
SOFTWARE CACHE IN GLOBAL HEURISTIC SEARCHES

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment of the Requirements
for the Degree

Master of SCIENCE
by

Daniel I. Lowell, B.A.

San Marcos, Texas
May2010

ACKNOWLEDGEMENTS

Thanks, to my Mother and Father, Biko and Daniel Lowell. Also thanks to my

thesis committee members: Dr. Dan Tamir, Dr. Clara Novoa, Dr. Jim Holt, and Dr.

Khosrow Kaikhah. This thesis was submitted on May 4th, 2010.

111

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ... 1

Hypothesis ... 6

II. LITERATURE SURVEY .. 7

1. Heuristic Methods to Solve the FSP .. 7

2. Software Caching ... 10

3. Parallel Genetic Algorithm with Cache Implementation 12

Ill. BACKGROUND .. 14

1. ISODATA and k-means Clustering Algorithms ... 14

2. Clustering Quality ... 17

3. Genetic Algorithm (GA) ... 19

4. Cache Design .. 22

5. Cache Replacement Policies .. 24

6. Parallelism Performance .. 25

IV. METHODOLOGY ... 27

1. Genetic Algorithm (GA) with ISODATA ... 27

2. Cache Addressing .. 30

3. GA Design with Cache (CGA) using ISODATA ... 30

4. Dedicated and Unbounded Memory .. 35

5. Parallel Implementation ... 36

IV

V. EXPERIMENTAL DESIGN ... 37

1. Datasets .. 3 7

2. ISODATA Parameters ... 38

3. GA Data Collection .. 40

4. CGA Data Collection ... 41

5. List of Experiments .. 42

i.) Temporal Locality of Reference ... 42

ii.) Baseline GA .. 42

iii.) Dedicated Memory ... 42

iv.) Indicative Cache Sizes .. 43

v.) Cache Replacement Policies .. 44

vi.) Exhaustive Quality ... 44

vii.) Generation of Synthetic Data .. 45

viii.) Floating Number of Combinatorial Subsets 45

ix.) Synthetic Data Testing ... 45

x.) Fully Associative Cache .. 46

VI. EXPERIMENTS AND RESULTS ... 47

1. Temporal Locality .. 47

2. Baseline Experiments for GA ... 49

3. Dedicated Memory ... 51

4. Dedicated Memory Hit Percentage .. 53

5. Various Cache Sizes with LFU .. 56

6. Cache Replacements Policies .. 61

7. Cache Utilization ... 68

8. Quality Check .. 70

9. Quality Histogram .. 71

10. Floating Feature Subset Number ... 76

11. Replacement Policies for Synthetic Datasets ... 79

12. Quality Convergence for Synthetic Data ... 81

13. Study of Fully Associative Cache .. 82

V

VII. ANALYSIS OF RESULTS ... 87

VIII. CONCLUSIONS AND FUTURE RESEARCH .. 90

LITERATURE CITED ... 93

VI

LIST OF FIGURES

Figure Page

1. Bit string representation of a chromosome ... 19

2. Single point crossover for bit-string chromosome generation 20

3. Crossover for bit-string chromosome generation ... 21

4. 32-bit reference word .. 22

5. Direct-Mapped Cache ... 23

6. 2 Set-Associative Cache ... 24

7. CGA child generation flowchart ... 29

8. CGA child generation flowchart ... 32

9. Non-addressable cache block percentages for 25 bits choosing 13 35

10. FFT and BMS frequency distribution ... 48

11. DJK and QS frequency distributions .. 49

12. Redundancy for Freescale Semiconductor run through GA 50

13. BMS dedicated memory speedup ... 51

14. FFT dedicated memory speedup ... 52

15. DJK dedicated memory speedup .. 52

16. BMS dedicated memory hit percentage .. 53

17. FFT dedicated memory hit percentages .. 54

18. DJK dedicated memory hit percentages ... 54

vii

19 QS dedicated memory hit percentages ... 55

20. Speedup for FFT 4 set associative cache .. 57

21. Speedup for FFT 8 set associative cache .. 57

22. Speedup for FFT 16 set associative cache .. 58

23. BMS speedup for 4 set associative cache ... 58

24. FFT per generation subtotal number of unique chromosomes for 4 set associative

cache ... 59

25. BMS per generation subtotal number of unique chromosomes for 4 set associative

cache ... 60

26. FFT speedup for different replacement policies using 8 set associative cache and 256k

plus 512k cache sizes .. 61

27. FFT hit percentages for different replacement policies using 8 set associative cache

and 256k plus 512k cache sizes .. 62

28. FFT speedup for different replacement policies using 16 set associative cache and

512k plus IM cache sizes ... 63

29. FFT hit percentages for different replacement policies using 16 set associative cache

and 512k plus lM cache sizes ... 63

30. BMS speedup for different replacement policies using 8 set associative cache and

cache sizes of256k plus 512k ... 64

31. BMS hit percentages for different replacement policies using 8 set associative cache

and cache sizes of256k plus 512k .. 65

32. BMS speedup for different replacement policies using 16 set associative cache and

cache sizes of 512k plus IM .. 65

Vlll

33. BMS hit percentages for different replacement policies using 16 set associative cache

and cache sizes of 512k plus lM ... 66

34. DJK and QS hit percentages for different replacement policies using 16 set

associative cache and cache sizes of 512k plus IM ... 67

35. DJK cache utilization for 4, 8, and 16 set associativities with LRU using 512k cache

size .. 68

36. DJK cache utilization for different replacement polices using 512k cache size and 8

set plus 16 set associativities ... 69

37. DJK best quality for different replacement policies ... 70

38. BMS quality histogram for 23 choosing 12 features .. 71

39. FFT quality histogram for 23 choosing 12 features .. 72

40. DJK quality histogram for 25 choosing 13 features ... 72

41. QS quality histogram for 25 choosing 13 features .. 73

42. S8 quality histogram for 25 choosing 13 features .. 74

43. S11 quality histogram for 25 choosing 13 features .. 75
,

44. S11 hit percentage for 8 set associative cache and sizes 128k, 512k, and 2M 76

45. S8 hit percentage for 8 set associative cache and sizes 128k, 512k, and 2M 77

46. DJK hit percentage for 8 set associative cache and sizes 128k, 512k, and 2M 77

47. S11 cache utilization for 8 set associative cache and sizes 128k, 512k, and 2M 78

48. S8 cache utilization for 8 set associative cache and sizes 128k, 512k, and 2M 78

49. DJK cache utilization for 8 set associative cache and sizes 128k, 512k, and 2M 79

50. S11 speedup for different replacement policies with 256k cache size and 8 set

assoc1atlvtty ... 80

ix

51. S8 speedup for different replacement policies with 256k cache size and 8 set

associativity ... 80

52. S11 best chromosome quality per generation using different replacement policies and

512k cache size ... 81

53. S8 best chromosome quality per generation using different replacement policies and

2M cache size .. 82

54. DJK speedup for fully associative cache of various sizes .. 83

55. DJK dedicated memory speedup for various sizes ... 83

56. DJK hit percentage for fully associative cache of various sizes 84

57. DJK dedicated memory hit percentage ... 84

58. S11 speedup for fully associative cache of various sizes ... 85

59. S11 hit percentage for fully associative cache of various sizes 86

60. Sl 1 best quality per generation for fully associative cache sizes 86

61. S8 unique chromosome production rate decayusing 8 set associative cache with a

cache size of 512k ... 87

X

ABSTRACT

SOFTWARE CACHE IN GLOBAL HEURISTIC SEARCHES

by

Daniel I Lowell, B.A.

Texas State University-San Marcos

May2010

SUPERVISING PROFESSORS: DAN TAMIR AND CLARA NOVOA

This thesis investigates the time-space tradeoff of cache used with heuristic

searches applied to a combinatorial optimization problem known as feature selection. A

model of Genetic Algorithm is implemented for selecting feature subsets and ranking

data clustered with the ISODATA algorithm. Using a set associative cache, the speedup

of Genetic Algorithm and the quality of solutions found is compared to Genetic

Algorithm without cache. Together with replacement policies, such as LRU, LFU, and

random , several cache set associative configurations are studied, and their relative

performance characterized.

Keywords: Genetic Algorithm, Feature Selection, ISODATA,LRU, LFU, set associative,

clustering

xi

CHAPTER I

INTRODUCTION

When searching for an optimal solution in a large search space, the efficiency of

the search depends on the intelligence applied to the problem. By trading space for time,

recordkeeping may be employed to increase the efficiency of a search.

One record keeping model is a dedicated memory. Dedicated memory stores

solutions already seen in a search as entries, eliminating the redundancy of processing

previously visited solutions. Dedicated memory becomes fixed when full, and its size

determines the level of redundancy in the search. Unbound dedicated memory which

contains all solutions in the search space when filled, has no redundancy, but may be

infeasible depending on the size of the search space. However, given an effective

configuration and replacement policy, a cache can be an alternative record keeping

method that can create a favorable time versus space complexity tradeoff over dedicated

memory (Tanenbaum, 2006).

This thesis explores record keeping strategies in the context of processor

workload characterization for power consumption tests. Workload characterization

records operating temperatures, maximum power distribution, and power consumption,

by performing multiple runs of computer code with the final purpose of evaluating the

performance of the architecture (Joshi, Eeckhout, John, & Isen, 2008). For major

semiconductor companies such as Freescale Semiconductors the performance of

1

processors under design is of special concern, and an emphasis is placed on the power

performance of the designed processors.

2

One way to determine computer workload characterization involves clustering of

fixed size slices of a trace of an application code obtained from a high level instruction

set simulator, and identifying prototype slices (Luo, Joshi, Phansalkar, John, & Ghosh,

2008; Brock, 2010). Each trace-slice is represented by a set of features such as the

number of arithmetic instructions in the slice, the number of memory references, and the

number of register's bits altered. Prototype slices are analyzed through a low level

software simulator and the results are used to estimate the performance of the entire code

(Luo, Joshi, Phansalkar, John, & Ghosh, 2008; Brock, 2010). Numerous architecture

and micro-architecture features can be extracted from the trace. Nevertheless, it is

desired to identify an optimal feature sub-set in order to enable cost effective

characterization.

There is a tradeoffbetween accuracy and speed with different architecture testing

techniques. The Verilog (or VHDL) code utilized to design the processor along with a

Verilog simulator can be used for an accurate evaluation of the processor performance.

The Verilog simulator, however, is extremely slow due to the resolution of the

computations. On the other hand, an instruction set architecture (ISA) simulator which is

fast but inaccurate, can be used to supply several characteristics of the design.

Combining the two simulators in an efficient way can be used to construct a relatively

accurate and fast tool for performance evaluation. It is a challenging problem addressed

in this thesis.

3

Feature selection and clustering can be used to reduce the amount of code

executed on the slow, accurate, low level Verilog simulator while retaining close fidelity

to complete test code. This can be accomplished by: 1) dividing the code into blocks, 2)

identifying representative blocks, 3) executing the accurate, low level simulator only on

the representative blocks, and 4) inferring the performance of the entire code based on the

performance of the representative blocks. The two first stages are performed using the

code and an ISA simulator and are relatively fast. One can categorize those blocks using

clustering techniques with a selected set of performance features and construct an

alphabet made up of representative blocks; the number of clusters equaling the number of

characters in the alphabet (Friedman & Kandel, 1999).

Alphabet verification is done using the fast Verilog simulator, which introduces

another tradeoffbetween time and accuracy; a small alphabet speeds up the Verilog

simulations, but reduces the accuracy of the results. The quality of the clustering

technique which is used to identify the alphabet is an important factor in the accuracy of

the workload characterization.

The features used for clustering are probably the most important parameter.

Therefore, the quality of code block clustering should be based on a good feature

selection strategy (Shi, Shu, & Liu, 1998). This feature selection problem (FSP) is a

technique which chooses a subset of features while attempting to minimize the effect on

the recognition accuracy (Jain & Dubes, 1988). This is done in order to reduce the

dimensionality of the feature space; thereby reducing the computational complexity of

the pattern recognition task.

4

FSP is known to be an NP-hard problem and can be stated as a combinatorial

optimization problem relevant to the areas of pattern recognition, statistics, and machine

learning (Cover & Van Campenhout, 1997; Shi, Shu, & Liu, 1998; Guyon, Weston, &

Barnhill, 2002). In many cases, computational complexity considerations and

implementation constraints dictate the desired number of features in the selected subset.

Under these constraints the FSP boils down to finding the optimal subset of features from

a superset of features. This statement of the FSP entails selecting one of the

combinations of features according to an optimality criterion (Cover, & Van

Campenhout, 1997).

Computational complexity considerations and implementation constraints, can in

some cases, dictate the desired number of features k in the selected subset. Under these

c~nstraints the FSP boils down to finding the optimal subset of n features from a superset

of n features. This statement of the FSP entails selecting one of the G) combinations of

features according to an optimality criteria. Given that FSP is a NP-Hard problem,

searching a feature subspace can be a time consuming problem that cannot be tackled

efficiently with exact methods, and therefore making a heuristic intelligent search is

essential. This thesis implements an anytime heuristic for the FSP. Specifically, Genetic

Algorithm (GA) that explores inherent time-space tradeoffs, and investigates reductions

in time complexity by the use of record keeping methods such as cache (Ciesielski &

Scerri, 1997).

Cache schemes are widely used in hardware and software, and exploit the

principle of locality of reference. The spatial version of the principle assumes that there

is a high probability that instructions or data with addresses that are close to the currently

addressed word are needed next (Tanenbaum, 2006). Hence, when a word is retrieved

from main memory some portion of memory data adjacent to the word is loaded into the

cache. Temporal locality is also important, it assumes that there is a relatively high

probability that instructions, or data which have been currently accessed, will be used

again in the near future (Tanenbaum, 2006).

5

Three basic cache replacement policies, and several dynamic/adaptive

combinations of the three, are considered in this thesis (Tanenbaum, 2006). The first

policy is random replacement. It randomly chooses the block to be evicted. Next, a

recency-based method, evicts the least recently used block. This method mainly exploits

temporal locality. Finally, a frequency-based method evicts the least frequently used

block, thereby exploiting spatial locality. This study implements software data structures

and tests these three methods.

The motivation behind combining a cache with GA search technique applied to

FSP is to improve the efficiency of the heuristic by taking advantage of spatial and

temporal locality. Efficiency in this thesis's context is defmed as the number of heuristic

evaluations of unique solutions for a given time interval. Efficiency can be considered a

speedup if, with respect to a non-cached heuristic, it increases. Since heuristic

evaluation has a high time computational cost, improving the efficiency of a search, with

the use of a cache, may justify the tradeoff between space and time (Zhang, Fu, Goh,

Kwoh, & Lee, 2009).

This thesis also implements a parallelization of GA. GA in particular is an

algorithm which lends itself to parallelization due to the independence of the individual

chromosome fitness evaluation (Cantu-Paz & Goldberg, 1999; Taibi, 2009).

Investigating PGA has increased relevance due to the trend in designing

processors with multiple cores instead of pursuing pure clock speedup (Pacheco, 1997;

Chandra, Dagum, Kohr, Maydan, McDonald, & Menon, 2001; Quinn, 2003). This

change in approach is mainly due to the power requirements of CPU. Authors have

found that in using multiple processing cores and computer code developed for this

framework, a high degree speedup can be achieved (Pacheco, 1997; Chandra, Dagum,

Kohr, Maydan, McDonald, & Menon, 2001; Quinn, 2003).

In this thesis, parallelization of GA consists of dividing the new chromosome

population per generation among processing nodes, such that each processor receives

exactly one chromosome. The purpose of this division is to accelerate the process of

computing the fitness value associated with each chromosome. The level of

parallelization implemented is considered program-level parallelization. GA is divided

into sections for single program multiple data (SPMD) execution can be considered

coarse-grained (Chandra, Dagum, Kohr, Maydan, McDonald, & Menon, 2001; Quinn,

2003).

Hypothesis

I.) Genetic Algorithm with set associative cache implementation will provide a speedup

in performance to that of Genetic Algorithm without cache.

6

2.) For a given number of generations, Genetic Algorithm with set associative cache

implementation will consistently find a feature subset with a higher ISODATA clustering

quality than is found in an implementation without cache.

CHAPTER II

LITERATURE SURVEY

The literature on the FSP is extensive since the research on the FSP dates to the

early 1960's (Yusta, 2009). This section presents a literature review on heuristic methods

to solve the FSP with emphasis on works applying GA's. The section also reviews

research on software caching in heuristic searches.

1. Heuristic Methods to Solve the FSP

Sequential forward selection (SFS) and sequential backward selection (SBS) are

heuristic methods that have been extensively used in the past to solve the FSP

(Nakariyakul, 2008). SFS starts with an empty set and evaluates the improvement in the

criterion function from adding one feature at a time. The feature added to the subset is

the one that maximizes the criteria function. SFS is repeated until the subset contains the

desired number of features. SBS is also an iterative procedure that looks to maximize the

criterion function by starting from a set with all the features and removing one feature at

a time. SFS and SBS methods are greedy, ignore the interactions among features and

suffer from a nesting effect since discarded features cannot be re-selected and selected

features cannot be removed later. Consequently, SFS and SBS are sub-optimal methods

that can be improved by the plus-1-take-away-r method where 1 steps ofSFS are followed

by r steps of SBS.

7

8

Genetic algorithms (GA) (Siedlecki & Sklansky, 1988)[30], mimetic algorithms

(MA) (Yusta, 2009), tabu search (TS) (Wang, Yang, Teng, Xia, & Jensen, 2007; Zhang

& Sun, 2007), ant-colonies (AC) (Bello, Puris, Nowe, Martinez, & Garcia, 2006), particle

swarm (PS) (Wang, Yang, Teng, Xia, & Jensen, 2007), and GRASP (Yusta, 2009), are

heuristic methods researched in recent years for solving the FSP. GA's are based on the

principle of natural selection; i.e., survival of the fittest. GA evaluates and improves a

finite population of solutions instead of improving a single-solution as in classical hill­

climbing methods. Based on this characteristic, some authors describe GA as a parallel

algorithm (Kudo & Sklansky, 2000). The optimization process is carried out in cycles or

generations. Solutions are represented by chromosomes encoding a particular solution in

the solution space, without ambiguity, and each is ranked through a fitness function

(Kudo & Sklansky, 2000; Zhang, Fu, Goh, Kwoh, & Lee, 2009; Talbi, 2009). Successful

solution of a particular practical problem through GA requires adequate manipulation of

components such as: population size, number of generations, and crossover and mutation

mechanisms to achieve an adequate balance between exploration and exploitation of the

search space (Gen & Cheng, 2000).

Siedlecki and Sklansky (1989), used GA for solving the version of the FSP that

searches for the smallest or least costly subset of features for which the classifier's quality

does not drop below a pre-defmed threshold. The authors compared sequential search,

BB, and GA. To speed up the classification process in the range of 103 - 104, they built

a model to simulate the classifier's error rate instead of using the true error rate function

of the classifier. Experiments are done with simulated data and with limited tests on real

data having 150-300 features. GA resulted more efficient than BB and outperformed

9

sequential search since it visited the feasible region in a more complete way (Siedlecki &

Sldansky, 1989). They did not study the performance ofrecordkeeping on GA

performance.

The work by Siedlecki and Sklansky (1989), evidenced that GA is a powerful tool

compared to classical sequential search, especially when there are more than 20 features.

A computational study by Kudo, Somol, Pudil, Shimbo, and Sldansky (2000), confirmed

the superiority of a well-trained GA by comparing it to adaptive versions of sequential

forward/backward feature selection, achieving similar performance in all problem sizes,

but a speedup of two or three times in large-scale problems of more than 50 features

(Kudo, Somol, Pudil, Shimbo, & Sklansky, 2000). Furthermore, the study compared GA

to an extensive set of sequential search algorithms and BB variants, concluding: (1)

among the algorithms studied, GA is the only practical choice for large-scale problems

(more than 100 features) and (2) GA usually gives better answers than the other

algorithms for small and medium scale problems at expense of an increase in

computational time (Kudo & Sklansky, 2000).

After a thorough revision to seminal and successful literature on using GA for

solving FSP, and the results from a set of preliminary experiments with other heuristics,

GA is selected as the platform to solve the FSP and explore performance gains from

cache implementation (Siedlecki & Sklansky, 1989; Kudo & Sldansky, 2000; Kudo,

Somol, Pudil, Shimbo, & Sklansky, 2000). The evidence in Guan and Zhu's study also

gives motivation for the use of GA in solving FSP's (Guan, Zhu, & Li, 2004).

10

2. Software Caching

Allen and Darwiche (2003) investigated the tradeoff between time and space of an

optimal cache population strategy for traversal of decision trees (d-tree) for Bayesian

networks. They exploited the hierarchal topology of the trees to accurately predict cache

behavior and optimize the cache sizes based on depth-first branch and bound techniques

and pruning (Allen & Darwiche, 2003). This technique is focused on reducing cache size

while maintaining runtime efficiency. The memory structures studied, however, are

tables and do not have the structure of a cache. Furthermore they do not consider

replacement policies (Allen & Darwiche, 2003). This thesis is concerned with

developing cache for combinatorial optimization problems (COP) which are space

efficient. The concern however is improving runtime without degrading quality

performance of GA.

Grant and Horsch (2007) investigated efficient cache designs and eviction policies

to reduce the runtime of traversing decision trees. The authors' approached the problem

of efficient cache design by the use of sub-caching where nodes of a d-tree share cache

location entries. Those cache entries were exploited during traversal of the d-tree

preventing collision of data from nodes in the cache (Grant & Horsch, 2007). The

exploitation of hierarchal sequencing of trees to make cache more space-efficient showed

that efficient cache sizes can be maintained while preserving the runtime reduction that

the cache provides. This investigation gives a good idea on an approach to software

cache design. However, their research does not provide a case where the topology is

unknown, or gives an implementation of cache for COPs.

Interesting work on software implemented caching has been done by Aggarwal

(2002). In his research he studied how a small software-based cache can significantly

improve the performance of data intensive and computationally complex problems

(Aggarwal, 2002). Aggarwal found improvements ofup to 30% in computational time

reduction using caching versus non-caching. Experiments focused on six programs to

investigate how caching affects problems with a diverse set of data structures. Though

the program problem set used by Aggarwal is diverse, there is no implementation for

heuristic optimization problems of the type considered in this thesis (Aggarwal, 2002).

11

Hertel and Pitassi (2007) also studied time/space trade-offs in the context of

heuristic search. They found that time requirements could be significantly reduced

through record keeping, referring to their method as caching. Nevertheless, their cache is

static and does not consider cache replacement policies, or cache organization issues.

This configuration is a better match to the definition of dedicated memory provided in the

introduction of this thesis.

Chang and Huang (2009) studied the behavior of hardware cache with GA. Using

the principles of temporal and spatial locality, they reordered the sequence of GA's

instructions to make the algorithm cache aware, attempting to minimize the miss rate of

the simulated cache. In their experiments the cache size used is a 32KB 8-way set

associative using a 64B cache line (Chang & Huang, 2009). The authors found that

locality of reference became irrelevant when population sizes were small enough to be

mostly contained in the cache. The study's main focus is in improving the generic, cache

oblivious GA algorithm; simulating computer system hardware cache and driving down

12

the miss rate. They did not perform a detailed study on different cache replacement

strategies or on how a dedicated cache itself can modify the behavior of the generic GA.

Santos et al. (2000), investigated cache diversity in GA. The cache is used to

store partial results of the chromosome evaluation function. Nevertheless, they assume

that the chromosome evaluation function can be decomposed into small units that

represent the evaluation of parts of the chromosome and then recomposed based on

mutations and crossovers of these parts. Moreover, despite referring to their record

keeping as cache, the record keeping mechanism does not include provisions for

replacement policies and can actually be considered as infinite dedicated memory. This

limitations makes their approach only suitable for small problems, and for problems

where the fitness function computation can be decomposed and recomposed.

3. Parallel Genetic Algorithm with Cache Implementation

There is extensive literature on parallel genetic algorithms (PGA's) but relatively

few papers on PGA's with cache implementations. The study by Zhang, Fu, Goh, Kwoh,

and Lee (2009) combined PGA with caching for a FSP using support vector machine

(SVM) as classification method. After identifying that SVM feature selection has a very

large computational cost, the authors implemented parallelization by dividing the

population into subpopulations and distributing the workload across multiple processors.

Intercommunication of chromosomes across different processor population domains is

considered migration, and is implemented using MPI (Zhang Fu, Goh, Kwoh, & Lee,

2009). Caching is implemented in software to eliminate the re-computation of a

particular chromosome. Each time, before a chromosome is evaluated, the GA-SVM

13

checks the cache to see if the chromosome has been run previously. If this is the case, the

chromosome is not reevaluated. If it is not the case, the chromosome is evaluated, and

the cache is updated with the new chromosome.

The study is similar to this thesis in that the purpose of cache is to limit

reevaluations of chromosomes, given that the fitness function evaluation is

computationally expensive. The authors do not say whether or not their cache

implemented a replacement policy, the configuration, or the size of the cache. These are

important details which may determine specific interpretations of behaviors of a software

cache. They did find that the cache hits decreased dramatically when features increase

for 14 to 123, and that their parallelization had on average a 5.76 times speedup (Zhang

Fu, Goh, Kwoh, & Lee, 2009).

Given the gaps in the literature regarding implementation of cache mechanisms

for GA's, this thesis explores the time/space tradeoffs associated with record keeping in

the form of cache for a PGA that solves the FSP. To the best of our knowledge, the

research reported in this paper is the first comprehensive and scalable study of

time/space-offs due to caching within the context of PGA.

CHAPTER III

BACKGROUND

This section describes the k-means and the ISODATA clustering algorithm, along

with error tolerance and quality measures. GA is presented in detail as it related to

combinatorial optimization. Cache theory is divided into cache design and replacement

policies. Finally, a brief overview of the motivation for parallelization and the limitations

is included.

1. ISODATA and k-means Clustering Algorithms

k-means is an iterative clustering algorithm. A typical way to start the algorithm

is by seeding the feature space with randomly selected cluster centers. Using the nearest

neighbor method, the k-means algorithm associates patterns with clusters centroids (Jain

& Dubes, 1988; Friedman & Kandel, 1999; Aggarwal, 2002). Next, clusters' centroids

are recalculated. The process of assigning patterns to clusters and recalculating cluster

centers continues until maximum number of iterations has been reached, or the centroids

have not been modified within some predefined tolerance over two iterations (Jain &

Dubes, 1988; Koza, 1992; Friedman & Kandel, 1999; Aggarwal, 2002). One such

tolerance measure is the the Linde-Buzo-Gray (LBG) classification algorithm's minimum

distortion error tolerance calculated using the minimum average distortion Da (Linde,

Buzo, & Gray, 1980).

14

The LBG tolerance uses a vector quantization mapping function to calculate the

distortion; i.e., given a vector set S, a mapping to a representative centroid y using a

mapping function:

y = q(S).

15

The distortion is then the sum of the distances between the representative vector y

and S. This process is explained using vector quantization notation.

Let X be a set of n vectors in space R with dimensionality {1, ... , p }, and the kth

cluster have ok members, such that:

with the j th vector:

The mapping function produces the set of representative vectors,

y = q(X),

where Y = {y i, ••• , y ml is the set of centroids for all clusters (Ball & Hall, 1966; Linde,

Buzo, & Gray, 1980; Theodoris & Koutroumbas, 1999). The squared error distortion is,

8k

d(xk,yk) = Llx~ -y~l2·
i=l

For an iteration 'a' of a clustering algorithm, the minimum average distortion over all

vectors in R becomes (Linde, Buzo, & Gray, 1980),

n

Da = n-1 L min d(xz, y); y E Ya,
Z=l

where y exists in the set Y as a vector at iteration 'a'. The error tolerance is then

calculated as,

16

Da-1 - Da
D ::; IL

a

One drawback to k-means is that the number of clusters (k) is predefined and

fixed. This can generate empty clusters, clusters with few members, clusters that are too

close to each other, or clusters with large dispersion. The ISODATA algorithm is a

clustering technique that tries to overcome this limitation. The goal is to achieve high

quality clustering where the number of clusters is between a low bound (say m) and a

high bound (say n). The initial clustering ofISODATA is obtained in the same way as in

the k-means algorithm (where k = m;n), using random seeding, and nearest neighbor

assignment of patterns to cluster centers (centroids). Once this is done, ISODATA uses

predefmed or adaptive thresholds to split clusters with high dispersion, merge close

clusters, and eliminate clusters with a small number of patterns.

ISO DAT A performs splitting of clusters which decreases their dispersion, as well

as merging of clusters, which increases dispersion between clusters (Koza, 1992;

Friedman & Kandel, 1999). The centroids and members of clusters are recalculated in

the same way as ink-means. Once the centroids are recalculated, the merge, split, and

eliminate steps are repeated. The ISODATA algorithm continues with these operations

until one of three conditions exist (Friedman & Kandel, 1999): 1.) an iteration limit is

reached, 2.) no splitting, merging, or elimination, has taken place over the last iteration,

or 3.) a minimum error has been reached between one iteration and the next. For this

thesis, the last criterion is based on the LBG minimum distortion error.

17

2. Clustering Quality

For an unsupervised clustering algorithm, there must be a means to gauge the

"goodness", or quality, of the end result. The criteria for determining the quality of

clustering typically involves a measure of clusters' compactness, and a measure of cluster

separation. These can be represented by a within scatter matrix Sw, and a between

scatter matrix Sb respectively (Fukunaga, 1990; Dy & Brodley, 2004).

The kth cluster's mean vector of the set xk is mk = [mt ... , mtkr. For the ith

dimension, ok is the number of vectors in the kth cluster, of which the component mean is

(Dy & Brodley, 2004):

8k

mk = 0-1, Xk·
l k L l]

J=l

A scatter matrix Sk for the kth cluster is composed of the sum of the squared distances

between the cluster mean an its member vectors (Fukunaga, 1990; Dy & Brodley, 2004):

8k

sk = L (x1k - mk)(xf - mk)T
j=l

The within scatter matrix is made up of the sum of all internal scatter matrices of clusters

in R (Fukunaga, 1990). The number of clusters denoted by N:

The between scatter matrix represents the sum of the distances between the mean of

cluster k and the overall mean of means of the clusters (Fukunaga, 1990; Dy & Brodley,

2004).

The mean of means:

N

m = 5-l I okmk
k=l

The between scatter matrix (Fukunaga, 1990; Dy & Brodley, 2004;):

N

Sb= _L(mk-m)(mk-m)T
k=l

18

As stated above, it is often desirable to have clustering which contains compact

groupings with good separation between their representative centers. If a cluster is

compact, the centroid vector ykwill more closely represent its member vectors. Large

overall mean separation of centroids indicates a well defined representation of data

grouping as compared to a close mean separation. In terms of feature selection, compact

clusters along with a large mean separation indicates the feature subset is tightly

represented by Y; the representative set of centroids (Dy & Brodley, 2004). It follows,

that those feature subsets having less compact clusters and a smaller mean separation are

poorly represented by Y and oflower quality. This quality measure can be modeled with

the trace of the ratio of the between scatter matrix over the within scatter matrix

(Fukunaga, 1990; Dy & Brodley, 2004):

The greater the mean separation of the clusters and the more compact the clusters,

the higher the quality. The trace of the ratio is applied because it is invariant under any

nonsingular transformation (Fukunaga, 1990; Dy & Brodley, 2004). In this thesis, this

quality is calculated for each feature subset represented by chromosomes in GA through

ISODATA. ISODATA is a relatively complex algorithm which, in some instances,

19

requires long execution time, therefore, it is desirable that the feature selection utility

performs the minimal number of chromosome evaluations (or ISODATA function calls).

3. Genetic Algorithm (GA)

In GA, for combinatorial optimization problems (COP), chromosomes are

represented by bit-strings, where each bit represents a feature (Koza, 1992). Features

chosen for as a subset are encoded as a 1-bit, whereas those not chosen are represented by

a 0-bit. This is shown in figure 1 where A through M are features either chosen or not

depending on the bit.

11■1
0 1 0 1 1 0 0 0 1 1 0 0 0

Figure 1. Bit string representation of a chromosome

Reproduction is done with crossovers where a single-point is chosen at random

for each parent chromosome pair. Additionally, a double crossover method can be

implemented where both parent chromosome is fragmented into three sections such that

the child chromosome inherits a middle segments from one parent and an outer segment

from the other (Koza, 1992; Taibi, 2009; Obitko, 2009). Figure 2 contains an example of

the single point crossover operation where the crossover point is at the third gene of the

chromosome. Therefore, the child chromosome inherits the first two genes from the

father chromosome B and the reminder ones from the father chromosome A.

20

------~--
Chromosome A 0 0

Chromosome B

• Child chromosome 1 1

Figure 2. Single point crossover for bit-string chromosome generation.

Often a heuristic may converge toward a local optimum, or optima prematurely,

leaving a large portion of the search space unexplored (Koza, 1992; Taibi, 2009; Obitko,

2009). To jump out of this convergence to an unexplored portion of the search space, a

mutation is usually implemented. This mutation alters a chromosome to a controlled

degree which may or may not improve its fitness (Koza, 1992; Taibi, 2009; Obitko,

2009).

GA begins with the entire population list filled with random chromosomes. The

chromosomes are then processed through a fitness function. At the beginning of every

subsequent generation, those chromosomes which are below a predefined fitness

threshold are culled and are replaced with new chromosomes (Koza, 1992; Talbi, 2009;

Obitko, 2009).

The generation of the new chromosomes starts with each child chromosome

generated from a pair of parent chromosomes. A child chromosome is produced by a

crossover method, and is mutated if the random criterion is met. Once the child list is

populated, chromosome's quality is evaluated through a fitness function. The child

generation process is shown in figure 3.

..
I I . I • •

Elite list
m

chromosomes

Empty child
list

c chromosomes

Pair selected for crossover

, ,

Crossover

1 r

Mutation

, ,

Add new chromosome to child list

I
I
I
I
I
I
I
I .& I I ' . l 1!!1 - - •• J

Figure 3. Crossover for bit-string chromosome generation

21

22

4. Cache Design

The purpose of cache in computer system is to reduce the time to fetch

instructions, or data (words) from memory. Typically this involves, small-scale memory

located very close to the CPU (Tanenbaum, 2006). Cache takes advantage of the

principle of locality of reference. Locality of reference can be spatial or temporal.

Spatial locality predicts that words located close by will be needed soon. Temporal

locality says that those words which have been recently accessed may be needed again in

a short period of time (Tanenbaum, 2006; Hennesy & Patterson, 2007).

Direct-mapped cache is a simple organization of cache where a block of words is

stored in exactly one block address. When the cache is accessed, the reference word is

used to fmd a word, or perhaps just a byte within a word. An example of a 32-bit

reference word (Tanenbaum, 2006; Hennesy & Patterson, 2007):

Block Address bit numbers Block Offset bit numbers
31 16 15 5 4 2 1 0

TAG I LINE WORD IBYTE

Figure 4. 32-bit reference word

Cache entries in direct-mapped cache are laid out in entries which are accessed by

the LINE bits from the virtual address. The TAG bits are compared to the tag located at

the cache line to see whether the requested block resides in cache and the appropriate

word and, or byte offset is then retrieved (O'Hallaron & Bryant, 2002; Tanenbaum, 2006;

Hennesy & Patterson, 2007). The choice of the low-order bits for the LINE bits allows

consecutive memory locations to be mapped to different cache lines (O'Hallaron &

Bryant, 2002). If the LINE bits used the high-order address bits, adjacent memory lines

23

would be mapped to the same cache line. This would mean that memory locations

adjacent (0 to 2number of tag bits - 1) to each other would be mapped to the same address

(O'Hallaron & Bryant, 2002).

Addressing direct-mapped cache with m number of entries is address as

(Tanenbaum, 2006; Hennesy & Patterson, 2007):

block number= R (mod m).

Figure 5 show an example of direct-mapped block addressing. If there are 10 blocks, and

the reference address is 14, the block number is 3.

Block Number
012 3456789

Figure 5. Direct-Mapped Cache

One issue which can occur with direct-mapped cache is if a needed memory line

is located at an integral multiple distance away from the size of the line address space, a

block which is potentially needed next may be evicted (Hennesy & Patterson, 2007). Set

associative cache mitigates this problem by having more than one line for each entry

(Tanenbaum, 2006; Hennesy & Patterson, 2007). In this case TAG field of the virtual

address is compared, in parallel, with the TAG in each set of the cache line. For an n-set

associative cache, and a reference address R, the block address is calculated as:

24

block number= R (mod n),

Figure 6. shows an example of set-associative addressing. If the set associativity

is 2, and the reference address is 14, the set is 0 and the block can reside either in address

0 or 1.

Set Number
00 1 12 2 334 4

01 2 3 45 6 78 9
Block Number

Figure 6. 2 Set-Associative Cache

Fully associative cache is cache where a block may be place in any location. In

this model the TAG is not needed, as the entry is directly accessed. This model is very

efficient, however, it is expensive to implement in hardware (O'Hallaron & Bryant, 2002 ;

Tanenbaum, 2006; Hennesy & Patterson, 2007). This thesis implements 4, 8, and 16-way

set associative, and fully associative cache to study how cache associativity affects the

speedup of GA performance.

5. Cache Replacement Policies

There are three cache replacement policies implemented in this thesis; LFU, LRU,

and random. LFU replacement policy implementation is straightforward. When a cache

block is accessed a frequency counter associated with that entry is incremented. If a

write-to cache is performed and a block has to be evicted, the entry with the lowest

frequency counter value is evicted, replaced and its counter reset to zero.

25

LRU is similar to a queue where the order of the cache is determined by the

recency of access. In LRU, an address where all entries are filled may have an block

accessed in a read-only operation. In this case, the counters of the cache entries not

accessed at the address which have values less than the value of the accessed entry's

counter are incremented. Counters with values greater than the accessed entry's counter

remain unchanged and the counter of the accessed entry is set to zero.

The random replacement policy has a simple implementation in which the once

the sets of an address are filled, they are evicted by random selection a new data value is

to be entered. This replacement policy is useful if there is a situation where words are

evicting each other at the same block address repeatedly causing cache misses.

6. Parallelism Performance

Parallelization seeks to speed up the performance of a program by using multiple

processors at computationally expensive section of code. Ignoring the computational

setup costs, the upper limit l/J for speedup obtained from parallelizing computer code is

describe by Amadahl's Law (Quinn, 2003):

1
1/J 5. f + (1 - f)/p

where f is the fraction of the program instructions which must be run in serial and p is

the number of processors available for computation (Amadahl, 1967; Quinn, 2003).

Even if there could exist an infinite number of processors for computation, the speed up

26

is limited to the inverse of the fraction of the program instruction which are run in serial

(Quinn, 2003).

The ideal parallel program is one where all sections are parallelized to take full

advantage of processing nodes are hand. However, sections of code may be inherently

serial. In that case careful software profiling should be done to identify and parallelize, if

possible, the most computationally expensive sections, minimizing the impact of serial

sections. While the potential for speedup from parallelization is great, care must be taken

to maximize its effectiveness. This thesis takes advantage of this methodology.

CHAPTER IV

METHODOLOGY

This section describes the specific methodologies implemented in this thesis.

This includes the design on GA and CGA, and dedicated memory. Additionally, the

motivation and implementation of the parallelization of GA and CGA are covered.

1. Genetic Algorithm (GA) with ISODATA

In GA implementation, chromosomes represent features selected and they are

encoded using a bit string. Given a number of features, those features chosen as a subset

are encoded as a I-bit, whereas those not chosen are represented by a 0-bit. In this thesis

chromosomes are limited to a 32 bit bit-string; i.e., a 32-bit unsigned integer encoding a

maximum of 32 features. Crossovers are done using a single-point crossover method

where the crossover point is chosen at random for each parent chromosome pair. The

mutation probability is fixed at 2%.

Since the number of desired features is given, and represented by the number of

1-bits in the chromosome, a valid chromosome must include a number of 1-bits equal to

the size of the desired subset. The population list is stored in a data structure is of size

384 where the upper 256 indices are populated with the elite chromosomes (elite list);

i.e., those chromosomes which have the highest ISODATA quality and comprise the

parent stock. The lower 128 indices contain the lowest quality chromosomes.

27

28

Initially, the entire population list is filled with chromosomes and ISODATA is

performed in parallel on all individuals, the list is then sorted by quality. At the

beginning of every subsequent generation the child list is purged and refilled with new

chromosomes, as seen in figure 7. This process follows as:

1.) Each child chromosome is generated from a random pair of elite chromosomes.

2.) A random crossover point is chosen for the parents, and the crossover performed.

3.) The resultant child chromosome is mutated or not depending on whether or not

rand()%100 < 2; where rand() the random number generator as implemented in the

C standard general utilities library. The number of I-bits in the child chromosome must

be equal to the number of features to be selected. If this condition is not satisfied, then

the process of generating a child is repeated.

4.) The child is checked against the elite list for duplication as well as the (filling)

child list. It is undesirable to have duplicates in the population for the sake of keeping the

elite list from being filled with duplicate high quality solutions.

5.) If the generated child is not a duplicate, it is accepted into the filling child list.

6.) Once the entire child list is populated with 128 chromosomes, their fitness is

evaluated through ISODATA clustering. In this thesis, ISODATA is carried out in a

parallel batch mode. That is, at each generation, after the list of 128 children is

populated, 128 processors are simultaneously assigned to perform ISODATA on exactly

1 chromosome.

■------.
I
I

i
I
I
I
I
I

'

Elite list
256

chromosomes

Empty child

◄

Random pair selected for crossover .,. _____ _

Random single point crossover

Mutation ifrand0%100 < 2
NO

YES

YES

list
◄· 128

--,
I

chromosomes

..

I
I

t

I
I
I

t
I
l ._ ______ _

NO

NO ..

Figure 7. CGA child generation flowchart

29

30

7.) The entire 384 member population list is then sorted by quality, using the value of

the 256th index of the population list as the cut-off selection rule. Chromosomes that are

below the cut-off are considered inferior and can be purged. Due to sorting, it is possible

that a child is promoted to the elite list; conversely, an elite member might be demoted.

The termination condition for the GA implementation is designed to be flexible.

The algorithm can be configured to exit after a specific number of generations, a

maximum number of unique chromosomes generated, or a number of total chromosomes

generated.

2. Cache Addressing

Cache addresses for chromosomes are calculated by using the high-order bits of

the bit string representation of a chromosome. The tag bits are the low-order bits and is

stored in cache in place of a data word. For example, if the chromosome is 25-bits and

the number of cache lines are 64k, then the 16 high-order bits is the address and the

remaining 9 bits is the tag. This design choice is made because this thesis is primarily

interested in minimizing the revisiting of chromosomes in GA.

3. GA Design with Cache (CGA) using ISODATA

With CGA the initial population list of384 chromosomes is generated and

processed in parallel as is done in GA. The entire initial population is then placed into

the cache. Like GA, the population list is then sorted, using the 256th index as the cutoff

(exactlyl/3 of the population list) between the elite list and the child list. The subsequent

generations behave in a more complex fashion.

As seen in figure 8, steps 1 and 2 of the CGA progress the same way as GA,

however, next New steps 4-6 are as follows:

31

4.) The child chromosome is compared against the cache in a read-only operation. If

the data exists in the cache (a hit), the chromosome is rejected because this means the

chromosome has been seen before and does not require reprocessing through ISODATA.

Once a chromosome has been rejected, the process of generating a child is begins again,

otherwise the chromosome is accepted into the child list. If applicable, the cache

counters for LFU and LRU are updated to reflect a hit on an entry.

5.) Once the child list contains 128 new chromosomes, their selected features are

processed through ISODATA in parallel. Upon return of the ISODATA function, for all

children, the entire population list is sorted by quality. Those chromosomes below the

256th index are considered inferior and are to be placed into the cache. This is done by

taking chromosomes in order from below the 256th index and checking if they are in the

cache (read/write operation). If there is an entry that contains the chromosome, then this

is considered a cache hit. The counters of the cache are updated and the chromosome is

purged from the population list. If instead, there is no match for the chromosome value,

but all cache entries are populated for that address, it is considered a cache miss and a

replacement policy is implemented. If there is no match at the chromosome's cache

address, but an empty entry exists,

r·------
i

Random pair selected for crossover 141---r---r------r-----.

I

Elite List
256 1-4

chromosomes

Empty child
List

~ 128
chromosomes

•
Add new chromosome

to the child list

Cache

'

Random single point crossover

Mutation if rand()% 100 < 2

-------.,.
YES

NO

NO
NO

. ' 1 - ... ·-······-··--------····--..................... J

Figure 8. CGA child generation flowchart

NO

YES

YES

YES

32

33

this too is a cache miss (compulsory miss), and the empty entry is filled with the value of

the chromosome's data value.

6.) After the lower 128 indices have updated the cache and are purged of values, the

generation has completed and the process of filling the child list begins again. As with

GA, the termination condition for CGA can be configured to exit after a specific number

of generations, a maximum number of unique chromosomes generated, or a number of

total chromosomes generated.

The cache is accessed in two places in CGA. One way in a read-only mode, and

the other in a read-write mode. The read-only mode occurs when the child generating

function (CG) checks the cache to see if the child it has produced is a revisited

chromosome. Regardless if it is in cache, the function will only update the counters and

not update the entries. For LFU the counter update consists of incrementing the counter

for the look up entry. LRU's counter update consists ofreassigning the order of the most

recently seen block.

After the new child population list is processed though ISO DA TA and assigned a

quality value, the cache update function (CU) is called and the read-write cache access

takes place. The first task CU performs is to sort the entire population list, which

includes the elite list plus the newly processed children. The list is sorted by descending

value of quality with the best quality chromosome at the top of the population array. This

action places the worse 128 chromosomes below the 1/3 cut off as undesirable feature

subsets.

34

The CU now checks each bad chromosome against the cache. If there is a miss

CU either replaces a cache entry, or if the cache line is unfilled, places a cache entry and

updated the counters. If there is a hit, the cache only updates the counters.

Two experimental variables which are important indicators of cache performance

are the hit percentage, and speed up. Hit percentage is defmed as:

H
hit percentage = 100 x (H + M _ Mc)

where H is the number of cache hits, M is the number of cache misses, and Mc is the

number of compulsory misses. Compulsory misses are cache misses due to an empty

cache line.

Speedup is defmed as the ratio of the number of times ISODATA is called for a

particular cache, or dedicated memory, size to the number of times ISODATA is called in

a baseline GA

Choosing a fixed number of features selected for CGA experiments creates the

problem of block addresses which cannot addressed. For block addresses requiring a

number of addressing bits less than, or equal to the number of subset features, or

dimensions, selected out of a bit string, the entire cache will be addressable. However, if

the number of cache addressing bits is larger than the subset number there will be

addresses which are unreachable.

The percentage of the cache addresses which cannot be accessed for a given

subset number and a size of cache can be calculated. If X = log2 (cache addresses) is

number of bits required to address a cache block, Sis the number of subset features

selected, and Z is the number of inaccessible addresses:

35

then the unaddressed percentage is:

Figure 9 presents the results for the percentage of cache addresses which are not

addressable versus sizes of cache. Displayed are cache sizes ranging from 16k to 2M for

25 features choosing 13. The ascending trend in the figure indicates that larger caches

have a larger number of non-addressable blocks.

Percentage of Addres ·ing Holes
for25 bits choosing 13

10% ~------------------

8% +----------------

6%

16k 3 k 64k 1 8k 6k 51 k 1

Figure 9. Non-addressable cache block percentages
for 25 bits choosing 13

4. Dedicated and Unbounded Memory

2M

In dedicated memory, space is allocated to hold a specific number of

chromosomes visited and there is no replacement policy. Once the memory fills with

solutions it becomes a fixed lookup table. Unbounded memory is the dedicated memory

36

model which is of a size sufficient to hold all the solutions encountered during a search in

the solution space. The upper limit on the size of the unbounded memory is(;), where

M is the number of features and K is the subset number of features.

5. Parallel Implementation

All experiments, parallel and serial, in this thesis are run on the Texas Advanced

Computing Center's (TACC) Ranger Linux Cluster available at the J.J. Pickle Research

Center at the University of Texas-Austin. Ranger compute nodes configurations are four

AMD 2.3Ghz quad-core Opterons per system board interconnected via lnfmiband

network ("Ranger User Guide", 2009). The programming language used to design all

experiments is C which implements the openMPI application program interface (API).

This thesis has a core premise that the computational cost of the heuristic

function, in this case ISODATA, is large when compared to remainder of the search

algorithm. This premise justifies the time-space tradeoff of implementing cache. As a

consequence of this premise, and given Amadahl's Law, parallelization oflSODATA

would seem to be the logical choice. Profiling of GA using the profiling tool gprof

shows that indeed ISODATA function calls per generation consume approximately 90%

of the computational time. As stated in the introduction to this thesis, the parallelization

in CGA consists of dividing the accumulated child list chromosomes across processors in

every generation. This model does not reduce the runtime of an individual ISO DATA

function call, instead processes the entire child list in parallel in the time interval required

for the processing of a single ISODATA function, plus MPI communications overhead.

CHAPTERV

EXPERIMENTAL DESIGN

This section presents the GA implementation in the FSP domain with and without

caching. Cache implementations include set associative and fully associative. One trace

program is implemented to test temporal locality. Also, one sequential search program is

implemented to exhaustively check the quality of chromosomes. Two synthetic datasets

are also developed.

1. Datasets

Raw data provided by Freescale Semiconductor is used to evaluate the

performance of the proposed GA with caching (CGA). The data contains a trace of four

computer benchmark programs, including fast Fourier transform (FFT), the Dijkstra's

shortest path algorithm (DJK), quick-sort (QS), and basic mathematics suite (BMS). FFT

and BMS both have 23 features, while DJK and QS both have 25 features. To maximize

the size of the feature space a subset number of 12 features are chosen for FFT and BMS,

giving a search space of 1,352,078 combinations. For DJK and QS the feature subset size

is chosen as 13, resulting in a search space of 5,200,300 combinations.

Each of the above traces is divided into fixed length sequences of instructions

referred to as slices. The sizes of the slices examined are 1000, 2000, 5000, and 10000

instructions. Following a feature extraction stage applied to slices, each slice is

37

38

represented by a set of architecture and micro-architecture features such as the number of

integer operations per slice, the number of register transfers, and the number of memory

accesses. These sets of features go through the feature selection stage described below,

where an optimal subset of the features is sought.

Synthetic data are also developed for cache testing. The number of features and

the number of data points for the synthetic data are tailored to match the DJK dataset; i.e.,

25 dimensions, with 1000 data points. Further details about the 2 created datasets and

their properties are extensively detailed in the next chapter.

2. ISODATA Parameters

The ISODATA algorithm has several tunable parameters, as listed:

LBG Error Tolerance: the minimum error of the distortion between two

ISODATA iterations for sufficient convergence. It signals exit an condition.

Lump threshold: the maximum distance between cluster centers where two

clusters are merged into one.

Split threshold: the minimum mean distance of all data points from the center of

a cluster which causes two clusters it is divided into two across the dimension

with the maximum mean distance.

Minimum Cluster Size: number of data points a cluster must have, otherwise it is

removed as a cluster and the data points are distributed to nearby clusters using

the nearest neighbor rule.

Maximum Clusters Lumped per Iteration: moderates the influence of the lumping

phase oflSODATA.

Split Fraction: a fractional multiplier which moderates the distance of new

cluster centers for any split.

Maximum Iterations: input parameter that allows for an early exit from

ISODATA before convergence.

Initial Number of Clusters: Number of seed clusters fork-means initialization.

Through experimentation the parameter values are found and set which allow a mix of

smooth convergence and clustering execution speed:

LBG Error Tolerance: 10-4

Lump threshold: 10-5

Split threshold: 2.5 X 10-4

Minimum Cluster Size: 10

Max Clusters Lumped: 4

Split Fraction: 0.75

Maximum Iterations: 15

Initial Number of Clusters: 32

39

40

3. GA Data Collection

The series of experiments describes in this section establish a control model to

this study. The data collected here are the basis of all experiments in this thesis. It

provides an upper bound on the speedup of GA with cache and with dedicated memory.

Variables listed in this section are also collected in all other experimental

sections. The following trace variables are collected to establish the baseline

performance of GA without enhancements:

Number of unique chromosomes: The total number of unique chromosomes

produced and processed through ISODATA.

Number of unique chromosomes per generation: Per generation number of

unique chromosomes in the child population processed through ISODATA.

Number of/SODATA calls: The total number of times ISODATA is called on

chromosomes; unique and revisited chromosomes.

Number of chromosomes generated: The total number of chromosomes generated

regardless if they are run through ISODATA or not.

Time elapsed: Total wall time for execution of program.

Time for child calls per generation: Time elapsed between call of child

population generator function and its return per generation.

Time per generation loop: Time required to execute a generation.

Elite list quality: The qualities of all elite list members.

Elite list chromosomes: Elite/parent list chromosomes. These are the features

selected with the highest quality.

Top quality per generation: Trace of the best quality as it exists per generation.

41

4. CGA Data Collection

Using CGA, data are collected for each type of cache replacement policy; LFU,

LRU, and random. The cache sizes are set between 32k ~ 2M with 4, 8, and 16 set

associativity. In addition to all of GA data variables recorded, CGA records many cache

variables.

These include:

Number of hits: The total number of cache hits inside the child function.

Number of misses: The total number of cache misses inside the child function.

Number of hits per generation: The number of read-only cache lookup hits per

generation inside the child function.

Number of misses per generation: The number of read-only cache lookup misses

per generation inside the child function.

Number of placements into cache: The total number of compulsory read-write

cache misses encountered in the cache update function resulting in a placement of

a chromosome segment into cache. Compulsory miss is a miss due to an unfilled

cache entry set.

Number of replacements to cache: The total number of read-write cache misses

encountered in the cache update function resulting in a replacement of a

chromosome segment using the current replacement policy.

Final cache state: The complete representation of the fmal state of the cache data

structure.

42

5. List of Experiments

This section describes the different categories of experiments which are performed.

i.) Temporal Locality of Reference •
The degree of data temporal or spatial locality influences the cache performance

in terms of hits and misses. Spatial locality does not exist in bit-string chromosome

addressing of cache, therefore it is not considered. However, these series of experiments

investigates the degree of temporal locality.

To test the locality, GA is run for 500 generations on all 4 Freescale

Semiconductor datasets. The trace program running GA records the time interval of

reappearances of each unique chromosome as well as the number of times a unique

chromosome is revisited.

ii.) Baseline GA

These sets of experiments establish a lower bound on CGA performance since

there is actually no cache. In the baseline experimental set, GA is run on all Freescale

Semiconductor datasets. Each dataset is run once and GA's termination condition is set at

20,000 generations.

iii.) Dedicated Memory

Dedicated memory experiments follow a different design to CGA experiments.

Memory is allocated to hold a specific number of chromosomes visited. This model is

intended to show a theoretical baseline for time-space tradeof£

43

There is no replacement policy for dedicated memory, once the memory fills with

solutions it becomes a fixed lookup table. Data obtained in this section includes those

found in the GA experimental section. The purpose of these experiments is to establish

another control model. This control separates the effects of memory without replacement

polices from cache with a replacement policy.

The experiments allocate memory at doubling intervals; 4k, 8k, 16k, 32k, 64k,

and 128k. Each memory size is run 4 times, with different random number generator

seeds, for 1 00k generations, and is run on all 4 Freescale Semiconductor datasets. The

number of experiments total of 96.

iv.) Indicative Cache Sizes

The first set of CGA experiments tests various cache sizes and set associativities

with all Freescale Semiconductor datasets. The experiments use the LFU replacement

policy, and do not have multi-seed replicates per dataset, and are therefore indicative.

The cache sizes studied here are 64k, 128k, 256k, 512k, and IM, with set associativity: 4,

8, and 16. These parameters are tested in all combinations totaling 60 experiments.

For this set of experiments CGA termination condition is reached when the

number of unique chromosomes produced equals the fmal number of unique

chromosomes produced in experimental set l(i.e., i). For example, if the Dijkstra dataset,

run for 20k generations in experiment 1 and produces a fmal total of 50k unique

chromosomes, then 50k becomes the termination condition for the current experiment set.

44

v.) Cache Replacement Policies

This set of experiments tests the effect of three different replacement policies on

CGA; LRU, LFU, and random. This set uses all four Freescale Semiconductor datasets.

The experiments have 4 replicates using different random number generator seeds. In

this set of experiments, CGA terminates when 1 00k unique chromosomes are produced.

The experiments are broken into two main groups depending on the number of features in

each dataset.

The first group uses the datasets FFT and BMS. These two datasets have 23

features each. Cache sizes are 256k and 512k with set associativities of 8 and 16, using

all three replacement policies; LRU, LFU, and random. The total number of experiments

for this group is 48.

The second group includes the datasets DJK and QS. Their cache sizes include

512k and IM with 8 and 16 set associativity, and all replacement policies. The total

number of experiments for this groups is also, 48. The total number of experiments

related to cache replacement policies is 96.

vi.) Exhaustive Quality

The purpose of this set of experiments is to do an exhaustive quality check on all

datasets. This includes the 4 Freescale Semiconductor datasets as well as two synthetic

datasets. For DJK, QS, and both synthetic datasets, 25 choosing 13 is used as the

combination number for the chromosome bit string. For FFT and BMS the bit string

chromosome combinations are 23 choosing 12. The choice of these combinations is to

maximize the search space for each dataset's.

To perform this set of experiments, a program is developed to sequentially step

through all combinations detailed above. The total number of experiments is 6.

vii.) Generation of Synthetic Data

45

This set of experiments investigates different synthetic datasets, which differ in

quality profile significantly from the Freescale Semiconductor datasets. Multiple datasets

are generated and processed exhaustively though ISODATA to determine the quality

distributions. One or two of these datasets are selected for further testing.

viii.) Floating Number of Combinatorial Subsets

The floating set of experiments lifts the restriction of the number features a subset

can have. This allows CGA to process feature subsets through ISODATA which have

any number of features, including 1 and M, where M is the feature set size.

The DJK. dataset and two synthetic datasets are processed though this floating

CGA experiment. Three cache sizes: 128k, 512k, 128k are tested with 8 set associativity,

and run with the LRU replacement policy. There are no replicates, so the total number of

experiments here is 9.

ix.) Synthetic Data Testing

The purpose is to compare the behavior ofCGA, seen in experiments 4 and 5, on

a synthetic dataset having a different quality profile. The cache sizes tested are 512k and

2M with 8 set associative cache. The replacement policies LRU, LFU, and random are

46

tested. All experiments are done with 4 replicates, using a termination condition of 50k

unique chromosomes. The total number of experiments in this section is 60.

x.) Fully Associative Cache

This last set of experiments tests the behavior of fully associative cache to

compare the results with set associative cache and with dedicated memory. Two datasets

are chosen, DJK and one synthetic data set. The cache sizes double in size from 2k to

128k, with LRU as the replacement policy. The experiments are done with 4 replicates

for a total of 56.

CHAPTER VI

EXPERIMENTS AND RES UL TS

This section reports the experiments performed and their results. A sequence of

experiments and their conclusions are arranged by type and cache configurations. The

memory configurations include: no memory, set associative cache, and fully associative

cache. Each section contains relevant figures and conclusions.

I. Temporal Locality

An initial investigation of this thesis is to test the temporal locality of GA. The

data is collected on all Freescale Semiconductor datasets and records the interval, in

generations, between an appearance of a particular chromosome and its next appearance.

The number of times individual interval lengths occur over the entire experiment are

totaled and plotted as a distribution of frequencies in figures 10 and 11. Freescale

Semiconductor datasets which have the same search space size are plotted together. That

is, figure 10 plots FFT and BMS datasets with 23 features, run in GA with the

combinatorial scale of(~~) = 1.35 x 106 • Figure 11 plots the Dijkstra and quicksort

datasets, both of which are run in GA with the combinatorial scale of (~;) = 5.2 x 106 •

47

l:il!:

"a 3000
~

E-i
~ 2000
; ! 1000

Distribution of Chromosome Frequencies
over 500 Generations

0 -+---~~-~---~-~~-~---~~-~

1 21 41 61 81 101 121
Generation Interval --bms - £ft

Figure 10. FFT and BMS frequency distribution

48

Figure 10 demonstrates that GA exhibits a high degree of temporal locality using

FFT and BMS. The frequency distribution for this experiment indicates that for BMS the

chance of a particular chromosome seen again within 50 generations is approximately

64%, while the chance that chromosome will be seen within 10 generations is

approximately 21 %. For the dataset FFT the distribution shows slightly greater temporal

locality, with the chance of a chromosome being seen again within 50 generations

approximately 72%, and in 10 generations, approximately 27%.

The Dijkstra and quicksort dataset frequency distribution, figure 11 shows a peak

frequency (frequency of 1 generation) an order of magnitude smaller than those of figure

10. A reduction of the number of individual chromosome repetitions is expected due to

the larger feature space.

The degree oflocality, is similar to the BMS and FFT datasets. In the case of

Dijsktra dataset, the chances of seeing a chromosome again within 50 generations is

approximately 66%, while for quicksort the chances are closer to 75%. The chances a

chromosome will be seen again in 10 generations is similar to that in figure 10, with

approximately a 20% chance for Dijkstra, and approximately 30% for quicksort.

500

400

Distribution of Chromosome Frequencies
oYer 500 Generations

] 300 -+--½--------------------------
~

E-t
8 200 ---- -------------------------
§
,w

j 100 ----- -------=---------------

0

1 21 41 61 81 101 121

Generation Interval --Dijkst ra --Qsort

Figure 11. DJK and QS frequency distributions

49

These set of experiments, with GA and Freescale Semiconductor data, shows

evidence that that temporal locality exists and can be exploited with CGA. There is little

variation between datasets which suggests either a similarity between datasets, or an

inherent locality of reference which exists in GA. Both, could also be the case.

2. Baseline Experiments for GA

This series of experiments gauges the redundancy ratio of GA with Freescale

Semiconductor data. (as shown in figure 12). In this thesis, the redundancy ratio is

defined as the number ISO DAT A function calls divided by the number of unique

chromosomes generated. For example, if the GA produces 100k unique chromosomes,

and the number of chromosomes processed through ISO DAT A to find those unique

50

chromosomes is 2M, then the redundancy is -- . The number ofISODATA

function calls is the number of chromosomes processed whether or not they have been

seen before. The redundancy ratio describes the baseline inefficiency of GA, or the upper

bound of speedup. Figure 12 shows the redundancy associated with the four Freescale

Semiconductor datasets run through GA for 20,000 generations.

GA Chromosome Redundancy Ratio
o Record KeeJping da1taset: all Freescale data eits

:: [-~ 53

_, I ■ I I I
I ■ I I I

10

0 ■ I I .I
■ fft ■ bms ■ dijkstra ■ qsort

Figure 12. Redundancy for Freescale Semiconductor run through GA

The dataset FFT has 38x redundancy, BMS has 53x redundancy, while the

Dijkstra and quicksort datasets have 36x and 39x redundancy respectively. The

redundancy across the datasets is consistent with the previous sections results. Also, the

larger redundancy of the dataset BMS indicates there is a degree of data dependency

related to redundancy.

3. Dedicated Memory

The next series of experiments studies of the time-space tradeoff resulting from

various of dedicated memory. The results presented in this section are obtained from

experiments with 4 replicates using different random seeds and averaged.

Of particular interest is the speedup over GA, and the total hit percentage

associated with different memory sizes. GA is run until 1 OOk unique chromosomes are

generated. Figure 13 shows the speedup related to doubling of memory size beginning

with 2k entries and ending in 128k entries for the BMS dataset.

51

The experiments are run until 1 OOk unique chromosomes have been processed by

ISODAT A, therefore, the memory size of 128k can hold every unique chromosome

generated by GA; i.e. , there are no misses at this scale. While not unbounded memory,

the 128k size memory has the identical effect on GA performance and can be considered

as the upper bound on speedup and hit percentage.

=­~

Dedicated Memory Speed JP 100k ni·que Ch.romo ome
(bms d taset)

1 2.0 -+------------------
~

=­-1:l

1.0

■ k ■ 4k ■ 8k ■ 16k ■ 3 k ■ 64k ■ 1 8k

Figure 13. BMS dedicated memory speedup

3.5

Q.

~

1 2.5
Q
Q.
~

Dedicated Memory Speed p, 100k niqne Chromosome
(ffit dataset)

2 .0 +--------------------1

1.5

■ 2k ■ 4k ■ 8k ■ l6k ■ 3 k ■ 64k ■ 128k

Figure 14. FFT dedicated memory speedup

Dedicaited Memory Speed , p 100k niqne Chromosome
(dijkstradaitaset)

25 .--------------------------

1.5

1.0
■ k ■ 4k ■ 8k ■ 16k ■ 3 k ■ 64k ■ 128k

Figure 15. DJK dedicated memory speedup

52

For all Freescale Semiconductor datasets there is less than 50% speedup using

memory sizes up to 32k (with the exception of the BMS dataset at 32k having a speedup

53

closer to 60%). At 64k, there is a jump in speedup. For datasets FFT and quicksort there

is nearly a quadrupling of the speedup, while BMS and Dijkstra the jump is closer to

triple the speedup.

At the upper bound of the dedicated memory, the datasets exhibit similar

speedups of approximately 40x, a notable exception is BMS. BMS shows not only a

higher degree of redundancy at baseline GA, but also, a greater maximum speedup. How

significant this variation is, is unclear.

4. Dedicated Memory Hit Percentage

Figure 16 presents the hit percentage for dedicated memory using the BMS

dataset. The upper bound memory size 128k, with a hit percentage of 100%, is omitted

from the figure. The data here are from the same experimental runs as those from the

previous section.

Dedica1ted Memory Bit Percenit 100k nique 'Chromosome
(bms datase,t)

■ 2.k ■ 4k ■ 8k ■ 16k ■ 32.k ■ 64k

Figure 16. BMS dedicated memory hit percentage

Dedicated Memory HU Percent, 100k nique Chromosome
(fft dataset)

■ k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k

Figure 17. FFT dedicated memory hit percentages

Dedicated Memory Hit Per,celllt, 10:0k nique Chromosome
(dijkstra d taset)

60.0% -.----------------------------

40.0% -!---------------

00% ----------

0.0% _L_ _ ___. __ _

■ 2k ■ 4k ■ 8k ■ 16k ■ 3 k ■ 64k

Figure 18. DJK dedicated memory hit percentages

54

Dedicated Memory Hit Percent, 100k nique Chromosome
(quicksort dafaset)

■ 2k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k

Figure 19 QS dedicated memory hit percentages

55

The 2k memory size has a very low hit percentage, ranging from an abysmal 1. 7%

for quicksort, to 15.3% for FFT. The maximum hit percentage at a memory size of 64k

is consistent at approximately 48%, with the exception of FFT which has a maximum hit

percentage of 65%. This relates to another item; FFT displays erratic behavior over all

sizes of memory. The 2k memory size outperforms that of 4k by double and 16k

outperforms 32k by half. Shown in figures 18 and 19, other datasets have similar hit

percentages and speedup to the results found using BMS.

Dedicated memory provides a theoretic underpinning for performance of

recordkeeping sizes for GA. The next step is the implementation of replacement policies

with set associative cache.

56

5. Various Cache Sizes with LFU

This experimental section studies the speedup and the per-generation performance

of CGA using different cache sizes and associativities. The CGA here implements the

LFU eviction policy. The random replacement policy has less practical relevance and is

not used, however, software implementation of LFU is relatively simple when compared

to that of LRU, and so is chosen for the first series of experiments with CGA.

The dataset FFT from the baseline GA experimental section generated 66k unique

chromosomes, while BMS generated 4 7k unique chromosomes. These two results form a

baseline for the number of unique chromosome generated. Therefore, the termination

condition for the GA experiments is the number of unique chromosomes produced in the

previous section: 66k for FFT and 47k for BMS. Figure 20 shows the 4 set associative

cache, the dataset FFT has limited speed up across different cache sizes.

Interestingly, the smaller cache size of 64k slightly outperforms cache sizes 128k,

256k, and 512k. However, once the cache size increases to 1 million entries the speedup

increases dramatically by nearly 70%. The speedup for different cache sizes for 8 and 16

set associativity displays similar speedup performance (figures 21 & 22). The doubling

of the cache sizes shows a much smoother transition from one size to the next. This is in

contrast to the 4 set associative cache which has erratic performance when doubling of

cache size. Interestingly, for 8 and 16 set associativity, when the cache size doubles from

256k to 512k the speedup doubles as well. Whereas, for smaller cache sizes the speedup

remains below 50%.

2.6

2.4

c. 2.0
~
"i 1.8
~
C.

2.2

.0

1

Speed p for 4 set associatiYe cache configurations
(dataseitFFl)

■ 64k ■ 128k ■ 6k ■ 1 k ■ lM

Figure 20. Speedup for FFT 4 set associative cache

Speed p for 8 set as ocia1th e .c che configuratiions
(daita e1t FFT)

~ 1.6 -+-----------------

■ 64k ■ 128k ■ 6k ■ 12.k ■ lM

Figure 21. Speedup for FFT 8 set associative cache

57

Speed p for 16 set associath e cache configurations
(dataset FFT)

2.6 ~------------------------

2.4 -t---------------------1.

2.2 +----------------------1

~ 2.0
-.::,
~ 1 8
=-~

1 6

1 4

1.2 -+---

1.0
■ lM

Figure 22. Speedup for FFT 16 set associative cache

Speed p for 4 seit assod.ath ·e c che configura1tions
(dataset BMS)

6.0 ~--------------------------

5.5 -----------------­

.0 -+--------------------

4.

t 4.0

1 3.5
~

3i' 3.0 -+------------------------,

25 +-------------------~

2.0 -;-----------------------;::====::;;;;=:===

1.

1.0 __l__ __ _lii.wl,~~-

• 64k ■ 1 8k ■ 6k ■ 51 k ■ IM
Figure 23. BMS speedup for 4 set associative cache

58

59

In the experiments with BMS, a few results stand out. In 4 set associative the

speedup is 5.52, in 8 set the speedup is 10.6, and in 16 set the speedup is 15.9. This

behavior is not duplicated in the dataset FFT. The second interesting item is the jump in

speedup when moving from a cache size of 512k to lM. The maximum performance for

FFT is reached by BMS at half the size of cache. Figure 23 shows the speedup for BMS

using 4 set associative cache, 8 and 16 set associative caches show the same trend but are

not shown.

The most important observation from the previous results is that dedicated

memory of 64k has a higher speedup than CGA for dataset FFT; 3 .4 for dedicated

memory as opposed to 1.3 for CGA with a cache size of lM for all associativities studied.

For BMS dedicated memory of size 64k outperforms, or does as well as, CGA at size of

512k for all associative sizes .

66k
66000

60000
tll 54000
r.J

E 48000 0
CZl
0 42000 E
C

36000 ;..
..c:

(,;-, 30000
C
;.. 24000 0

..c
E 18000
::::; z 12000

6000

0

GA and CGA performance
nique Chromosomes 4 set associ thre cache (dataset FFT)

.
.

0 0 0
0 0
0 0
N ,;;f-

······
..

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

00 0 N ,;;f-

Geo era ti o Di

.. ..
..

0 0
0 0
0 0

00

..
·····• Unbounded

• • • • • o Cach e

--64k

--12sk

--256k

--512k

-- l M

Figure 24. FFT per generation subtotal number of
unique chromosomes for 4 set associative cache

60

Figure 24 shows the per generation performance of different cache sizes and 4 set

associativity. The red dotted line in the three figures is GA with no cache (baseline) and

is considered the lower bound for per generation performance. The blue dotted line is

unbounded memory and is the upper bound on recordkeeping performance. The slope of

the plot lines away from the slope of the lower bound indicates speedup.

This slope is shown to vary over generations. Indeed, an interesting observation

is that there are jumps in performance. This behavior leads to another interesting

observation, the performance curve from two or more cache sizes may cross multiple

times. One can infer from this that, depending on the dataset, there are ranges of

generations where a smaller cache size outperforms a larger cache size. This can impact

the choice that a programmer may make regarding the value of a small cache over a large

cache for an application of CGA using a particular generation limit.

48000
44000

i 40000
e 36000
; 3 000
-= e 2sooo
: 24000
0 0000
~ 16000
t 1 000
.c 8000 I 400g

GA nd CGA performance 47k nique Chromosomes
4 set associathre cach,e (d taset BMS)

.,-

0

_,, ----,,,

0 0
0 0
0 0
N ~

-- -· --

0 0
0 0
0 0
\,0 00

--
,, --,-

--

0 0
0 0
0 0
0 N
,--j -

Generations

_,, -­,,-

0
0
0
~ -

_,,
--

0
0
0

0
0
0
00

,,­--

Figure 25. BMS per generation subtotal number of
unique chromosomes with 4 set associative cache

- - - - Unbounded

---- o Cache

-- 64k

-- 128k

--256k

-- 512k

-- IM

Figures 25 shows the same type of graph for the dataset BMS. In this case the GA

baseline produced 4 7k unique chromosomes over 20,000 generations. The results for

BMS are similar to those of FFT over different cache sizes.

6. Cache Replacements Policies

61

The results from the experiments using the replacement policies LRU, LFU, and

random, on dataset FFT, are shown in figures 26 and 27. The first item which is apparent

is that the speedup of FFT is restricted to less than 2x for cache size of less than 512k

regardless of replacement policy. The hit percentage for FFT is within 10% for both

256k and 512k cache sizes of 8 set associative cache. At 256k cache size figure 26 shows

that LRU is the best performer, but only by 10% over LFU and random replacement

policies. At cache size of 512k for 8 set associative, FFT shows even speedup between

LFU and random replacement policies.

Speedup for 8 set associ tive cache
d taset:FFT

2.5 -,-----------------------,

1.5

LO

1.99 1.98

• 256.kLRU

■ 56.kLFU

■ 256krandom

■ 51 k LRU

■ 5 12kLFU

■ 512.krandom

Figure 26. FFT speedup for different replacement policies using
8 set associative cache and 256k plus 512k cache sizes

60%

50%

40%

30%

0%

10%

0%

Hit Percentage for 8 set associa ive c cbe
datasetFFT

48.7%
50.5%

■ 256kLRU

■ 56kLFU

■256krandom

■ 12kLRU

■ 512kLFU

■ 512krandom

Figure 27. FFT hit percentages for different replacement policies
using 8 set associative cache and 256k plus 512k cache sizes

Figure 28 shows LFU underperforms for the larger cache size of lM when

compared to LRU and random. This is consistent with the results of the smaller cache

sizes. Doubling cache size, LRU and random more than double their speedup, while

LFU does not. Despite the larger associatively in figure 23 , the 512k cache performs

almost identically to the 8 set associative cache in figure 21. This is perhaps an

indication that associativity plays a smaller role in speedup of CGA than cache size or

replacement policy.

Both figures 28 and 29 show hit percentages which are closely correlated to

speedup. This may indicate that a good choice of replacement policy is essential to

optimal CGA performance.

62

Speedup for 16 set associathre cache
datasetFFT

4 .0 ~ ------------------~
3.72

.5

3.0
C. =
°i 2 .5
~
C.
~

2.0

1.5

1.0

100%

90%

80%

0%

60%

0%

40%

30%

0%

10%

0%

3.64

■ 512kLRU

■ 12kLFU

■ 512k random

■ lMLRU

■ 1 LFU

■ lM random

Figure 28. FFT speedup for different replacement policies using
16 set associative cache and 512k plus IM cache sizes

Hit Percentage for 16 set assoda h re .cache
dat setFFT

■

■

1 k LRU

12kLFU

■ 512k random

■ lMLRU

■ lMLFU

■ IM random

Figure 29. FFT hit percentages for different replacement policies
using 16 set associative cache and 512k plus 1 Mcache sizes

63

64

The next series of figures show experimental results from the same experiments

run on FFT using the BMS dataset with 8 set associative cache. Figure 30 shows a

speedup similar to FFT in that it remains below 2x. However, in this case the random

replacement policy is superior. This is true not only for a cache size of 256k, but for the

cache size on 512k as well. The increase is approximately 14% for 256k cache size, and

8.5% for 512k cache size.

Speedup for 8 set associathre ·cache
dataset BMS

3.0 -,------------------------,

2.

1.5

1.0

■ 56kLRU

■ 256.kLFU

■ 56.krandom

■ 12k LRU

■ 1 kLFU

■ 512.krandom

Figure 30. BMS speedup for different replacement policies using
8 set associative cache and cache sizes of 256k plus 512k

Hit Percentage for 8 set associative cache
datasetBMS

70% ~ -----------------------,

50%

40%

30%

20%

10%

0%

62.0% 61.7%

■ 256kLRU

■ 256kLFU

■ 256k random

■ 512kLRU

■ 512kLFU

■ 512k random

Figure 31. BMS hit percentages for different replacement policies using
8 set associative cache and cache sizes of 256k plus 512k

Speedup for 16 -e1t associ itil'e c che
datasetBMS

11.0 -.-------------------------,

10.0

9.0

8 .0

=- .0 =
;6.0
Q

:-.S .o
4.0

3.0

2 ,. 0

1.0

9.95

1.50 1.53

■ SI kLRU

■ · 1 kLFU

■ 12k ,random

■ lMLRU

■ IM LFU

■ IM :random

Figure 32. BMS speedup for different replacement policies using
16 set associative cache and cache sizes of 512k plus lM

65

90%

80%

0%

60%

50%

40%

30%

20%

10%

0%

Hit Percentage for 16 set associative cache
datasetBMS

39 9¾ 42.4%
36.3% . 0

■ 5 12kLRU

■ 5 12kLFU

■ 51 krandom

■ 1M LRU

■ lMLFU

■ lM :ra.ndo:m

Figure 33. BMS hit percentages for different replacement policies
using 16 set associative cache and cache sizes of 512k plus IM

66

Figure 32 shows that at a cache size of IM the results for 16 set associative cache

using BMS are inconsistent with the results in the previous figures. In addition, the

figure shows that by doubling the associativity, there is a drop in speedup. This

observation is counter to that observed with FFT, which suggests that replacement policy

performance is data dependent.

While the hit percentage for LFU in figure 33 and random replacement policies

are closely matched, the speed up for LFU is approximately 12% higher than random,

and 40% higher than LRU. Hit percentage in figure 28 shows for IM cache size is

approximately 90% across all replacement policies. This result is not surprising as the

search space for these series of experiments using FFT and BMS datasets is

and the cache size is IM, a theoretical coverage of 73%.

67

Figure 34 shows the hit ratio for Dijkstra and quicksort datasets' experiments

which use different replacement policies. All replacement policies have a hit percentage

less than 50%. This can perhaps be explained by the larger feature search space.

60.0%

40 .. 0%

20.0%

0.0% ..i--....J

Hiit ratio for Different Replacement Policies
Cache Size~ 512k (8 set associative64k)

datasets: DJK and Qsort

43.9%
■ djkLRU

■ djkLFU

■ djkrandom

■ qsortLRU

■ qsortLFU

■ qsort random

Figure 34. DJK and QS hit percentages for different replacement policies
using 8 set associative cache and cache sizes of 512k plus IM

Using the Dijkstra dataset, LFU performs better than LRU for cache size of 512k,

but not better than the random replacement policy. The results in this section show that

dedicated memory outperforms CGA in every regime. Dedicated memory, of only 64k,

has a higher speedup than a cache size of 512k. This results is true for all datasets,

associativities, and replacement policies. This raises a question to whether or not there is

an issue with cache utilization.

68

7. Cache Utilization

Figures 35 and 36 show the cache utilization for different configurations with the

dataset Dijkstra. Utilization here is defined as the ratio of the number of occupied cache

blocks to the number of blocks in the cache. In figure 35, the cache size is fixed, while

the set associativity varies from 4, to 8, to 16 running with an LRU replacement policy.

In all experiments from section 6 and 7 of this chapter CGA produces 100k

unique chromosomes and then exits. The upper limit on utilization is the number of

unique chromosomes generated divided by the size of the cache. For a 512k cache size,

the upper limit is 20%, while for a IM cache size it is 10%.

Cache ' tilization for Different Associa1thr,ty
Cache Size: '512k (daitasetDijks1tra)

18.0% ~-------------------------

l .0% +-------11

16.0% --L------------
16 set

17.5%

■ 8 set ■ 4 set

Figure 35. DJK cache utilization for 4, 8, and 16 set
associativities with LRU using 512k cache size

The results from figure 35 show an average utilization across set associativity sizes of

17.4%, close to the upper limit. There is little affect on utilization of cache when varying

set associativity.

Cache tilization sing Different Replacement Policies
Cache Size: 8 and 16 set associative

(dataset Dij kstra)
30.0% ----------------------

20.0%

10.0%

0.0%

■ 51 kLRU

■ 512kLFU

-------------- 512krando.m
17.5% 17.4% 17.1%

■ lMLRU

■ lM LFU

, random

Figure 36. DJK cache utilization for different replacement polices
using 512k cache size and 8 set plus 16 set associativities

Figure 36 shows cache utilization versus different replacement policies and two

cache sizes. There is no difference in cache utilization when it comes to different

replacement policies. For cache size of lM the cache utilization across replacement

policies is close to 9%.

69

As mentioned in the methodology chapter, to restricting the number of the

features selected does have a small effect of creating address holes in certain cache sizes.

These holes are portions of a cache which cannot be addressed, and thus remain vacant.

However, the number of non-addressable blocks is small. In the above figures' block

addresses 0.82%.

70

8. Quality Check

Inspecting the trend of ISO DAT A clustering quality at early generations shows

that CGA and GA converge within 50 generations to near maximum quality. Figure 37

shows the top quality out of all chromosomes for a given generation for the dataset

Dijkstra. The jumps in steps indicate that a new top quality set of sub-features have been

found. The plateaus indicate that despite continuing search, no new best quality has been

located in the search space.

104.5

104

.c 103.5
~
6 103

102.5

102

I-

-

-

-

Top Quality vs. Generation
Cache size: 512k (8 set associative) (Dataset djk run 4)
I I I I I I I I I

-

-
--LFU
--LRU -

-- random
--No Cache -

I I

I I I I I I I I I

5 10 15 20 25 30 35 40 45 50
Generation

Figure 3 7. DJK best quality for different replacement policies

Figure 3 7 shows CGA replacement policies do not affect the convergence, and

also, GA showed convergence in quality as quickly as CGA. The results for the other

Freescale Semiconductor datasets reveal similar behaviors for all random number

generation seeds. To check if the reason for the fast convergence is due to data

dependence, quality histograms are produced for the Freescale Semiconductor datasets.

71

9. Quality Histogram

The exhaustive quality search is performed on all four Freescale Semiconductor

datasets. The combinations chosen are those of the previous experiments; i.e., for BMS

and FFT, G~), for Dijkstra and quicksort G!). The histograms in figures 38 through 39

have bin sizes of 0.25.

lll ::
0

·.a
C'lS ::

i
0
u
'-

0
"'-u

J

x10
5

4.5

4

3.5

3

2.5

2

1.5

O.S

0
20 30

Basic Math dataset Exhaustive Quality Histogram
Selecting 12 out of 23 features

40 so 60 70 80 90
Quality

100

Figure 38. BMS quality histogram for 23 choosing 12 features

110

Fast Fourier Transform dataset Exhaustive Quality Histogram
x 10

5 Selecting 12 out of 23 features
3.5

3
'II
s::
0
g 2.5
s::
.0 s 2
0
~

~ 1.5
I,.,
u
0

§ 1
z;

0.5

...

...

-
...

-
...

0
20

X 10
6

2

'II

§ 1.5 -
·+:3
~
s::

1
0 1 -u
~
0
I,.,
u
~

§ 0.5 -
z

0 1

I I I I I I I I

I I L I I I I I I I
30 40 50 60 70 80 90 100

Quality

Figure 39. FFT quality histogram for 23 choosing 12 features

Dijkstra dataset Exhaustive Quality Histogram
Selecting 13 out of 25 features

I I I I I

I I I I I .I

I

I

30 40 50 60 70 80 90 100
Quality

Figure 40. DJK quality histogram for 25 choosing 13 features

72

-

-

-

-

-

-

110

Ill
t::
0

·..r:3
c:s

X 10
6

Quicksort dataset Exhaustive Quality Histogram
Selecting 13 out of 25 features

4 ~----------------~,--------~

3.5 -

3 -

t:: :o 2.5 -
e
0

2 -u
~
0
i... 1.5 -u

J 1 -

0.5 -

0 I

90 95 100 105
Quality

Figure 41. QS quality histogram for 25 choosing 13 features

73

From these figures it is clear that many of the combinations of features have

similar qualities which are grouped tightly, and those groups are few. Dijkstra and

quicksort dataset in particular have groupings of quality value which not only are narrow,

but also exist within 10% of the maximum quality. For Dijkstra data set the largest bin

contains 1.7 x 106 combinations, or 34% of the total combinations. For the quicksort

dataset the situation is more extreme with approximately 98% of all combinations with a

quality existing in two bins of size 0.25, all of which are within 10% of the maximum

quality.

The results of these histograms gives rise to the speculation that the narrowness of

the quality distribution for the Freescale Semiconductor datasets contributes to the quick

convergence of the quality in CGA and GA. To test this hypothesis two synthetic

datasets are generated with flatter quality histograms, and tested in the same fashion as

the Freescale Semiconductor datasets.

74

Shown in figures 42 and 43 are the histograms for the two synthetic datasets,

named synthetic 8 (S8), and synthetic 11 (S 11). The histograms shows the quality for an

exhaustive search of the combinatorial space for the selection of 13 dimensions out of 25,

and have bin sizes of 0.25 . Like the Dijkstra dataset, S8 and S11 have 1000 data points.

The similarity in parameters makes the Dijkstra dataset a good control to S8 and S 11

experiments. Therefore, the Dijkstra dataset is used to compare the performance of the

synthetic datasets.

4

3.5
!I)

C: 3 0 -~
~
C: :B 2.5
s
0

2 u
~
0
I,., 1.5 u

J 1

0.5

0

X 10
4

Synthetic 8 dataset Exhaustive Quality Histogram
Selecting 13 out of 25 features

20 30 40 50 60 70 80
Quality

90 100 110 120 130

Figure 42. S8 quality histogram for 25 choosing 13 features

4
X 10

Synthetic 11 dataset Exhaustive Quality Histogram
Selecting 13 out of 25 features

3 -----~----,------r-------.--------.------.....,...-----,

Ill 2.5
= 0

·.a
~ 2

i
0 u 1.5

I,.,

u 1

1
z 0.5

40 60 80 100 120 140
Quality

Figure 43. Sl 1 quality histogram for 25 choosing 13 features

75

The criteria for selecting these sets is to have the same number of dimensions

(features) as the larger of the Freescale Semiconductor datasets (25 dimensions). S8 and

S 11 show a large number of combinations located at the center of their histograms, and

have additional smooth peaks located at each end of the histogram. At the low end of the

quality scale, for both datasets, the secondary peak is wider and has a greater number of

combinations than the secondary peak located at the higher end of the scale. This along

with the primary peak distribution suggests that GA and CGA will spend more time away

from the high quality combinations. Additionally, the maximum number of combinations

in a bin is two orders of magnitude less than those in both the Dijkstra and quicksort

histograms.

76

10. Floating Feature Subset Number

The first check of the synthetic data, using CGA, is to isolate the effects of the

restriction that the GA must produce children with exactly a preset number of selected

features. For S8 and Sl 1, with 25 dimensions, CGA is allowed to choose any number of

features. This means the search space is now 32M combinations in size. These sets of

experiments are using the LRU replacement policy and CGA terminates once 200k

unique chromosomes are produced.

Figures 44 and 45 show the hit percentages arranged from high to low cache

sizes. In figure 44, the cache hit percentages are at, or below, 50%. This result is similar

to the result found for the Dijkstra dataset experiment. Figure 45 shows the experiment

for the Dijkstra dataset showing a pattern similar to S 11, however the difference between

cache sizes is more pronounced. The full features space exhibits hit percentages below

50% for three cache sizes. A similar result is found in the fixed subset number

experiments.

Hit Percentage for ·F oat1ing Fe ture Subsets
Cache Size: 8 set ssodative Da1t se:t: Synthedc 11

Figure 44. S 11 hit percentage for 8 set associative cache
and sizes 128k, 512k, and 2M

Hit Percentage for Floating Feature Subsets
Cache Size: 8 set assodathre,Daitaset: Synthetic 8

60.0%

50.0%

40. 0% --+-----

30. 0% --+----------t

20.0% --+----------t

10.0%

0.0%
■ 2M

Figure 45 . S8 hit percentage for 8 set associative cache
and sizes 128k, 512k, and 2M

Hit Percentage for F10a1tiing Feature Subseits
Cache Size: 8 set ssodathre., Daita et: Dijkstra

60.0% ~--------------------
49. 4%

40.0%

20.0%

0.0%

■ M ■ 1 k ■ 1 8k

Figure 46. DJK hit percentage for 8 set associative cache
and sizes 128k, 512k, and 2M

77

Figures 4 7 through 49 show the cache utilization for this series of experiments.

Both synthetic datasets and the Dijkstra dataset, the cache utilization is high. For a 2M

cache size, with 200k unique chromosomes generated, the upper bound on utilization is

10%, for 128k it is 100%.

Cache tilization for Floaiting Feature Subseits
Cache Size: 8 set ssociathre,Dataset: Syllithetic 11

Figure 4 7. S 11 cache utilization for 8 set associative cache
and sizes 128k, 512k, and 2M

100%

Ca.che tiilization for Floating Feature Subsets
Cache Size: 8 set associathre, Dataset: Synthe1tic 8

80% -1-------------------i

60% +---------------1

0%

Figure 48. S8 cache utilization for 8 set associative cache
and sizes 128k, 512k, and 2M

78

Cache tilization for Floating Feature Subsets
Cache Size: 8 set assocfative,Daitaset: Dijkstra

100.0% ~-------------- 92.8% ---

80.0% --------------

60.0% --------------

40.0%

20.0% ---

0.0%

■ 2M ■ 5 12k ■ 128k

Figure 49. DJK cache utilization for 8 set associative cache
and sizes 128k, 512k, and 2M

79

The same utilization percentage is found, in figures 4 7 through 49, using a fixed

feature subset number. This result shows cache utilization is good while searching both

the full subset feature space as well as the fixed subset number search space, for DJK,

S11 , and S8.

11 . Replacement Policies for Synthetic Datasets

These next series of experiments looks at speedup and the hit percentage for S8

and S 11 using different cache replacement policies. Cache size is fixed at 2M with 8 way

set asssociativity. The results are averaged over 4 replicates and consists of data

collected after running CGA with the termination condition of 50k unique chromosomes.

Figure 50 shows the speedup for different replacement policies for the dataset S 11.

3 00

2 50

=­~

Speed p for Different Replacement Policies
Cache Size: 2M (8 set associa1tive 256k)

daitase,t: Synthetic 11

1 00 -+------
~

=-~

1.50

3 50

3.00

=- .50 ~
-.::,
Q
e =-~ .00

1.50

1.00

■ LFU ■ LRU ■ random

Figure 50. S 11 speedup for different replacement policies
with 256k cache size and 8 set associativity

Speed p for Differen1t Replacem,ent Policies
Cache Size: 2M (8 set as ociative256k)

dataseit: S)·nithetic 8

■ LFU ■ LRU ■ :random

Figure 51. S8 speedup for different replacement policies
with 256k cache size and 8 set associativity

80

The figure shows that random replacement policy outperforms LFU, and outperforms

LRU by nearly 2x. This result contrasts with figure 51 using S8, where all three

replacement policies performed equally. This suggest a strong correlation between the

dataset and CGA speedup using different replacement policies.

12. Quality Convergence for Synthetic Data

The initial purpose for developing synthetic data is to determine if fast

convergence to the global optimum seen by the studies with Freescale Semiconductor

dataset is an artifact of their quality value distributions. In figures 52 and 53 the single

data runs of cache sizes 512k for dataset S 11 and 2M for dataset S8. As in figure 3 7,

each step indicates a new best overall quality has been located, while the plateau

indicated the best quality remains unchallenged.

Top Quality vs. Generation
Cache size : 512k (8 set associative) (Dataset: synthetic 11 , run 4)

144..---------------------..---,

.c 142

=-a
::3

Cl 140

--LFU --LRU --random --No Cache

138 ~ ~--~-~-~---~ - - ~-~-~-~
5 10 15 20 25

Generation
30 35 40 45

Figure 52. Sl 1 best chromosome quality per generation using
different replacement policies and 512k cache size

50

81

c 125.5

:.a
::,

Cl 125

--LFU --LRU -- random --No Cache

5 10 15 20 25 30 35 40 45
Generation

Figure 53. S8 best chromosome quality per generation using
different replacement policies and 2M cache size

82

50

Like the results from the Freescale Semiconductor datasets, the synthetic dataset

quickly converges to within 10% of optimum. Like the quality figure 3 7, the initial

starting points for the top quality are relatively high. This result is not exclusive to the

random seed of experiment run 4, but a result that exists in all experimental runs. Runs

1-3 are not shown in this section.

13 . Study of Fully Associative Cache

An additional cache model is introduced in this section to address possible

problems found with the set associative cache implemented with CGA. The fully

associative cache is implement at various sizes, using only the LRU replacement policy.

One drawback of fully associative cache is that it is expensive to implement in hardware

and so it is rarely used (Hennesy & Patterson, 2007). In software, there is a cost to

searching the list of entries, however this cost is minimal when compared to the run time

of ISO DAT A. The results in this section are averaged over 4 runs. Figures 54, 56, 58

83

and 59 show fully associative cache using sizes doubling from 2k to 128k. In figures 55

and 57 show the dedicated memory experimental results for the Dijkstra dataset as a

companson.

Speedup for Fully Assoda1thre Cache Sizes
Dataseit: Dijkstra

40 3 2

33.8

30

Q.

i 20
tJ
Q.

Cl.l

10

2.26

0

■ 2k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k ■ 128k

Figure 54. DJK speedup for fully associative cache of various sizes

2 .·

Dedica1ted Memory Speed p, lODk nique Chromosome
(dij ks1tr da1ta et)

2.0 -+-------------------I

1.0
■ 2k ■ 4k ■ 8k ■ 16k ■ 3 k ■ 64k ■ 128k

Figure 55. DJK dedicated memory speedup for various sizes

100%

80%

60%

40%

0%

Hit Percentage for Fully Associative Cache Sizes
Dataseit: Dijkstra

96.9% 98.5% 100.0%

0% --'-----

■ 2k ■ 4k ■ 8k ■ 16.k ■ 3 k ■ 64k ■ 1 8k

Figure 56. DJK hit percentage for fully associative cache of various sizes

Dedicated Memory Hit Percent 100k nique Chromosome
(dij ks1tra da1taset)

■ 2k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k

Figure 57. DJK dedicated memory hit percentage

84

Fully associative cache shows much higher performance in speedup and hit

percentages over set associative cache. Figure 54 show that at 2k the Dijkstra dataset

attains a speedup of over 2x, which is greater than what is achieved with IM set

associative cache.

The speedup for fully associative cache shows better performance versus

dedicated memory (figure 54 & 55). At the smallest cache size, 2k, fully associative

cache has a speedup close to a dedicated memory size of 64k. The hit percentages in

figures 56 and 57 show the effectiveness of a replacement policy on speedup when

comparing fully associative cache with dedicated memory.

Figures 58 and 59 show the experiments for the dataset S 11. The results are

similar to those of the Dijkstra dataset.

Speedu for Fu ly Associ tive Cache Sizes
Da1taset: Synthetic 11

80 4.4

0

60

g- 0

u 40
~

~
00

30

0

10

(}

■ 2k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k

Figure 58. S 11 speedup for fully associative cache of various sizes

85

100%

80%

60%

40%

20%

0%~--

Hit Percentage for Fully Associative Cache Sizes
Dataseit: Synthetic 11

100 .. 0%

■ .2k ■ 4k ■ 8k ■ 16k ■ 32k ■ 64k

Figure 59. S 11 hit percentage for fully associative cache of various sizes

86

A check of the quality convergence for fully associative cache is shown in figure

60. What is apparent is that the different model of cache does not impact the rate of

convergence to the global optimum.

Top Quality vs. Generation
Fully Associative Cache Sizes (dataset: Synthetic 11, run 1)

142

141

140
c
~ 139 ::s _J

i
(

(Y

138

137 -

136
5 10 15 20 25

Generation
30 35 40 45 50

no cache --2k --4k --8k -- 16k -- 32k --64k I

Figure 60. S 11 best quality per generation for fully associative cache sizes

CHAPTER VII

ANALYSIS OF RESULTS

The similarity of the results between the Freescale Semiconductor datasets and

the synthetic datasets suggests that the quick convergence of to the global optimum is not

a data dependent issue. Regardless of the cache size or replacement policy, CGA

invariably decreases in performance well before 1000 generations have elapsed.

Figure 61 shows the decay of the number of unique chromosomes per generation,

with the upper bound being the size of the child list: 128 chromosomes.

Unique Chromosomes per Generation
Cache size: 2M (8 set associative) (Dataset: synthetic 8, run 4)

150...-----r-------r------,------r---,---------,
Ill
u s
0
Ill
0 100 s
0

..a u
u 50
&
·s
p

--LFU

--LRU
--random
--No Cache

o~---~---~----~---~----~---~
0 50 100 150

Generation
200 250

Figure 61. S8 unique chromosome production rate decay
using 8 set associative cache with a cache size of 512k

300

This figure shows that the decay is rapid, such that by generation 300 the

difference in the number of unique chromosomes produced per generations between

CGA and GA disappears.

87

88

The results of this thesis shows that set associative cache can provide speedup

applied to GA in the context of COP. However, the results also show that this speedup

comes at a high space tradeoff when compared to dedicated memory or fully associative

cache. Replacement policies do not affect this behavior, nor does the use of different

datasets.

The poor performance of set associative cache lead this thesis to investigate the

convergence of CGA to the global optimum of the feature space. It is found is that CGA

does not outperform GA in quality convergence within 50 generations regardless of the

replacement policy implemented. This is a surprising result which does counter this

thesis's hypothesis that CGA will find a feature subset of higher ISODATA clustering

quality.

To check the CGA data dependency, a quality histogram is produced to profile the

four Freescale Semiconductor. The histograms showed tight grouping of feature subset

solutions with quality measures close to the global optimum. To provide an experimental

control to this property, synthetic data is generated with a flatter quality profile.

Using these synthetic datasets, experiments are redone to check the effectiveness

of cache sizes, set associativity, and replacement policies. The results confrrmed the

work done on the Freescale Semiconductor datasets. First, cache sizes larger than that of

dedicated memory are required for equal speedup. Second, set associativity did not affect

the behavior of cache to any large degree. Third, while the relative performance of

individual replacement policies is data dependent, the quality of the solutions found for a

given number of generations is no better than that found with GA. The hit percentages

for CGA are below 50% for all datasets when looking at cache sizes of 512k or less.

89

In all experiments cache utilization is shown to be high. The results of the fixed

subset number cache experiments, figure 36 in chapter 6, show that the cache utilization

is not dependent on dataset, or replacement policy. The utilization is the same in both the

experiments using the full feature subset search space as the experiments using the fixed

feature subset search, showing that the utilization is independent of the size of the search

space.

CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

This thesis implemented Genetic Algorithm with the focus on the feature

selection problem. Using ISODATA as the heuristic fitness function the idea is to

produce a high fidelity feature subset by searching the combinatorial space. This work

follows others in the study of heuristic algorithms to solve the FSP. In particular, work

such as that done by Siedlecki and Sklansky (1989), suggested GA may outperform other

heuristic methods in solving FSP.

A combinatorial search may often be computationally costly, such that some

recordkeeping method may be needed, trading greater time performance for space

allocation. Given an effective set associative configuration and replacement policy a

cache can be designed to outperform a simple dedicated memory scheme not only in

speedup, but in quality of solutions for a given number of generations.

Experiments done in this thesis with dedicated memory show that a simple

recordkeeping scheme can provide a speedup of over 2x for memory sizes of as little as

64k. This is not a surprising result given the research done by Hertel and Pitassi (2007)

with static recordkeeping in heuristic search. However, the relatively small dedicated

memory size required for speedup is interesting.

90

91

The degree of temporal locality discovered in this research suggests set

associative cache would outperform dedicated memory. Work done by Chang and

Huang (2009) on GA with hardware cache, in part, motivated this line of research. The

experimental evidence did not show this to be the case. While CGA did provide a

speedup often much greater than that seen in dedicated memory, the increase in memory

size required for cache to match the speedup found in dedicated memory, is four fold. An

interesting result as well is the lack of difference between set associativity on CGA

performance. This may be due to the lack of spatial locality inherent in the chromosome

bit field representation of the address space.

Testing different replacement policies such as LRU, LFU, and random, revealed a

high level of data dependence. The peak performance of CGA with a particular

replacement policy is shown to vary between dataset. The fact that the random

replacement policy outperformed LRU and LFU on many instances can be related to

GA's stochastic behavior originating from crossover point selection, parent selection, and

the random mutation rate. This randomness may blur the effects of temporal locality,

reducing the effectiveness of any "best" replacement policy.

It is apparent from this research that set associative cache does not improve upon

dedicated memory in terms of time-space tradeoff. Instead, cursory work done on fully

associative cache hold a much great performance gains in terms of speedup, but still not

in terms of quality solutions. Further testing is needed to find the reason why CGA

cannot find a higher quality over GA. One avenue of investigation is presetting the

population list with known low quality solutions to test the rapidness of convergence to

optima. A study also of interest, is the testing of the fidelity of the best quality feature set

found in this thesis, for the workload characterization datasets from Freescale

Semiconductor, on the ISA simulator and comparing the results from the Verilog

simulator.

92

One area of expanded research is reordering of GA instructions, to optimize for

typical hardware cache. This process of making GA cache-aware may yield greater

speedup than seen in this thesis for set associative cache. Another area of investigation,

is a study on the effects of parallelism on the performance of cache hit percentages and

speedup. A third future study direction can be experiments with larger number of

features, perhaps an order of magnitude and greater, showing the performance of CGA on

a more complex feature space.

LITERATURE CITED

Aggarwal, A. (2002). Software Caching vs. Prefetching, Proceedings of the
3rd International Symposium on Memory Management, 157-162.

Allen, D. and Darwiche, A. (2003). Optimal Time-Space Tradeoffin Probabilistic
Inference, Proceedings of the International Joint Conferences on Artificial
Intelligence, 969-975.

Amadahl, G. M. (1967). Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. American Federation of Information
Processing Societies Conference Proceedings, 30 483-485.

Ball J. H. and Hall. D. J. (1966). A Clustering Technique for Summarizing
Multivariate Data. Behavioral Science, 12(2), 153-155.

Bello, R., Puris, A., Nowe, A., Martinez, Y., and Garcia, M. (2006). Two Step Ant
Colony System to Solve the Feature Selection Problem, Progress in Pattern
Recognition, Image Analysis and Applications, vol. 4225. Springer Berlin­
Heidelberg, Germany, 588-596.

Brock, M. (2010) Feature Selection/or Slice Based Workload Characterization and
Power Estimation, Texas State University, Master Thesis.

Cantu-Paz, E. and GoldBerg, D. (1999). On the Scalability of Parallel Genetic
Algorithms, Evolutionary Computation, 7(4).

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R. (2001).
Parallel Programming in OpenMP, London, UK: Academic Press.

Chang, F. and Huang, H. (2009). A Study on the Cache Miss Rate in a Genetic
Algorithm Implementation, Fifth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, 795-797.

Ciesielski, V. and Scerri, P. (1997). An anytime algorithm for scheduling of aircraft
landing times using genetic algorithms, Australian Journal of Intelligent
Information Processing Systems, 4, 206-213.

93

Cover, T. M., and Van Campenhout J.M. (1997). On the possible orderings in the
measurement selection problem. IEEE Transactions on Systems, Man and
Cybernetics 7(9) 657---661.

Dy., J. G. and Brodley, C. E. (2004). Feature Selection for Unsupervised Learning.
Journal of Machine Learning Research 5 845-889.

Friedman, M. and Kandel, A. (1999). Introduction to Pattern Recognition,
London, UK: Imperial College Press.

Fukunaga, K. (1990). Statistical Pattern Recognition (second edition). California:
Academic Press.

Gen, M. and Cheng, R. (2000) Genetic Algorithms and Engineering Optimization.
New York: Wiley-Interscience.

Grant, K. and Horsch, M. C. (2007). Efficient Caching in Elimination Trees,
Florida Artificial Intelligence Research Society Conference, 98-103.

Guan, S. U., Zhu, F., and Li, P. (2004). Modular Feature Selection using Relative
Importance Factors. International Journal of Computational Intelligence and
Applications 4(1) 57-75.

Guyon, I. J., Weston, S., and Barnhill, V. (2002). Gene selection for cancer
classification using support vector machines. Machine Learning 46(1).

Hennesy, J. L. and Patterson, D. A. (2007). Computer Architecture: A Quantitative
Approach 4th Ed San Francisco, CA: Morgan Kaufmann.

Hertel, P. and Pitassi, T., (2007). An Exponential Time/Space Speedup for
Resolution, Electronic Colloquium on Computational Complexity, 46 1-25.

Jain, A. K. and Dubes, R. C. (1988). Algorithm for Clustering Data, New Jersey:
Prentice-Hall, Inc.

Joshi, A., Eeckhout, L., John, L. K., and Isen, C., (2008). Automated
Microprocessor Stressmark Generation, The 14th International Symposium on
High Performance Computer Architecture, pp. 229-239.

Koza, J. R. (1992). Genetic Programming, Cambridge, Massachusetts: MIT Press.

Kudo, M. and Sklansky, J. (2000). Comparison of Algorithms that Select Features for
Pattern Classifiers. Pattern Recognition 33 25-41.

94

Kudo, M., Somol, P., Pudil, P., Shimbo, M., and Sklansky, J. (2000). Comparison of
Classifier Specific Feature Selection Algorithms, Advances in Pattern
Recognition, vol. 1876. Springer Berlin-Heidelberg, Germany, 677-686.

Linde, Y., Buzo, A., and Gray, R. M. (1980). An Algorithm for Vector Quantization

Design. IEEE Transactions on Communications, 28(1) 84-95.

Luo, Y., Joshi, A., Phansalkar, A., and John, L. K., Ghosh, J., (2008). Analyzing and
Improving Clustering Based Sampling for Microprocessors, Journal of High
Performance Computing and Networking, 5(4), 352-366.

Nakariyakul, S. (2008). On the Suboptimal Solutions using the Adaptive Branch and
Bound Algorithm for Feature Selection. Proceedings of the 2008 International
Conference on Wavelet Analysis and Pattern Recognition, 384-389.

Obitko, M., Hochschule fiir Technik und Wirtschaft Dresden, Czech Technical
University. Introduction to Genetic Algorithms. Retrieved January 10, 2009,
from the website: http://cs.felk.cvut.cz/~xobitko/ga/

O'Hallaron, D. R. and Bryant, R. E. Carnegie Mellon University, (2002). Cache
Memories. Retrieved April 20, 2010 from website: http://www.cs.cmu.edu

Pacheco, P. S. (1997). Parallel Programming with MP/, Morgan Kaufmann

Publishers, Inc.

Quinn, M. J. (2003). Parallel Programming in C with MPI and OpenMP, McGraw Hill

Higher Education.

Santos, E. E. and Santos E., Jr. (2000). Cache Diversity in Genetic algorithm
Design. Florida Artificial Intelligence Research Society Conference 107-111.

Siedlecki, W. and Sklansky, J. (1988). On Automatic Feature Selection. International
Journal of Pattern Recognition Artificial Intelligence 2(2) 197-220.

Siedlecki, W. and Sklansky, J. (1989). A note on genetic algorithms for large-scale
feature selection. Pattern Recognition Letters, 10 335-347.

Shi, D., Shu, W., and Liu, H. (1998). Feature selection for handwritten Chinese

character recognition based on genetic algorithms, IEEE International

Conference on Systems, Man, and Cybernetics Vol. 5, 4201-4206.

Taibi, E. (2009). Metaheuristics, From Design to Implementation, New Jersey: John

Wiley & Sons, Inc.

95

96

Tanenbaum, A. S. (2006). Structured Computer Organization, 5th Ed., New Jersey:
Pearson Prentice Hall.

Texas Advance Computing Center, University of Texas. (2009). Ranger User Guide.
Retrieved 2009 from: http://services.tacc.utexas.edu/index.php/ranger-user-guide

Theodoris, S. and Koutroumbas, K. (1999). Pattern Recognition, London, UK:
Academic Press.

Wang, X., Yang, J., Teng, X., Xia, W., and Jensen, R. (2007). Feature Selection Based
on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters
28 459-471.

Yusta, S. C. (2009). Different Meta-Heuristic Strategies to Solve the Feature
Selection Problem. Pattern Recognition Letters, 30 525-534.

Zhang, T., Fu, X., Goh, R. S. M., Kwoh, C. K., and Lee, G. K. K. (2009). A GA-SVM

Feature selection Model Based on High Performance Computing Techniques,

Proceedings of the 2009 IEEE International Conference on Systems, Man,

and Cybernetics, 2653-2658.

Zhang, H. and Sun, G. (2002). Feature Selection using Tahu Search Method. Pattern

Recognition 3 5 701-711.

VITA

Daniel Isamu Lowell, was born in Annapolis, Maryland on September 24th, 1975,

the son of Eiko Nakamura Lowell and Daniel Anthony Lowell. He received his B.A. in

physics from the University of Colorado, Boulder in 1999. In 2007 he enrolled in Texas

State University-San Marcos Computer Science graduate program.

Permanent Address:

1317 Kenwood Ave.

Austin, TX 78704

This thesis was typed by Daniel I. Lowell.

