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ABSTRACT 

SOFTWARE CACHE IN GLOBAL HEURISTIC SEARCHES 

by 

Daniel I Lowell, B.A. 

Texas State University-San Marcos 

May2010 

SUPERVISING PROFESSORS: DAN TAMIR AND CLARA NOVOA 

This thesis investigates the time-space tradeoff of cache used with heuristic 

searches applied to a combinatorial optimization problem known as feature selection. A 

model of Genetic Algorithm is implemented for selecting feature subsets and ranking 

data clustered with the ISODATA algorithm. Using a set associative cache, the speedup 

of Genetic Algorithm and the quality of solutions found is compared to Genetic 

Algorithm without cache. Together with replacement policies, such as LRU, LFU, and 

random , several cache set associative configurations are studied, and their relative 

performance characterized. 

Keywords: Genetic Algorithm, Feature Selection, ISODATA,LRU, LFU, set associative, 

clustering 
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CHAPTER I 

INTRODUCTION 

When searching for an optimal solution in a large search space, the efficiency of 

the search depends on the intelligence applied to the problem. By trading space for time, 

recordkeeping may be employed to increase the efficiency of a search. 

One record keeping model is a dedicated memory. Dedicated memory stores 

solutions already seen in a search as entries, eliminating the redundancy of processing 

previously visited solutions. Dedicated memory becomes fixed when full, and its size 

determines the level of redundancy in the search. Unbound dedicated memory which 

contains all solutions in the search space when filled, has no redundancy, but may be 

infeasible depending on the size of the search space. However, given an effective 

configuration and replacement policy, a cache can be an alternative record keeping 

method that can create a favorable time versus space complexity tradeoff over dedicated 

memory (Tanenbaum, 2006). 

This thesis explores record keeping strategies in the context of processor 

workload characterization for power consumption tests. Workload characterization 

records operating temperatures, maximum power distribution, and power consumption, 

by performing multiple runs of computer code with the final purpose of evaluating the 

performance of the architecture (Joshi, Eeckhout, John, & Isen, 2008). For major 

semiconductor companies such as Freescale Semiconductors the performance of 
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processors under design is of special concern, and an emphasis is placed on the power 

performance of the designed processors. 
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One way to determine computer workload characterization involves clustering of 

fixed size slices of a trace of an application code obtained from a high level instruction 

set simulator, and identifying prototype slices (Luo, Joshi, Phansalkar, John, & Ghosh, 

2008; Brock, 2010). Each trace-slice is represented by a set of features such as the 

number of arithmetic instructions in the slice, the number of memory references, and the 

number of register's bits altered. Prototype slices are analyzed through a low level 

software simulator and the results are used to estimate the performance of the entire code 

(Luo, Joshi, Phansalkar, John, & Ghosh, 2008; Brock, 2010). Numerous architecture 

and micro-architecture features can be extracted from the trace. Nevertheless, it is 

desired to identify an optimal feature sub-set in order to enable cost effective 

characterization. 

There is a tradeoffbetween accuracy and speed with different architecture testing 

techniques. The Verilog (or VHDL) code utilized to design the processor along with a 

Verilog simulator can be used for an accurate evaluation of the processor performance. 

The Verilog simulator, however, is extremely slow due to the resolution of the 

computations. On the other hand, an instruction set architecture (ISA) simulator which is 

fast but inaccurate, can be used to supply several characteristics of the design. 

Combining the two simulators in an efficient way can be used to construct a relatively 

accurate and fast tool for performance evaluation. It is a challenging problem addressed 

in this thesis. 
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Feature selection and clustering can be used to reduce the amount of code 

executed on the slow, accurate, low level Verilog simulator while retaining close fidelity 

to complete test code. This can be accomplished by: 1) dividing the code into blocks, 2) 

identifying representative blocks, 3) executing the accurate, low level simulator only on 

the representative blocks, and 4) inferring the performance of the entire code based on the 

performance of the representative blocks. The two first stages are performed using the 

code and an ISA simulator and are relatively fast. One can categorize those blocks using 

clustering techniques with a selected set of performance features and construct an 

alphabet made up of representative blocks; the number of clusters equaling the number of 

characters in the alphabet (Friedman & Kandel, 1999). 

Alphabet verification is done using the fast Verilog simulator, which introduces 

another tradeoffbetween time and accuracy; a small alphabet speeds up the Verilog 

simulations, but reduces the accuracy of the results. The quality of the clustering 

technique which is used to identify the alphabet is an important factor in the accuracy of 

the workload characterization. 

The features used for clustering are probably the most important parameter. 

Therefore, the quality of code block clustering should be based on a good feature 

selection strategy (Shi, Shu, & Liu, 1998). This feature selection problem (FSP) is a 

technique which chooses a subset of features while attempting to minimize the effect on 

the recognition accuracy (Jain & Dubes, 1988). This is done in order to reduce the 

dimensionality of the feature space; thereby reducing the computational complexity of 

the pattern recognition task. 
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FSP is known to be an NP-hard problem and can be stated as a combinatorial 

optimization problem relevant to the areas of pattern recognition, statistics, and machine 

learning (Cover & Van Campenhout, 1997; Shi, Shu, & Liu, 1998; Guyon, Weston, & 

Barnhill, 2002). In many cases, computational complexity considerations and 

implementation constraints dictate the desired number of features in the selected subset. 

Under these constraints the FSP boils down to finding the optimal subset of features from 

a superset of features. This statement of the FSP entails selecting one of the 

combinations of features according to an optimality criterion (Cover, & Van 

Campenhout, 1997). 

Computational complexity considerations and implementation constraints, can in 

some cases, dictate the desired number of features k in the selected subset. Under these 

c~nstraints the FSP boils down to finding the optimal subset of n features from a superset 

of n features. This statement of the FSP entails selecting one of the G) combinations of 

features according to an optimality criteria. Given that FSP is a NP-Hard problem, 

searching a feature subspace can be a time consuming problem that cannot be tackled 

efficiently with exact methods, and therefore making a heuristic intelligent search is 

essential. This thesis implements an anytime heuristic for the FSP. Specifically, Genetic 

Algorithm (GA) that explores inherent time-space tradeoffs, and investigates reductions 

in time complexity by the use of record keeping methods such as cache (Ciesielski & 

Scerri, 1997). 

Cache schemes are widely used in hardware and software, and exploit the 

principle of locality of reference. The spatial version of the principle assumes that there 

is a high probability that instructions or data with addresses that are close to the currently 



addressed word are needed next (Tanenbaum, 2006). Hence, when a word is retrieved 

from main memory some portion of memory data adjacent to the word is loaded into the 

cache. Temporal locality is also important, it assumes that there is a relatively high 

probability that instructions, or data which have been currently accessed, will be used 

again in the near future (Tanenbaum, 2006). 
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Three basic cache replacement policies, and several dynamic/adaptive 

combinations of the three, are considered in this thesis (Tanenbaum, 2006). The first 

policy is random replacement. It randomly chooses the block to be evicted. Next, a 

recency-based method, evicts the least recently used block. This method mainly exploits 

temporal locality. Finally, a frequency-based method evicts the least frequently used 

block, thereby exploiting spatial locality. This study implements software data structures 

and tests these three methods. 

The motivation behind combining a cache with GA search technique applied to 

FSP is to improve the efficiency of the heuristic by taking advantage of spatial and 

temporal locality. Efficiency in this thesis's context is defmed as the number of heuristic 

evaluations of unique solutions for a given time interval. Efficiency can be considered a 

speedup if, with respect to a non-cached heuristic, it increases. Since heuristic 

evaluation has a high time computational cost, improving the efficiency of a search, with 

the use of a cache, may justify the tradeoff between space and time (Zhang, Fu, Goh, 

Kwoh, & Lee, 2009). 

This thesis also implements a parallelization of GA. GA in particular is an 

algorithm which lends itself to parallelization due to the independence of the individual 

chromosome fitness evaluation (Cantu-Paz & Goldberg, 1999; Taibi, 2009). 



Investigating PGA has increased relevance due to the trend in designing 

processors with multiple cores instead of pursuing pure clock speedup (Pacheco, 1997; 

Chandra, Dagum, Kohr, Maydan, McDonald, & Menon, 2001; Quinn, 2003). This 

change in approach is mainly due to the power requirements of CPU. Authors have 

found that in using multiple processing cores and computer code developed for this 

framework, a high degree speedup can be achieved (Pacheco, 1997; Chandra, Dagum, 

Kohr, Maydan, McDonald, & Menon, 2001; Quinn, 2003). 

In this thesis, parallelization of GA consists of dividing the new chromosome 

population per generation among processing nodes, such that each processor receives 

exactly one chromosome. The purpose of this division is to accelerate the process of 

computing the fitness value associated with each chromosome. The level of 

parallelization implemented is considered program-level parallelization. GA is divided 

into sections for single program multiple data (SPMD) execution can be considered 

coarse-grained (Chandra, Dagum, Kohr, Maydan, McDonald, & Menon, 2001; Quinn, 

2003). 

Hypothesis 

I.) Genetic Algorithm with set associative cache implementation will provide a speedup 

in performance to that of Genetic Algorithm without cache. 

6 

2.) For a given number of generations, Genetic Algorithm with set associative cache 

implementation will consistently find a feature subset with a higher ISODATA clustering 

quality than is found in an implementation without cache. 



CHAPTER II 

LITERATURE SURVEY 

The literature on the FSP is extensive since the research on the FSP dates to the 

early 1960's (Yusta, 2009). This section presents a literature review on heuristic methods 

to solve the FSP with emphasis on works applying GA's. The section also reviews 

research on software caching in heuristic searches. 

1. Heuristic Methods to Solve the FSP 

Sequential forward selection (SFS) and sequential backward selection (SBS) are 

heuristic methods that have been extensively used in the past to solve the FSP 

(Nakariyakul, 2008). SFS starts with an empty set and evaluates the improvement in the 

criterion function from adding one feature at a time. The feature added to the subset is 

the one that maximizes the criteria function. SFS is repeated until the subset contains the 

desired number of features. SBS is also an iterative procedure that looks to maximize the 

criterion function by starting from a set with all the features and removing one feature at 

a time. SFS and SBS methods are greedy, ignore the interactions among features and 

suffer from a nesting effect since discarded features cannot be re-selected and selected 

features cannot be removed later. Consequently, SFS and SBS are sub-optimal methods 

that can be improved by the plus-1-take-away-r method where 1 steps ofSFS are followed 

by r steps of SBS. 

7 
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Genetic algorithms (GA) (Siedlecki & Sklansky, 1988)[30], mimetic algorithms 

(MA) (Yusta, 2009), tabu search (TS) (Wang, Yang, Teng, Xia, & Jensen, 2007; Zhang 

& Sun, 2007), ant-colonies (AC) (Bello, Puris, Nowe, Martinez, & Garcia, 2006), particle 

swarm (PS) (Wang, Yang, Teng, Xia, & Jensen, 2007), and GRASP (Yusta, 2009), are 

heuristic methods researched in recent years for solving the FSP. GA's are based on the 

principle of natural selection; i.e., survival of the fittest. GA evaluates and improves a 

finite population of solutions instead of improving a single-solution as in classical hill­

climbing methods. Based on this characteristic, some authors describe GA as a parallel 

algorithm (Kudo & Sklansky, 2000). The optimization process is carried out in cycles or 

generations. Solutions are represented by chromosomes encoding a particular solution in 

the solution space, without ambiguity, and each is ranked through a fitness function 

(Kudo & Sklansky, 2000; Zhang, Fu, Goh, Kwoh, & Lee, 2009; Talbi, 2009). Successful 

solution of a particular practical problem through GA requires adequate manipulation of 

components such as: population size, number of generations, and crossover and mutation 

mechanisms to achieve an adequate balance between exploration and exploitation of the 

search space (Gen & Cheng, 2000). 

Siedlecki and Sklansky (1989), used GA for solving the version of the FSP that 

searches for the smallest or least costly subset of features for which the classifier's quality 

does not drop below a pre-defmed threshold. The authors compared sequential search, 

BB, and GA. To speed up the classification process in the range of 103 - 104, they built 

a model to simulate the classifier's error rate instead of using the true error rate function 

of the classifier. Experiments are done with simulated data and with limited tests on real 

data having 150-300 features. GA resulted more efficient than BB and outperformed 



9 

sequential search since it visited the feasible region in a more complete way (Siedlecki & 

Sldansky, 1989). They did not study the performance ofrecordkeeping on GA 

performance. 

The work by Siedlecki and Sklansky (1989), evidenced that GA is a powerful tool 

compared to classical sequential search, especially when there are more than 20 features. 

A computational study by Kudo, Somol, Pudil, Shimbo, and Sldansky (2000), confirmed 

the superiority of a well-trained GA by comparing it to adaptive versions of sequential 

forward/backward feature selection, achieving similar performance in all problem sizes, 

but a speedup of two or three times in large-scale problems of more than 50 features 

(Kudo, Somol, Pudil, Shimbo, & Sklansky, 2000). Furthermore, the study compared GA 

to an extensive set of sequential search algorithms and BB variants, concluding: (1) 

among the algorithms studied, GA is the only practical choice for large-scale problems 

(more than 100 features) and (2) GA usually gives better answers than the other 

algorithms for small and medium scale problems at expense of an increase in 

computational time (Kudo & Sklansky, 2000). 

After a thorough revision to seminal and successful literature on using GA for 

solving FSP, and the results from a set of preliminary experiments with other heuristics, 

GA is selected as the platform to solve the FSP and explore performance gains from 

cache implementation (Siedlecki & Sklansky, 1989; Kudo & Sldansky, 2000; Kudo, 

Somol, Pudil, Shimbo, & Sklansky, 2000). The evidence in Guan and Zhu's study also 

gives motivation for the use of GA in solving FSP's (Guan, Zhu, & Li, 2004). 
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2. Software Caching 

Allen and Darwiche (2003) investigated the tradeoff between time and space of an 

optimal cache population strategy for traversal of decision trees ( d-tree) for Bayesian 

networks. They exploited the hierarchal topology of the trees to accurately predict cache 

behavior and optimize the cache sizes based on depth-first branch and bound techniques 

and pruning (Allen & Darwiche, 2003). This technique is focused on reducing cache size 

while maintaining runtime efficiency. The memory structures studied, however, are 

tables and do not have the structure of a cache. Furthermore they do not consider 

replacement policies (Allen & Darwiche, 2003). This thesis is concerned with 

developing cache for combinatorial optimization problems (COP) which are space 

efficient. The concern however is improving runtime without degrading quality 

performance of GA. 

Grant and Horsch (2007) investigated efficient cache designs and eviction policies 

to reduce the runtime of traversing decision trees. The authors' approached the problem 

of efficient cache design by the use of sub-caching where nodes of a d-tree share cache 

location entries. Those cache entries were exploited during traversal of the d-tree 

preventing collision of data from nodes in the cache (Grant & Horsch, 2007). The 

exploitation of hierarchal sequencing of trees to make cache more space-efficient showed 

that efficient cache sizes can be maintained while preserving the runtime reduction that 

the cache provides. This investigation gives a good idea on an approach to software 

cache design. However, their research does not provide a case where the topology is 

unknown, or gives an implementation of cache for COPs. 



Interesting work on software implemented caching has been done by Aggarwal 

(2002). In his research he studied how a small software-based cache can significantly 

improve the performance of data intensive and computationally complex problems 

(Aggarwal, 2002). Aggarwal found improvements ofup to 30% in computational time 

reduction using caching versus non-caching. Experiments focused on six programs to 

investigate how caching affects problems with a diverse set of data structures. Though 

the program problem set used by Aggarwal is diverse, there is no implementation for 

heuristic optimization problems of the type considered in this thesis (Aggarwal, 2002). 

11 

Hertel and Pitassi (2007) also studied time/space trade-offs in the context of 

heuristic search. They found that time requirements could be significantly reduced 

through record keeping, referring to their method as caching. Nevertheless, their cache is 

static and does not consider cache replacement policies, or cache organization issues. 

This configuration is a better match to the definition of dedicated memory provided in the 

introduction of this thesis. 

Chang and Huang (2009) studied the behavior of hardware cache with GA. Using 

the principles of temporal and spatial locality, they reordered the sequence of GA's 

instructions to make the algorithm cache aware, attempting to minimize the miss rate of 

the simulated cache. In their experiments the cache size used is a 32KB 8-way set 

associative using a 64B cache line (Chang & Huang, 2009). The authors found that 

locality of reference became irrelevant when population sizes were small enough to be 

mostly contained in the cache. The study's main focus is in improving the generic, cache 

oblivious GA algorithm; simulating computer system hardware cache and driving down 
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the miss rate. They did not perform a detailed study on different cache replacement 

strategies or on how a dedicated cache itself can modify the behavior of the generic GA. 

Santos et al. (2000), investigated cache diversity in GA. The cache is used to 

store partial results of the chromosome evaluation function. Nevertheless, they assume 

that the chromosome evaluation function can be decomposed into small units that 

represent the evaluation of parts of the chromosome and then recomposed based on 

mutations and crossovers of these parts. Moreover, despite referring to their record 

keeping as cache, the record keeping mechanism does not include provisions for 

replacement policies and can actually be considered as infinite dedicated memory. This 

limitations makes their approach only suitable for small problems, and for problems 

where the fitness function computation can be decomposed and recomposed. 

3. Parallel Genetic Algorithm with Cache Implementation 

There is extensive literature on parallel genetic algorithms (PGA's) but relatively 

few papers on PGA's with cache implementations. The study by Zhang, Fu, Goh, Kwoh, 

and Lee (2009) combined PGA with caching for a FSP using support vector machine 

(SVM) as classification method. After identifying that SVM feature selection has a very 

large computational cost, the authors implemented parallelization by dividing the 

population into subpopulations and distributing the workload across multiple processors. 

Intercommunication of chromosomes across different processor population domains is 

considered migration, and is implemented using MPI (Zhang Fu, Goh, Kwoh, & Lee, 

2009). Caching is implemented in software to eliminate the re-computation of a 

particular chromosome. Each time, before a chromosome is evaluated, the GA-SVM 
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checks the cache to see if the chromosome has been run previously. If this is the case, the 

chromosome is not reevaluated. If it is not the case, the chromosome is evaluated, and 

the cache is updated with the new chromosome. 

The study is similar to this thesis in that the purpose of cache is to limit 

reevaluations of chromosomes, given that the fitness function evaluation is 

computationally expensive. The authors do not say whether or not their cache 

implemented a replacement policy, the configuration, or the size of the cache. These are 

important details which may determine specific interpretations of behaviors of a software 

cache. They did find that the cache hits decreased dramatically when features increase 

for 14 to 123, and that their parallelization had on average a 5.76 times speedup (Zhang 

Fu, Goh, Kwoh, & Lee, 2009). 

Given the gaps in the literature regarding implementation of cache mechanisms 

for GA's, this thesis explores the time/space tradeoffs associated with record keeping in 

the form of cache for a PGA that solves the FSP. To the best of our knowledge, the 

research reported in this paper is the first comprehensive and scalable study of 

time/space-offs due to caching within the context of PGA. 



CHAPTER III 

BACKGROUND 

This section describes the k-means and the ISODATA clustering algorithm, along 

with error tolerance and quality measures. GA is presented in detail as it related to 

combinatorial optimization. Cache theory is divided into cache design and replacement 

policies. Finally, a brief overview of the motivation for parallelization and the limitations 

is included. 

1. ISODATA and k-means Clustering Algorithms 

k-means is an iterative clustering algorithm. A typical way to start the algorithm 

is by seeding the feature space with randomly selected cluster centers. Using the nearest 

neighbor method, the k-means algorithm associates patterns with clusters centroids (Jain 

& Dubes, 1988; Friedman & Kandel, 1999; Aggarwal, 2002). Next, clusters' centroids 

are recalculated. The process of assigning patterns to clusters and recalculating cluster 

centers continues until maximum number of iterations has been reached, or the centroids 

have not been modified within some predefined tolerance over two iterations (Jain & 

Dubes, 1988; Koza, 1992; Friedman & Kandel, 1999; Aggarwal, 2002). One such 

tolerance measure is the the Linde-Buzo-Gray (LBG) classification algorithm's minimum 

distortion error tolerance calculated using the minimum average distortion Da (Linde, 

Buzo, & Gray, 1980). 

14 



The LBG tolerance uses a vector quantization mapping function to calculate the 

distortion; i.e., given a vector set S, a mapping to a representative centroid y using a 

mapping function: 

y = q(S). 

15 

The distortion is then the sum of the distances between the representative vector y 

and S. This process is explained using vector quantization notation. 

Let X be a set of n vectors in space R with dimensionality {1, ... , p }, and the kth 

cluster have ok members, such that: 

with the j th vector: 

The mapping function produces the set of representative vectors, 

y = q(X), 

where Y = {y i, ••• , y ml is the set of centroids for all clusters (Ball & Hall, 1966; Linde, 

Buzo, & Gray, 1980; Theodoris & Koutroumbas, 1999). The squared error distortion is, 

8k 

d(xk,yk) = Llx~ -y~l2· 
i=l 

For an iteration 'a' of a clustering algorithm, the minimum average distortion over all 

vectors in R becomes (Linde, Buzo, & Gray, 1980), 

n 

Da = n-1 L min d(xz, y); y E Ya, 
Z=l 

where y exists in the set Y as a vector at iteration 'a'. The error tolerance is then 

calculated as, 
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Da-1 - Da 
D ::; IL 

a 

One drawback to k-means is that the number of clusters (k) is predefined and 

fixed. This can generate empty clusters, clusters with few members, clusters that are too 

close to each other, or clusters with large dispersion. The ISODATA algorithm is a 

clustering technique that tries to overcome this limitation. The goal is to achieve high 

quality clustering where the number of clusters is between a low bound (say m) and a 

high bound (say n). The initial clustering ofISODATA is obtained in the same way as in 

the k-means algorithm (where k = m;n), using random seeding, and nearest neighbor 

assignment of patterns to cluster centers (centroids). Once this is done, ISODATA uses 

predefmed or adaptive thresholds to split clusters with high dispersion, merge close 

clusters, and eliminate clusters with a small number of patterns. 

ISO DAT A performs splitting of clusters which decreases their dispersion, as well 

as merging of clusters, which increases dispersion between clusters (Koza, 1992; 

Friedman & Kandel, 1999). The centroids and members of clusters are recalculated in 

the same way as ink-means. Once the centroids are recalculated, the merge, split, and 

eliminate steps are repeated. The ISODATA algorithm continues with these operations 

until one of three conditions exist (Friedman & Kandel, 1999): 1.) an iteration limit is 

reached, 2.) no splitting, merging, or elimination, has taken place over the last iteration, 

or 3.) a minimum error has been reached between one iteration and the next. For this 

thesis, the last criterion is based on the LBG minimum distortion error. 



17 

2. Clustering Quality 

For an unsupervised clustering algorithm, there must be a means to gauge the 

"goodness", or quality, of the end result. The criteria for determining the quality of 

clustering typically involves a measure of clusters' compactness, and a measure of cluster 

separation. These can be represented by a within scatter matrix Sw, and a between 

scatter matrix Sb respectively (Fukunaga, 1990; Dy & Brodley, 2004). 

The kth cluster's mean vector of the set xk is mk = [mt ... , mtkr. For the ith 

dimension, ok is the number of vectors in the kth cluster, of which the component mean is 

(Dy & Brodley, 2004): 

8k 

mk = 0-1, Xk· 
l k L l] 

J=l 

A scatter matrix Sk for the kth cluster is composed of the sum of the squared distances 

between the cluster mean an its member vectors (Fukunaga, 1990; Dy & Brodley, 2004): 

8k 

sk = L (x1k - mk)(xf - mk)T 
j=l 

The within scatter matrix is made up of the sum of all internal scatter matrices of clusters 

in R (Fukunaga, 1990). The number of clusters denoted by N: 

The between scatter matrix represents the sum of the distances between the mean of 

cluster k and the overall mean of means of the clusters (Fukunaga, 1990; Dy & Brodley, 

2004). 



The mean of means: 

N 

m = 5-l I okmk 
k=l 

The between scatter matrix (Fukunaga, 1990; Dy & Brodley, 2004;): 

N 

Sb= _L(mk-m)(mk-m)T 
k=l 
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As stated above, it is often desirable to have clustering which contains compact 

groupings with good separation between their representative centers. If a cluster is 

compact, the centroid vector ykwill more closely represent its member vectors. Large 

overall mean separation of centroids indicates a well defined representation of data 

grouping as compared to a close mean separation. In terms of feature selection, compact 

clusters along with a large mean separation indicates the feature subset is tightly 

represented by Y; the representative set of centroids (Dy & Brodley, 2004). It follows, 

that those feature subsets having less compact clusters and a smaller mean separation are 

poorly represented by Y and oflower quality. This quality measure can be modeled with 

the trace of the ratio of the between scatter matrix over the within scatter matrix 

(Fukunaga, 1990; Dy & Brodley, 2004): 

The greater the mean separation of the clusters and the more compact the clusters, 

the higher the quality. The trace of the ratio is applied because it is invariant under any 

nonsingular transformation (Fukunaga, 1990; Dy & Brodley, 2004). In this thesis, this 

quality is calculated for each feature subset represented by chromosomes in GA through 

ISODATA. ISODATA is a relatively complex algorithm which, in some instances, 
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requires long execution time, therefore, it is desirable that the feature selection utility 

performs the minimal number of chromosome evaluations (or ISODATA function calls). 

3. Genetic Algorithm (GA) 

In GA, for combinatorial optimization problems (COP), chromosomes are 

represented by bit-strings, where each bit represents a feature (Koza, 1992). Features 

chosen for as a subset are encoded as a 1-bit, whereas those not chosen are represented by 

a 0-bit. This is shown in figure 1 where A through M are features either chosen or not 

depending on the bit. 

11■1 
0 1 0 1 1 0 0 0 1 1 0 0 0 

Figure 1. Bit string representation of a chromosome 

Reproduction is done with crossovers where a single-point is chosen at random 

for each parent chromosome pair. Additionally, a double crossover method can be 

implemented where both parent chromosome is fragmented into three sections such that 

the child chromosome inherits a middle segments from one parent and an outer segment 

from the other (Koza, 1992; Taibi, 2009; Obitko, 2009). Figure 2 contains an example of 

the single point crossover operation where the crossover point is at the third gene of the 

chromosome. Therefore, the child chromosome inherits the first two genes from the 

father chromosome B and the reminder ones from the father chromosome A. 
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------~--
Chromosome A 0 0 

Chromosome B 

• Child chromosome 1 1 

Figure 2. Single point crossover for bit-string chromosome generation. 

Often a heuristic may converge toward a local optimum, or optima prematurely, 

leaving a large portion of the search space unexplored (Koza, 1992; Taibi, 2009; Obitko, 

2009). To jump out of this convergence to an unexplored portion of the search space, a 

mutation is usually implemented. This mutation alters a chromosome to a controlled 

degree which may or may not improve its fitness (Koza, 1992; Taibi, 2009; Obitko, 

2009). 

GA begins with the entire population list filled with random chromosomes. The 

chromosomes are then processed through a fitness function. At the beginning of every 

subsequent generation, those chromosomes which are below a predefined fitness 

threshold are culled and are replaced with new chromosomes (Koza, 1992; Talbi, 2009; 

Obitko, 2009). 

The generation of the new chromosomes starts with each child chromosome 

generated from a pair of parent chromosomes. A child chromosome is produced by a 

crossover method, and is mutated if the random criterion is met. Once the child list is 

populated, chromosome's quality is evaluated through a fitness function. The child 

generation process is shown in figure 3. 
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4. Cache Design 

The purpose of cache in computer system is to reduce the time to fetch 

instructions, or data (words) from memory. Typically this involves, small-scale memory 

located very close to the CPU (Tanenbaum, 2006). Cache takes advantage of the 

principle of locality of reference. Locality of reference can be spatial or temporal. 

Spatial locality predicts that words located close by will be needed soon. Temporal 

locality says that those words which have been recently accessed may be needed again in 

a short period of time (Tanenbaum, 2006; Hennesy & Patterson, 2007). 

Direct-mapped cache is a simple organization of cache where a block of words is 

stored in exactly one block address. When the cache is accessed, the reference word is 

used to fmd a word, or perhaps just a byte within a word. An example of a 32-bit 

reference word (Tanenbaum, 2006; Hennesy & Patterson, 2007): 

Block Address bit numbers Block Offset bit numbers 
31 16 15 5 4 2 1 0 

TAG I LINE WORD IBYTE 

Figure 4. 32-bit reference word 

Cache entries in direct-mapped cache are laid out in entries which are accessed by 

the LINE bits from the virtual address. The TAG bits are compared to the tag located at 

the cache line to see whether the requested block resides in cache and the appropriate 

word and, or byte offset is then retrieved (O'Hallaron & Bryant, 2002; Tanenbaum, 2006; 

Hennesy & Patterson, 2007). The choice of the low-order bits for the LINE bits allows 

consecutive memory locations to be mapped to different cache lines (O'Hallaron & 

Bryant, 2002). If the LINE bits used the high-order address bits, adjacent memory lines 
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would be mapped to the same cache line. This would mean that memory locations 

adjacent (0 to 2number of tag bits - 1) to each other would be mapped to the same address 

(O'Hallaron & Bryant, 2002). 

Addressing direct-mapped cache with m number of entries is address as 

(Tanenbaum, 2006; Hennesy & Patterson, 2007): 

block number= R (mod m). 

Figure 5 show an example of direct-mapped block addressing. If there are 10 blocks, and 

the reference address is 14, the block number is 3. 

Block Number 
012 3456789 

Figure 5. Direct-Mapped Cache 

One issue which can occur with direct-mapped cache is if a needed memory line 

is located at an integral multiple distance away from the size of the line address space, a 

block which is potentially needed next may be evicted (Hennesy & Patterson, 2007). Set 

associative cache mitigates this problem by having more than one line for each entry 

(Tanenbaum, 2006; Hennesy & Patterson, 2007). In this case TAG field of the virtual 

address is compared, in parallel, with the TAG in each set of the cache line. For an n-set 

associative cache, and a reference address R, the block address is calculated as: 
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block number= R (mod n), 

Figure 6. shows an example of set-associative addressing. If the set associativity 

is 2, and the reference address is 14, the set is 0 and the block can reside either in address 

0 or 1. 

Set Number 
00 1 12 2 334 4 

01 2 3 45 6 78 9 
Block Number 

Figure 6. 2 Set-Associative Cache 

Fully associative cache is cache where a block may be place in any location. In 

this model the TAG is not needed, as the entry is directly accessed. This model is very 

efficient, however, it is expensive to implement in hardware (O'Hallaron & Bryant, 2002 ; 

Tanenbaum, 2006; Hennesy & Patterson, 2007). This thesis implements 4, 8, and 16-way 

set associative, and fully associative cache to study how cache associativity affects the 

speedup of GA performance. 

5. Cache Replacement Policies 

There are three cache replacement policies implemented in this thesis; LFU, LRU, 

and random. LFU replacement policy implementation is straightforward. When a cache 

block is accessed a frequency counter associated with that entry is incremented. If a 



write-to cache is performed and a block has to be evicted, the entry with the lowest 

frequency counter value is evicted, replaced and its counter reset to zero. 
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LRU is similar to a queue where the order of the cache is determined by the 

recency of access. In LRU, an address where all entries are filled may have an block 

accessed in a read-only operation. In this case, the counters of the cache entries not 

accessed at the address which have values less than the value of the accessed entry's 

counter are incremented. Counters with values greater than the accessed entry's counter 

remain unchanged and the counter of the accessed entry is set to zero. 

The random replacement policy has a simple implementation in which the once 

the sets of an address are filled, they are evicted by random selection a new data value is 

to be entered. This replacement policy is useful if there is a situation where words are 

evicting each other at the same block address repeatedly causing cache misses. 

6. Parallelism Performance 

Parallelization seeks to speed up the performance of a program by using multiple 

processors at computationally expensive section of code. Ignoring the computational 

setup costs, the upper limit l/J for speedup obtained from parallelizing computer code is 

describe by Amadahl's Law (Quinn, 2003): 

1 
1/J 5. f + (1 - f)/p 

where f is the fraction of the program instructions which must be run in serial and p is 

the number of processors available for computation (Amadahl, 1967; Quinn, 2003). 

Even if there could exist an infinite number of processors for computation, the speed up 
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is limited to the inverse of the fraction of the program instruction which are run in serial 

(Quinn, 2003). 

The ideal parallel program is one where all sections are parallelized to take full 

advantage of processing nodes are hand. However, sections of code may be inherently 

serial. In that case careful software profiling should be done to identify and parallelize, if 

possible, the most computationally expensive sections, minimizing the impact of serial 

sections. While the potential for speedup from parallelization is great, care must be taken 

to maximize its effectiveness. This thesis takes advantage of this methodology. 



CHAPTER IV 

METHODOLOGY 

This section describes the specific methodologies implemented in this thesis. 

This includes the design on GA and CGA, and dedicated memory. Additionally, the 

motivation and implementation of the parallelization of GA and CGA are covered. 

1. Genetic Algorithm (GA) with ISODATA 

In GA implementation, chromosomes represent features selected and they are 

encoded using a bit string. Given a number of features, those features chosen as a subset 

are encoded as a I-bit, whereas those not chosen are represented by a 0-bit. In this thesis 

chromosomes are limited to a 32 bit bit-string; i.e., a 32-bit unsigned integer encoding a 

maximum of 32 features. Crossovers are done using a single-point crossover method 

where the crossover point is chosen at random for each parent chromosome pair. The 

mutation probability is fixed at 2%. 

Since the number of desired features is given, and represented by the number of 

1-bits in the chromosome, a valid chromosome must include a number of 1-bits equal to 

the size of the desired subset. The population list is stored in a data structure is of size 

384 where the upper 256 indices are populated with the elite chromosomes (elite list); 

i.e., those chromosomes which have the highest ISODATA quality and comprise the 

parent stock. The lower 128 indices contain the lowest quality chromosomes. 

27 
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Initially, the entire population list is filled with chromosomes and ISODATA is 

performed in parallel on all individuals, the list is then sorted by quality. At the 

beginning of every subsequent generation the child list is purged and refilled with new 

chromosomes, as seen in figure 7. This process follows as: 

1.) Each child chromosome is generated from a random pair of elite chromosomes. 

2.) A random crossover point is chosen for the parents, and the crossover performed. 

3.) The resultant child chromosome is mutated or not depending on whether or not 

rand( )%100 < 2; where rand() the random number generator as implemented in the 

C standard general utilities library. The number of I-bits in the child chromosome must 

be equal to the number of features to be selected. If this condition is not satisfied, then 

the process of generating a child is repeated. 

4.) The child is checked against the elite list for duplication as well as the (filling) 

child list. It is undesirable to have duplicates in the population for the sake of keeping the 

elite list from being filled with duplicate high quality solutions. 

5.) If the generated child is not a duplicate, it is accepted into the filling child list. 

6.) Once the entire child list is populated with 128 chromosomes, their fitness is 

evaluated through ISODATA clustering. In this thesis, ISODATA is carried out in a 

parallel batch mode. That is, at each generation, after the list of 128 children is 

populated, 128 processors are simultaneously assigned to perform ISODATA on exactly 

1 chromosome. 
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7.) The entire 384 member population list is then sorted by quality, using the value of 

the 256th index of the population list as the cut-off selection rule. Chromosomes that are 

below the cut-off are considered inferior and can be purged. Due to sorting, it is possible 

that a child is promoted to the elite list; conversely, an elite member might be demoted. 

The termination condition for the GA implementation is designed to be flexible. 

The algorithm can be configured to exit after a specific number of generations, a 

maximum number of unique chromosomes generated, or a number of total chromosomes 

generated. 

2. Cache Addressing 

Cache addresses for chromosomes are calculated by using the high-order bits of 

the bit string representation of a chromosome. The tag bits are the low-order bits and is 

stored in cache in place of a data word. For example, if the chromosome is 25-bits and 

the number of cache lines are 64k, then the 16 high-order bits is the address and the 

remaining 9 bits is the tag. This design choice is made because this thesis is primarily 

interested in minimizing the revisiting of chromosomes in GA. 

3. GA Design with Cache (CGA) using ISODATA 

With CGA the initial population list of384 chromosomes is generated and 

processed in parallel as is done in GA. The entire initial population is then placed into 

the cache. Like GA, the population list is then sorted, using the 256th index as the cutoff 

(exactlyl/3 of the population list) between the elite list and the child list. The subsequent 

generations behave in a more complex fashion. 



As seen in figure 8, steps 1 and 2 of the CGA progress the same way as GA, 

however, next New steps 4-6 are as follows: 
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4.) The child chromosome is compared against the cache in a read-only operation. If 

the data exists in the cache (a hit), the chromosome is rejected because this means the 

chromosome has been seen before and does not require reprocessing through ISODATA. 

Once a chromosome has been rejected, the process of generating a child is begins again, 

otherwise the chromosome is accepted into the child list. If applicable, the cache 

counters for LFU and LRU are updated to reflect a hit on an entry. 

5.) Once the child list contains 128 new chromosomes, their selected features are 

processed through ISODATA in parallel. Upon return of the ISODATA function, for all 

children, the entire population list is sorted by quality. Those chromosomes below the 

256th index are considered inferior and are to be placed into the cache. This is done by 

taking chromosomes in order from below the 256th index and checking if they are in the 

cache (read/write operation). If there is an entry that contains the chromosome, then this 

is considered a cache hit. The counters of the cache are updated and the chromosome is 

purged from the population list. If instead, there is no match for the chromosome value, 

but all cache entries are populated for that address, it is considered a cache miss and a 

replacement policy is implemented. If there is no match at the chromosome's cache 

address, but an empty entry exists, 
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this too is a cache miss ( compulsory miss), and the empty entry is filled with the value of 

the chromosome's data value. 

6.) After the lower 128 indices have updated the cache and are purged of values, the 

generation has completed and the process of filling the child list begins again. As with 

GA, the termination condition for CGA can be configured to exit after a specific number 

of generations, a maximum number of unique chromosomes generated, or a number of 

total chromosomes generated. 

The cache is accessed in two places in CGA. One way in a read-only mode, and 

the other in a read-write mode. The read-only mode occurs when the child generating 

function (CG) checks the cache to see if the child it has produced is a revisited 

chromosome. Regardless if it is in cache, the function will only update the counters and 

not update the entries. For LFU the counter update consists of incrementing the counter 

for the look up entry. LRU's counter update consists ofreassigning the order of the most 

recently seen block. 

After the new child population list is processed though ISO DA TA and assigned a 

quality value, the cache update function (CU) is called and the read-write cache access 

takes place. The first task CU performs is to sort the entire population list, which 

includes the elite list plus the newly processed children. The list is sorted by descending 

value of quality with the best quality chromosome at the top of the population array. This 

action places the worse 128 chromosomes below the 1/3 cut off as undesirable feature 

subsets. 
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The CU now checks each bad chromosome against the cache. If there is a miss 

CU either replaces a cache entry, or if the cache line is unfilled, places a cache entry and 

updated the counters. If there is a hit, the cache only updates the counters. 

Two experimental variables which are important indicators of cache performance 

are the hit percentage, and speed up. Hit percentage is defmed as: 

H 
hit percentage = 100 x (H + M _ Mc) 

where H is the number of cache hits, M is the number of cache misses, and Mc is the 

number of compulsory misses. Compulsory misses are cache misses due to an empty 

cache line. 

Speedup is defmed as the ratio of the number of times ISODATA is called for a 

particular cache, or dedicated memory, size to the number of times ISODATA is called in 

a baseline GA 

Choosing a fixed number of features selected for CGA experiments creates the 

problem of block addresses which cannot addressed. For block addresses requiring a 

number of addressing bits less than, or equal to the number of subset features, or 

dimensions, selected out of a bit string, the entire cache will be addressable. However, if 

the number of cache addressing bits is larger than the subset number there will be 

addresses which are unreachable. 

The percentage of the cache addresses which cannot be accessed for a given 

subset number and a size of cache can be calculated. If X = log2 ( cache addresses) is 

number of bits required to address a cache block, Sis the number of subset features 

selected, and Z is the number of inaccessible addresses: 
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then the unaddressed percentage is: 

Figure 9 presents the results for the percentage of cache addresses which are not 

addressable versus sizes of cache. Displayed are cache sizes ranging from 16k to 2M for 

25 features choosing 13. The ascending trend in the figure indicates that larger caches 

have a larger number of non-addressable blocks. 

Percentage of Addres ·ing Holes 
for25 bits choosing 13 

10% ~------------------

8% +----------------

6% 

16k 3 k 64k 1 8k 6k 51 k 1 

Figure 9. Non-addressable cache block percentages 
for 25 bits choosing 13 

4. Dedicated and Unbounded Memory 

2M 

In dedicated memory, space is allocated to hold a specific number of 

chromosomes visited and there is no replacement policy. Once the memory fills with 

solutions it becomes a fixed lookup table. Unbounded memory is the dedicated memory 
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model which is of a size sufficient to hold all the solutions encountered during a search in 

the solution space. The upper limit on the size of the unbounded memory is(;), where 

M is the number of features and K is the subset number of features. 

5. Parallel Implementation 

All experiments, parallel and serial, in this thesis are run on the Texas Advanced 

Computing Center's (TACC) Ranger Linux Cluster available at the J.J. Pickle Research 

Center at the University of Texas-Austin. Ranger compute nodes configurations are four 

AMD 2.3Ghz quad-core Opterons per system board interconnected via lnfmiband 

network ("Ranger User Guide", 2009). The programming language used to design all 

experiments is C which implements the openMPI application program interface (API). 

This thesis has a core premise that the computational cost of the heuristic 

function, in this case ISODATA, is large when compared to remainder of the search 

algorithm. This premise justifies the time-space tradeoff of implementing cache. As a 

consequence of this premise, and given Amadahl's Law, parallelization oflSODATA 

would seem to be the logical choice. Profiling of GA using the profiling tool gprof 

shows that indeed ISODATA function calls per generation consume approximately 90% 

of the computational time. As stated in the introduction to this thesis, the parallelization 

in CGA consists of dividing the accumulated child list chromosomes across processors in 

every generation. This model does not reduce the runtime of an individual ISO DATA 

function call, instead processes the entire child list in parallel in the time interval required 

for the processing of a single ISODATA function, plus MPI communications overhead. 



CHAPTERV 

EXPERIMENTAL DESIGN 

This section presents the GA implementation in the FSP domain with and without 

caching. Cache implementations include set associative and fully associative. One trace 

program is implemented to test temporal locality. Also, one sequential search program is 

implemented to exhaustively check the quality of chromosomes. Two synthetic datasets 

are also developed. 

1. Datasets 

Raw data provided by Freescale Semiconductor is used to evaluate the 

performance of the proposed GA with caching (CGA). The data contains a trace of four 

computer benchmark programs, including fast Fourier transform (FFT), the Dijkstra's 

shortest path algorithm (DJK), quick-sort (QS), and basic mathematics suite (BMS). FFT 

and BMS both have 23 features, while DJK and QS both have 25 features. To maximize 

the size of the feature space a subset number of 12 features are chosen for FFT and BMS, 

giving a search space of 1,352,078 combinations. For DJK and QS the feature subset size 

is chosen as 13, resulting in a search space of 5,200,300 combinations. 

Each of the above traces is divided into fixed length sequences of instructions 

referred to as slices. The sizes of the slices examined are 1000, 2000, 5000, and 10000 

instructions. Following a feature extraction stage applied to slices, each slice is 
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represented by a set of architecture and micro-architecture features such as the number of 

integer operations per slice, the number of register transfers, and the number of memory 

accesses. These sets of features go through the feature selection stage described below, 

where an optimal subset of the features is sought. 

Synthetic data are also developed for cache testing. The number of features and 

the number of data points for the synthetic data are tailored to match the DJK dataset; i.e., 

25 dimensions, with 1000 data points. Further details about the 2 created datasets and 

their properties are extensively detailed in the next chapter. 

2. ISODATA Parameters 

The ISODATA algorithm has several tunable parameters, as listed: 

LBG Error Tolerance: the minimum error of the distortion between two 

ISODATA iterations for sufficient convergence. It signals exit an condition. 

Lump threshold: the maximum distance between cluster centers where two 

clusters are merged into one. 

Split threshold: the minimum mean distance of all data points from the center of 

a cluster which causes two clusters it is divided into two across the dimension 

with the maximum mean distance. 

Minimum Cluster Size: number of data points a cluster must have, otherwise it is 

removed as a cluster and the data points are distributed to nearby clusters using 

the nearest neighbor rule. 

Maximum Clusters Lumped per Iteration: moderates the influence of the lumping 

phase oflSODATA. 



Split Fraction: a fractional multiplier which moderates the distance of new 

cluster centers for any split. 

Maximum Iterations: input parameter that allows for an early exit from 

ISODATA before convergence. 

Initial Number of Clusters: Number of seed clusters fork-means initialization. 

Through experimentation the parameter values are found and set which allow a mix of 

smooth convergence and clustering execution speed: 

LBG Error Tolerance: 10-4 

Lump threshold: 10-5 

Split threshold: 2.5 X 10-4 

Minimum Cluster Size: 10 

Max Clusters Lumped: 4 

Split Fraction: 0.75 

Maximum Iterations: 15 

Initial Number of Clusters: 32 
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3. GA Data Collection 

The series of experiments describes in this section establish a control model to 

this study. The data collected here are the basis of all experiments in this thesis. It 

provides an upper bound on the speedup of GA with cache and with dedicated memory. 

Variables listed in this section are also collected in all other experimental 

sections. The following trace variables are collected to establish the baseline 

performance of GA without enhancements: 

Number of unique chromosomes: The total number of unique chromosomes 

produced and processed through ISODATA. 

Number of unique chromosomes per generation: Per generation number of 

unique chromosomes in the child population processed through ISODATA. 

Number of/SODATA calls: The total number of times ISODATA is called on 

chromosomes; unique and revisited chromosomes. 

Number of chromosomes generated: The total number of chromosomes generated 

regardless if they are run through ISODATA or not. 

Time elapsed: Total wall time for execution of program. 

Time for child calls per generation: Time elapsed between call of child 

population generator function and its return per generation. 

Time per generation loop: Time required to execute a generation. 

Elite list quality: The qualities of all elite list members. 

Elite list chromosomes: Elite/parent list chromosomes. These are the features 

selected with the highest quality. 

Top quality per generation: Trace of the best quality as it exists per generation. 
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4. CGA Data Collection 

Using CGA, data are collected for each type of cache replacement policy; LFU, 

LRU, and random. The cache sizes are set between 32k ~ 2M with 4, 8, and 16 set 

associativity. In addition to all of GA data variables recorded, CGA records many cache 

variables. 

These include: 

Number of hits: The total number of cache hits inside the child function. 

Number of misses: The total number of cache misses inside the child function. 

Number of hits per generation: The number of read-only cache lookup hits per 

generation inside the child function. 

Number of misses per generation: The number of read-only cache lookup misses 

per generation inside the child function. 

Number of placements into cache: The total number of compulsory read-write 

cache misses encountered in the cache update function resulting in a placement of 

a chromosome segment into cache. Compulsory miss is a miss due to an unfilled 

cache entry set. 

Number of replacements to cache: The total number of read-write cache misses 

encountered in the cache update function resulting in a replacement of a 

chromosome segment using the current replacement policy. 

Final cache state: The complete representation of the fmal state of the cache data 

structure. 
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5. List of Experiments 

This section describes the different categories of experiments which are performed. 

i.) Temporal Locality of Reference • 
The degree of data temporal or spatial locality influences the cache performance 

in terms of hits and misses. Spatial locality does not exist in bit-string chromosome 

addressing of cache, therefore it is not considered. However, these series of experiments 

investigates the degree of temporal locality. 

To test the locality, GA is run for 500 generations on all 4 Freescale 

Semiconductor datasets. The trace program running GA records the time interval of 

reappearances of each unique chromosome as well as the number of times a unique 

chromosome is revisited. 

ii.) Baseline GA 

These sets of experiments establish a lower bound on CGA performance since 

there is actually no cache. In the baseline experimental set, GA is run on all Freescale 

Semiconductor datasets. Each dataset is run once and GA's termination condition is set at 

20,000 generations. 

iii.) Dedicated Memory 

Dedicated memory experiments follow a different design to CGA experiments. 

Memory is allocated to hold a specific number of chromosomes visited. This model is 

intended to show a theoretical baseline for time-space tradeof£ 
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There is no replacement policy for dedicated memory, once the memory fills with 

solutions it becomes a fixed lookup table. Data obtained in this section includes those 

found in the GA experimental section. The purpose of these experiments is to establish 

another control model. This control separates the effects of memory without replacement 

polices from cache with a replacement policy. 

The experiments allocate memory at doubling intervals; 4k, 8k, 16k, 32k, 64k, 

and 128k. Each memory size is run 4 times, with different random number generator 

seeds, for 1 00k generations, and is run on all 4 Freescale Semiconductor datasets. The 

number of experiments total of 96. 

iv.) Indicative Cache Sizes 

The first set of CGA experiments tests various cache sizes and set associativities 

with all Freescale Semiconductor datasets. The experiments use the LFU replacement 

policy, and do not have multi-seed replicates per dataset, and are therefore indicative. 

The cache sizes studied here are 64k, 128k, 256k, 512k, and IM, with set associativity: 4, 

8, and 16. These parameters are tested in all combinations totaling 60 experiments. 

For this set of experiments CGA termination condition is reached when the 

number of unique chromosomes produced equals the fmal number of unique 

chromosomes produced in experimental set l(i.e., i). For example, if the Dijkstra dataset, 

run for 20k generations in experiment 1 and produces a fmal total of 50k unique 

chromosomes, then 50k becomes the termination condition for the current experiment set. 



44 

v.) Cache Replacement Policies 

This set of experiments tests the effect of three different replacement policies on 

CGA; LRU, LFU, and random. This set uses all four Freescale Semiconductor datasets. 

The experiments have 4 replicates using different random number generator seeds. In 

this set of experiments, CGA terminates when 1 00k unique chromosomes are produced. 

The experiments are broken into two main groups depending on the number of features in 

each dataset. 

The first group uses the datasets FFT and BMS. These two datasets have 23 

features each. Cache sizes are 256k and 512k with set associativities of 8 and 16, using 

all three replacement policies; LRU, LFU, and random. The total number of experiments 

for this group is 48. 

The second group includes the datasets DJK and QS. Their cache sizes include 

512k and IM with 8 and 16 set associativity, and all replacement policies. The total 

number of experiments for this groups is also, 48. The total number of experiments 

related to cache replacement policies is 96. 

vi.) Exhaustive Quality 

The purpose of this set of experiments is to do an exhaustive quality check on all 

datasets. This includes the 4 Freescale Semiconductor datasets as well as two synthetic 

datasets. For DJK, QS, and both synthetic datasets, 25 choosing 13 is used as the 

combination number for the chromosome bit string. For FFT and BMS the bit string 

chromosome combinations are 23 choosing 12. The choice of these combinations is to 

maximize the search space for each dataset's. 



To perform this set of experiments, a program is developed to sequentially step 

through all combinations detailed above. The total number of experiments is 6. 

vii.) Generation of Synthetic Data 
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This set of experiments investigates different synthetic datasets, which differ in 

quality profile significantly from the Freescale Semiconductor datasets. Multiple datasets 

are generated and processed exhaustively though ISODATA to determine the quality 

distributions. One or two of these datasets are selected for further testing. 

viii.) Floating Number of Combinatorial Subsets 

The floating set of experiments lifts the restriction of the number features a subset 

can have. This allows CGA to process feature subsets through ISODATA which have 

any number of features, including 1 and M, where M is the feature set size. 

The DJK. dataset and two synthetic datasets are processed though this floating 

CGA experiment. Three cache sizes: 128k, 512k, 128k are tested with 8 set associativity, 

and run with the LRU replacement policy. There are no replicates, so the total number of 

experiments here is 9. 

ix.) Synthetic Data Testing 

The purpose is to compare the behavior ofCGA, seen in experiments 4 and 5, on 

a synthetic dataset having a different quality profile. The cache sizes tested are 512k and 

2M with 8 set associative cache. The replacement policies LRU, LFU, and random are 
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tested. All experiments are done with 4 replicates, using a termination condition of 50k 

unique chromosomes. The total number of experiments in this section is 60. 

x.) Fully Associative Cache 

This last set of experiments tests the behavior of fully associative cache to 

compare the results with set associative cache and with dedicated memory. Two datasets 

are chosen, DJK and one synthetic data set. The cache sizes double in size from 2k to 

128k, with LRU as the replacement policy. The experiments are done with 4 replicates 

for a total of 56. 



CHAPTER VI 

EXPERIMENTS AND RES UL TS 

This section reports the experiments performed and their results. A sequence of 

experiments and their conclusions are arranged by type and cache configurations. The 

memory configurations include: no memory, set associative cache, and fully associative 

cache. Each section contains relevant figures and conclusions. 

I. Temporal Locality 

An initial investigation of this thesis is to test the temporal locality of GA. The 

data is collected on all Freescale Semiconductor datasets and records the interval, in 

generations, between an appearance of a particular chromosome and its next appearance. 

The number of times individual interval lengths occur over the entire experiment are 

totaled and plotted as a distribution of frequencies in figures 10 and 11. Freescale 

Semiconductor datasets which have the same search space size are plotted together. That 

is, figure 10 plots FFT and BMS datasets with 23 features, run in GA with the 

combinatorial scale of(~~) = 1.35 x 106 • Figure 11 plots the Dijkstra and quicksort 

datasets, both of which are run in GA with the combinatorial scale of (~;) = 5.2 x 106 • 
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Figure 10. FFT and BMS frequency distribution 
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Figure 10 demonstrates that GA exhibits a high degree of temporal locality using 

FFT and BMS. The frequency distribution for this experiment indicates that for BMS the 

chance of a particular chromosome seen again within 50 generations is approximately 

64%, while the chance that chromosome will be seen within 10 generations is 

approximately 21 %. For the dataset FFT the distribution shows slightly greater temporal 

locality, with the chance of a chromosome being seen again within 50 generations 

approximately 72%, and in 10 generations, approximately 27%. 

The Dijkstra and quicksort dataset frequency distribution, figure 11 shows a peak 

frequency (frequency of 1 generation) an order of magnitude smaller than those of figure 

10. A reduction of the number of individual chromosome repetitions is expected due to 

the larger feature space. 

The degree oflocality, is similar to the BMS and FFT datasets. In the case of 

Dijsktra dataset, the chances of seeing a chromosome again within 50 generations is 

approximately 66%, while for quicksort the chances are closer to 75%. The chances a 



chromosome will be seen again in 10 generations is similar to that in figure 10, with 

approximately a 20% chance for Dijkstra, and approximately 30% for quicksort. 
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Figure 11. DJK and QS frequency distributions 
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These set of experiments, with GA and Freescale Semiconductor data, shows 

evidence that that temporal locality exists and can be exploited with CGA. There is little 

variation between datasets which suggests either a similarity between datasets, or an 

inherent locality of reference which exists in GA. Both, could also be the case. 

2. Baseline Experiments for GA 

This series of experiments gauges the redundancy ratio of GA with Freescale 

Semiconductor data. (as shown in figure 12). In this thesis, the redundancy ratio is 

defined as the number ISO DAT A function calls divided by the number of unique 

chromosomes generated. For example, if the GA produces 100k unique chromosomes, 

and the number of chromosomes processed through ISO DAT A to find those unique 
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chromosomes is 2M, then the redundancy is -- . The number ofISODATA 

function calls is the number of chromosomes processed whether or not they have been 

seen before. The redundancy ratio describes the baseline inefficiency of GA, or the upper 

bound of speedup. Figure 12 shows the redundancy associated with the four Freescale 

Semiconductor datasets run through GA for 20,000 generations. 

GA Chromosome Redundancy Ratio 
o Record KeeJping da1taset: all Freescale data eits 

:: [-~ 53 

_, I ■ I I I 
I ■ I I I 

10 

0 ■ I I .I 
■ fft ■ bms ■ dijkstra ■ qsort 

Figure 12. Redundancy for Freescale Semiconductor run through GA 

The dataset FFT has 38x redundancy, BMS has 53x redundancy, while the 

Dijkstra and quicksort datasets have 36x and 39x redundancy respectively. The 

redundancy across the datasets is consistent with the previous sections results. Also, the 

larger redundancy of the dataset BMS indicates there is a degree of data dependency 

related to redundancy. 



3. Dedicated Memory 

The next series of experiments studies of the time-space tradeoff resulting from 

various of dedicated memory. The results presented in this section are obtained from 

experiments with 4 replicates using different random seeds and averaged. 

Of particular interest is the speedup over GA, and the total hit percentage 

associated with different memory sizes. GA is run until 1 OOk unique chromosomes are 

generated. Figure 13 shows the speedup related to doubling of memory size beginning 

with 2k entries and ending in 128k entries for the BMS dataset. 
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The experiments are run until 1 OOk unique chromosomes have been processed by 

ISODAT A, therefore, the memory size of 128k can hold every unique chromosome 

generated by GA; i.e. , there are no misses at this scale. While not unbounded memory, 

the 128k size memory has the identical effect on GA performance and can be considered 

as the upper bound on speedup and hit percentage. 
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Figure 13. BMS dedicated memory speedup 
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Figure 15. DJK dedicated memory speedup 
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For all Freescale Semiconductor datasets there is less than 50% speedup using 

memory sizes up to 32k (with the exception of the BMS dataset at 32k having a speedup 
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closer to 60%). At 64k, there is a jump in speedup. For datasets FFT and quicksort there 

is nearly a quadrupling of the speedup, while BMS and Dijkstra the jump is closer to 

triple the speedup. 

At the upper bound of the dedicated memory, the datasets exhibit similar 

speedups of approximately 40x, a notable exception is BMS. BMS shows not only a 

higher degree of redundancy at baseline GA, but also, a greater maximum speedup. How 

significant this variation is, is unclear. 

4. Dedicated Memory Hit Percentage 

Figure 16 presents the hit percentage for dedicated memory using the BMS 

dataset. The upper bound memory size 128k, with a hit percentage of 100%, is omitted 

from the figure. The data here are from the same experimental runs as those from the 

previous section. 
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Figure 16. BMS dedicated memory hit percentage 
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Figure 17. FFT dedicated memory hit percentages 
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Figure 18. DJK dedicated memory hit percentages 
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The 2k memory size has a very low hit percentage, ranging from an abysmal 1. 7% 

for quicksort, to 15.3% for FFT. The maximum hit percentage at a memory size of 64k 

is consistent at approximately 48%, with the exception of FFT which has a maximum hit 

percentage of 65%. This relates to another item; FFT displays erratic behavior over all 

sizes of memory. The 2k memory size outperforms that of 4k by double and 16k 

outperforms 32k by half. Shown in figures 18 and 19, other datasets have similar hit 

percentages and speedup to the results found using BMS. 

Dedicated memory provides a theoretic underpinning for performance of 

recordkeeping sizes for GA. The next step is the implementation of replacement policies 

with set associative cache. 
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5. Various Cache Sizes with LFU 

This experimental section studies the speedup and the per-generation performance 

of CGA using different cache sizes and associativities. The CGA here implements the 

LFU eviction policy. The random replacement policy has less practical relevance and is 

not used, however, software implementation of LFU is relatively simple when compared 

to that of LRU, and so is chosen for the first series of experiments with CGA. 

The dataset FFT from the baseline GA experimental section generated 66k unique 

chromosomes, while BMS generated 4 7k unique chromosomes. These two results form a 

baseline for the number of unique chromosome generated. Therefore, the termination 

condition for the GA experiments is the number of unique chromosomes produced in the 

previous section: 66k for FFT and 47k for BMS. Figure 20 shows the 4 set associative 

cache, the dataset FFT has limited speed up across different cache sizes. 

Interestingly, the smaller cache size of 64k slightly outperforms cache sizes 128k, 

256k, and 512k. However, once the cache size increases to 1 million entries the speedup 

increases dramatically by nearly 70%. The speedup for different cache sizes for 8 and 16 

set associativity displays similar speedup performance (figures 21 & 22). The doubling 

of the cache sizes shows a much smoother transition from one size to the next. This is in 

contrast to the 4 set associative cache which has erratic performance when doubling of 

cache size. Interestingly, for 8 and 16 set associativity, when the cache size doubles from 

256k to 512k the speedup doubles as well. Whereas, for smaller cache sizes the speedup 

remains below 50%. 
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In the experiments with BMS, a few results stand out. In 4 set associative the 

speedup is 5.52, in 8 set the speedup is 10.6, and in 16 set the speedup is 15.9. This 

behavior is not duplicated in the dataset FFT. The second interesting item is the jump in 

speedup when moving from a cache size of 512k to lM. The maximum performance for 

FFT is reached by BMS at half the size of cache. Figure 23 shows the speedup for BMS 

using 4 set associative cache, 8 and 16 set associative caches show the same trend but are 

not shown. 

The most important observation from the previous results is that dedicated 

memory of 64k has a higher speedup than CGA for dataset FFT; 3 .4 for dedicated 

memory as opposed to 1.3 for CGA with a cache size of lM for all associativities studied. 

For BMS dedicated memory of size 64k outperforms, or does as well as, CGA at size of 

512k for all associative sizes . 
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Figure 24 shows the per generation performance of different cache sizes and 4 set 

associativity. The red dotted line in the three figures is GA with no cache (baseline) and 

is considered the lower bound for per generation performance. The blue dotted line is 

unbounded memory and is the upper bound on recordkeeping performance. The slope of 

the plot lines away from the slope of the lower bound indicates speedup. 

This slope is shown to vary over generations. Indeed, an interesting observation 

is that there are jumps in performance. This behavior leads to another interesting 

observation, the performance curve from two or more cache sizes may cross multiple 

times. One can infer from this that, depending on the dataset, there are ranges of 

generations where a smaller cache size outperforms a larger cache size. This can impact 

the choice that a programmer may make regarding the value of a small cache over a large 

cache for an application of CGA using a particular generation limit. 
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Figures 25 shows the same type of graph for the dataset BMS. In this case the GA 

baseline produced 4 7k unique chromosomes over 20,000 generations. The results for 

BMS are similar to those of FFT over different cache sizes. 

6. Cache Replacements Policies 
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The results from the experiments using the replacement policies LRU, LFU, and 

random, on dataset FFT, are shown in figures 26 and 27. The first item which is apparent 

is that the speedup of FFT is restricted to less than 2x for cache size of less than 512k 

regardless of replacement policy. The hit percentage for FFT is within 10% for both 

256k and 512k cache sizes of 8 set associative cache. At 256k cache size figure 26 shows 

that LRU is the best performer, but only by 10% over LFU and random replacement 

policies. At cache size of 512k for 8 set associative, FFT shows even speedup between 

LFU and random replacement policies. 
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Figure 26. FFT speedup for different replacement policies using 
8 set associative cache and 256k plus 512k cache sizes 
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Figure 28 shows LFU underperforms for the larger cache size of lM when 

compared to LRU and random. This is consistent with the results of the smaller cache 

sizes. Doubling cache size, LRU and random more than double their speedup, while 

LFU does not. Despite the larger associatively in figure 23 , the 512k cache performs 

almost identically to the 8 set associative cache in figure 21. This is perhaps an 

indication that associativity plays a smaller role in speedup of CGA than cache size or 

replacement policy. 

Both figures 28 and 29 show hit percentages which are closely correlated to 

speedup. This may indicate that a good choice of replacement policy is essential to 

optimal CGA performance. 
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The next series of figures show experimental results from the same experiments 

run on FFT using the BMS dataset with 8 set associative cache. Figure 30 shows a 

speedup similar to FFT in that it remains below 2x. However, in this case the random 

replacement policy is superior. This is true not only for a cache size of 256k, but for the 

cache size on 512k as well. The increase is approximately 14% for 256k cache size, and 

8.5% for 512k cache size. 
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Figure 30. BMS speedup for different replacement policies using 
8 set associative cache and cache sizes of 256k plus 512k 
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Figure 31. BMS hit percentages for different replacement policies using 
8 set associative cache and cache sizes of 256k plus 512k 
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Figure 32. BMS speedup for different replacement policies using 
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Figure 32 shows that at a cache size of IM the results for 16 set associative cache 

using BMS are inconsistent with the results in the previous figures. In addition, the 

figure shows that by doubling the associativity, there is a drop in speedup. This 

observation is counter to that observed with FFT, which suggests that replacement policy 

performance is data dependent. 

While the hit percentage for LFU in figure 33 and random replacement policies 

are closely matched, the speed up for LFU is approximately 12% higher than random, 

and 40% higher than LRU. Hit percentage in figure 28 shows for IM cache size is 

approximately 90% across all replacement policies. This result is not surprising as the 

search space for these series of experiments using FFT and BMS datasets is 

and the cache size is IM, a theoretical coverage of 73%. 
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Figure 34 shows the hit ratio for Dijkstra and quicksort datasets' experiments 

which use different replacement policies. All replacement policies have a hit percentage 

less than 50%. This can perhaps be explained by the larger feature search space. 
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Figure 34. DJK and QS hit percentages for different replacement policies 
using 8 set associative cache and cache sizes of 512k plus IM 

Using the Dijkstra dataset, LFU performs better than LRU for cache size of 512k, 

but not better than the random replacement policy. The results in this section show that 

dedicated memory outperforms CGA in every regime. Dedicated memory, of only 64k, 

has a higher speedup than a cache size of 512k. This results is true for all datasets, 

associativities, and replacement policies. This raises a question to whether or not there is 

an issue with cache utilization. 
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7. Cache Utilization 

Figures 35 and 36 show the cache utilization for different configurations with the 

dataset Dijkstra. Utilization here is defined as the ratio of the number of occupied cache 

blocks to the number of blocks in the cache. In figure 35, the cache size is fixed, while 

the set associativity varies from 4, to 8, to 16 running with an LRU replacement policy. 

In all experiments from section 6 and 7 of this chapter CGA produces 100k 

unique chromosomes and then exits. The upper limit on utilization is the number of 

unique chromosomes generated divided by the size of the cache. For a 512k cache size, 

the upper limit is 20%, while for a IM cache size it is 10%. 

Cache ' tilization for Different Associa1thr,ty 
Cache Size: '512k (daitasetDijks1tra) 
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Figure 35. DJK cache utilization for 4, 8, and 16 set 
associativities with LRU using 512k cache size 

The results from figure 35 show an average utilization across set associativity sizes of 

17.4%, close to the upper limit. There is little affect on utilization of cache when varying 

set associativity. 
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Figure 36. DJK cache utilization for different replacement polices 
using 512k cache size and 8 set plus 16 set associativities 

Figure 36 shows cache utilization versus different replacement policies and two 

cache sizes. There is no difference in cache utilization when it comes to different 

replacement policies. For cache size of lM the cache utilization across replacement 

policies is close to 9%. 
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As mentioned in the methodology chapter, to restricting the number of the 

features selected does have a small effect of creating address holes in certain cache sizes. 

These holes are portions of a cache which cannot be addressed, and thus remain vacant. 

However, the number of non-addressable blocks is small. In the above figures' block 

addresses 0.82%. 
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8. Quality Check 

Inspecting the trend of ISO DAT A clustering quality at early generations shows 

that CGA and GA converge within 50 generations to near maximum quality. Figure 37 

shows the top quality out of all chromosomes for a given generation for the dataset 

Dijkstra. The jumps in steps indicate that a new top quality set of sub-features have been 

found. The plateaus indicate that despite continuing search, no new best quality has been 

located in the search space. 
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Figure 3 7. DJK best quality for different replacement policies 

Figure 3 7 shows CGA replacement policies do not affect the convergence, and 

also, GA showed convergence in quality as quickly as CGA. The results for the other 

Freescale Semiconductor datasets reveal similar behaviors for all random number 

generation seeds. To check if the reason for the fast convergence is due to data 

dependence, quality histograms are produced for the Freescale Semiconductor datasets. 
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9. Quality Histogram 

The exhaustive quality search is performed on all four Freescale Semiconductor 

datasets. The combinations chosen are those of the previous experiments; i.e., for BMS 

and FFT, G~), for Dijkstra and quicksort G!). The histograms in figures 38 through 39 

have bin sizes of 0.25. 
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Figure 39. FFT quality histogram for 23 choosing 12 features 
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Figure 40. DJK quality histogram for 25 choosing 13 features 
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Figure 41. QS quality histogram for 25 choosing 13 features 
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From these figures it is clear that many of the combinations of features have 

similar qualities which are grouped tightly, and those groups are few. Dijkstra and 

quicksort dataset in particular have groupings of quality value which not only are narrow, 

but also exist within 10% of the maximum quality. For Dijkstra data set the largest bin 

contains 1.7 x 106 combinations, or 34% of the total combinations. For the quicksort 

dataset the situation is more extreme with approximately 98% of all combinations with a 

quality existing in two bins of size 0.25, all of which are within 10% of the maximum 

quality. 

The results of these histograms gives rise to the speculation that the narrowness of 

the quality distribution for the Freescale Semiconductor datasets contributes to the quick 

convergence of the quality in CGA and GA. To test this hypothesis two synthetic 

datasets are generated with flatter quality histograms, and tested in the same fashion as 

the Freescale Semiconductor datasets. 
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Shown in figures 42 and 43 are the histograms for the two synthetic datasets, 

named synthetic 8 (S8), and synthetic 11 (S 11 ). The histograms shows the quality for an 

exhaustive search of the combinatorial space for the selection of 13 dimensions out of 25, 

and have bin sizes of 0.25 . Like the Dijkstra dataset, S8 and S11 have 1000 data points. 

The similarity in parameters makes the Dijkstra dataset a good control to S8 and S 11 

experiments. Therefore, the Dijkstra dataset is used to compare the performance of the 

synthetic datasets. 
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Figure 42. S8 quality histogram for 25 choosing 13 features 
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The criteria for selecting these sets is to have the same number of dimensions 

(features) as the larger of the Freescale Semiconductor datasets (25 dimensions). S8 and 

S 11 show a large number of combinations located at the center of their histograms, and 

have additional smooth peaks located at each end of the histogram. At the low end of the 

quality scale, for both datasets, the secondary peak is wider and has a greater number of 

combinations than the secondary peak located at the higher end of the scale. This along 

with the primary peak distribution suggests that GA and CGA will spend more time away 

from the high quality combinations. Additionally, the maximum number of combinations 

in a bin is two orders of magnitude less than those in both the Dijkstra and quicksort 

histograms. 
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10. Floating Feature Subset Number 

The first check of the synthetic data, using CGA, is to isolate the effects of the 

restriction that the GA must produce children with exactly a preset number of selected 

features. For S8 and Sl 1, with 25 dimensions, CGA is allowed to choose any number of 

features. This means the search space is now 32M combinations in size. These sets of 

experiments are using the LRU replacement policy and CGA terminates once 200k 

unique chromosomes are produced. 

Figures 44 and 45 show the hit percentages arranged from high to low cache 

sizes. In figure 44, the cache hit percentages are at, or below, 50%. This result is similar 

to the result found for the Dijkstra dataset experiment. Figure 45 shows the experiment 

for the Dijkstra dataset showing a pattern similar to S 11, however the difference between 

cache sizes is more pronounced. The full features space exhibits hit percentages below 

50% for three cache sizes. A similar result is found in the fixed subset number 

experiments. 

Hit Percentage for ·F oat1ing Fe ture Subsets 
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Figure 44. S 11 hit percentage for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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Figure 45 . S8 hit percentage for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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Figure 46. DJK hit percentage for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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Figures 4 7 through 49 show the cache utilization for this series of experiments. 

Both synthetic datasets and the Dijkstra dataset, the cache utilization is high. For a 2M 

cache size, with 200k unique chromosomes generated, the upper bound on utilization is 

10%, for 128k it is 100%. 
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Figure 4 7. S 11 cache utilization for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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Figure 48. S8 cache utilization for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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Figure 49. DJK cache utilization for 8 set associative cache 
and sizes 128k, 512k, and 2M 
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The same utilization percentage is found, in figures 4 7 through 49, using a fixed 

feature subset number. This result shows cache utilization is good while searching both 

the full subset feature space as well as the fixed subset number search space, for DJK, 

S11 , and S8. 

11 . Replacement Policies for Synthetic Datasets 

These next series of experiments looks at speedup and the hit percentage for S8 

and S 11 using different cache replacement policies. Cache size is fixed at 2M with 8 way 

set asssociativity. The results are averaged over 4 replicates and consists of data 

collected after running CGA with the termination condition of 50k unique chromosomes. 

Figure 50 shows the speedup for different replacement policies for the dataset S 11. 
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Figure 50. S 11 speedup for different replacement policies 
with 256k cache size and 8 set associativity 
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Figure 51. S8 speedup for different replacement policies 
with 256k cache size and 8 set associativity 
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The figure shows that random replacement policy outperforms LFU, and outperforms 

LRU by nearly 2x. This result contrasts with figure 51 using S8, where all three 

replacement policies performed equally. This suggest a strong correlation between the 

dataset and CGA speedup using different replacement policies. 

12. Quality Convergence for Synthetic Data 

The initial purpose for developing synthetic data is to determine if fast 

convergence to the global optimum seen by the studies with Freescale Semiconductor 

dataset is an artifact of their quality value distributions. In figures 52 and 53 the single 

data runs of cache sizes 512k for dataset S 11 and 2M for dataset S8. As in figure 3 7, 

each step indicates a new best overall quality has been located, while the plateau 

indicated the best quality remains unchallenged. 
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Figure 53. S8 best chromosome quality per generation using 
different replacement policies and 2M cache size 
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Like the results from the Freescale Semiconductor datasets, the synthetic dataset 

quickly converges to within 10% of optimum. Like the quality figure 3 7, the initial 

starting points for the top quality are relatively high. This result is not exclusive to the 

random seed of experiment run 4, but a result that exists in all experimental runs. Runs 

1-3 are not shown in this section. 

13 . Study of Fully Associative Cache 

An additional cache model is introduced in this section to address possible 

problems found with the set associative cache implemented with CGA. The fully 

associative cache is implement at various sizes, using only the LRU replacement policy. 

One drawback of fully associative cache is that it is expensive to implement in hardware 

and so it is rarely used (Hennesy & Patterson, 2007). In software, there is a cost to 

searching the list of entries, however this cost is minimal when compared to the run time 

of ISO DAT A. The results in this section are averaged over 4 runs. Figures 54, 56, 58 
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and 59 show fully associative cache using sizes doubling from 2k to 128k. In figures 55 

and 57 show the dedicated memory experimental results for the Dijkstra dataset as a 

companson. 
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Figure 54. DJK speedup for fully associative cache of various sizes 
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Figure 56. DJK hit percentage for fully associative cache of various sizes 
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Fully associative cache shows much higher performance in speedup and hit 

percentages over set associative cache. Figure 54 show that at 2k the Dijkstra dataset 

attains a speedup of over 2x, which is greater than what is achieved with IM set 

associative cache. 

The speedup for fully associative cache shows better performance versus 

dedicated memory (figure 54 & 55). At the smallest cache size, 2k, fully associative 

cache has a speedup close to a dedicated memory size of 64k. The hit percentages in 

figures 56 and 57 show the effectiveness of a replacement policy on speedup when 

comparing fully associative cache with dedicated memory. 

Figures 58 and 59 show the experiments for the dataset S 11. The results are 

similar to those of the Dijkstra dataset. 
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Figure 59. S 11 hit percentage for fully associative cache of various sizes 
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A check of the quality convergence for fully associative cache is shown in figure 

60. What is apparent is that the different model of cache does not impact the rate of 

convergence to the global optimum. 

Top Quality vs. Generation 
Fully Associative Cache Sizes ( dataset: Synthetic 11, run 1) 

142 

141 

140 
c 
~ 139 ::s _J 

i 
( 

(Y 

138 

137 -

136 
5 10 15 20 25 

Generation 
30 35 40 45 50 

no cache --2k --4k --8k -- 16k -- 32k --64k I 

Figure 60. S 11 best quality per generation for fully associative cache sizes 



CHAPTER VII 

ANALYSIS OF RESULTS 

The similarity of the results between the Freescale Semiconductor datasets and 

the synthetic datasets suggests that the quick convergence of to the global optimum is not 

a data dependent issue. Regardless of the cache size or replacement policy, CGA 

invariably decreases in performance well before 1000 generations have elapsed. 

Figure 61 shows the decay of the number of unique chromosomes per generation, 

with the upper bound being the size of the child list: 128 chromosomes. 
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Figure 61. S8 unique chromosome production rate decay 
using 8 set associative cache with a cache size of 512k 
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This figure shows that the decay is rapid, such that by generation 300 the 

difference in the number of unique chromosomes produced per generations between 

CGA and GA disappears. 
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The results of this thesis shows that set associative cache can provide speedup 

applied to GA in the context of COP. However, the results also show that this speedup 

comes at a high space tradeoff when compared to dedicated memory or fully associative 

cache. Replacement policies do not affect this behavior, nor does the use of different 

datasets. 

The poor performance of set associative cache lead this thesis to investigate the 

convergence of CGA to the global optimum of the feature space. It is found is that CGA 

does not outperform GA in quality convergence within 50 generations regardless of the 

replacement policy implemented. This is a surprising result which does counter this 

thesis's hypothesis that CGA will find a feature subset of higher ISODATA clustering 

quality. 

To check the CGA data dependency, a quality histogram is produced to profile the 

four Freescale Semiconductor. The histograms showed tight grouping of feature subset 

solutions with quality measures close to the global optimum. To provide an experimental 

control to this property, synthetic data is generated with a flatter quality profile. 

Using these synthetic datasets, experiments are redone to check the effectiveness 

of cache sizes, set associativity, and replacement policies. The results confrrmed the 

work done on the Freescale Semiconductor datasets. First, cache sizes larger than that of 

dedicated memory are required for equal speedup. Second, set associativity did not affect 

the behavior of cache to any large degree. Third, while the relative performance of 

individual replacement policies is data dependent, the quality of the solutions found for a 



given number of generations is no better than that found with GA. The hit percentages 

for CGA are below 50% for all datasets when looking at cache sizes of 512k or less. 
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In all experiments cache utilization is shown to be high. The results of the fixed 

subset number cache experiments, figure 36 in chapter 6, show that the cache utilization 

is not dependent on dataset, or replacement policy. The utilization is the same in both the 

experiments using the full feature subset search space as the experiments using the fixed 

feature subset search, showing that the utilization is independent of the size of the search 

space. 



CHAPTER VIII 

CONCLUSIONS AND FUTURE RESEARCH 

This thesis implemented Genetic Algorithm with the focus on the feature 

selection problem. Using ISODATA as the heuristic fitness function the idea is to 

produce a high fidelity feature subset by searching the combinatorial space. This work 

follows others in the study of heuristic algorithms to solve the FSP. In particular, work 

such as that done by Siedlecki and Sklansky (1989), suggested GA may outperform other 

heuristic methods in solving FSP. 

A combinatorial search may often be computationally costly, such that some 

recordkeeping method may be needed, trading greater time performance for space 

allocation. Given an effective set associative configuration and replacement policy a 

cache can be designed to outperform a simple dedicated memory scheme not only in 

speedup, but in quality of solutions for a given number of generations. 

Experiments done in this thesis with dedicated memory show that a simple 

recordkeeping scheme can provide a speedup of over 2x for memory sizes of as little as 

64k. This is not a surprising result given the research done by Hertel and Pitassi (2007) 

with static recordkeeping in heuristic search. However, the relatively small dedicated 

memory size required for speedup is interesting. 
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The degree of temporal locality discovered in this research suggests set 

associative cache would outperform dedicated memory. Work done by Chang and 

Huang (2009) on GA with hardware cache, in part, motivated this line of research. The 

experimental evidence did not show this to be the case. While CGA did provide a 

speedup often much greater than that seen in dedicated memory, the increase in memory 

size required for cache to match the speedup found in dedicated memory, is four fold. An 

interesting result as well is the lack of difference between set associativity on CGA 

performance. This may be due to the lack of spatial locality inherent in the chromosome 

bit field representation of the address space. 

Testing different replacement policies such as LRU, LFU, and random, revealed a 

high level of data dependence. The peak performance of CGA with a particular 

replacement policy is shown to vary between dataset. The fact that the random 

replacement policy outperformed LRU and LFU on many instances can be related to 

GA's stochastic behavior originating from crossover point selection, parent selection, and 

the random mutation rate. This randomness may blur the effects of temporal locality, 

reducing the effectiveness of any "best" replacement policy. 

It is apparent from this research that set associative cache does not improve upon 

dedicated memory in terms of time-space tradeoff. Instead, cursory work done on fully 

associative cache hold a much great performance gains in terms of speedup, but still not 

in terms of quality solutions. Further testing is needed to find the reason why CGA 

cannot find a higher quality over GA. One avenue of investigation is presetting the 

population list with known low quality solutions to test the rapidness of convergence to 

optima. A study also of interest, is the testing of the fidelity of the best quality feature set 



found in this thesis, for the workload characterization datasets from Freescale 

Semiconductor, on the ISA simulator and comparing the results from the Verilog 

simulator. 
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One area of expanded research is reordering of GA instructions, to optimize for 

typical hardware cache. This process of making GA cache-aware may yield greater 

speedup than seen in this thesis for set associative cache. Another area of investigation, 

is a study on the effects of parallelism on the performance of cache hit percentages and 

speedup. A third future study direction can be experiments with larger number of 

features, perhaps an order of magnitude and greater, showing the performance of CGA on 

a more complex feature space. 



LITERATURE CITED 

Aggarwal, A. (2002). Software Caching vs. Prefetching, Proceedings of the 
3rd International Symposium on Memory Management, 157-162. 

Allen, D. and Darwiche, A. (2003). Optimal Time-Space Tradeoffin Probabilistic 
Inference, Proceedings of the International Joint Conferences on Artificial 
Intelligence, 969-975. 

Amadahl, G. M. (1967). Validity of the Single Processor Approach to Achieving Large 
Scale Computing Capabilities. American Federation of Information 
Processing Societies Conference Proceedings, 30 483-485. 

Ball J. H. and Hall. D. J. (1966). A Clustering Technique for Summarizing 
Multivariate Data. Behavioral Science, 12(2), 153-155. 

Bello, R., Puris, A., Nowe, A., Martinez, Y., and Garcia, M. (2006). Two Step Ant 
Colony System to Solve the Feature Selection Problem, Progress in Pattern 
Recognition, Image Analysis and Applications, vol. 4225. Springer Berlin­
Heidelberg, Germany, 588-596. 

Brock, M. (2010) Feature Selection/or Slice Based Workload Characterization and 
Power Estimation, Texas State University, Master Thesis. 

Cantu-Paz, E. and GoldBerg, D. (1999). On the Scalability of Parallel Genetic 
Algorithms, Evolutionary Computation, 7(4). 

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R. (2001). 
Parallel Programming in OpenMP, London, UK: Academic Press. 

Chang, F. and Huang, H. (2009). A Study on the Cache Miss Rate in a Genetic 
Algorithm Implementation, Fifth International Conference on Intelligent 
Information Hiding and Multimedia Signal Processing, 795-797. 

Ciesielski, V. and Scerri, P. (1997). An anytime algorithm for scheduling of aircraft 
landing times using genetic algorithms, Australian Journal of Intelligent 
Information Processing Systems, 4, 206-213. 

93 



Cover, T. M., and Van Campenhout J.M. (1997). On the possible orderings in the 
measurement selection problem. IEEE Transactions on Systems, Man and 
Cybernetics 7(9) 657---661. 

Dy., J. G. and Brodley, C. E. (2004). Feature Selection for Unsupervised Learning. 
Journal of Machine Learning Research 5 845-889. 

Friedman, M. and Kandel, A. (1999). Introduction to Pattern Recognition, 
London, UK: Imperial College Press. 

Fukunaga, K. (1990). Statistical Pattern Recognition (second edition). California: 
Academic Press. 

Gen, M. and Cheng, R. (2000) Genetic Algorithms and Engineering Optimization. 
New York: Wiley-Interscience. 

Grant, K. and Horsch, M. C. (2007). Efficient Caching in Elimination Trees, 
Florida Artificial Intelligence Research Society Conference, 98-103. 

Guan, S. U., Zhu, F., and Li, P. (2004). Modular Feature Selection using Relative 
Importance Factors. International Journal of Computational Intelligence and 
Applications 4(1) 57-75. 

Guyon, I. J., Weston, S., and Barnhill, V. (2002). Gene selection for cancer 
classification using support vector machines. Machine Learning 46( 1 ). 

Hennesy, J. L. and Patterson, D. A. (2007). Computer Architecture: A Quantitative 
Approach 4th Ed San Francisco, CA: Morgan Kaufmann. 

Hertel, P. and Pitassi, T., (2007). An Exponential Time/Space Speedup for 
Resolution, Electronic Colloquium on Computational Complexity, 46 1-25. 

Jain, A. K. and Dubes, R. C. (1988). Algorithm for Clustering Data, New Jersey: 
Prentice-Hall, Inc. 

Joshi, A., Eeckhout, L., John, L. K., and Isen, C., (2008). Automated 
Microprocessor Stressmark Generation, The 14th International Symposium on 
High Performance Computer Architecture, pp. 229-239. 

Koza, J. R. (1992). Genetic Programming, Cambridge, Massachusetts: MIT Press. 

Kudo, M. and Sklansky, J. (2000). Comparison of Algorithms that Select Features for 
Pattern Classifiers. Pattern Recognition 33 25-41. 

94 



Kudo, M., Somol, P., Pudil, P., Shimbo, M., and Sklansky, J. (2000). Comparison of 
Classifier Specific Feature Selection Algorithms, Advances in Pattern 
Recognition, vol. 1876. Springer Berlin-Heidelberg, Germany, 677-686. 

Linde, Y., Buzo, A., and Gray, R. M. (1980). An Algorithm for Vector Quantization 

Design. IEEE Transactions on Communications, 28(1) 84-95. 

Luo, Y., Joshi, A., Phansalkar, A., and John, L. K., Ghosh, J., (2008). Analyzing and 
Improving Clustering Based Sampling for Microprocessors, Journal of High 
Performance Computing and Networking, 5( 4), 352-366. 

Nakariyakul, S. (2008). On the Suboptimal Solutions using the Adaptive Branch and 
Bound Algorithm for Feature Selection. Proceedings of the 2008 International 
Conference on Wavelet Analysis and Pattern Recognition, 384-389. 

Obitko, M., Hochschule fiir Technik und Wirtschaft Dresden, Czech Technical 
University. Introduction to Genetic Algorithms. Retrieved January 10, 2009, 
from the website: http://cs.felk.cvut.cz/~xobitko/ga/ 

O'Hallaron, D. R. and Bryant, R. E. Carnegie Mellon University, (2002). Cache 
Memories. Retrieved April 20, 2010 from website: http://www.cs.cmu.edu 

Pacheco, P. S. (1997). Parallel Programming with MP/, Morgan Kaufmann 

Publishers, Inc. 

Quinn, M. J. (2003). Parallel Programming in C with MPI and OpenMP, McGraw Hill 

Higher Education. 

Santos, E. E. and Santos E., Jr. (2000). Cache Diversity in Genetic algorithm 
Design. Florida Artificial Intelligence Research Society Conference 107-111. 

Siedlecki, W. and Sklansky, J. (1988). On Automatic Feature Selection. International 
Journal of Pattern Recognition Artificial Intelligence 2(2) 197-220. 

Siedlecki, W. and Sklansky, J. (1989). A note on genetic algorithms for large-scale 
feature selection. Pattern Recognition Letters, 10 335-347. 

Shi, D., Shu, W., and Liu, H. (1998). Feature selection for handwritten Chinese 

character recognition based on genetic algorithms, IEEE International 

Conference on Systems, Man, and Cybernetics Vol. 5, 4201-4206. 

Taibi, E. (2009). Metaheuristics, From Design to Implementation, New Jersey: John 

Wiley & Sons, Inc. 

95 



96 

Tanenbaum, A. S. (2006). Structured Computer Organization, 5th Ed., New Jersey: 
Pearson Prentice Hall. 

Texas Advance Computing Center, University of Texas. (2009). Ranger User Guide. 
Retrieved 2009 from: http://services.tacc.utexas.edu/index.php/ranger-user-guide 

Theodoris, S. and Koutroumbas, K. (1999). Pattern Recognition, London, UK: 
Academic Press. 

Wang, X., Yang, J., Teng, X., Xia, W., and Jensen, R. (2007). Feature Selection Based 
on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters 
28 459-471. 

Yusta, S. C. (2009). Different Meta-Heuristic Strategies to Solve the Feature 
Selection Problem. Pattern Recognition Letters, 30 525-534. 

Zhang, T., Fu, X., Goh, R. S. M., Kwoh, C. K., and Lee, G. K. K. (2009). A GA-SVM 

Feature selection Model Based on High Performance Computing Techniques, 

Proceedings of the 2009 IEEE International Conference on Systems, Man, 

and Cybernetics, 2653-2658. 

Zhang, H. and Sun, G. (2002). Feature Selection using Tahu Search Method. Pattern 

Recognition 3 5 701-711. 



VITA 

Daniel Isamu Lowell, was born in Annapolis, Maryland on September 24th, 1975, 

the son of Eiko Nakamura Lowell and Daniel Anthony Lowell. He received his B.A. in 

physics from the University of Colorado, Boulder in 1999. In 2007 he enrolled in Texas 

State University-San Marcos Computer Science graduate program. 

Permanent Address: 

1317 Kenwood Ave. 

Austin, TX 78704 

This thesis was typed by Daniel I. Lowell. 


