ2
, ∂φ∂z 〉 ≥ 0; therefore, ∂d

ε

∂z ≥ 0 in the distribution sense. �

Remark 6.5 Propositions 6.1 and 6.3 allow us to compute explicitly the coef-
ficients of the tensors A and B.

For tensor A (cf [3]), we have

a1111 = a2222 =


2µ1 if h1 < z < z0

2µ? if 0 < z < h1

2µ2 if − z0 < z < 0

a1212 = a1221 = a2112 = a2121


µ1 if h1 < z < z0

µ+ if 0 < z < h1

µ2 if − z0 < z < 0

where µ? = 1
|Y |
∫
Y
µdy, µ+ =

(
1
|Y |
∫
Y

1
µdy

)−1 = C(z)
2 and the rest of the coeffi-

cients of A are 0.
For tensor B, we derive

b1111 = b2222 = 1 ∀z ∈]− z0, z0[
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b1212 = b1221 = b2112 = b2121


1 if h1 < z < z0
K(z)

4 if 0 < z < h1

1 if − z0 < z < 0

and the rest of the coefficients of B are 0.
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