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QUALITATIVE PROPERTIES OF TRAVELING WAVEFRONTS
FOR A THREE-COMPONENT LATTICE DYNAMICAL SYSTEM

WITH DELAY

PEI GAO, SHI LIANG WU

Abstract. This article concerns a three-component delayed lattice dynam-

ical system arising in competition models. In such models, traveling wave
solutions serve an important tool to understand the competition mechanism,

i.e. which species will survive or die out eventually. We first prove the existence

of the minimal wave speed of the traveling wavefronts connecting two equilib-
ria (1, 0, 1) and (0, 1, 0). Then, for sufficiently small intra-specific competitive

delays, we establish the asymptotic behavior of the traveling wave solutions at

minus/plus infinity. Finally the strict monotonicity and uniqueness of all trav-
eling wave solutions are obtained for the case where intra-specific competitive

delays are zeros. In particular, the effect of the delays on the minimal wave

speed and the decay rate of the traveling profiles at minus/plus infinity is also
investigated.

1. Introduction

In this article, we study the traveling wave solutions of the three-component
delayed lattice dynamical system (LDS for short)

∂uj(t)
∂t

= d1D[uj ](t) + r1uj(t)[1− uj(t− τ1)− a12vj(t− τ2)],

∂vj(t)
∂t

= d2D[vj ](t) + r2vj(t)
[
1− a21uj(t− τ3)

− vj(t− τ4)− a23wj(t− τ5)
]
,

∂wj(t)
∂t

= d3D[wj ](t) + r3wj(t)[1− a32vj(t− τ6)− wj(t− τ7)],

(1.1)

where j ∈ Z, t ∈ R, di > 0, ri > 0, aij > 0, τi ≥ 0 (i = 1, . . . , 7) are given constants.
This system arises in the study of competition between three species with diffusion
and time delays when the habitat is of one-dimensional and is divided into niches
or regions. In this model, u, v, w are the population densities of species 1, 2, 3,
respectively, aij is the competition coefficient of species j to species i, ri and di are
the growth rate and diffusion coefficient of species i, respectively, τi ≥ 0 (i = 1, 4, 7)
and τj ≥ 0 (j = 2, 3, 5, 6) are the intra-specific and inter-specific competitive delays,
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respectively. Also, the carrying capacity of each species is normalized to be 1. For
more biological meanings on this model, we refer to [7, 8, 23].

In this system, species u and w have different preferences of food resource, while
species v has both preferences so that it needs to compete with both species u and
w. In such competition system, it is very important to investigate which species
will survive or die out eventually. Throughout this paper, we shall always assume
that

(H0) a32 > a12 > 1, a21 + a23 < 1,
which means that the species u,w are weak competitors to the species v. Therefore,
one shall expect that the species v shall win the competition eventually. So, we are
interested in the traveling wave solution of (1.1) connecting two equilibria (1, 0, 1)
and (0, 1, 0).

When τi = 0, i = 1, . . . , 7, system (1.1) reduces the lattice dynamical system

∂uj(t)
∂t

= d1D[uj ](t) + r1uj(t)[1− uj(t)− a12vj(t)],

∂vj(t)
∂t

= d2D[vj ](t) + r2vj(t)[1− a21uj(t)− vj(t)− a23wj(t)],

∂wj(t)
∂t

= d3D[wj ](t) + r3wj(t)[1− a32vj(t)− wj(t)].

(1.2)

Under the bistable condition: 0 < a21, a23 < 1 < a12 and a21 + a23 > 1, Guo
and Wu [7] proved the existence of bistable traveling wavefront of (1.2) connecting
(1, 0, 1) and (0, 1, 0). Under the monostable condition (A), Guo et al. [8] showed
that there exists a positive constants cmin such that (1.2) has a traveling wavefront
if and only if c ≥ cmin. They also provided some conditions on the parameters of
the competition system such that the linear determinacy is assured. Wu [23] further
obtained the asymptotic behavior of the traveling wave solutions of (1.2) at +∞
and constructed some entire solutions which behave as two traveling wavefronts
moving towards each other from both sides of x-axis.

It should be mentioned that, in the past decades, there have been many works
devoted to the traveling wavefronts of the following two-component competition
systems with or without delay, see e.g. [3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 25],

∂u1(x, t)
∂t

= d1
∂2u1(x, t)
∂x2

+ r1u1(x, t)[1− a1u1(x, t− τ1)− b1u2(x, t− τ2)],

∂u2(x, t)
∂t

= d2
∂2u2(x, t)
∂x2

+ r2u2(x, t)[1− b2u1(x, t− τ3)− a2u2(x, t− τ4)],
(1.3)

and its corresponding spatial discrete version

duj
dt

= d1[uj+1 − 2uj + uj−1] + r1uj(t)[1− a1uj(t− τ1)− b1vj(t− τ2)],

dvj
dt

= d2[vj+1 − 2vj + vj−1] + r2vj(t)[1− b2uj(t− τ3)− a2vj(t− τ4)].
(1.4)

For instance, Lin and Li [14] considered the existence of traveling wave solutions
of (1.3) connecting the trivial equilibrium with the coexistence equilibrium. Guo
and Wu [6] studied the existence, asymptotic behavior, monotonicity and unique-
ness of monostable traveling wave solutions of (1.4) connecting two semi-positive
equilibria when τi = 0, i = 1, . . . , 4. In [5], they further established the existence of
the bistable traveling wavefronts of (1.4) in strong competition case. Lin and his
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collaborators [17, 19, 20, 18] considered the monostable and bistable traveling wave-
fronts of two-component competition systems with nonlocal or distributed delays.
More precisely, using the method in [6], Li et al. [13] and Li and Li [14] established
the existence, asymptotic behavior, monotonicity and uniqueness of monostable
traveling wave solutions of (1.3) and (1.4), respectively.

As mentioned before, traveling wave solutions serve an important object to un-
derstand the competition mechanism, i.e. which species will survive or die out
eventually. For the models (1.1), the condition (A) means that the species u and
w are weaker competitors than the species v. Intuitively, species v should win the
competition. However, v must compete with u and w. Thus, it is interesting to
determine which species will win the competition. In this article, we shall give an
affirmative answer under certain conditions.

More precisely, we shall study various qualitative properties of traveling wave-
fronts of (1.1) connecting (1, 0, 1) and (0, 1, 0). By applying Schauder’s fixed point
theorem as in [21, 10, 15], we first prove the existence of traveling wavefronts
Φ(·) = (φ(·), ψ(·), θ(·)) of (1.1) connecting (1, 0, 1) and (0, 1, 0) via constructing
a pair of upper and lower solution. Then, we establish the asymptotic behavior of
the traveling wavefronts of (1.1) at ±∞ by using Ikehara’s theorem. Finally, we
prove the strict monotonicity and uniqueness of all traveling wave solutions pro-
vided that the intra-specific competitive delays are zeros. Of particular interest is
the effect of the delays on the wave propagation. We find that the minimal wave
speed does not depend on all delays under some assumptions (see Theorem 2.7).
The decay rate of ψ(·) at −∞ and the decay rate of φ(·) and θ(·) at +∞ also does
not depend on the all delays. When λ3(τ1) < Λ (see Lemma 3.6), the delay τ1 slow
down the decay rate of φ(·) at −∞; when λ4(τ7) < Λ, the delay τ7 slow down the
decay rate of θ(·) at −∞. Furthermore, when λ7(τ4) ≥ Π (see Lemma 3.10), the
delay τ4 slow down the decay rate of 1− ψ(·) at +∞.

This article is organized as follows. Section 2 and 3 are devoted to the existence
and asymptotic behavior of the traveling wavefronts of (2.1), respectively. In section
4, we study that the monotonicity and uniqueness of the traveling wavefronts.

2. Existence of minimal wave speed

In this section, we prove the existence of the minimal wave speed c∗ of the
traveling fronts of (1.1) connecting (1, 0, 1) and (0, 1, 0). Using Schauder’s fixed
point theorem, the proof of the existence of the traveling fronts with speed c > c∗
is similar to that of [21, 10, 15]. Here, we only indicate the differences which may
appear.

Throughout this paper, we use the usual notations for the standard ordering in
R3. That is, for u = (u1, u2, u3) and v = (v1, v2, v3), we denote u ≤ v if ui ≤ vi,
i = 1, 2, 3; u < v if u ≤ v but u 6= v; and u � v if u ≤ v but ui 6= vi, i = 1, 2, 3.
Let | · | denote the Euclidean norm in R3 and ‖ · ‖ denote the supremum norm in
C([−cτ, 0],R3).
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Letting u∗j = 1 − uj , v∗j = vj , w∗j = 1 − wj and dropping the star, system (1.1)
is converted to the cooperative system

∂uj(t)
∂t

= d1D[uj ](t) + r1(1− uj(t))[−uj(t− τ1) + a12vj(t− τ2)],

∂vj(t)
∂t

= d2D[vj ](t) + r2vj(t)
[
r0 − vj(t− τ4)

+ a21uj(t− τ3) + a23wj(t− τ5)
]
,

∂wj(t)
∂t

= d3D[wj ](t) + r3(1− wj(t))[a32vj(t− τ6)− wj(t− τ7)],

(2.1)

where r0 = 1 − a21 − a23. Obviously, the equilibria (1, 0, 1) and (0, 1, 0) of (1.1)
become the equilibria 0 := (0, 0, 0) and 1 := (1, 1, 1) of system (2.1). In the
following, we shall deal with the traveling wave solution of system (2.1) connecting
0 and 1, because of its equivalence to system (1.1).

For convenience, we denote τ = maxi=1,2,...,7{τi}, and C[0,1](R,R3) = {Ψ ∈
C(R,R3) : 0 ≤ Ψ(ξ) ≤ 1, ξ ∈ R}. As usual, for any φ ∈ C(R,R), we define
φξ(·) = φ(ξ + ·) ∈ C([−cτ, 0],R). We further define

f1(ψ1, ψ2, ψ3) = r1(1− ψ1(0))[−ψ1(−cτ1) + a12ψ2(−cτ2)],

f2(ψ1, ψ2, ψ3) = r2ψ2(0)[r0 − ψ2(−cτ4) + a21ψ1(−cτ3) + a23ψ3(−cτ5)],

f3(ψ1, ψ2, ψ3) = r3(1− ψ3(0))[−ψ3(−cτ7) + a32ψ2(−cτ6)].

for (ψ1, ψ2, ψ3) ∈ C([−cτ, 0],R3).
A solution (uj(t), vj(t), wj(t)) : Z × R → [0,1] of (2.1) is called a traveling

wave solution connecting 0 and 1 if there exist c ∈ R and a smooth function
Φ(·) = (φ1(·), φ2(·), φ3(·)) : R→ [0,1] such that

(uj(t), vj(t), wj(t)) = (φ1(j + ct), φ2(j + ct), φ3(j + ct)) (2.2)

and
lim

ξ→−∞
Φ(ξ) = 0, lim

ξ→+∞
Φ(ξ) = 1. (2.3)

According to (2.2), it is obvious that (φ1(ξ), φ2(ξ), φ3(ξ)) with ξ := j + ct satisfies
the equations

cφ′i(ξ)−di[φi(ξ+1)−2φi(ξ)+φi(ξ−1)]−fi(φ1,ξ, φ2,ξ, φ3,ξ) = 0, i = 1, 2, 3. (2.4)

Lemma 2.1. If τ1, τ4, τ7 ≥ 0 are small enough, then f satisfies the quasi-monotone
condition: there exist positive constants l1, l2 and l3 such that

fi(φ1, φ2, φ3)− fi(ψ1, ψ2, ψ3) + li[φi(0)− ψi(0)] ≥ 2di[φi(0)− ψi(0)], i = 1, 2, 3

for Φ = (φ1, φ2, φ3),Ψ = (ψ1, ψ2, ψ3) ∈ C([−cτ, 0],R3), where 0 ≤ Φ(s) ≤ Ψ(s) ≤
1; e

li
c s[φi(s)− ψi(s)] are nondecreasing in s ∈ [−cτ, 0], i = 1, 2, 3.

Definition 2.2. A continuous function Φ̄ = (φ̄1, φ̄2, φ̄3) ∈ C[0,1](R,R3) is called
an upper solution of (2.4) if it satisfies

cφ̄′i(ξ)−di[φ̄i(ξ+1)−2φ̄i(ξ)+ φ̄i(ξ+1)]−fi(Φ̄ξ) ≥ 0 for ξ ∈ R, i = 1, 2, 3. (2.5)

A lower solution of (2.4) can be similarly defined by only reversing the inequality
in (2.5).

In what follows, we assume that there exist an upper solution Φ̄ = (φ̄1, φ̄2, φ̄3)
and a lower solution Φ = (φ

1
, φ

2
, φ

3
) of (2.4) satisfying the hypotheses
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(H1) 0 ≤ Φ(ξ) ≤ Φ̄(ξ) ≤ 1, φ
2
(ξ) 6= 0, ξ ∈ R;

(H2) limξ→−∞Φ(ξ) = 0, limξ→∞ Φ̄(ξ) = 1, limξ→−∞ φ̄1(ξ) = 0,
limξ→−∞ φ̄3(ξ) = 0;

(H3) The set Γ := Γ(Φ, Φ̄) ∈ C(R,R3) is nonempty, where

Γ =
{

Ψ = (ψ1, ψ2, ψ3) : (i) Φ(ξ) ≤ Ψ(ξ) ≤ Φ̄(ξ) for ξ ∈ R;

(ii) Ψ(ξ) is nondecreasing in ξ ∈ R;

(iii) e
Li
c ξ[φ̄i(ξ)− ψi(ξ)] and e

Li
c ξ[ψi(ξ)− φi(ξ)] are nondecreasing

in ξ ∈ R, for i = 1, 2, 3;

(iv) e
Li
c ξ[ψi(ξ + s)− ψi(ξ)] are nondecreasing in ξ ∈ R for s > 0,

i = 1, 2, 3.
}

Theorem 2.3. Assume that τ1, τ4, τ7 ≥ 0 are small enough. If there is an upper
solution (φ̄1, φ̄2, φ̄3) ∈ C[0,1](R,R3) and a lower solution (φ

1
, φ

2
, φ

3
) ∈ C[0,1](R,R3)

of (2.4) and satisfying (H1)–(H3), then (2.1) admits a traveling wavefront satisfying
(2.3).

Proof. By Schauder’s fixed point theorem and the method in [21, 10, 15], one can
easily show that (2.4) admits a solution Φ = (φ1, φ2, φ3) ∈ Γ.

Next, we verify the boundary conditions (2.3). Since (φ1, φ2, φ3) is monotone and
bounded, limξ→±∞(φ1, φ2, φ3) exists, denoting (φ1±, φ2±, φ3±). Taking the limit in
(2.4) as ξ → ±∞, we have f(φ1±, φ2±, φ3±) = 0. That is, (φ1±, φ2±, φ3±) are
two equilibria of (2.4). Moreover, (φ1±, φ2±, φ3±) ∈ [0,1] with (φ1−, φ2−, φ3−) ≤
(φ1+, φ2+, φ3+). So (φ1±, φ2±, φ3±) may be (1, 0, 1), (0, 0, 1), (1, 1, 1), (1, 0, 0) and
(0, 0, 0) by (A). Since 0 < supξ∈R φ2

(ξ) ≤ φ2+ by (H1), it must be (φ1+, φ2+, φ3+) =
(1, 1, 1). Since limξ→−∞ φ̄1(ξ) = 0 and limξ→−∞ φ̄3(ξ) = 0 by (H2), we have
(φ1−, φ2−, φ3−) = (0, 0, 0). The proof is complete. �

Theorem 2.3 implies that the existence of traveling wave solutions could be
transformed to the existence of upper and lower solutions. Next, we construct a
pair of upper and lower solution of (2.4) satisfying the condition in Theorem 2.3.

By linearizing the second equation in (2.4) around the unstable equilibrium
(0, 0, 0), we could get the following characteristic equation

∆2(λ, c) = d2(eλ + e−λ − 2)− cλ+ r2(1− a21 − a23). (2.6)

Thus, we can easily obtain the following Lemma.

Lemma 2.4. Assume (H0) holds. Then there exist c∗ > 0 and λ∗ > 0 such that
∆2(λ∗, c∗) = 0 and ∂∆2(λ,c)

∂λ |(λ∗,c∗) = 0. Moreover, for c > c∗, ∆2(λ, c) has two
positive roots λ1, λ2 with 0 < λ1 < λ∗ < λ2, and

∆2(λ, c)


> 0, λ < λ1,

= 0, λ1 < λ < λ2,

< 0, λ > λ2,

for 0 < c < c∗,∆2(λ, c) > 0 for λ ∈ R.



6 P. GAO, S. L. WU EJDE-2019/34

Take c > c∗. For η ∈ (1,min{2, λ2
λ1
}), we define the continuous functions

φ̄1(ξ) =

{
eλ1ξ, ξ ≤ 0,
1, ξ > 0,

φ̄2(ξ) =

{
eλ1ξ, ξ ≤ 0,
1, ξ > 0,

φ̄3(ξ) =

{
eλ1ξ, ξ ≤ 0,
1, ξ > 0,

φ
1
(ξ) ≡ 0, ξ ∈ R,

φ
2
(ξ) =

{
eλ1ξ − qeηλ1ξ, ξ ≤ ξ0,
0, ξ > ξ0,

φ
3
(ξ) ≡ 0, ξ ∈ R.

where q > 0 is large enough, ξ0(q) = 1
(η−1)λ0

ln 1
q , (φ̄1, φ̄2, φ̄3), (φ

1
, φ

2
, φ

3
) satisfy

(H1) and (H2) for large enough q. By the definition of η, it follows that ∆1(ηλ1, c) <
0.

By simple calculations, we have the following results.

Lemma 2.5. Let (φ1, φ2, φ3) = ( eλ1ξ

1+eλ1ξ
, eλ1ξ

1+eλ1ξ
, eλ1ξ

1+eλ1ξ
). Then (φ1, φ2, φ3) ∈ Γ.

Lemma 2.6. Let (H0) hold. Assume τ1 < τ2, τ7 < τ6 and τ4 < min{τ3, τ5}.
Assume further that d2 ≥ max{d1, d3} and r2(1 − a21 − a23) ≥ max{r1(a12 −
1), r3(a32 − 1)} hold. Then (φ̄1, φ̄2, φ̄3) is an upper solution and (φ

1
, φ

2
, φ

3
) is a

lower solution of (2.4).

Proof. For simplicity, denote

Ti(Φ)(ξ) = di[φi(ξ+1)−2φi(ξ)+φi(ξ−1)]−cφ′i(ξ)+fi(φ1,ξ, φ2,ξ, φ3,ξ), i = 1, 2, 3,

for Φ = (φ1, φ2, φ3). We now show that (φ̄1, φ̄2, φ̄3) is an upper solution. First, we
prove that T1(φ̄1, φ̄2, φ̄3) ≤ 0. We distinguish two cases.

Case (i): ξ ≤ 0. Noting that φ̄2(ξ−cτ2) = φ̄1(ξ−cτ2) ≤ φ̄1(ξ−cτ1), r1(a12−1) ≤
r2(1− a21 − a23) and φ̄1(ξ ± 1) ≤ eλ1(ξ±1), we have

T1(φ̄1, φ̄2, φ̄3)(ξ) ≤ d1D[φ̄1]− cφ̄′1(ξ) + r1(1− φ̄1(ξ))(a12 − 1)φ̄1(ξ − cτ1)

≤ d1D[φ̄1]− cφ̄′1(ξ) + r1(a12 − 1)φ̄1(ξ)

≤ eλ1ξ[d1(eλ1 + e−λ1 − 2)− cλ1 + r2(1− a21 − a23)]

≤ eλ1ξ[d2(eλ1 + e−λ1 − 2)− cλ1 + r2(1− a21 − a23)] = 0.

Case (ii): ξ > 0. Noting that φ̄1(ξ − 1) ≤ 1, we have T1(φ̄1, φ̄2, φ̄3) = d1[−1 +
φ̄1(ξ − 1)] ≤ 0. Similarly, we can verify that T3(φ̄1, φ̄2, φ̄3) ≤ 0.

Next, we show that T2(φ̄1, φ̄2, φ̄3) ≤ 0. Now, we distinguish three cases.
Case (i): ξ ≤ 0. In this case, by τ4 < min{τ3, τ5}, we have

a21φ̄1(ξ − cτ3) + a23φ̄3(ξ − cτ5)− φ̄2(ξ − cτ4)

= a21φ̄2(ξ − cτ3) + a23φ̄2(ξ − cτ5)− φ̄2(ξ − cτ4)

≤ (a21 + a23 − 1)φ̄2(ξ − cτ4) ≤ 0.

Noting that φ̄2(ξ ± 1) ≤ eλ1(ξ±1), we have

T2(φ̄1, φ̄2, φ̄3)(ξ) ≤ d2D[φ̄2]− cφ̄′2(ξ) + r2(1− a21 − a23)φ̄2(ξ) ≤ eλ1ξ∆2(λ1, c) = 0.

Case (ii): 0 < ξ ≤ cτ4. Noting that φ̄2(cτ4 − 1) ≤ 1, φ̄2(0) = 1 and τ4 <
min{τ3, τ5}, we have

T2(φ̄1, φ̄2, φ̄3)(cτ4) ≤ r2φ̄2(cτ4)[r0 + a21φ̄1(cτ4 − cτ3) + a23φ̄3(cτ4 − cτ5)− φ̄2(0)]
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= −r2(a21 − a21e
λ1c(τ4−τ3) + a23 − a23e

λ1c(τ4−τ5)) < 0.

Since τ4 is small enough and independent of φ̄1(ξ), φ̄2(ξ), φ̄3(ξ), φ̄′2(ξ), φ̄1(ξ), φ̄2(ξ)
and φ̄3(ξ) are uniformly bounded and uniformly continuous for ξ ∈ R \ {0}, it
follows that T2(φ̄1, φ̄2, φ̄3)(ξ) ≤ 0 for 0 < ξ < cτ4.

Case (iii): ξ > cτ4. In this case φ̄2(ξ − cτ4) = φ̄2(ξ + 1) = 1. Since φ̄2(ξ − 1) ≤
1, φ̄1(ξ − cτ3) ≤ 1 and φ̄3(ξ − cτ5) ≤ 1, we have

T2(φ̄1, φ̄2, φ̄3)(ξ) = d2[−1 + φ̄2(ξ − 1)] + r2φ̄2(ξ)
[
− a21 − a23

+ a21φ̄1(ξ − cτ3) + a23φ̄3(ξ − cτ5)
]
≤ 0.

Therefore, (φ̄1, φ̄2, φ̄3) is an upper solution. The verification of the lower solution
is similar and omitted. The proof is completed. �

Lemmas 2.5 and 2.6 imply that Γ is nonempty and there exist a pair of upper
and lower solutions for (2.4). Now we state the existence result on traveling wave
solutions of (2.1) connecting 0 and 1.

Theorem 2.7. Let (H0) hold. Assume τ1 < τ2, τ7 < τ6 and τ4 < min{τ3, τ5}.
Assume further that d2 ≥ max{d1, d3} and r2(1 − a21 − a23) ≥ max{r1(a12 −
1), r3(a32 − 1)} hold. Then, the following result holds:

(i) For each c ≥ c∗, (2.1) has a traveling wavefront Φ(ξ) = Φ(j+ ct) = (φ1(j+
ct), φ2(j + ct), φ3(j + ct)) with the wave speed c which connects 0 and 1.
Moreover, for c > c∗,

lim
ξ→−∞

φ2(ξ)e−λ1ξ = 1, lim
ξ→−∞

φ′2(ξ)e−λ1ξ = λ1. (2.7)

(ii) For 0 < c < c∗, (2.1) has no traveling wave solution Ψ(ξ) with Ψ(−∞) = 0.

Proof. (i) For c > c∗, the existence of the traveling wavefront sandwiched by
the upper and lower solutions follows from Theorem 2.3 and Lemmas 2.5 and
2.6. From the definition of the upper and lower solutions, one can easily see
that limξ→−∞ φ2(ξ)e−λ1ξ = 1. Moreover, using limξ→−∞ φ2(ξ)e−λ1ξ = 1 and
limξ→−∞(φ1(ξ), φ2(ξ), φ3(ξ)) = (0, 0, 0), we obtain

lim
ξ→−∞

φ′2(ξ)e−λ1ξ

=
1
c

lim
ξ→−∞

{
d2[φ2(ξ + 1)− 2φ2(ξ) + φ2(ξ − 1)] + r2φ2(ξ)

[
1− a21 − a23

+ a21φ1(ξ − cτ3)− φ2(ξ − cτ4) + a23φ3(ξ − cτ5)
]}
e−λ1ξ

=
1
c

[d2(eλ1 − 2 + e−λ1) + r2(1− a21 − a23)] = λ1.

For c = c∗, the existence of the traveling wavefront can be established by a
limiting argument as in [27, Theorem 3.1]. We omit the details here.

(ii) For c < c∗, the non-existence of traveling wave solutions will be proved in
Section 3. The proof is complete. �

3. Asymptotic behavior of traveling fronts

In this section, we shall study the asymptotic behavior of wave profile as ξ → ±∞
with τ1 = τ4 = τ7 = 0 or τ1, τ4 and τ7 small enough. The non-existence of the
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traveling wave solutions with c ∈ (0, c∗) is also proved. Throughout this section,
we assume that (H0) holds.

We first give some properties of solutions to (2.4).

Lemma 3.1. Let (φ(ξ), ψ(ξ), θ(ξ)) : R → [0,1] be a solution of (2.4) and (2.3)
with c > 0. Then ψ(ξ) > 0, φ(ξ) < 1 and θ(ξ) < 1 for ξ ∈ R.

Proof. We first prove that ψ(ξ) > 0 for ξ ∈ R. Suppose for the contrary that
there exists ξ0 such that ψ(ξ0) = 0. Since ψ(+∞) = 1, we may assume ξ0 is the
right-most point such that ψ(ξ0) = 0. Then ψ(ξ0) = 0 is a minimum point, so we
have ψ′(ξ0) = 0. From the second equation of (2.4), it follows that ψ(ξ0 + 1) =
ψ(ξ0 − 1) = 0, a contradiction with the definition of ξ0. Thus ψ(ξ) > 0 in R.

Similarly, one can easily prove that φ(ξ) < 1 and θ(ξ) < 1 in R. This completes
the proof. �

The following Proposition and the Ikehara’s theorem will play an important role
in proving the asymptotic behavior at infinity.

Proposition 3.2 ([1, 2]). Let c > 0 be a constant and B(·) be a continuous function
having finite B(±∞) := limx→±∞B(x). Let z(·) be a measurable function satisfying

cz(x) = e
R x+1
x

z(s)ds + e−
R x
x−1 z(s)ds +B(x), ∀x ∈ R.

Then z is uniformly continuous and bounded. In addition, w± = limx→±∞ z(x)
exist and are real roots of the characteristic equation

cw = ew + e−w +B(±∞).

Lemma 3.3 (Ikehara’s theorem). Let ϕ be a positive nondecreasing function on R,
and define F (λ) :=

∫ 0

−∞ e−λξϕ(ξ)dξ. If F can be written as F (λ) := H(λ)
(α−λ)ν+1 for

some ν > −1, α > 0, and H is analytic in the strip 0 < <λ ≤ α, then

lim
ξ→−∞

ϕ(ξ)
|ξ|νeαξ

=
H(α)

Γ(α+ 1)
.

By Lemmas 2.4 and 3.1 and Proposition 3.2, we could obtain the following
theorem on the asymptotic behavior of ψ at −∞.

Theorem 3.4. Let (φ(ξ), ψ(ξ), θ(ξ)) : R → [0,1] be a solution of (2.4) and (2.3)
with c > 0. Then limξ→−∞

ψ′(ξ)
ψ(ξ) = Λ ∈ {λ1, λ2}, where λ1, λ2 are given in Lemma

2.4.

Proof. Set z(ξ) = ψ′(ξ)
ψ(ξ) . By the second equation of (2.4), z(ξ) satisfies

d2

(
e

R ξ+1
ξ

z(s)ds + e
R ξ−1
ξ

z(s)ds − 2
)
− cz(ξ)

+ r2[1− a21 − a23 − ψ(ξ − cτ4) + a21φ(ξ − cτ3) + a23θ(ξ − cτ5)] = 0.

Thus, since limξ→−∞(φ(ξ), ψ(ξ), θ(ξ)) = (0, 0, 0), the assertion follows from Lemma
2.4 and Proposition 3.2. The proof is complete. �

Based on Theorem 3.4, we now give the proof of the non-existence of the traveling
wave solutions with c ∈ (0, c∗).
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Proof of Theorem 2.7 (ii). Suppose for the contrary that (2.1) has a traveling wave
solution Ψ(ξ) = (φ1(ξ), ψ1(ξ), θ1(ξ)) with speed c ∈ (0, c∗) and Ψ(−∞) = 0. By
Lemma 2.4, we see that ∆2(Λ, c) > 0. On the other hand, from the second equation
of (2.4), we have

d2

(
e

R ξ+1
ξ

ψ′1(s)
ψ1(s)ds + e

R ξ−1
ξ

ψ′1(s)
ψ1(s)ds − 2

)
− cψ

′
1(ξ)
ψ1(ξ)

+ r2

[
1− a21 − a23

− ψ1(ξ − cτ4) + a21φ1(ξ − cτ3) + a23θ1(ξ − cτ5)
]

= 0.
(3.1)

By Theorem 3.4, limt→−∞
ψ′1(ξ)
ψ1(ξ) = Λ. It then follows from (3.1) and the fact

Ψ(−∞) = 0 that

∆2(Λ, c) = d2(eΛ + e−Λ − 2)− cΛ + r2(1− a21 − a23) = 0,

which contradicts to ∆2(Λ, c) > 0. This completes the proof of Theorem 2.7 (ii). �

Given the continuous function ϕ : R→ R, define the bilateral Laplace transform

L(λ, ϕ) =
∫ ∞
−∞

e−λξϕ(ξ)dξ.

Lemma 3.5. Let (φ(ξ), ψ(ξ), θ(ξ)) : R → [0,1] be a solution of (2.4) and (2.3)
with c ≥ c∗. Then L(λ, ψ) <∞, λ ∈ (0,Λ) and L(λ, ψ) =∞, λ ∈ R \ (0,Λ).

Proof. From the definition of bilateral Laplace transform, we have

L(λ, ψ) =
∫ ∞
−∞

ψ(ξ)e−λξdξ

=
∫ 0

−∞
ψ(ξ)e−λξdξ +

∫ ∞
0

ψ(ξ)e−λξdξ.

Then the assertion follows from Theorem 3.4 and the fact ψ(−∞) = 0. We omit it
here. �

Let

∆1(λ, c, τ1) = d1(eλ + e−λ − 2)− cλ− r1e
−λcτ1 , (3.2)

∆3(λ, c, τ7) = d3(eλ + e−λ − 2)− cλ− r3e
−λcτ7 . (3.3)

It is easy to verify that the following results hold, see e.g. [13].

Lemma 3.6. (i) ∆1(λ, c, τ1) = 0 has a unique positive root λ3(τ1) > 0 for c >
0 and ∆1(λ, c, τ1) < 0 for λ ∈ (0, λ3(τ1)). Moreover, λ3(τ1) is decreasing
with respect to τ1.

(ii) ∆3(λ, c, τ7) = 0 has a unique positive root λ4(τ7) > 0 for c > 0 and
∆3(λ, c, τ7) < 0 for λ ∈ (0, λ4(τ7)). Moreover, λ4(τ7) is decreasing with
respect to τ7.

(iii) For τ1 = 0 or small enough τ1 > 0, λ = λ3(τ1) is a unique root with
<λ = λ3(τ1) of ∆1(λ, c, τ1) = 0.

(iv) For τ7 = 0 or small enough τ7 > 0, λ = λ4(τ7) is a unique root with
<λ = λ4(τ7) of ∆3(λ, c, τ7) = 0.

The following Lemma shows that φ(ξ) and θ(ξ) have similar properties as those
of ψ(ξ) described in Lemma 3.5.
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Lemma 3.7. Let (φ(ξ), ψ(ξ), θ(ξ)) : R → [0,1] be a solution of (2.4) and (2.3)
with c ≥ c∗. Then the following results hold:

(i) L(λ, φ) < ∞, λ ∈ (0, γ(τ1)) and L(λ, φ) = ∞, λ ∈ R \ (0, γ(τ1)), where
γ(τ1) = min{Λ, λ3(τ1)}.

(ii) L(λ, θ) < ∞, λ ∈ (0, α(τ7)) and L(λ, θ) = ∞, λ ∈ R \ (0, α(τ7)), where
α(τ7) = min{Λ, λ4(τ7)}.

Proof. We only prove the assertion (i), since the proof of assertion (ii) is similar.
We divide the proof into two steps.

Step 1. We first show that there exists ν > 0 such that L(λ, φ) <∞, λ ∈ (0, ν).
Since d1(eλ − 2 + e−λ)− cλ = 0 has only two real roots 0 and Λ̃ for c > 0,

d1(eλ − 2 + e−λ)− cλ < 0, λ ∈ (0, Λ̃).

For λ ∈ (0,Λ0), where Λ0 := min{Λ, Λ̃, 1
cτ1
, 1

2e2(d1+c)}, we choose a0 < 0 small
enough satisfying φ(ξ) ≤ 1

2 for ξ ≤ a0 + cτ1 + 1
λ . Multiplying the first equation of

(2.4) by e−λξ, integrating from a ≤ a0 to ∞, we have

r1a12

∫ ∞
a

(1− φ(ξ))ψ(ξ − cτ2)e−λξdξ

= −d1

∫ ∞
a

[φ(ξ + 1)− 2φ(ξ) + φ(ξ − 1)]e−λξdξ + c

∫ ∞
a

φ′(ξ)e−λξdξ

+ r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ.

On the one hand,

r1a12

∫ ∞
a

(1− φ(ξ))ψ(ξ − cτ2)e−λξdξ ≤ r1a12

∫ ∞
−∞

(1− φ(ξ))ψ(ξ − cτ2)e−λξdξ

≤ r1a12

∫ ∞
−∞

ψ(ξ − cτ2)e−λξdξ

≤ r1a12

∫ ∞
−∞

ψ(ξ)e−λξdξ

= r1a12L(λ, ψ).

On the other hand,

−d1

∫ ∞
a

[φ(ξ + 1)− 2φ(ξ) + φ(ξ − 1)]e−λξdξ + c

∫ ∞
a

φ′(ξ)e−λξdξ

+ r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

= −d1

{
eλ
∫ ∞
a+1

−2
∫ ∞
a

+e−λ
∫ ∞
a−1

}
φ(ξ)e−λξdξ − cφ(a)e−λa

+ cλ

∫ ∞
a

φ(ξ)e−λξdξ + r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

= −d1

{
eλ
∫ a

a+1

+e−λ
∫ a

a−1

}
φ(ξ)e−λξdξ − cφ(a)e−λa

+ [cλ− d1(eλ − 2 + e−λ)]
∫ ∞
a

φ(ξ)e−λξdξ
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+ r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

≥ −d1e
−λ
∫ a

a−1

φ(ξ)e−λξdξ − cφ(a)e−λa + r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

≥ −d1e
−λ
∫ a

a−1

φ(a)e−λ(a−1)dξ − cφ(a)e−λa + r1

∫ ∞
a

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

≥ −d1φ(a)e−λa − cφ(a)e−λa + r1

∫ a+cτ1+ 1
λ

a+cτ1

(1− φ(ξ))φ(ξ − cτ1)e−λξdξ

≥ −d1φ(a)e−λa − cφ(a)e−λa +
r1

2

∫ a+cτ1+ 1
λ

a+cτ1

φ(ξ − cτ1)e−λξdξ

≥ −d1φ(a)e−λa − cφ(a)e−λa +
r1

2

∫ a+cτ1+ 1
λ

a+cτ1

φ(a+ cτ1 − cτ1)e−λ(a+cτ1+ 1
λ )dξ

=
(
− d1 − c+

r1

2λ
e−(λcτ1+1)

)
φ(a)e−λa

≥
(
− d1 − c+

r1

2λ
e−2
)
φ(a)e−λa.

Thus, using Lemma 3.5, for any λ ∈ (0,Λ0), we obtain 0 < supa≤a0
φ(a)e−λa <∞.

Take ν ∈ (0,Λ0). Then L(λ, φ) well defined for λ ∈ (0, ν).
Step 2. We prove max ν = γ(τ1) = min{Λ, λ3(τ1)}. Multiplying the first equa-

tion of (2.4) by e−λξ with λ > 0 and integrating from −∞ to ∞, we obtain

∆1(λ, c, τ1)L(λ, φ) = −r1a12

∫ ∞
−∞

(1− φ(ξ))ψ(ξ − cτ2)e−λξdξ

− r1

∫ ∞
−∞

φ(ξ)φ(ξ − cτ1)e−λξdξ.
(3.4)

Obviously, the right side of (3.4) is well defined for λ ∈ (0,min{2 max ν,Λ}) and
max ν ≤ Λ. We claim that max ν ≤ λ3(τ1). Otherwise, if max ν > λ3(τ1), then
L(λ3(τ1), φ) <∞. Taking λ = λ3(τ1) in (3.4), the left side of (3.4) equals to 0 and
the right side of (3.4) is always negative by φ(ξ) ≤ 1, which leads to a contradiction.
It also follows easily from (3.4) that γ(τ1) = Λ if Λ < λ3(τ1) and γ(τ1) = λ3(τ1) if
Λ ≥ λ3(τ1), i.e. γ(τ1) = min{Λ, λ3(τ1)}. The proof is complete. �

Define

Q1(λ) :=
∫ ∞
−∞

φ(ξ)[−φ(ξ − cτ1) + a12ψ(ξ − cτ2)]e−λξdξ,

Q2(λ) :=
∫ ∞
−∞

ψ(ξ)[ψ(ξ − cτ4)− a21φ(ξ − cτ3)− a23θ(ξ − cτ5)]e−λξdξ,

Q3(λ) :=
∫ ∞
−∞

θ(ξ)[−θ(ξ − cτ7) + a32ψ(ξ − cτ6)]e−λξdξ.

Let q = 1 when Q2(Λ) 6= 0 and q = 0 when Q2(Λ) = 0. Then, the asymptotic
behavior of (φ(ξ), ψ(ξ), θ(ξ)) at −∞ are as follows.

Theorem 3.8. Assume that τ1, τ4, τ7 are small enough. Let (φ(ξ), ψ(ξ), θ(ξ)) :
R→ [0,1] be a solution of (2.4) and (2.3) with c ≥ c∗. Then there exist ηi > 0(i =
1, . . . , 8) and ωi > 0 (i = 3, . . . , 8) such that the solution exhibits the asymptotic
behavior as ξ → −∞ as follows:
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(i) ψ(ξ) = η1e
Λξ + h.o.t. for c > c∗, ψ(ξ) = −η2ξ

qeΛξ + h.o.t. for c = c∗.
(ii) For c > c∗,

φ(ξ) =


η3e

Λξ + h.o.t., if λ3(τ1) > Λ,
−η4ξe

Λξ + h.o.t., if λ3(τ1) = Λ,
η5e

λ3(τ1)ξ + h.o.t., if λ3(τ1) < Λ,

and

θ(ξ) =


ω3e

Λξ + h.o.t., if λ4(τ7) > Λ,
−ω4ξe

Λξ + h.o.t., if λ4(τ7) = Λ,
ω5e

λ4(τ7)ξ + h.o.t., if λ4(τ7) < Λ.
(iii) For c = c∗,

φ(ξ) =


−η6ξ

qeΛξ + h.o.t., if λ3(τ1) > Λ,
−η7ξ

q+1eΛξ + h.o.t., if λ3(τ1) = Λ,
η8e

λ3(τ1)ξ + h.o.t., if λ3(τ1) < Λ,

and

θ(ξ) =


−ω6ξ

qeΛξ + h.o.t., if λ4(τ7) > Λ,
−ω7ξ

q+1eΛξ + h.o.t., if λ4(τ7) = Λ,
ω8e

λ4(τ7)ξ + h.o.t., if λ4(τ7) < Λ.

Proof. The idea of the proof follows from [6]. From Lemmas 3.5 and 3.7, L(λ, φ),
L(λ, ψ) and L(λ, θ) are well defined for λ ∈ C with <λ ∈ (0, γ(τ1)),<λ ∈ (0,Λ) and
<λ ∈ (0, α(τ7)), respectively. It follows from (2.4) that

∆2(λ, c)
∫ ∞
−∞

ψ(ξ)e−λξdξ = r2Q2(λ) (3.5)

for λ ∈ C with 0 < <λ < Λ,

∆1(λ, c, τ1)
∫ ∞
−∞

φ(ξ)e−λξdξ = −r1r2a12e
−λcτ2 Q2(λ)

∆2(λ, c)
+ r1Q1(λ) (3.6)

for λ ∈ C with 0 < <λ < γ(τ1) and

∆3(λ, c, τ7)
∫ ∞
−∞

θ(ξ)e−λξdξ = −r3r2a32e
−λcτ6 Q2(λ)

∆2(λ, c)
+ r3Q3(λ) (3.7)

for λ ∈ C with 0 < <λ < α(τ7). By calculating directly, we could easily obtain
that Q1(λ), Q2(λ) and Q3(λ) are analytic in the strip 0 < <λ < 2γ(τ1), 0 < <λ <
Λ + γ(τ1) and 0 < <λ < 2α(τ7) by Lemmas 3.5 and 3.7, respectively. Let

F (λ) =
∫ 0

−∞
ψ(ξ)e−λξdξ =

r2Q2(λ)
∆2(λ, c)

−
∫ ∞

0

ψ(ξ)e−λξdξ, (3.8)

H(λ) =
r2Q2(λ)
∆2(λ,c)

(Λ−λ)p+1

− (Λ− λ)p+1

∫ ∞
0

ψ(ξ)e−λξdξ (3.9)

where p = 0 when c > c∗ and p = q when c = c∗. Then H(λ) is analytic in the
strip 0 < <λ < Λ. Moreover, it is easy to see that H(λ) is analytic in the strip
{λ|<λ = Λ}. So H(λ) is analytic in the strip 0 < <λ ≤ Λ.

It follows from Lemma 3.3 that

lim
ξ→−∞

ψ(ξ)
|ξ|peΛξ

=
H(Λ)

Γ(Λ + 1)
,
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where p = 0 when c > c∗ and p = q when c = c∗. It is easy to see that (i) holds
when H(Λ) 6= 0. We next claim that H(Λ) 6= 0.

For c > c∗, since Λ is a simple root of ∆2(λ, c) and p = 0, it follows that the
denominator of the first term of the right side of (3.9) does not equal to zero. We
claim that Q2(Λ) 6= 0. If not, we obtain that L(Λ, ψ) exists by (3.8), which leads
to a contradiction of Lemma 3.5. Thus Q2(Λ) 6= 0 which implies that H(Λ) 6= 0 by
(3.9).

For c = c∗, Λ is a double root of ∆2(λ, c). If Q2(Λ) 6= 0, we take q = 1 such
that H(Λ) 6= 0 by (3.9). If Q2(Λ) = 0, then Λ must be a simple root of Q2(λ) = 0,
otherwise, L(Λ, ψ) exists by (3.8), which leads to a contradiction for Lemma 3.5.
Then we can take q = 0 such that H(Λ) 6= 0 by (3.9).

Next we only need to prove the assertion (ii), since the assertion (iii) can be
discussed similarly. Define

F0(λ) =
∫ 0

−∞
φ(ξ)e−λξdξ

= −
∫ ∞

0

φ(ξ)e−λξdξ − r1r2a12e
−λcτ2Q2(λ)

∆2(λ, c)∆1(λ, c, τ1)
+

r1Q1(λ)
∆1(λ, c, τ1)

,

(3.10)

H0(λ) = (γ(τ1)− λ)p+1F0(λ) (3.11)

in the strip 0 < <λ ≤ γ(τ1), where p = 0 when λ3(τ1) 6= Λ, p = 1 when λ3(τ1) = Λ.
By using a similar argument as (i), H0(λ) is also analytic in the strip 0 < <λ ≤
γ(τ1). It follows from Lemma 3.3 that

lim
ξ→−∞

φ(ξ)
|ξ|peγξ

=
H0(γ(τ1))

Γ(γ(τ1) + 1)
,

where q = 0 when λ3(τ1) 6= Λ, q = 1 when λ3(τ1) = Λ. Next we claim that
H0(γ(τ1)) 6= 0.

If λ3(τ1) ≥ Λ, then γ(τ1) = Λ. Combining (3.10) and (3.11), we can easily obtain
H0(γ(τ1)) 6= 0 by Q2(λ) 6= 0. If λ3(τ1) < Λ, then γ(τ1) = λ3(τ1). Since

H0(λ) =
−r1

∫∞
−∞[φ(ξ)φ(ξ − cτ1) + a12(1− φ(ξ))ψ(ξ − cτ2)]e−λξdξ

∆1(λ,c,τ1)
(λ3(τ1)−λ)

− (λ3(τ1)− λ)
∫ ∞

0

φ(ξ)e−λξdξ,

we see that H0(λ3(τ1)) 6= 0. Indeed, if H0(λ3(τ1)) = 0, then∫ ∞
−∞

[φ(ξ)φ(ξ − cτ1) + a12(1− φ(ξ))ψ(ξ − cτ2)]e−λξdξ = 0,

which implies that φ(ξ) ≡ ψ(ξ) ≡ 0, for all t ∈ R. This contradiction yields that
H0(λ3(τ1)) 6= 0. The proof is complete. �

From Theorem 3.8, it is not difficult to get the following corollary.

Corollary 3.9. If (φ(ξ), ψ(ξ), θ(ξ)) is described as Theorem 3.8, then

lim
ξ→−∞

φ′(ξ)
φ(ξ)

= γ(τ1), lim
ξ→−∞

θ′(ξ)
θ(ξ)

= α(τ7), lim
ξ→−∞

ψ′(ξ)
ψ(ξ)

= Λ.
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Next we establish the asymptotic behavior of (φ(ξ), ψ(ξ), θ(ξ)) at +∞. For this
purpose, let φ̃ = 1− φ, ψ̃ = 1−ψ, θ̃ = 1− θ, substituting φ̃, ψ̃ and θ̃ into (2.4), we
have

d1[φ̃(ξ + 1)− 2φ̃(ξ) + φ̃(ξ − 1)]− cφ̃′(ξ) + f̃1(φ̃ξ, ψ̃ξ, θ̃ξ) = 0,

d2[ψ̃(ξ + 1)− 2ψ̃(ξ) + ψ̃(ξ − 1)]− cψ̃′(ξ) + f̃2(φ̃ξ, ψ̃ξ, θ̃ξ) = 0,

d3[θ̃(ξ + 1)− 2θ̃(ξ) + θ̃(ξ − 1)]− cθ̃′(ξ) + f̃3(φ̃ξ, ψ̃ξ, θ̃ξ) = 0

(3.12)

with the asymptotic boundary conditions

lim
ξ→−∞

(φ̃(ξ), ψ̃(ξ), θ̃(ξ)) = (1, 1, 1), lim
ξ→∞

(φ̃(ξ), ψ̃(ξ), θ̃(ξ)) = (0, 0, 0), (3.13)

where

f̃1(φ̃ξ, ψ̃ξ, θ̃ξ) = r1φ̃(ξ)[1− a12 − φ̃(ξ − cτ1) + a12ψ̃(ξ − cτ2)],

f̃2(φ̃ξ, ψ̃ξ, θ̃ξ) = r2(1− ψ̃(ξ))[a23θ̃(ξ − cτ5) + a21φ̃(ξ − cτ3)− ψ̃(ξ − cτ4)],

f̃3(φ̃ξ, ψ̃ξ, θ̃ξ) = r3θ̃(ξ)[1− a32 − θ̃(ξ − cτ7) + a32ψ̃(ξ − cτ6)].

Define
∆4(λ, c) := d1(eλ − 2 + e−λ)− cλ+ r1(1− a12),

∆5(λ, c, τ4) := d2(eλ − 2 + e−λ)− cλ− r2e
−λcτ4 ,

∆6(λ, c) := d3(eλ − 2 + e−λ)− cλ+ r3(1− a32).

(3.14)

Lemma 3.10. ∆4(λ, c), ∆5(λ, c, τ4) and ∆6(λ, c) are described as (3.14). Then
(i) ∆4(λ, c) = 0 has a unique negative root λ5 < 0 for c > 0, and ∆6(λ, c) = 0

has a unique negative root λ6 < 0 for c > 0;
(ii) for τ4 = 0 or small enough τ4, ∆5(λ, c, τ4) = 0 has a unique negative root

λ7(τ4) < 0 for c > 0 and ∆5(λ, c, τ4) < 0 for λ ∈ (λ7(τ4), 0). Moreover,
λ7(τ4) is decreasing with respect to τ4.

Proof. The proof of the assertion (i) is direct and is omitted. Also, it is easy to see
that the assertion (ii) holds for τ4 = 0. For small enough τ4 > 0, we assume that
0 < cτ4 � 1. Since ∆5(0, c, τ4) = −r2 < 0 and ∆5(−∞, c, τ4) = ∞, it follows that
∆5(λ, c, τ4) = 0 has a negative root λ7(τ4) < 0. Furthermore, we can take τ4 small
enough such that

∂∆5(λ, c, τ4)
∂λ

= d2(eλ − e−λ)− c+ cτ4r2e
−λcτ4 < 0, λ ∈ (−∞, 0].

Thus ∆5(λ, c, τ4) = 0 has a unique negative root λ7(τ4) < 0. This completes the
proof. �

Similar to Lemma 3.6, we have the following result.

Lemma 3.11. For τ4 = 0 or small enough τ4, λ = λ7(τ4) is a unique root with
<λ = λ7(τ4) of ∆5(λ, c, τ4) = 0.

By Proposition 3.2 and the fact limξ→+∞(φ̃(ξ), ψ̃(ξ), θ̃(ξ)) = (0, 0, 0), we have
the following result.

Theorem 3.12. Let (φ(ξ), ψ(ξ), θ(ξ)) : R→ [0,1] be a solution of (2.4) and (2.3)
with c ≥ c∗. Then

lim
ξ→∞

φ′(ξ)
1− φ(ξ)

= −λ5 > 0, lim
ξ→∞

θ′(ξ)
1− θ(ξ)

= −λ6 > 0.
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Lemma 3.13. Let (φ(ξ), ψ(ξ), θ(ξ)) : R → [0,1] be a solution of (2.4) and (2.3)
with c ≥ c∗. Then

(i) L(λ, φ̂) <∞, λ ∈ (λ5, 0) and L(λ, φ̂) =∞, λ ∈ R \ (λ5, 0);
(ii) L(λ, θ̂) <∞, λ ∈ (λ6, 0) and L(λ, θ̂) =∞, λ ∈ R \ (λ6, 0);
(iii) L(λ, ψ̂) < ∞, λ ∈ (ρ(τ4), 0) and L(λ, ψ̂) = ∞, λ ∈ R \ (ρ(τ4), 0), where

ρ(τ4) = max{λ5, λ6, λ7(τ4)} < 0.

Proof. The proof is similar to that of Lemmas 3.5 and 3.7. So we omit it here. �

Using a similar argument as Theorem 3.8, we have the following exponential
asymptotic behavior of (φ(ξ), ψ(ξ), θ(ξ)) at +∞.

Theorem 3.14. Assume that τ1 = τ4 = τ7 = 0 or τ1, τ4 and τ7 are small enough.
Let (φ(ξ), ψ(ξ), θ(ξ)) : R→ [0,1] be a solution of (2.4) and (2.3) with c ≥ c∗. Then
the solution exhibits the asymptotic behavior as ξ →∞ as follows:

(i) There exist η9 > 0 and ω9 > 0 such that

1− φ(ξ) = η9e
λ5ξ + h.o.t., 1− θ(ξ) = ω9e

λ6ξ + h.o.t.

(ii) For Π ∈ {λ5, λ6}, there exist ηi > 0(i = 10, 11, 12) such that

1− ψ(ξ) =


η10e

λ7(τ4)ξ + h.o.t., if λ7(τ4) > Π,
η11ξe

λ7(τ4)ξ + h.o.t., if λ7(τ4) = Π,
η12e

Πξ + h.o.t., if λ7(τ4) < Π.

The following corollary follows directly from Theorem 3.14.

Corollary 3.15. Let (φ(ξ), ψ(ξ), θ(ξ)) be as described in Theorem 3.14. Then

lim
ξ→∞

ψ′(ξ)
1− ψ(ξ)

= −ρ(τ4),

where ρ(τ4) = max{λ5, λ6, λ7(τ4)}.

4. Monotonicity and uniqueness of wave profiles

In this section, we adopt the strong comparing principle and sliding method to
prove the strict monotonicity and uniqueness of traveling wavefronts of (2.1) when
τ1 = τ4 = τ7 = 0. We first give the strong comparison principle as follows.

Lemma 4.1. Assume (H0) and τ1 = τ4 = τ7 = 0 hold. Let (c,Φ) and (c,Ψ) be two
traveling wave solutions of (2.4) satisfying Φ(ξ) ≤ Ψ(ξ) for ξ ∈ R. Then we have
either (i)Φ(ξ) < Ψ(ξ) for ξ ∈ R, or (ii) Φ(ξ) ≡ Ψ(ξ) for ξ ∈ R.

Proof. For given constants L1, L2, L3 > 0, we denote

H1(Φ)(ξ) = d1D[φ](ξ) + (L1 + 2)φ(ξ) + r1(1− φ(ξ))[−φ(ξ) + a12ψ(ξ − cτ2)],

H2(Φ)(ξ) = d2D[ψ](ξ) + (L2 + 2)ψ(ξ) + r2ψ(ξ)
[
1− a21 − a23 − ψ(ξ)

+ a21φ(ξ − cτ3) + a23θ(ξ − cτ5)],

H3(Φ)(ξ) = d3D[θ](ξ) + (L3 + 2)θ(ξ) + r3(1− θ(ξ))[a32ψ(ξ − cτ6)− θ(ξ)].

where Φ(ξ) = (φ(ξ), ψ(ξ), θ(ξ)). It is clear that one can choose sufficiently large
L1, L2, L3 > 0 such that Hi(Φ) is non-decreasing with respect to Φ. When τ1 =
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τ4 = τ7 = 0, Φ(ξ) = (φ(ξ), ψ(ξ), θ(ξ)) satisfies

cφ′(ξ) + (L1 + 2)φ(ξ) = H1(φ(ξ), ψ(ξ), θ(ξ)),

cψ′(ξ) + (L2 + 2)ψ(ξ) = H2(φ(ξ), ψ(ξ), θ(ξ)),

cθ′(ξ) + (L3 + 2)θ(ξ) = H3(φ(ξ), ψ(ξ), θ(ξ)),

(4.1)

which implies

φ(ξ) =
1
c
e−

L1+2
c ξ

∫ ξ

−∞
e

(L1+2)s
c H1(φ, ψ, θ)(s)ds,

ψ(ξ) =
1
c
e−

L2+2
c ξ

∫ ξ

−∞
e

(L2+2)s
c H2(φ, ψ, θ)(s)ds,

θ(ξ) =
1
c
e−

L3+2
c ξ

∫ ξ

−∞
e

(L3+2)s
c H3(φ, ψ, θ)(s)ds .

(4.2)

Using (4.2) and the method in [6, Lemma 4.1], one can easily prove the assertion.
This completes the proof. �

Theorem 4.2. Assume that (H0) holds and τ1 = τ4 = τ7 = 0. Let (c,Φ) :=
(c, φ, ψ, θ) be any traveling wavefront of (2.1) with the wave speed c ≥ c∗. Then,
Φ(ξ) is strictly monotone.

Proof. By Theorems 3.4, 3.8, 3.12 and 3.14, one can choose large enough N > 0
such that φ′(ξ) > 0, ψ′(ξ) > 0 and θ′(ξ) > 0 for any ξ ∈ R \ [−N,N ]. By (2.3), the
set

I := {η > 0|φ(ξ + s) ≥ φ(ξ), ψ(ξ + s) ≥ ψ(ξ), θ(ξ + s) ≥ θ(ξ),∀s ≥ η, ξ ∈ R}
is not empty. Thus η∗ = inf I is well defined. By the continuity, we have

φ(ξ + η∗) ≥ φ(ξ), ψ(ξ + η∗) ≥ ψ(ξ), θ(ξ + η∗) ≥ θ(ξ), ∀ξ ∈ R.

Next, we prove η∗ = 0. Suppose for the contrary that η∗ > 0. Then, by Lemma
4.1, we have

φ(ξ + η∗) > φ(ξ), ψ(ξ + η∗) > ψ(ξ), θ(ξ + η∗) > θ(ξ), ∀ξ ∈ R.

By the continuity of (φ, ψ, θ), there exists η0 ∈ (0, η∗) satisfying

φ(ξ + η) > φ(ξ), ψ(ξ + η) > ψ(ξ), θ(ξ + η) > θ(ξ), η ∈ [η0, η
∗],

for ξ ∈ [−N − η∗, N ]. Note that

φ′(ξ) > 0, ψ′(ξ) > 0, θ′(ξ) > 0, ξ ∈ R \ [−N,N ].

Then

φ(ξ + η) > φ(ξ), ψ(ξ + η) > ψ(ξ), θ(ξ + η) > θ(ξ), η ∈ [η0, η
∗],

for ξ ∈ R \ [−N − η∗, N ]. Thus,

φ(ξ + η) ≥ φ(ξ), ψ(ξ + η) ≥ ψ(ξ), θ(ξ + η) ≥ θ(ξ), ∀η > η0, ξ ∈ R,

which leads to a contradiction for the definition of η∗. Thus η∗ = 0. Then φ′(ξ) ≥ 0,
ψ′(ξ) ≥ 0 and θ′(ξ) ≥ 0 in R. By differentiating the two side of (4.2) and using
the mononicity of Hi, one can easily verify that φ′(ξ) > 0, ψ′(ξ) > 0 and θ′(ξ) > 0,
ξ ∈ R. The proof is complete. �

Now we give the uniqueness of traveling wavefronts of (2.1).
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Theorem 4.3. Assume that (H0), τ1 = τ4 = τ7 = 0 and d2 ≥ max{d1, d3} hold.
Let

Φ1(ξ) = (φ1(ξ), ψ1(ξ), θ1(ξ)), Φ2(ξ) = (φ2(ξ), ψ2(ξ), θ2(ξ))
be any two traveling wavefronts of (2.1) with the speed c ≥ c∗ which connects 0
with 1. Then there exists η0 ∈ R such that Φ1(ξ + η0) = Φ2(ξ).

Proof. From Theorem 3.8 and Λ = λ1 or λ2, there exist ωi = ωi(φi, ψi, θi)(i = 1.2)
such that at least one of the following holds:

(i) limξ→−∞
ψi(ξ+ωi)
|ξ|υeλ1ξ

= 1, i = 1, 2;

(ii) limξ→−∞
ψi(ξ+ωi)
|ξ|υeλ2ξ

= 1, i = 1, 2;

(iii) limξ→−∞
ψ1(ξ+ω1)
|ξ|υeλ1ξ

= 1, limξ→−∞
ψ2(ξ+ω2)
|ξ|υeλ2ξ

= 1;

(iv) limξ→−∞
ψ1(ξ+ω1)
|ξ|υeλ2ξ

= 1, limξ→−∞
ψ2(ξ+ω2)
|ξ|υeλ1ξ

= 1,

where υ = 0 if c > c∗ and υ = q if c = c∗.
Note that λ1 ≤ λ2. Then there exists η1 = η1(φ1, ψ1, θ1, φ2, ψ2, θ2) such that one

of the following is true, which corresponds to the above cases (i)-(iv):

(i) limξ→−∞
ψ1(ξ+η1)
ψ2(ξ) = 1, and limξ→−∞

ψ1(ξ+ξ̄)
ψ2(ξ) = eλ1(ξ̄−η1) > 1 for all ξ̄ >

max{η1, 0};
(ii) limξ→−∞

ψ1(ξ+η1)
ψ2(ξ) = 1, and limξ→−∞

ψ1(ξ+ξ̄)
ψ2(ξ) = eλ2(ξ̄−η1) > 1 for all ξ̄ >

max{η1, 0};
(iii) limξ→−∞

ψ1(ξ+η1)
ψ2(ξ) = 1 or ∞, and limξ→−∞

ψ1(ξ+ξ̄)
ψ2(ξ) > 1 or ∞ for all ξ̄ >

max{η1, 0};
(iv) limξ→−∞

ψ1(ξ)
ψ2(ξ+η1) = 1 or 0, and limξ→−∞

ψ1(ξ)

ψ2(ξ+ξ̄)
< 1 or 0 for all ξ̄ <

min{η1, 0}.
Suppose that (i) happens. From (2.6), (3.2) and (3.3), and the condition d2 ≥

max{d1, d3}, it is easy to see that λ3(τ1) > Λ and λ4(τ7) > Λ. By Theorem 3.8
again, there exist

η2 = η2(φ1, ψ1, θ1, φ2, ψ2, θ2), η3 = η3(φ1, ψ1, θ1, φ2, ψ2, θ2)

such that

lim
ξ→−∞

φ1(ξ + η2)
φ2(ξ)

= 1, lim
ξ→−∞

θ1(ξ + η3)
θ2(ξ)

= 1.

Then

lim
ξ→−∞

φ1(ξ + ξ̄)
φ2(ξ)

= eλ1(ξ̄−η2) > 1, lim
ξ→−∞

θ1(ξ + ξ̄)
θ2(ξ)

= eλ1(ξ̄−η3) > 1

for all ξ̄ > max{η2, η3, 0}. Thus, for ξ̄1 > max{η1, η2, η3, 0}, there exists M1 � 1
such that

φ1(ξ + ξ̄1)
φ2(ξ)

≥ 1,
θ1(ξ + ξ̄1)
θ2(ξ)

≥ 1,
ψ1(ξ + ξ̄1)
ψ2(ξ)

≥ 1, ∀ξ ∈ (−∞,−M1].

By the monotonicity of (φi(ξ), ψi(ξ), θi(ξ))(i = 1, 2), for any ξ̄ ≥ ξ̄1,

φ1(ξ + ξ̄) ≥ φ2(ξ), ψ1(ξ + ξ̄) ≥ ψ2(ξ), θ1(ξ + ξ̄) ≥ θ2(ξ), ∀ξ ∈ (−∞,−M1].

From Theorem 3.14, by a similar argument as the one for −∞, we can get that
there exist η4, η5, η6 and M2 � 1 such that

φ1(ξ + ξ̄) ≥ φ2(ξ), ψ1(ξ + ξ̄) ≥ ψ2(ξ), θ1(ξ + ξ̄) ≥ θ2(ξ), ∀ξ ∈ [M2,∞).
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for ξ̄ > ξ̄2 > max{η4, η5, η6, 0}.
Take M = max{M1,M2}. By (φi(+∞), ψi(+∞), θi(+∞)) = 1, we can choose

ξ̄0 > max{ξ̄1, ξ̄2} suitable large satisfying

φ1(ξ + ξ̄0) ≥ φ2(ξ), ψ1(ξ + ξ̄0) ≥ ψ2(ξ), θ1(ξ + ξ̄0) ≥ θ2(ξ), ∀ξ ∈ [−M,M ].

Thus,

φ1(ξ + ξ̄0) ≥ φ2(ξ), ψ1(ξ + ξ̄0) ≥ ψ2(ξ), θ1(ξ + ξ̄0) ≥ θ2(ξ), ∀ξ ∈ R.

Then there exists ξ0 ≤ ξ̄0 (by translation) such that at least one of the following is
true

(a) φ1(ξ̂+ξ0) = φ2(ξ̂) for some ξ̂ ∈ R, θ1(ξ+ξ0) ≥ θ2(ξ) and ψ1(ξ+ξ0) ≥ ψ2(ξ),
ξ ∈ R;

(b) ψ1(ξ̂+ξ0) = ψ2(ξ̂) for some ξ̂ ∈ R, φ1(ξ+ξ0) ≥ φ2(ξ) and ψ1(ξ+ξ0) ≥ ψ2(ξ),
ξ ∈ R;

(c) θ1(ξ̂+ξ0) = θ2(ξ̂) for some ξ̂ ∈ R, φ1(ξ+ξ0) ≥ φ2(ξ) and ψ1(ξ+ξ0) ≥ ψ2(ξ),
ξ ∈ R.

Without loss of generality, we assume (a) is true, since the traveling wavefronts
of (2.4) are translation invariant, (φ1(ξ+ξ0), ψ1(ξ+ξ0), θ1(ξ+ξ0)) is also a traveling
wavefront of (2.4). By Lemma 4.1,

φ1(ξ + ξ0) ≡ φ2(ξ), ψ1(ξ + ξ0) ≡ ψ2(ξ), θ1(ξ + ξ0) ≡ θ2(ξ).

The proof of the assertion (ii) is similar and omitted here. Next we prove that
the case (iii) and (iv) cannot happen. For instance, if (iii) happens, by a similar
argument as above, there exists ξ0 ∈ R satisfying

(φ1(ξ + ξ0), ψ1(ξ + ξ0), θ1(ξ + ξ0)) = (φ2(ξ), ψ2(ξ), θ2(ξ)), ξ ∈ R,

which contradicts to the asymptotic behavior of ψ1(·) and ψ2(·) at −∞. Similarly,
(iv) cannot happen. This completes the proof. �
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