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A COMPARISON PRINCIPLE FOR A CLASS OF
SUBPARABOLIC EQUATIONS IN GRUSHIN-TYPE SPACES

THOMAS BIESKE

Abstract. We define two notions of viscosity solutions to subparabolic equa-
tions in Grushin-type spaces, depending on whether the test functions concern

only the past or both the past and the future. We then prove a compari-

son principle for a class of subparabolic equations and show the sufficiency of
considering the test functions that concern only the past.

1. Background and Motivation

In [3], the author considered viscosity solutions to fully nonlinear subelliptic
equations in Grushin-type spaces, which are sub-Riemannian metric spaces lacking
a group structure. It is natural to consider viscosity solutions to subparabolic
equations in this same environment. Our main theorem, found in Section 4, is a
comparison principle for a class of subparabolic equations in Grushin-type spaces.
We begin with a short review of the key geometric properties of Grushin-type
spaces in Section 2 and in Section 3, we define two notions of viscosity solutions to
subparabolic equations. Section 4 contains a parabolic comparison principle and
the corollary showing the sufficiency of using test functions that concern only the
past.

2. Grushin-type Spaces

We begin with Rn, possessing coordinates p = (x1, x2, . . . , xn) and vector fields

Xi = ρi(x1, x2, . . . , xi−1)
∂

∂xi

for i = 2, 3, . . . , n where ρi(x1, x2, . . . , xi−1) is a (possibly constant) polynomial.
We decree that ρ1 ≡ 1 so that

X1 =
∂

∂x1
.

A quick calculation shows that when i < j, the Lie bracket is given by

Xij ≡ [Xi, Xj ] = ρi(x1, x2, . . . , xi−1)
∂ρj(x1, x2, . . . , xj−1)

∂xi

∂

∂xj
.
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Because the ρi’s are polynomials, at each point there is a finite number of iterations
of the Lie bracket so that ∂

∂xi
has a non-zero coefficient. It follows that Hörmander’s

condition [6] is satisfied by these vector fields.
We may further endow RN with an inner product (singular where the polynomi-

als vanish) so that the span of the {Xi} forms an orthonormal basis. This produces
a sub-Riemannian manifold that we shall call gn, which is also the tangent space
to a generalized Grushin-type space Gn. Points in Gn will also be denoted by
p = (x1, x2, . . . , xn). We observe that if ρi ≡ 1 for all i, then gn = Gn = Rn.

Given a smooth function f on Gn, we define the horizontal gradient of f as

∇0f(p) = (X1f(p), X2f(p), . . . , Xnf(p))

and the symmetrized second order (horizontal) derivative matrix by

((D2f(p))?)ij =
1
2
(XiXjf(p) +XjXif(p))

for i, j = 1, 2, . . . n.

Definition 2.1. The function f : Gn → R is said to be C1
sub if Xif is continuous

for all i = 1, 2, . . . , n. Similarly, the function f is C2
sub if XiXjf(p) is continuous

for all i, j = 1, 2, . . . , n.

Though Gn is not a Lie group, it is a metric space with the natural metric being
the Carnot-Carathéodory distance, which is defined for points p and q as follows:

dC(p, q) = inf
Γ

∫ 1

0

‖γ′(t)‖dt.

Here Γ is the set of all curves γ such that γ(0) = p, γ(1) = q and

γ′(t) ∈ span{{Xi(γ(t))}n
i=1}.

By Chow’s theorem (see, for example, [1]) any two points can be joined by such a
curve, which means dC(p, q) is an honest metric. Using this metric, we can define
Carnot-Carathéodory balls and bounded domains in the usual way.

The Carnot-Carathéodory metric behaves differently at points where the poly-
nomials ρi vanish. Fixing a point p0, consider the n-tuple rp0 = (r1p0

, r2p0
, . . . , rn

p0
)

where ri
p0

is the minimal number of Lie bracket iterations required to produce

[Xj1 , [Xj2 , [· · · [Xjri
p0
, Xi] · · · ](p0) 6= 0.

Note that though the minimal length is unique, the iteration used to obtain that
minimum is not. Note also that

ρi(p0) 6= 0 ↔ ri
p0

= 0.

Setting Ri(p0) = 1 + ri
p0

we obtain the local estimate at p0

dC(p0, p) ∼
n∑

i=1

|xi − x0
i |

1
Ri(p0) (2.1)

as a consequence of [1, Theorem 7.34]. Using this local estimate, we can construct
a local smooth Grushin gauge at the point p0, denoted N (p0, p), that is comparable
to the Carnot-Carathéodory metric. Namely,

(N (p0, p))2R =
n∑

i=1

(xi − x0
i )

2R
Ri(p0) (2.2)
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with

R(p0) =
n∏

i=1

Ri(p0).

3. Subparabolic Jets and Solutions to Subparabolic Equations

In this section, we define and compare various notions of solutions to parabolic
equations in Grushin-type spaces, in the spirit of [5, Section 8]. We begin by letting
u(p, t) be a function in Gn× [0, T ] for some T > 0 and by denoting the set of n×n
symmetric matrices by Sn. We consider parabolic equations of the form

ut + F (t, p, u,∇0u, (D2u)?) = 0 (3.1)

for continuous and proper F : [0, T ] × Gn × R × gn × Sn → R. Recall that F is
proper means

F (t, p, r, η,X) ≤ F (t, p, s, η, Y )
when r ≤ s and Y ≤ X in the usual ordering of symmetric matrices. [5] We
note that the derivatives ∇0u and (D2u)? are taken in the space variable p. We
call such equations subparabolic. Examples of subparabolic equations include the
subparabolic P -Laplace equation for 2 ≤ P <∞ given by

ut + ∆Pu = ut − div(‖∇0u‖P−2∇0u) = 0

and the subparabolic infinite Laplace equation

ut + ∆∞u = ut − 〈(D2u)?∇0u,∇0u〉 = 0.

Let O ⊂ Gn be an open set containing the point p0. We define the parabolic set
OT ≡ O × (0, T ). Following the definition of Grushin jets in [3], we can define the
subparabolic superjet of u(p, t) at the point (p0, t0) ∈ OT , denoted P 2,+u(p0, t0),
by using triples (a, η,X) ∈ R× gn×Sn with η =

∑n
i=1 ηjXj and the ij-th entry of

X denoted Xij . We then have that (a, η,X) ∈ P 2,+u(p0, t0) if

u(p, t) ≤ u(p0, t0) + a(t− t0) +
∑
j /∈N

1
ρj(p0)

(xj − x0
j )ηj

+
1
2

∑
j /∈N

1
(ρj(p0))2

(xj − x0
j )

2Xjj

+
∑

i,j /∈N
i<j

(xi − x0
i )(xj − x0

j )
( 1
ρj(p0)ρi(p0)

Xij −
1
2

1
(ρj(p0))2

∂ρj

∂xi
(p0)ηj

)

+
∑
k∈N

1
β

n∑
j=1

(xk − x0
k)

2
ρj(p0)

(
∂ρk

∂xj
(p0))−1Xjk + o(|t− t0|+ dC(p0, p)2).

Here, as in [3], β is the number of non-zero terms in the final sum and we understand
that if ρj(p0) = 0 or ∂ρim

∂xj
(p0) = 0 then that term in the final sum is zero.

We define the subjet P 2,−u(p0, t0) by

P 2,−u(p0, t0) = −P 2,+(−u)(p0, t0).

We also define the set theoretic closure of the superjet, denoted P
2,+
u(p0, t0), by

requiring (a, η,X) ∈ P 2,+
u(p0, t0) exactly when there is a sequence

(an, pn, tn, u(pn, tn), ηn, Xn) → (a, p0, t0, u(p0, t0), η,X)
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with the triple (an, ηn, Xn) ∈ P 2,+u(pn, tn). A similar definition holds for the
closure of the subjet.

As in the subelliptic case, we may also define jets using the appropriate test
functions. Namely, we consider the set Au(p0, t0) by

Au(p0, t0) = {φ ∈ C2
sub(OT ) : u(p, t)− φ(p, t) ≤ u(p0, t0)− φ(p0, t0) = 0}

consisting of all test functions that touch from above. We define the set of all test
functions that touch from below, denoted Bu(p0, t0), by

Bu(p0, t0) = {φ ∈ C2
sub(OT ) : u(p, t)− φ(p, t) ≥ u(p0, t0)− φ(p0, t0) = 0}.

The following lemma is proved in the same way as the Euclidean version ([4] and
[7]) except we replace the Euclidean distance |p− p0| with the local Grushin gauge
N (p0, p).

Lemma 3.1. With the above notation, we have

P 2,+u(p0, t0) = {(φt(p0, t0),∇0φ(p0, t0), (D2φ(p0, t0))?) : φ ∈ Au(p0, t0)}
and

P 2,−u(p0, t0) = {(φt(p0, t0),∇0φ(p0, t0), (D2φ(p0, t0))?) : φ ∈ Bu(p0, t0)}.

We may now relate the traditional Euclidean parabolic jets found in [5] to the
Grushin subparabolic jets via the following lemma.

Lemma 3.2. Let the coordinates of the points p, p0 ∈ Rn be p = (x1, x2, . . . , xn) and
p0 = (x0

1, x
0
2, . . . , x

0
n). Let P 2,+

euclu(p0, t0) be the traditional Euclidean parabolic super-
jet of u at the point (p0, t0) and let (a, η,X) ∈ R×Rn×Sn with η = (η1, η2, . . . , ηn).
Then

(a, η,X) ∈ P 2,+

euclu(p0, t0)
gives the element

(a, η̃,X ) ∈ P 2,+
u(p0, t0)

where the vector η̃ is defined by

η̃ =
n∑

i=1

ρi(p0)ηiXi

and the symmetric matrix X is defined by

Xij =

{
ρi(p0)ρj(p0)Xij + 1

2
∂ρj

∂xi
(p0)ρi(p0)ηj if i ≤ j

Xji if i > j.

The proof matches the subelliptic case in Grushin-type spaces as found in [3].
We then use these jets to define subsolutions and supersolutions to Equation

(3.1).

Definition 3.3. Let (p0, t0) ∈ OT be as above. The upper semicontinuous function
u is a viscosity subsolution in OT if for all (p0, t0) ∈ OT we have (a, η,X) ∈
P 2,+u(p0, t0) produces

a+ F (t0, p0, u(p0, t0), η,X) ≤ 0. (3.2)

A lower semicontinuous function u is a viscosity supersolution in OT if for all
(p0, t0) ∈ OT we have (b, ν, Y ) ∈ P 2,−u(p0, t0) produces

b+ F (t0, p0, u(p0, t0), ν, Y ) ≥ 0. (3.3)
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A continuous function u is a viscosity solution in OT if it is both a viscosity subso-
lution and viscosity supersolution.

We observe that the continuity of the function F allows Equations (3.2) and (3.3)
to hold when (a, η,X) ∈ P 2,+

u(p0, t0) and (b, ν, Y ) ∈ P 2,−
u(p0, t0), respectively.

We also wish to define what [8] refers to as parabolic viscosity solutions. We
first need to consider the sets

A−u(p0, t0) = {φ ∈ C2
sub(OT ) : u(p, t)−φ(p, t) ≤ u(p0, t0)−φ(p0, t0) = 0 for t < t0}

consisting of all functions that touch from above only when t < t0 and the set

B−u(p0, t0) = {φ ∈ C2
sub(OT ) : u(p, t)−φ(p, t) ≥ u(p0, t0)−φ(p0, t0) = 0 for t < t0}

consisting of all functions that touch from below only when t < t0. Note that
A−u is larger than Au and B−u is larger than Bu. These larger sets correspond
physically to the past alone playing a role in determining the present.

We then have the following definition.

Definition 3.4. An upper semicontinuous function u on OT is a parabolic viscosity
subsolution in OT if φ ∈ A−u(p0, t0) produces

φt(p0, t0) + F (t0, p0, u(p0, t0),∇0φ(p0, t0), (D2φ(p0, t0))?) ≤ 0.

A lower semicontinuous function u on OT is a parabolic viscosity supersolution in
OT if φ ∈ B−u(p0, t0) produces

φt(p0, t0) + F (t0, p0, u(p0, t0),∇0φ(p0, t0), (D2φ(p0, t0))?) ≥ 0.

A continuous function is a parabolic viscosity solution if it is both a parabolic
viscosity supersolution and subsolution.

It is easily checked that parabolic viscosity sub(super-)solutions are viscosity
sub(super-)solutions. The reverse implication will be a consequence of the compar-
ison principle proved in the next section.

4. Comparison Principle

To prove our comparison principle, we will consider the function introduced in
[3] given by ϕ : Gn ×Gn → R given by

ϕ(p, q) =
n∑

i=1

1
2i

(xi − yi)2
i

and show the existence of parabolic Grushin jet elements when considering subso-
lutions and supersolutions in Gn. This theorem is based on [5, Thm. 8.2], which
details the Euclidean case.

Theorem 4.1. Let u be a viscosity subsolution to Equation (3.1) and v be a viscos-
ity supersolution to Equation (3.1) in the bounded parabolic set Ω× (0, T ) where Ω
is a bounded domain. Let τ be a positive real parameter and let ϕ(p, q) be as above.
Suppose the local maximum of

Mτ (p, q, t) ≡ u(p, t)− v(q, t)− τϕ(p, q)
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occurs at the interior point (pτ , qτ , tτ ) of the parabolic set Ω×Ω× (0, T ). Then, for
each τ > 0, there are elements (a, τΥpτ

,X τ ) ∈ P
2,+
u(pτ , tτ ) and (a, τΥqτ ,Yτ ) ∈

P
2,−

v(qτ , tτ ) where

(Υpτ
)i ≡ ρi(pτ )

∂ϕ(pτ , qτ )
∂xi

= ρi(pτ )(xτ
i − yτ

i )2
i−1,

(Υqτ
)i ≡ −ρi(qτ )

∂ϕ(pτ , qτ )
∂yi

= ρi(qτ )(xτ
i − yτ

i )2
i−1

so that if
lim

τ→∞
τϕ(pτ , qτ ) = 0,

then we have

| ‖Υqτ
‖2 − ‖Υpτ

‖2 | = O(ϕ(pτ , qτ )2), (4.1)

X τ ≤ Yτ +Rτ where lim
τ→∞

Rτ = 0. (4.2)

We note that Equation (4.2) uses the usual ordering of symmetric matrices.

Proof. We first need to check that condition 8.5 of [5] is satisfied, namely that
there exists an r > 0 so that for each M , there exists a C so that b ≤ C when
(b, η,X) ∈ P 2,+

euclu(p, t), |p− pτ |+ |t− tτ | < r, and |u(p, t)|+ ‖η‖+ ‖X‖ ≤M with a
similar statement holding for −v. If this condition is not met, then for each r > 0,
we have an M so that for all C, b > C when (b, η,X) ∈ P 2,+

euclu(p, t). By Lemma 3.2
we would have

(b, η̃,X ) ∈ P 2,+u(p, t)

contradicting the fact that u is a subsolution. A similar conclusion is reached for
−v and so we conclude that this condition holds. We may then apply Theorem 8.3
of [5] and obtain, by our choice of ϕ,

(a, τDpϕ(pτ , qτ ), Xτ ) ∈ P 2,+

euclu(pτ , tτ ),

(a,−τDqϕ(pτ , qτ ), Y τ ) ∈ P 2,−
euclv(qτ , tτ ).

Using Lemma 3.2 we define the vectors Υpτ
(pτ , qτ ) and Υqτ

(pτ , qτ ) by

Υpτ (pτ , qτ ) = D̃pϕ(pτ , qτ ),

Υqτ (pτ , qτ ) = −D̃qϕ(pτ , qτ )

and we also define the matrices X and Y as in Lemma 3.2. Then by Lemma 3.2,

(a, τΥpτ
(pτ , qτ ),X τ ) ∈ P 2,+

u(pτ , tτ ),

(a, τΥqτ
(pτ , qτ ),Yτ ) ∈ P 2,−

v(qτ , tτ ).

Equations (4.1) and (4.2) are in [3, Lemma 4.2]. �

Using this theorem, we now define a class of parabolic equations to which we
shall prove a comparison principle.

Definition 4.2. We say the continuous, proper function

F : [0, T ]× Ω× R× gn × Sn → R
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is admissible if for each t ∈ [0, T ], there is the same function ω : [0,∞] → [0,∞]
with ω(0+) = 0 so that F satisfies

F (t, q, r, ν,Y)− F (t, p, r, η,X ) ≤ ω
(
dC(p, q) +

∣∣ ‖ν‖2 − ‖η‖2∣∣ + ‖Y − X‖
)
. (4.3)

We now formulate the comparison principle for the following problem.

ut + F (t, p, u,∇0u, (D2u)?) = 0 in (0, T )× Ω (4.4)

u(p, t) = h(p, t) p ∈ ∂Ω, t ∈ [0, T ) (4.5)

u(p, 0) = ψ(p) p ∈ Ω (4.6)

Here, ψ ∈ C(Ω) and h ∈ C(Ω × [0, T )). We also adopt the convention in [5]
that a subsolution u(p, t) to Problem (4.4)–(4.6) is a viscosity subsolution to (4.4),
u(p, t) ≤ h(p, t) on ∂Ω with 0 ≤ t < T and u(p, 0) ≤ ψ(p) on Ω. Supersolutions
and solutions are defined in an analogous matter.

Theorem 4.3. Let Ω be a bounded domain in Gn. Let F be admissible. If u is
a viscosity subsolution and v a viscosity supersolution to Problem (4.4)–(4.6) then
u ≤ v on [0, T )× Ω.

Proof. Our proof follows that of [5, Thm. 8.2] and so we discuss only the main
parts.

For ε > 0, we substitute ũ = u− ε
T−t for u and prove the theorem for

ut + F (t, p, u,∇0u, (D2u)?) ≤ − ε

T 2
< 0,

lim
t↑T

u(p, t) = −∞ uniformly on Ω

and take limits to obtain the desired result. Assume the maximum occurs at
(p0, t0) ∈ Ω× (0, T ) with

u(p0, t0)− v(p0, t0) = δ > 0.

Let
Mτ = u(pτ , tτ )− v(qτ , tτ )− τϕ(pτ , qτ )

with (pτ , qτ , tτ ) the maximum point in Ω×Ω× [0, T ) of u(p, t)− v(q, t)− τϕ(p, q).
Using the same proof as [2, Lemma 5.2 ] we conclude that

lim
τ→∞

τϕ(pτ , qτ ) = 0.

If tτ = 0, we have

0 < δ ≤Mτ ≤ sup
Ω×Ω

(ψ(p)− ψ(q)− τϕ(p, q))

leading to a contradiction for large τ . We therefore conclude tτ > 0 for large τ .
Since u ≤ v on ∂Ω× [0, T ) by Equation (4.5), we conclude that for large τ , we have
(pτ , qτ , tτ ) is an interior point. That is, (pτ , qτ , tτ ) ∈ Ω×Ω× (0, T ). Using Lemma
3.2, we obtain

(a, τΥpτ
(pτ , qτ ),X τ ) ∈ P 2,+

u(pτ , tτ ),

(a, τΥqτ
(pτ , qτ ),Yτ ) ∈ P 2,−

v(qτ , tτ )
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satisfying the equations

a+ F (tτ , pτ , u(pτ , tτ ), τΥ(pτ , qτ ),X τ ) ≤ − ε

T 2
,

a+ F (tτ , qτ , v(qτ , tτ ), τΥ(pτ , qτ ),Yτ ) ≥ 0.

Using the fact that F is proper, the fact that u(pτ , tτ ) ≥ v(qτ , tτ ) (otherwise Mτ <
0), and Equations (4.1) and (4.2), we have

0 <
ε

T 2
≤ F (tτ , qτ , v(qτ , tτ ), τΥqτ (pτ , qτ ),Yτ )

− F (tτ , pτ , u(pτ , tτ ), τΥpτ (pτ , qτ ),X τ )

≤ ω(dC(pτ , qτ ) + τ | ‖Υq(p, q)‖2 − ‖Υp(p, q)‖2|+ ‖Yτ −X τ‖)
= ω(dC(pτ , qτ ) + Cτϕ(pτ , qτ ) + ‖Rτ‖).

We arrive at a contradiction as τ →∞. �

We then have the following corollary, showing the equivalence of parabolic vis-
cosity solutions and viscosity solutions.

Corollary 4.4. For admissible F , we have the parabolic viscosity solutions are
exactly the viscosity solutions.

Proof. We showed above that parabolic viscosity sub(super-)solutions are viscosity
sub(super-)solutions. To prove the converse, we will follow the proof of the sub-
solution case found in [8], highlighting the main details. Assume that u is not a
parabolic viscosity subsolution. Let φ ∈ A−u(p0, t0) have the property that

φt(p0, t0) + F (t0, p0, φ(p0, t0),∇0φ(p0, t0), (D2φ(p0, t0))?) ≥ ε > 0

for a small parameter ε. Let r > 0 be sufficiently small so that the gauge N (p0, p)
is comparable to the distance dC(p0, p). Define the gauge ball BN (p0)(r) by

BN (p0)(r) = {p ∈ Gn : N (p0, p) < r}
and the parabolic gauge ball Sr = BN (p0)(r)×(t0−r, t0) and let ∂Sr be its parabolic
boundary. Then the function

φ̃r(p, t) = φ(p, t) + |t0 − t|16R − r16R + (N (p0, p))16R

is a classical supersolution for sufficiently small r. We then observe that u ≤ φ̃r on
∂Sr but u(p0, t0) > φ̃(p0, t0). Thus, the comparison principle, Theorem 4.3, does
not hold. Thus, u is not a viscosity subsolution. The supersolution case is identical
and omitted. �
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