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Abstract

Voice control is critical to communication. To date, studies have used behavioral, 

electrophysiological and functional data to investigate the neural correlates of voice control using 

perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of 

this study was to use structural equation modeling of functional neuroimaging data to examine 

network properties of voice with and without perturbation. Results showed that the presence of a 

pitch shift, which was processed as an error in vocalization, altered connections between right 

STG and left STG. Other regions that revealed differences in connectivity during error detection 

and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. 

Results indicated that STG plays a critical role in voice control, specifically, during error detection 

and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest 

the right hemisphere is critical to pitch modulation.

1.0 Introduction

The use of the human voice is essential for oral communication and is controlled by 

complex neural processing that drives feedforward and feedback mechanisms. Given the 

primacy of auditory feedback in voice control a neurobiological model of phonation based 

on sensory feedback is essential. Peripheral mechanisms of voice control, including 

respiratory, laryngeal and articulatory systems, have been heavily studied and are well 

understood; however, information related to neural mechanisms of voice control remains 

elusive (Bauer et al., 2006). The study of the underlying properties associated with systems-

level neural network of vocalization can provide insight into the relations between vocal 

output and sensory feedback. Recent developments in neuroimaging not only allow for the 
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identification of regions involved in this complex system but also allow for the development 

of effective connectivity models. Here, we developed models of neural causal linkage using 

data from a pitch shift auditory feedback paradigm where the pitch of self voice feedback 

was unexpectedly changed during vocalization (Burnett et al., 1998, Parkinson et al., 2012, 

Larson, 1998).

Vocal control utilizes the accurate perception and integration of the auditory signal and 

somatosensory information generated by the individual (Burnett et al., 1997, Hain et al., 

2000, Heinks-Maldonado et al., 2005, Golfinopoulos et al., 2011, Parkinson et al., 2012). 

During vocalization a shift is perceived as an error in production and triggers corrective 

mechanisms whereby subjects respond to the pitch-shift by changing their own voice 

fundamental frequency (F0) in the opposite direction to the shift. In speech and voice 

systems the presence of error signals are generated as a result of a mismatch between a 

predicted outcome and sensory feedback. Both functional imaging and ERP analyses using 

perturbation paradigms have previously indicated that the superior temporal gyrus is a key 

brain region involved in coding mismatches between expected and actual auditory signals 

and that the right hemisphere is especially involved in pitch processing; (Parkinson et al., 

2012, Behroozmand and Larson, 2011, Tourville et al., 2008, Guenther et al., 2006, Zarate 

and Zatorre, 2008) however, it is well known that the brain operates as a network rather than 

as isolated modules. As a result, this study aims to extend previous reports on the voice 

network and identify how that network changes as a response to a detected error in pitch. 

Consequently, we developed two independent data-driven models of best fit for a shift and a 

no shift condition.

Brain imaging can uncover much about the neural control of the voice. Effective 

connectivity analyses allow for study of interactive processes and causal relations in the 

underlying neural network associated with vocalization and other motor activities. Structural 

equation modeling (SEM) utilizes knowledge gained from imaging modalities and provides 

a model of the effective connectivity in a given neural system (Laird et al., 2008). For 

example, using a stacked modeling approach, Tourville et al. used SEM to model network 

connectivity involved in speech with and without first formant frequency (F1) shifts to 

examine connectivity as it relates to a computational speech model (DIVA). This analysis 

showed that an unexpected F1 shift of participants’ speech resulted in significant influence 

from bilateral auditory regions to frontal regions indicating that corrective mechanisms from 

auditory error cells are sent to regions of motor control in response to errors during speech 

(Tourville et al., 2008). While this analysis gives important insight into perceived error in 

speech it differs from our analysis in two keys ways. Firstly, unlike F0, F1 shifts are 

typically used during normal speech to change phonemic categories. As a result, F1 shifts 

are likely different from shifts in F0. Secondly, the stacked model approach tested a fully 

constrained model. The approach employed by this study is minimally constrained; 

consequently, this approach removes bias that could result from a priori constraint and 

uncovers pathways that best fit the model from an unbiased standpoint. Therefore, further 

investigation of the neural network responsible for voice control is warranted.

Here, we examined the effective connectivity of voice control using a data-driven approach 

to SEM. We utilized data from a previously published fMRI dataset (Parkinson et al., 2012) 
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that employed the pitch shift paradigm during vocalization. We created two models (shift/no 

shift) examining bilateral cortical brain regions previously identified as being involved in 

vocalization, including the superior temporal gyrus (STG), premotor cortex (PMC), primary 

motor cortex (M1), and inferior frontal gyrus (IFG) (Brown S, 2008, Tourville et al., 2008, 

Parkinson et al., 2012). We hypothesized that our models would confirm differences in 

connectivity between models for regions involved in audio-vocal integration. Differences 

between models were identified through the absence or presence of pathways as well as 

connection strengths. The path coefficients represents the direct proportional functional 

influence one region has on another (McIntosh 1994). Furthermore, due to previous work 

that showed differences in processing during perturbation in bilateral STG, we hypothesized 

that bilateral STG would show changes in modulation between the two models (Parkinson et 

al. 2012). We expected that this would result in a greater degree of involvement in error 

processing (shift condition) than in typical vocalization (no shift) between regions, which 

would be indicated by a larger path coefficient.

2.0 Methods

2.1 Participants

Subject data was obtained from a previous functional imaging study (Parkinson et al., 2012). 

This sample included ten right-handed English-speaking subjects. Two of these subjects 

were omitted from the current analysis due to lack of activations in the no shift vs. rest 

condition in two or more seed regions and two additional subjects scanned since publication 

of the above study were included. This provided ten subjects (4 males, 6 females, mean age 

30) with no history of neurological disorder. Prior to functional imaging, subjects underwent 

pre-screening to ensure that all subjects showed a vocal response to the pitch-shift paradigm 

(Change in baseline of pitch magnitude in the upward or downward direction following a 

pitch shift). This has been standard practice for over a decade of testing and less than five 

percent of subjects do not show a response. No subjects were eliminated due to this criterion 

for our experiment. Inclusion criteria also required that subjects were safe for MRI scanning, 

had normal hearing, reported no neurological deficits, no speech or voice disorders and no 

formal musical experience in the past 10 years. The institutional review board of the 

University of Texas Health Science Center at San Antonio approved all study procedures.

2.2 Experimental Procedure

A detailed description of MRI scanning procedures and imaging acquisition can be found in 

Parkinson et al. 2012. In summary, subjects lay in the scanner with electrostatic headphones 

(Koss KSP 950) and viewed a monitor screen displaying a visual cue, “ahhh”. Each trial 

began with the presentation of a speech or rest visual cue. Subjects vocalized until the cue 

disappeared from the screen (5s). During vocalization the subject’s voice was shifted ±100 

cents (200ms; randomized direction; > 250ms post onset) during shift trials, and had no shift 

during vocalization only conditions. When presented with a rest cue, subjects remained 

silent. Data were stored to a PC workstation and analyzed offline. An experimental block 

consisted of 64 trials, 48 vocalization trials (16 shift-up, 16 shift-down, 16 no- shift) and 16 

rest trials. The trials were presented in a random order. Each subject performed 3 

experimental blocks within the session and there was a 2-minute rest period between each 
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block. All structural and fMRI data were acquired on a Siemens Trio 3T scanner. Three full-

resolution structural images were acquired using a T1-weighted, 3D TurboFlash sequence 

with an adiabatic inversion contrast pulse with a resolution of 0.8 mm isotropic. The scan 

parameters were TE = 3.04, TR=2100, TI=78 ms, flip angle=13, 256 slices, FOV=256 mm, 

160 transversal slices. The three structural images were combined to create an average, 

which was then used to register the brain of each subject to their functional data. The 

functional images were acquired using a sparse sampling technique. T2* weighted BOLD 

images were acquired using the following parameters; FOV 220 mm, slice acquisition voxel 

size = 2 × 2 × 3mm, 43 slices, matrix size = 96 × 96, flip angle=90, TA=3000 ms, 

TR=11,250 ms and TE=30 ms. Slices were acquired in an interleaved order with a 10% slice 

distance factor. Each experimental run of the task consisted of 64 volumes. Functional data 

were obtained using a sparse sampling technique triggered by a digital pulse sent from the 

stimulus computer for each event.

2.3 Region of Interest (ROI) selection

Prior studies have found that primary motor cortex, superior temporal gyrus, anterior 

cingulate cortex, supplementary motor area, premotor cortex, insula, thalamus, putamen, and 

cerebellum are all part of the vocalization network (Brown S, 2008, Zarate and Zatorre, 

2008, Parkinson et al., 2012). While all regions found in the cited works are contributors to 

vocalization and are important, we were unable to include all regions in our model as this 

would cause a loss in statistical power. As a result, we chose 8 regions consistent with the 

above reports that showed robust activation in the Parkinson et al. 2012 paper. The regions 

selected were examined bilaterally due to differential processing between hemispheres. 

Regions in our models included bilateral superior temporal gyrus (STG), bilateral inferior 

frontal gyrus (IFG), bilateral premotor cortex (PMC), and bilateral primary motor cortex 

(M1). In Parkinson 2012, superior temporal gyrus demonstrated increased activation during 

shift conditions when compared to no shift vocalization. Furthermore, it is involved in 

auditory-vocal integration and processing of predicted and actual vocal output (Zarate and 

Zatorre, 2005). Additionally, we investigated IFG, which was shown as an imperative part 

of the speech/vocalization network and has been identified as a site for additional sensory 

processing for motor planning and control of vocalization (Tourville et al., 2008, Zarate et 

al., 2010, Parkinson 2013). Premotor cortex has been identified as a location for selecting 

alternatives to already programed learned responses as well as generating motor commands 

for speech and vocalization (Zarate et al., 2010, Tourville et al, 2008). Primary motor cortex 

was selected for its involvement in sending motor commands to be executed. Primary motor 

cortex is functionally connected with IFG giving rise to speech and vocalization making it 

an optimal candidate for this analysis (Greenlee et al., 2004). Given the limited number of 

data points made available by sparse sampling, subcortical regions were not included in the 

bilateral model. Instead, we focused on cortical contributions to vocalization with and 

without shifted feedback. Separate models were created for the shift and no shift conditions. 

Specific coordinates for regions of interest were identified from the unshifted vocalization 

versus rest contrast in a group analysis (Table 1). Individual ROIs were created (125mm3 

cubic volume centered around the specified MNI coordinate) for each of the above listed 

regions using the multi-image analysis GUI (Mango) image processing software (http://

ric.uthscsa.edu/mango/) (Lancaster et al., 2012). Individual ROIs were converted from the 
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normalized MNI space back to native subject space allowing for the extraction of raw data 

from each individual subject while ensuring that data were extracted from the identical sites 

across subjects.

2.4 Data Analysis

Preprocessing was performed using the FSL 4.1.4 (FMRIB Software Library) software 

package. Head motion was corrected using MCFLIRT and non-brain was removed from the 

structural image using the BET brain extraction tool. The functional EPI images were 

smoothed using a FWHM of 5mm and transformed to MNI space using FSLs registration 

tools. The FMRI BOLD signal was extracted from each ROI for each subject’s data set and 

experimental condition. Data points for the shift condition and no shift conditions were 

averaged and separated into respective conditions from the data set using FSL MEANTS 

(FSL tool used to average times series data) and concatenated across the three scanning 

sessions for each subject resulting in 480 data points per condition per ROI. Extracted data 

for each ROI was then normalized to a mean of zero and standard deviation of one.

Effective connectivity of regions activated during shift and no-shift paradigms was assessed 

using path analysis within a structural equation modeling framework (AMOS version 19.0, 

SPSS, IBM). While the typical strategy for SEM is to implement a priori hypotheses to fully 

constrain the SEM models as seen in the Tourville 2008 study, this can be misleading. 

Instead, we chose to employ an approach with minimal a priori constraint which allowed for 

the production of data driven models for vocalization (Laird et al., 2008, (Laird et al., 2008; 

Hastie, Tibshirani & Friedman, 2009). While the results from Tourville’s stacked model are 

important, our goal differed from the Tourville study. Our goal was to provide a data driven 

model that reduced bias introduced by a priori models. Bias is the result of a fully 

constrained model requiring assumptions to be made which can potentially limit the 

identification of vital connections within a system. Due to our data driven approach, we 

were able to examine key pathways that may not have been identified a priori. Furthermore, 

our model started with a full comprehensive model that included all possible paths from our 

point of origin. To establish a starting connection for each structural equation model, we 

imposed a prior assumption identifying superior temporal gyrus as the initial region 

receiving auditory input. The use of STG as the initial region of input is supported by 

research indicating that information from an auditory stimulus reaches STG approximately 

12 – 17ms from the stimulus onset (Steinschneider et al., 1999, Inui et al., 2006). Thus, it 

was hypothesized that STG interacts with one or more of the remaining variables/regions. 

Paths connecting the STG to all other regions were established and a specification search 

was employed to determine the best combination of connected regions following the 

guidelines of Burnham & Anderson (2002). Specification search allows for multiple 

candidate models to be tested using optional unidirectional path loadings. The Browne-

Cudeck criterion value (BCC) is an information-theoretic index that represents the predictive 

fit index and is used to select among competing models fit to the same data (Schumacker & 

Lomax, 2010, p. 230). In this analysis, the model with the lowest BCC value was selected as 

the model that best represented the data (Laird et al. 2008). The next sets of candidate 

pathways were identified in an exploratory manner through the use of modification indices 

(MI). Paths with the highest MI were chosen as the next likely paths. The new paths were 
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added to the model, and an additional specification search was conducted. This search 

procedure continued in an iterative manner until a root mean square error of approximation 

(RMSEA) value of less than .08 was achieved. An RMSEA of less than .08 is indicative of a 

close fit of the sample (empirical) covariance matrix to the population matrix (Browne and 

Cudeck, 1993). Goodness of fit of the overall model was determined using descriptive 

statistics such as the likelihood ratio chi-square statistic, 2, (models with a 2 of zero indicate 

a theoretical model that fits the data perfectly), p-value (high p-values indicate a model is 

unlikely to be refuted in other independent samples), and a root mean square error of 

approximation (RMSEA) index of less than .08 indicating minimal discrepancy between the 

empirical or sample covariance matrix and the population. The class of models evaluated in 

this study was nonrecursive. In nonrecursive SEMs the presence of bidirectional feedback 

loops creates the possibility of a non-stable system resulting in biased parameter estimates. 

In our models, stability of the nonrecursive system was evaluated using the stability index 

based on the work of Bentler and Freeman (1983). In all models the stability index was 

between −1.0 and 1.0 verifying that the nonrecursive models were stable. Separate 

nonrecursive models were created for the shift and no shift conditions.

3.0 Results

3.1 No Shift condition

The no shift condition revealed connectivity associated with vocalization without error with 

a chi square fit index of 31.411, RMSEA =.071. Not surprisingly, we found that there are 

many connections between and within hemispheres. Connections presented in the left 

hemisphere include left M1 to left PMC, left STG, and left IFG which emphasizes the extent 

of connectivity necessary with the motor cortex to execute speech accurately. Left IFG 

showed coupling with left PMC regions commonly associated with the voice and speech 

network and contributors to speech articulation and retrieval of speech sounds. Left STG 

showed a relationship with left IFG and likely contributes to voice perception and 

processing. Right hemisphere connections include right M1 to right IFG and right PMC. A 

negative connection from right IFG to right M1 was also observed. The connections in the 

right hemisphere contribute to pitch processing. Cross hemisphere connections include, left 

STG to right M1, left IFG to right M1, left STG to right STG, and left IFG to right PMC. 

Lastly, a negative connection is visible from right PMC to left IFG. These cross-hemisphere 

connections indicate that vocalization requires crosstalk from both hemispheres to ensure 

accurate vocalization. No shift connectivity is shown in black (Figure 1).

3.2 Shift condition

The shift condition consisted of rapid 200ms shifts presented to the subject. These quick 

deviations from the subjects’ intended vocal output were likely processed as errors. 

Therefore, changes in connectivity between the no shift and shift conditions are likely due to 

this detected error and the processes associated with error correction. Here we present the 

resulting shift model which yielded a chi square fit index of 32.302, and RMSEA =.072. 

Connections within the left hemisphere included left PMC to left M1, left STG to left IFG, 

left IFG to left PMC and a negative connection between left PMC and left IFG. Right intra-

hemispheric connections include right M1 to right IFG, right PMC to right M1 and right 
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STG to right IFG. A negative coupling is seen from right IFG to right STG as well. 

Interestingly, negative pathways are generated during the shift condition that are not present 

in the no shift condition. This change of circuitry indicates differential processing necessary 

during the detection and correction of perceived vocal error. Cross-hemispheric connections 

include right primary motor cortex to left primary motor cortex, and left STG. Left IFG is 

coupled with right PMC. Importantly, a connection between left STG to right STG is 

observed. Additionally, a negatively correlated connection is present from right STG to Left 

STG (Figure 2).

4.0 Discussion

The focus of this study was to use effective connectivity modeling of fMRI data to 

determine neural networks involved in vocal control and identify pathways that are key to 

detecting and correcting vocal errors. Vocalization is a highly complex motor skill that 

requires coordination amongst multiple effector systems (e.g., respiratory and vocal) at a 

rapid pace. In order to execute voluntary actions with precision, both feedforward and 

feedback systems are integrated. Feedforward models compare anticipated changes to be 

imposed with the actual output (Jeannerod et al., 1979). Therefore, it is the difference 

between the actual and predicted sensory feedback that results in a sensory error, which is 

used to correct the current state estimate (Chang et al., 2013, Wolpert et al., 1995). Given 

that we delivered perturbation to the subjects during mid vocalization, these perturbations 

are processed as errors in self-vocalization (Behroozmand et al., 2011, Liu et al., 2010). As a 

result, we predicted that STG would serve as a vital region in error detection; therefore, STG 

would show differences in connectivity when an error was present compared to unperturbed 

vocalization. Consistent with our hypothesis, we found differences in neural connectivity of 

the voice network associated with vocal perturbations. Data support the idea that STG plays 

a crucial role in vocalization and shift processing as evidenced by our model. Our analysis 

also revealed the emergence of negative pathways that we interpret as feedback loops for 

during shifted vocalization that are not present with unperturbed productions.

4.1 The critical role of STG

Coupling between right STG and left STG in the no shift condition indicated that this path is 

critical to vocalization. Using a simple effect size computation (r2), one can see that 

approximately 5% of the variance in the direct relationship between left STG to right STG is 

accounted for in the no shift model; however, in the shift condition 50% of the variance is 

accounted for by this pathway. Interestingly, when an error was present, coupling between 

right STG and left STG changed further by uncovering a pathway with a negative path 

coefficient from right STG to left STG creating a negative feedback loop. This feedback 

loop to and from bilateral STG regions is likely used for the rapid fine-tuning of motor 

commands. In SEM, feedback loops represent reciprocal connections between neural 

regions. The presence of these feedback loops is a result of functional differences between 

shift and no shift conditions; however, these differences are discussed with caution due to 

the inability to interpret connectivity relative to the sign of the path (positive/negative) 

(McIntosh, 1994). These differences are discussed below.
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Studies have indicated that STG acts as a location for efference copy mechanisms which 

involve comparison of afferent vocal feedback and efferent motor and sensory predictions 

(Parkinson et al., 2012, Chang et al., 2013, Heinks-Maldonado et al., 2005). Parkinson et al. 

(2012) used fMRI to uncover neural regions involved in vocalization and error detection. A 

subtraction analysis revealed increased activity in STG during shift when contrasted with the 

no shift condition and revealed increased neural activity related to error detection and 

correction during vocalization (Parkinson et al., 2012). Studies using event related potentials 

(ERPs) show that responses to predicted vocal output are suppressed compared to listening 

to a playback of one’s own voice; however, when the predicted output does not match the 

resulting output, there is an enhancement in the ERP response to self vocalization (Heinks-

Maldonado et al., 2005, Behroozmand and Larson, 2011). ERP literature supports the idea 

that increased computation and fine-tuning of the neural signal is required for error detection 

and correction. High-resolution invasive intracranial recordings have confirmed this 

phenomenon, revealing a suppressed response to vocalization specifically in the superior 

temporal gyrus in response to self-vocalization (Greenlee et al., 2011). ERP and ECoG 

findings in conjunction with findings from our study, support forward models of voice 

control and suggest that efference copies of motor commands modulate the activity in 

bilateral STG.

The feedback loop generated in the shift condition may be the result of the need for fine-

tuning from specialized regions to correct for the detected error. It has been suggested by 

previous studies that right and left hemispheres are specialized and respond to the auditory 

feedback differently with the right hemisphere showing specialization for spectral 

information (frequency) and the left showing sensitivity to temporal information (Hickok et 

al., 2011, Johnsrude et al., 2000, Zatorre and Belin, 2001, Zatorre et al., 1992, Behroozmand 

et al., 2012, Robin et al., 1990). For example, Robin et al. (1990) examined patients with left 

temporoparietal lesions, right temporoparietal lesions and healthy controls during temporal 

and spectral tone discrimination tasks. Results demonstrated that lesions to the left 

hemisphere resulted in impaired ability to perceive temporal information but did not impair 

ability to perceive spectral information. The right hemisphere lesion group displayed an 

ability to process temporal information but not spectral. Behroozmand and colleagues 

(2012) produced data that further supported this idea when examining +200 cent shifts 

during and auditory feedback task of self-vocalization, complex tones and pure tones with 

missing fundamental. Zatorre 1988 showed that patients with right surgical excisions of the 

right auditory cortex (left intact) are impaired at perceiving pitch in complex tones with 

missing fundamental. Furthermore, in a pitch discrimination task, patients with right but not 

left temporal lobe excisions showed significantly elevated thresholds for directional changes 

of pitch (Johnsrude et al., 2000). Increased communication between these two regions 

during a shift could be the result of fine-tuning necessary during error detection that is not 

needed for vocalization without error.

4.2 The role of IFG

Our analysis indicated that the detection of an error resulted in the presence of a feedback 

loop between right IFG and right STG. This change in coupling properties indicates the need 

for these regions in the right hemisphere in error detection during voice production and 
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further fine-tuning of the actual execution of the motor command. Studies have shown that 

connections between IFG and STG specifically, are important to pitch processing and are 

therefore necessary in the detection and correction of errors in vocal performance. The 

neural network for pitch processing, which includes the pars triangularis of Broca’s area and 

the right superior temporal gyrus (STG), plays a vital role in melodic and lexical pitch 

processing (Nan and Friederici, 2012). Evidence that pitch processing is similar for both 

tonal speech and music supports the idea that IFG plays a large role in pitch processing 

regardless of modality and could be consistent with the link between right STG and right 

IFG (Nan and Friederici, 2012). Additionally, support for increased activity between these 

regions stems from work examining song where a predominance of right IFG contribution to 

melody is thought to be due to elongated vowels (Merrill et al., 2012). Finally, Tourville et 

al. observed increased activation of IFG during shift vs. no shift of the F1. Authors 

concluded that IFG was responsible for additional processing of sensorimotor information in 

response to error detection (STG). Our findings support this conclusion.

In our model, the connection left STG to left IFG as well as left IFG to left PMC is present 

in both shift and no shift conditions. Similar to the right hemisphere, the presence of an 

unexpected pitch shift resulted in a feedback loop from left PMC to left IFG. This finding 

suggests a change in circuitry during vocalization in the presence of an error and is in 

accordance with models of speech control which indicate that left IFG and left premotor 

areas are crucial to audio-vocal integration which is necessary in error detection and 

correction (Hickok et al., 2009, Guenther et al, 2006). Guenther and colleagues (Guenther et 

al., 2006) posed that the left STG is the site responsible for sound error maps while left IFG 

contains speech sound maps and plays a role in motor programming in the DIVA model 

(Guenther et al., 2006, Golfinopoulos et al., 2011). This aligns nicely with our model, which 

implies increased influence between these regions during error processing. Additionally, 

Papoutsi et al. (2009) supports the existence of a “dorsal stream” proposed by Hickok for 

speech processing, which suggests that inferior frontal gyrus, premotor area and sPT are a 

core network in speech production (Papoutsi et al., 2009). Given this, it is possible that the 

similarities between the shift and no shift condition are indicative of the necessity of 

coupling between left IFG and left premotor cortex in vocalization. Furthermore, the 

development of the feedback loop in our analysis is likely due to the increased need for 

processing corrective motor commands to be sent to M1 thus contributing to this change in 

circuitry.

Results showed coupling of inferior frontal gyri and the primary motor cortices regardless of 

the presence of a shift. This is likely a result of IFG’s critical involvement in speech 

production and functional connections with the primary motor cortex. The coupling 

observed between IFG and the primary motor cortices is supported by invasive surface 

recording data. Using this technique, Greenlee et al. determined that stimulation in IFG 

resulted in recorded evoked potentials in orofacial motor cortex and stimulation in orofacial 

motor cortex resulted in evoked potentials in IFG (Greenlee et al., 2004). These data 

provided evidence of a functional connection between these two regions and supports our 

findings.
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The role of motor cortices in vocalization—Our analysis also showed several 

connections with the primary motor cortices. This is not a surprising finding given the need 

for motor commands to be sent from these regions for vocalization. Activation from bilateral 

motor cortex is likely a result of the vocal folds being bilaterally innervated. The shift 

condition did result in a cross-hemispheric excitatory connection from right M1 to left M1 

that is not seen in the no shift condition. While bilateral motor cortex does play a role in 

vocalization regardless of the presence of a shift, the coupling induced by the shift is likely 

due to increased demand for error correction that is not necessary during the no shift 

condition.

5.0 Possible limitations

While the findings in this study provide insights into feedback control of the human voice, 

there are limitations that must be noted. First, we acknowledge that more optimal networks 

may exist or the inclusion of additional regions may enhance the analysis, For instance, the 

cerebellum is thought to play a role in error detection, possibly acting as a site of 

comparison between predicted and actual feedback or as the location responsible for sending 

corrective motor control signals to the motor cortices (Ito, 2013, Blakemore et al., 1998, 

Knolle et al. 2012a, Knolle et al. 2012b, Knolle et al. 2013). However, we selected regions 

we found important to vocal control and error detection given our previous study and 

existing literature that allow for a reliable SEM analysis that is not lacking in statistical 

power and cerebellar activations did not survive our analysis. Secondly, the method of data 

collection (ie, sparse sampling) necessary for our experimental design limited the number of 

data points used in this analysis. While this is a drawback, SEM is an ideal method of 

analysis for sparse sampling as it does not require a time series when calculating the path 

coefficients. Other modeling methods such as dynamic causal modeling, however, do have a 

requirement for an accurate time series. Lastly, the differences observed between the shift 

and no shift networks are qualitative in nature however we still obtain valuable information 

regarding changes in connectivity elicited from error detection and correction and have 

identified models that best represent the data set.

6.0 Conclusions

In conclusion, we used structural equation modeling to examine differences in connectivity 

during no shift and shifted vocalization. Our analysis indicated coupling between left STG 

to right STG in both the shift and no shift conditions; however, the shift condition 

introduced a negative path from right STG to left STG. These results in conjunction with 

previous literature, confirms our hypothesis that STG plays a vital role in error detection and 

correction. Furthermore, the presence of a shift alters the network circuitry between many of 

the regions in our model specifically introducing feedback loops between right IFG and right 

STG, and left IFG and left premotor when an error is detected. Previous literature suggests 

that the right hemisphere, is specialized for pitch processing and may play a key role in the 

development of these loops as an attempt to complete high-level processing required for 

error detection and correction of vocalization. Understanding how these networks are 

connected during vocalization and how they change as a result of detected errors is critical 

to understanding voice regulation.
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Highlights

• We modeled voice networks with and without auditory shifts using structural 

equation modeling.

• We examined differences in connectivity between the two models.

• We determined that STG is critical to vocalization and error detection/

correction.
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FIGURE 1. 
No Shift connectivity model – chi sq = 31.411, df = 15, P = .008, RMSEA = .071, BIC = 

161, BCC = 74.
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FIGURE 2. 
Shift connectivity model – chi sq = 32.302, df = 15, P = .006, RMSEA = .072, BIC = 161, 

BCC = 75. Negative path coefficients are represented with a dashed line.
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TABLE 1

ROIs for SEM analysis were 5mm3 in volume. Coordinates are presented in MNI space.

Region BA x y z

Right superior temporal gyrus 42 60 −33 10

Left superior temporal gyrus 42 −61 −13 1

Right inferior frontal gyrus 44 61 6 14

Left inferior frontal gyrus 44 −57 7 16

Right premotor cortex 6 54 −4 45

Left premotor cortex 6 −57 1 25

Right primary motor cortex 4 44 −12 36

Left primary motor cortex 4 −47 −8 42
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