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1. INTRODUCTION AND PROBLEM STATEMENT 

According to the Intergovernmental Panel on Climate Change (IPCC), human 

action, primarily the burning of fossil fuels, is causing the earth’s climate to change. It is 

a virtual certainty that the frequency and intensity of extreme weather events will 

increase with warming atmosphere. In a working group report for the IPCC’s 5th 

Assessment, the group reported to policymakers that, “continued emission of greenhouse 

gases will cause further warming and long-lasting changes in all components of the 

climate system, increasing the likelihood of severe, pervasive and irreversible impacts on 

people and ecosystems…” (IPCC 2014). These changes, though global in nature, will 

manifest at regional, continental and local scales. It follows that successful adaptation and 

mitigation will need to be effectuated at a variety of spatial scales as well. 

Although it is difficult to precisely predict these changes at the geographic scale 

of a city or U.S. county, recent analysis contracted by the City of Austin from Katharine 

Hayhoe at Texas Tech University projected increasing variability in annual and seasonal 

average temperatures, more frequent high-temperature extremes, more frequent extreme 

precipitation, and more frequent drought conditions due to hotter summer weather 

(Hayhoe 2014). These results indicated a need for further climate adaption and extreme 

weather mitigation by city and county managers. 

Extreme weather events that lead to flooding like the Memorial Day Flood in 

2015 and wildfire like the Bastrop Fire of 2011 due to climate variability will pose a 

challenge to the city of Austin and the surrounding communities. Previous research 

indicates that all populations are affected by the impacts of climate change, but some 

communities bear a greater burden than others do (Cutter and Emrich 2006; Zahran, S. et 
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al. 2008; IPCC 2014). To aid hazards researchers, urban managers and other decision 

makers, communities can be chracterized by their demographic or social vulnerabilities 

to environmental hazards. Social vulnerability refers to how likely it is that a population 

will be adversely affected by an extreme event (Wisner et al. 1994; Cutter and Emrich 

2006; Flanagan et al. 2011). Researchers have recognized that vulnerability involves 

demographic and socio-economic factors that affect a community’s resilience or ability to 

bounce back from a climate weather event like a flood or wildfire. (Wisner et al. 1994). 

Despite the perceived utility and popularity of social vulnerability assessments, there are 

no standard practices for the methods employed to create them. Recent research has 

focused attention on the choice of variables, degree of practitioner involvement, and 

indexing methods (Rygel, L. et al. 2006; Tate 2012; Oulahen, G. et al. 2015; Araya-

Munoz et al. 2017). 

First, this research examines the literature on social vulnerability to identify the key 

demographic and socio-economic variables that contribute to social vulnerability. A list 

of variables was developed drawing on the multidimensional characteristics that 

adversely affect the ability of communities to recover and bounce back in pre-disaster 

and post-disaster events. Second, this list was presented to urban managers in the study 

area at the Office of Sustainability at the City of Austin. Through consultation with city 

staff, eight socioeconomic U.S. Census block group-scale variables were selected as 

being the most relevant to Austin’s current climate management goals (Table 1). In 

previous research, these variables are often selected through statistical analysis, rather 

than leveraging expert opinion. Although not the primary intent of this research, using 

expert opinion to focus the list of indictors is an emerging approach in social 
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vulnerability scholarship that warrants further exploration on future research (Oulahen, 

G. et al. 2015). This research will use two of the most prevalent methods of aggregation 

for eight standardized variables of social vulnerability. These social vulnerability indices 

(SOVI) will be mapped for Travis County using U.S. Census block groups as the unit of 

analysis. The goal of this research is to discover the visual and quantitative differences 

between the two SOVI methods. This analysis has the potential to aid in the further 

refinement of SOVI scholarship and to assist City of Austin and Travis County managers 

in their efforts to improve social resilience to extreme events in their respective 

jurisdictions.   

Table 1. Selected social vulnerability indicators/variables 

Demographic and Socio-

Economic Indicators 

References from Previous Studies 

Percent of population five years and 

under 

Cutter 2003, 2008; Chakraborty 2005; Flanagan 

2011; Holand 2013; Lixin 2014 

Percent of population 65 years and 

older 

Cutter 2003, 2008; Chakraborty 2005; Flanagan 

2011; Holand 2013; Lixin 2014 

Percent of single-parent households Cutter 2003, 2008; Chakraborty 2005; Flanagan 

2011; Holand 2013; Lixin 2014 

Median Household Income Cutter 2003, 2008; Li 2010; Wood 2010;   

Ghadiri 2013; Armas 2013; Chen 2013; Ge 

2013 

Percent of population with less than 

a high school education 

Cutter 2003; Chakraborty 2005; Flanagan 2011; 

Holand 2013; Martins 2012; Chen 2013; Lixin 

2014 

Percent of population that speaks 

Spanish as a first language at home 

Flanagan 2011; Holand 2011; Chen 2013; Lixin 

2014 

Percent of households with no 

vehicle 

Flanagan 2011 

Percent of housing that is trailers or 

mobile homes 

Armas 2013; Holand 2013 
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According to a review of previous SOVI research, there are eleven stages that a 

researcher should consider when constructing an index of social vulnerability. Tate 

(2012) summarizes the stages (Table 2) and provides a comparative assessment of the 

various choices within each stage. However, that study did not include an assessment of 

the aggregation stage in its assessment, and the study recommended that future analysis 

should investigate alternative aggregation schemes as is proposed here. The additive 

aggregation approach, which has been used in much of the SOVI research to date, 

assumes that all indicators of vulnerability are equally important. Thus, it sums up the 

indicators to compute the arithmetic mean. This approach of aggregation has been 

criticized due to its potential to obscure block groups that score highly in one indicator of 

vulnerability (Rygel, L. et al. 2006). In addition, indicators of vulnerability are not 

believed to be equally important in the realm of policymakers due to the variability of 

geographic spaces (Oulahen, G. et al. 2015). For example, for emergency managers a 

variable such as households without a vehicle might be of a great concern when 

evacuation is advised. In previous research, decision-makers found it useful to have 

individual maps of variables or customized combinations of variables (Oulahen, G. et al. 

2015). The second method of aggregation this research will use is called Pareto ranking 

algorithm. Rygel et al. (2006) used this method in Hampton Roads, Virginia to rank 

block groups in order from high to low based on their Pareto ranking. This approach 

leverages a multi-objective optimization technique based on genetic algorithm in order to 

increase the dimensionality of the SOVI assessments that assumes that all indicators of 

vulnerability contribute equally to the construction of an index. Rygel et al. (2006) found 

that block groups that were moderately vulnerable on the scale of the additive 
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aggregation approach fell into the highest Pareto ranks, indicating that the method 

selected for a SOVI assessment can have a substantive influence on the outcome of the 

assessment. This study employs a comparative analysis of SOVI methods in an 

environmentally and socially dynamic city in order to advance our understanding of how 

the choice of SOVI ranking methods can influence the outcomes of SOVI mapping 

exercises and to better inform urban managers who may want to use SOVI mapping as a 

tool for decision-making.  Although multiple approaches have been introduced to 

construct an index, they do not offer a solution to the criticism of using additive 

aggregation to assess social vulnerability as proposed by Rygel et al. (2006). For 

example, Araya-Munoz et al. (2017) used an approach called fuzzy logic aggregation to 

examine the impact of multiple hazards in a metropolitan area in Chile. The study 

assessed the impacts of different types of hazards that were analyzed using components 

that do not share the same attribute range and scale of analysis. However, most research 

of vulnerability uses indicators that share attributes and have the same scale of analysis, 

but the challenges are which indicator is more important? Should researcher apply weight 

to the indicators? Alternatively, should they be treated equally? Most studies assume that 

the indicators are equally important when constructing an index. Rygel et al. (2006) 

proposes a multi-objective optimization technique, called Pareto ranking, to avoid such 

an assumption. This approach works well when several criteria are present 

simultaneously, and it is not possible or wise to combine these into a single number. 

When this is the case, the problem is said to be a multi-objective optimization problem 

(Goldberg 2006). Thus, this study aims at comparing the additive aggregation that 

assumes all indicators are of equal importance and the Pareto ranking 
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Table 2. Social vulnerability index construction stages and options (adopted from Tate 

2012) 

 

Stage Description Example options 

Conceptual 

framework 

Vulnerability dimensions to 

include 

Access to resources, demographic 

structure, evacuation, institutional 

Structural design Organization of indicators 

within the index 

Deductive, hierarchical, inductive 

Analysis scale Geographic aggregation 

level of indicators 

US county, census enumeration 

unit, neighborhood, raster cell size 

Indicator 

selection 

Proxy variables for 

dimensions 

Income, education, age, ethnicity, 

gender, occupation, disability 

Measurement 

error 

Accuracy and precision of 

the demographic data 

Census undercounts, reported 

margin of error 

Transformation Indicator representation Counts, proportions, density 

Normalization Standardization to common 

measurement units 

Ordinal, linear scaling (min–max, 

maximum value), z-scores 

Data reduction Reduction of large 

correlated indicator set to a 

smaller set 

Factor analysis 

Factor retention How many principal 

components to retain? 

Scree plot, Kaiser criterion, parallel 

analysis 

Weighting Relative degree of indicator 

importance 

Equal, expert, data envelopment 

analysis, budget allocation, analytic 

hierarchy process 

Aggregation Combination of normalized 

indicators to the final index 

Additive, geometric, multi-criteria 

analysis 
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2. PURPOSE OF RESEARCH 

 The effect of extreme weather events enhanced by climate change can have a 

tremendous economic cost in the form of damaged infrastructure and the loss of homes.  

There may also be a severe social cost in the form of home displacement, injury, and 

even the loss of life. Previous research has explored a variety of methods and data set 

aimed at identifying and spatially delineating people most likely to suffer the greatest 

losses in extreme events. Hazards managers and practitioners have also sought to identify 

vulnerable populations in order to develop and implement strategies, policies, and 

programs to make vulnerable communities more resilient (Flanagan et al. 2011; Ge 

2017). The purpose of this research is to explore the visual and quantitative differences in 

two of the more prevalent methods for assessing spatial patterns of social vulnerability, 

and to implement both using expert input for Travis County and the City of Austin. In 

order to achieve this purpose, two primarily research questions will be answered. First, of 

the U.S. Census-based social indicators most often utilized in social vulnerability 

mapping, which ones are considered most germane to city managers currently working 

on climate resiliency planning for the City of Austin? This approach to identifying social 

indicators stands in contrast to much of the social vulnerability research that starts with 

multiple indicators and then employs statistical techniques, such as principal component 

analysis, to reduce the number of indicators used in mapping. Using any method, the 

selection of SOVI indicators is somewhat subjective. This approach allows for a focused 

list of indicators that most closely match the goals of practitioners working in the study 

area. Second, what are the visual and quantitative differences between traditional additive 
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approaches to social vulnerability index mapping and a multi-objective optimization 

approach, specifically the Pareto ranking method for Travis County, Texas?  

 This research compares the two methods of aggregation visually using ESRI’s 

ArcMap, and applies Spearman's rank correlation in order to verify whether there is a 

monotonic correlation between the additive aggregation and the Pareto ranking. The 

Spearman’s rank correlation is a nonparametric statistical test of rank that serves as a 

measure of the strength between two variables and ranges from -1.00 to 1.00. This 

statistical measure does not require that the data is normally distributed, and it assesses 

how well a monotonic function between ordered sets can describe the relationship 

between two variables (Hauke and Kossowski 2011). The null and alternative hypothesis 

tested here are as follow: 

– Ho: There’s no significant difference between additive aggregation and the Pareto 

algorithm aggregation (i.e., there’s a monotonic correlation) 

– H1: Additive aggregation and the Pareto algorithm aggregation are significantly 

different (i.e., there’s no monotonic correlation) 

 

Previous research tends to either weight all variables considered to create the 

SOVI equally or have an expert opinion to assign a different weight of importance to 

each one of the indicators (Cutter et al. 2000; Rygel, L. et al. 2006; Oulahen, G. et al. 

2015). Rygel, L. et al. (2006) argue that the Pareto ranking algorithm aggregation 

approach creates a SOVI that does not suffer from the problem of considering that all 

variables that affect a community’s ability to respond and recover from a flood event are 

equally important. This research adds to the emerging body of scholarship on the 

differences in SOVI techniques by testing two of the more prevalent approaches in a 

rapidly urbanizing, hazard-prone city. Previous studies have showed that practitioners 

prefer individual maps instead of a composite index (Oulahen, G. et al. 2015). They argue 



 

9 

that indices have the potential to obscure indicators that are of great importance to their 

goal management when averaged with low score of vulnerability indicators. Practitioners 

consider assessing the vulnerability of population to extreme events as a multi-objective 

optimization problem where optimizing one attribute means worsening another attribute. 

Therefore, the Pareto ranking approach is worth comparing to the most prevalent additive 

aggregation approach. Pareto ranking is an approach that has the potential to deal with 

problems that are considered as multi-objective optimization by ranking block groups 

based on non-domination in the complete dataset (Rygel et al. 2006). 
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3. LITERATURE REVIEW 

There is extensive evidence that the climate is changing and that adaptation is 

unavoidable (Berrang-Ford et al. 2011; IPCC 2014). In recent years, there have been 

many devastating events around the world that adversely affected cities; and caused loss 

of life. For example, Hurricane Katrina in 2005, the Memorial Day weekend floods in 

Central Texas in 2015, and Hurricane Harvey in 2017. Those events flooded roads and 

houses leaving several people dead, missing, injured or displaced. Although it is difficult 

to ascribe such events to climate change, they have reminded the world that many cities 

in developed and developing countries are vulnerable to climate variability (Funfgeld 

2010). The concept of social vulnerability identifies sensitive populations that may be 

less likely to respond to, cope with, and recover from a natural disaster. (Cutter 2000; 

Johnson et al. 2016). As a result of such devastating events, there is an emerging 

approach to emergency management systems that emphasize strategies to reduce losses 

through effective mitigation, preparedness, and recovery programs instead of the simple 

traditional approach of post-event response (Cutter et al. 2000; Hallegate 2009; The City 

of Austin Resilience Plan 2014).  

Previous research indicates that climate change management in cities yield several 

institutional obstacles that confine the ability of city managers to address climate change 

risks appropriately. These barriers include the limitation associated with the 

understanding of rising scientific information about climate change hazards and their 

impact on cities, in addition to the limited understanding of the complex socio-economic 

processes that influence urban vulnerabilities to determine the best urban climate 

adaptation (Funfgeld 2010). Moreover, studies have found that there is a lack of 
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integrating effective integration of information related to hazard exposure and 

vulnerability to local planning processes and development programs (Fothergill, A. et al. 

1999; Oulahen, G. et al. 2015). Traditionally the view of climate governance at the local 

level is influenced by international agreements and national policies, the preferences of 

funders, ideas inspired by nongovernmental organizations and transnational networks 

(Anguelovski and Carmin 2011). However, increasingly most cities have shifted from 

this traditional view to climate governance strategies that are motivated by internal goals 

and actions that will advance their climate agendas. For example, the City of Austin is 

working on developing a resilience plan that will help build a community that is resilient 

to extreme weather and hazards (The City of Austin Resilience Plan 2014). 

To accomplish such a plan, proactive efforts to identify where Austin citizens 

most vulnerable are located is the first step in developing effective adaptation strategies 

and programs. This research will assess the social vulnerability in Travis County using 

the two proposed methods of aggregation. Furthermore, assessing the social vulnerability 

of populations is challenging in many cases because it requires considering the complex 

interrelations between socio-economic indicators that significantly influence how cities 

operate and grow (Funfgeld 2010).  

Social vulnerability is regarded as the product of social stratification and social 

inequalities that exist among different groups of people in each location (Cutter, Boruff 

and Shirley 2003; Yenneti et al. 2016). Previous research has found that the 

characteristics that influence social vulnerability include such factors as age, gender, race, 

employment, level of income, transportation and housing conditions (Cutter, Boruff and 

Shirley 2003; Lee 2014; Flanagan et al. 2011; Nguyen et al. 2017). In addition, it is 
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important to integrate vulnerable biophysical places with social indicators that define 

vulnerable population when assessing vulnerability. People within a location bear the 

burden of a disaster disproportionately because not in all cases do vulnerable biophysical 

places intersect with the most vulnerable population (Cutter and Emrich 2006; Zahran, S. 

et al. 2008; IPCC 2014). In some places with high-risk of exposure, the residence will 

experience a great loss economically but have sufficient resources to overcome a disaster 

due to insurance or other financial resources which will help to absorb and recover 

quickly (Cutter et al. 2000). Cutter (1996) developed a hazard-of-place model of 

vulnerability, in which she argues that the intersection between biophysical vulnerability 

and social vulnerability is what creates the vulnerability of a place. Government and 

agencies have utilized the model to visualize the spatial distribution of vulnerable 

populations at different scales of U.S Census data (Zandt et al. 2012). Building on this 

model, there have been numerous studies that adopted the approach and created an index 

that is place-specific (Cutter et al. 2000; Boruff et al. 2005; Oulahen, G. et al. 2015; 

Araya-Munoz et al. 2017). This research follows the same approach by intersecting the 

result of the two methods of aggregation with FEMA and Austin watershed department 

floodplains.  

Previous studies have attempted to compare the most common approaches in the 

literature to construct an index of vulnerability (Tate 2012; Yoon 2012). Findings from 

such studies show that the most prominent difference of vulnerability indices is the 

structural design, which includes three approaches: deductive, inductive, and hieratical. 

The deductive design selects a limited number of variables deductively based on a priori 

theory and knowledge from the literature review. Cutter et al. (2000) selected eight 
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variables to examine the social vulnerability of populations living in hazard zones in 

Georgetown County, South Carolina. Wu et al. (2002) used nine variables to assess the 

social vulnerability of Cape May County, New Jersey. Another study selected only three 

variables as a proxy to assess social vulnerability (Zahran et al. 2008). This research 

follows the same approach and deductively chooses eight variables (Table 1) as a proxy 

to assess social vulnerability. The second design, the inductive approach, aims to create a 

systematic social vulnerability index using a large set of all possible variables that 

influence social vulnerability (Boruff et al. 2005; Rygel et al. 2006; Myers et al. 2008; 

Azar and Rain 2007; Fekete 2009). Finally, the hierarchical designs have selected 

roughly ten to twenty indicators that are separated into sub-indices that share a common 

theme of vulnerability (Chakraborty et al. 2005; Flanagan et al. 2011). A detailed 

assessment of the different approaches that researchers have to select from within each 

stage (Table 2) of indices construction can be found in (Tate 2012; Yoon 2012). Tate 

(2012) offers recommendations for each stage of index construction and provides insights 

for future research in social vulnerability indices so that they can be developed with more 

robustness and reliability. The following section explains the data and methods used in 

this research, and (Figure 1) provides an overview of the conceptual framework of the 

proposed research.  
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Figure 1. A concptual framework that explains the steps of this research. 
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4. DATA AND METHODS 

This research utilizes Simply Analytics, computer software that allows users to 

search for census data and then plot the data on a choropleth map using an online version 

of ESRI’s ArcMap. The data is collected at the block group level for Travis County to 

analyze the finest scale that the U.S. Census is captured at, and to provide sufficiently 

fine resolution that planners and emergency managers might be able to use to identify and 

target socially vulnerable populations easily. This research uses census data from the 

most recent 2016 estimates because Travis County is part of the Austin-Round Rock 

Metropolitan Statistical Area, which is a rapidly growing part of the county. The City of 

Austin has released a report on their official website titled: Austin Area Population 

Histories and Forecast that shows an increase of about 159,197 people between the years 

2010 and 2017. Thus, using the most recent 2016 estimate will give a better 

understanding of the distribution of the landscape in the present time. In addition, this 

research uses data that were obtained from the Federal Emergency Management Agency 

(FEMA) and the Watershed Department in Austin. These data contain the Federal 

FEMA’s 100-year and 500-year floodplains layers in addition to 25-year floodplain layer 

that was created by the Watershed department in Austin to capture more localized 

flooding events in Austin. The following section explains the second approach used in 

this research to construct an index of social vulnerability. 

 

 4.1. PARETO RANKING OPTIMIZATION TECHNIQUE         

 

Pareto ranking is a technique that originates from the context of the genetic 

algorithm, and it ranks cases on multiple criteria based on a fitness function (Rygel, L. et 
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al. 2006). The search method applied is based on the concept of Pareto non-dominant in 

evaluating fitness or assigning selection probability to solutions (Konak et al. 2006). To 

understand the proposed multi-objective optimization technique fully, two concepts must 

be introduced: the concept of non-domination and the Pareto-optimal front (Rygel, L. et 

al. 2006; Konak et al. 2006). In any complete dataset, the non-dominated cases are the 

ones that have no other cases in the dataset that are more vulnerable than them, and this is 

because of their scoring at least as high or higher on all variables. The process of 

selecting the non-dominated solutions is an iterative one to allow researchers to assign a 

vulnerability ranking to every block group in the dataset. Each time a set of non-

dominated solutions or block groups are selected, they are removed from the dataset in 

the next iteration so a new set can be selected.  

The non-dominated set that is being selected in each iteration is what is called the 

Pareto-optimal front (Rygel, L. et al. 2006). This gives practitioners an opportunity to 

examine the Pareto-optimal fronts, and ultimately make a value judgment among the 

alternatives to arrive at a particular decision (Goldberg 2006). The ranking will give city 

officials an opportunity to consider optimizing the block groups in order of vulnerability. 

This research utilized the R environment to accomplish its goal.  R is an integrated suite 

of software facilities for data manipulation, calculation and graphical display among 

other things. Emoa is the packaged this research used to apply the function nds_rank 

(data), which ranks block groups in order of vulnerability. 
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5. RESULTS  

5.1. SOCIAL VULNERABILITY INDEX USING ADDITIVE AGGREGATION 

 To create the first index proposed in this research, the eight social variables 

(Table 1) were normalized to keep the range between zero and one by using the 

minimum-maximum stretching (Equation 1):  

Equation 1: 𝑧 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 

All variables were normalized using the above equation except the variable median 

household income was normalized using the following equation: 

Equation 2: 𝑧 = |
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
−1| 

  

This was done because all the variables (Table 1), not including median household 

income, have direct or positive relationship to social vulnerability. However, the median 

household income variable has an inverse relationship to social vulnerability. In other 

words, higher percentages in all of the indicators, except for median household income, 

indicate higher vulnerabilities. Once all the variables were normalized, they were added 

together to produce the first social vulnerability index for each block group using the 

following equation: 

Equation 3: 𝐼𝑛𝑑𝑒𝑥 = 𝑧1 + 𝑧2 + 𝑧3…𝑧𝑛/N 

All of the above calculations were done using Excel and the results were exported to 

ArcMap, where characteristics of the variables were analyzed and discussed. In ArcMap, 

the variables were projected to NAD_1983_2011_StatePlane_Texas_Central_  

FIPS_4203_ft_US. Several classification methods were considered (equal interval, 

standard deviation, quantile), however, the natural breaks (Jenks) method was chosen and 
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used for this research. The natural breaks (Jenks) method finds natural clusters and 

creates classes around those clusters. Finally, a social vulnerability map was created in 

ArcMap, and the block groups were classified into low, medium low, medium high and 

high vulnerability (Figure 2).  

 

Figure 2. Overall social vulnerability in Travis County, Texas calculated using additive 

aggregation of the eight standardized social vulnerability variables 

 

5.2. SOCIAL VULNERABILITY INDEX USING PARETO ALGORITHM 

 To create the second index, the Excel file that contains the eight standardized 

social variables was exported to the statistical software packages R. The package that was 

used to implement the Pareto ranking algorithm is called emoa, and the function that was 

applied to rank the non-dominated block groups is called nds_rank. In R, a matrix from 
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the data was created because the function nds_rank works on matrices, not on data 

frames. Columns in a matrix must have the same data type and length compare to a data 

frame. After that, the function was applied to the matrix and a new column named Rank 

was created to store the ranking of each block group. In this study, with 579 block groups 

and 8 variables, block groups were sorted into six ranks. To assess overall social 

vulnerability, the six Pareto ranks were reassigned such that the most vulnerable block 

groups had a score of 1 and the least vulnerable block groups had a score of 6. The social 

vulnerability of each block group was then defined as its Pareto rank. Finally, the results 

were rescaled from 0 to 1 to increase interpretability, and overall vulnerability zones were 

established by sorting the scores into four classes (i.e., low, medium low, medium high 

and high vulnerability) using the natural breaks (Jenks) method of classification in 

ArcMap (Figure 3).  
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Figure 3. Overall social vulnerability in Travis County, Texas calculated using Pareto 

ranking of the eight standardized social vulnerability variables 

 

5.3. COMPARISON OF ADDITIVE AGGREGATION AND PARETO RANKING 

 The additive and Pareto ranking methods of aggregation scores were compared 

using Spearman’s rank correlation. In order to compare their social vulnerability scores, 

block groups are rank-ordered based on their overall composite social vulnerability 

scores. Spearman’s rank correlation coefficient is a nonparametric rank statistic that 

measures the strength of the association between two variables and ranges from a -1.00 to 

1.00 (Hauke and Kossowski 2011). The null and alternative hypothesis tested here are as 

follow: 
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– Ho: There’s no significant difference between additive aggregation and the Pareto 

algorithm aggregation (i.e., there’s a monotonic correlation) 

– H1: Additive aggregation and the Pareto algorithm aggregation are significantly 

different (i.e., there’s no monotonic correlation) 

 

The Spearman correlation shows that the overall social vulnerability scores using the two 

different aggregation methods is 0.659, which indicates a moderate, positive monotonic 

correlation between additive aggregation and Pareto ranking. The Spearman’s rank-

order correlation results indicate that the alternative hypothesis can be rejected for this 

test (i.e., there is a monotonic correlation). The results from the Pareto ranking show 

more vulnerable block groups in the western portion of the county than what the results 

from the additive aggregation indicate. Pareto ranking will help direct the attention of 

City of Austin and Travis County managers toward the western part of the county than 

what the results from the additive aggregation indicate, which is that only the part of the 

county with a high concentration of low-income households is vulnerable. Because the 

additive aggregation calculates the mean arithmetic of the standardized eight variables 

(Table 1), most of the block groups in the western portion of the county appear less 

vulnerable than what they are when considering individual indicators more important 

than their arithmetic mean. Oulahen, G. et al. (2015) study showed that practitioners in 

municipalities in Canada found that individual maps are more helpful to guide their effort 

to manage flood hazards because in some situations an indicator such as households with 

no vehicle to escape the risk is more important than a composite of indicators, which has 

the potential to obscure such information. Since Pareto ranking highlights block groups 

that score high in one or two of the indicators, it could provide more variability for 

Austin and Travis County managers in their effort to identify vulnerable populations.  
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5.4. MAP CLASSIFICATIONS 

 Maps and other data graphics are one of the ways that play a role in generating 

ideas and communicating model results. Researchers have used maps to represent data to 

different audiences such as decision makers or a concerned public. However, a single 

map could reveal different patterns based on factors such as symbol types, color choices, 

and data classing. The different choices in each of the factors mentioned above depend on 

the type of data and analysis. This study considered different options to classify the 

results in ArcMap such as equal interval, natural breaks (Jenks), quantile, and standard 

deviation. By examining the data, the histogram shows that the data is not normally 

distributed which eliminated the choices of the equal interval, quantile, and standard 

deviation classification methods. Equal interval divides the attribute range into equally 

sized classes, and it is best used to emphasize the relative amount of attribute values 

compared to others. The quantile classification method will contain an equal number of 

features and is well suited for linearly distributed data. The standard deviation 

emphasizes how much feature values vary from the mean and is best used on normally 

distributed data because outliers might skew the distance from the mean. The final 

method of classification is natural breaks (Jenks) which this study used for data 

classification. Jenks arrange data values in order and the class breaks are determined 

statistically to find a relatively large difference between adjacent classes. This study 

classified the final social vulnerability indices using natural breaks with four classes, 

which are low, medium low, medium high and high vulnerability. (Figure 4) illustrates 

the difference between the four methods of classification in ArcMap using the additive 

aggregation. Moreover, considering the different ways to classify the data as shown in 



 

23 

(Figure 4), the Pareto ranking could offer an alternative to solve this issue of 

classification if the mapping of the block groups is based on their Pareto ranking which 

eliminates the need to create arbitrary zones of vulnerability to classify the data.  

 

Figure 4. Different classification schemes using the same data 

 

5.5. FLOODPLAIN OVERLAY 

 Following the conceptual model created by Cutter (1996), which proposes that the 

intersection between the biophysical vulnerability and social vulnerability creates the 

hazard-of-place, this research overlaid FEMA floodplains and Austin watershed 

department fully developed floodplain with the social vulnerability indices. By doing so, 

this study aims to help further guide the City of Austin and Travis County managers in 
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their goal to identify vulnerable populations to extreme weather events such as flooding. 

The floodplain layers contain the 25-year, 100-year and 500-year floodplains. (Figure 5) 

and (Figure 6) show the results of the additive aggregation and Pareto ranking, 

respectively, overlaid with the floodplains layer obtained from FEMA and Austin 

watershed department.  

 

Figure 5. Additive aggregation Vulnerability Index map with 25-years, 100-years, and 

500-years floodplains 
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Figure 6. Pareto ranking Vulnerability Index map with 25-years, 100-years, and 500-

years floodplains 
 

  To increase interpretability, (Table 3) and (Table 4) present the numbers and 

percentages of block groups in each of the four vulnerability zones of the two indices of 

social vulnerability. The four zones are the sorting of block groups into low, medium 

low, medium high and high social vulnerability. In addition, the tables show the numbers 

of block groups from each of the four zones that intersect with the 25-year, 100-year and 

500-year floodplains. As the results show, most of the high vulnerability block groups, 

from both methods, intersect with the 25-year and 100-year floodplains, which have a 

higher chance of being flooded than block groups that intersect only with the 500-year 

floodplain. The study concludes that drill-down maps that focus on specific areas in 
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Travis County with high vulnerability are necessary to understand the intersection 

between floodplains and socially vulnerable block groups. 

Moreover, the differences between the two methods show that the additive 

aggregation indicates that there are less block groups that are classified as high 

vulnerability and intersect with floodplains than what the Pareto ranking show. 

Therefore, using only the additive approach to assess vulnerability could potentially 

mislead City of Austin and Travis County managers in their effort to implement effective 

strategies and programs to mitigate the effect of flood hazards in their respective 

jurisdictions. Thus, future studies should consider that additive aggregation has the 

potential to obscure block groups that score highly in one or two of the indicators, and 

that potentially could lead to incorrect interpretation of the spatial distribution of social 

vulnerability. 

Table 3. Floodplain overlay analysis for additive aggregation 

 

 

 

Additive 

aggregation 

Classes of 

vulnerability  

Number of 

block groups 

Percentage 

of block 

groups 

Number of 

block groups 

intersect 

with 25-yr & 

100-yr 

floodplain 

Number of 

block groups 

intersect 

with the 500-

yr floodplain 

Low 209 ≈ 36 % 172 209 

Medium low 186 ≈ 32 % 134 186 

Medium high 110 ≈ 19 % 93 118 

High 74 ≈ 13 % 52 74 

Total                    579 
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Table 4.  Floodplain overlay analysis for Pareto ranking aggregation 

 

 

Pareto 

ranking 

aggregation  

Classes of 

vulnerability 

Number of 

block groups 

Percentage 

of block 

groups 

Number of 

block groups 

intersect 

with 25-yr & 

100-yr 

floodplain 

Number of 

block groups 

intersect 

with the 500-

yr floodplain 

Low 19 ≈ 3 % 15 15 

Medium low 213 ≈ 37 % 168 213 

Medium high 196 ≈ 34 % 156 196 

High 151 ≈ 26 % 105 151 

Total                    579 

 

5.6. DRILL-DOWN COMPARATIVE ANALYSIS OF BLOCK GROUPS 

Although the Spearman’s correlation indicated a positive monotonic relationship 

between the additive aggregation and the Pareto ranking, some block groups that were 

classified as low vulnerability using the additive aggregation have a Pareto ranking of 

one, which indicates high vulnerability. This difference shows that the Pareto ranking 

highlights block groups that score high in one or more indicators, and that result in more 

variability in the distribution of block groups that require attention.  For example, block 

group BG0017681_Travis_County_Tx (Figure 7) has a low vulnerability score in the 

additive aggregation, but in the Pareto ranking it has a high ranking of one. This block 

group has a low score in all indicators of vulnerability except for the indicator that 

represents the percentage of populations 65 years and older which further proves that the 

additive aggregation has the potential to obscure block groups that score high in one 

indicator.  
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Figure 7. Overall social vulnerability of block groups in Travis County, TX: top image 

represents additive aggregation of indicators; bottom image represents Pareto ranking. 

 

Many other block groups move up in the Pareto ranking aggregation because of 

scoring high in one or two of the indicators of social vulnerability. For instance, block 

group BG0024211_Travis_County_Tx (Figure 8) has a medium-low score using the 

additive aggregation but moves up to medium-high using the Pareto ranking. This block 

group has a low score in all indicators except for the indicator that represents single-

parent household, and it has a relatively low level of income, which increases the 

vulnerability of the block group.  
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Figure 8. Overall social vulnerability of block groups in Travis County, TX: top image 

represents additive aggregation of indicators; bottom image represents Pareto ranking 

  

Another example, block group BG0016023_Travis_County_Tx (Figure 9) has a medium-

low score using the additive aggregation and a high vulnerability score using the Pareto 

ranking. The reason for this difference is due to the indicator that represents populations 

of age 5 and under, for which this block group scores high. 
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Figure 9. Overall social vulnerability of block groups in Travis County, TX: top image 

represents additive aggregation of indicators; bottom image represents Pareto ranking. 
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6. LIMITATIONS OF STUDY 

The research of vulnerability to environmental hazards has been a challenge to 

researchers and policymakers. Often, practitioners who are involved in making decisions 

criticized research that is done without their inputs when assessing the vulnerability of 

their communities (Oulahen, G. et al. 2015). This research has incorporated expert’s 

knowledge from urban managers at the Office of Sustainability in Austin to focus the list 

of indicators (Table 1). However, there is a general agreement that the list is not final, but 

has the potential to start conversations between different concerned parties within the 

county. The staff from the Office of Sustainability expressed that other departments 

within the county will have different indicators of vulnerability that will be of more 

importance to their management goals than what is in (Table 1). Therefore, users of the 

results of this research should consider it only within the context of flood hazards.  

For Austin and Travis county managers to gain a better understanding of the 

spatial distribution of populations with higher vulnerability to flood hazards, they can use 

the SOVI maps created in this study. Indexes are means of understanding the spatial 

distribution of a statistical unit such as block groups. They help researchers or 

policymakers to visualize the social vulnerability distribution of the landscape, but those 

indexes do not reveal the underlying causes of any of the indicators such as why a certain 

block group has more low-income populations than the adjacent block group? 

Quantifying social phenomenon in a context of a polygon representation in 

software, such as ArcMap, does not allow the researcher to understand the root of the 

phenomena. Therefore, indexes should be thought of as a starting point of a complex 

process to alleviate and understand the vulnerability of populations. In addition, another 
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limitation of this research is considering that the socio-economic variables selected here 

are independent of influences from surrounding counties. People commute between 

counties daily, and the effect of that on Travis County social vulnerability is a factor that 

warrants further investigation. 

 Moreover, the number of processes to construct indices of vulnerability such as 

weighting, standardizing, and aggregating indicators are numerous. The availability of 

numerous approaches make it difficult to have a baseline of constructing an index, 

therefore, determining the social vulnerability of people should be a mixed approach 

rather than only using quantitative measures.  Finally, future research should combine the 

land use/land cover variable to the analysis to help further city staff to focus on 

residential areas of the county. 
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7. CONCLUSION 

Human actions, primarily the burning of fossil fuels, are causing the earth’s 

climate to change. Extreme weather events that lead to flooding like the Memorial Day 

Flood in 2015 and wildfires like the Bastrop Fire of 2011 due to climate variability will 

pose a challenge to the city of Austin and the surrounding communities. Thus, 

determining where the vulnerable populations to such events are located is important in 

order to implement effective strategies and programs for mitigation. This research 

compared two of the more prevalent methods of aggregation to assess the vulnerability of 

block groups in Travis County. A quantitative and visual comparison were done using the 

Spearman’s correlation and ESRI’s ArcMap, respectively. The two methods are different 

in that the additive aggregation uses the arithmetic mean to compute the index, on the 

other hand, Pareto ranking is a multi-objective optimization technique that ranks block 

groups based on non-domination in the complete data set.  

The additive aggregation has been criticized because it has the potential to 

obscure block groups that score high in one of the indicators. However, Pareto ranking 

has been proposed as an alternative to the additive aggregation approach because it 

avoids assuming that all the indicators that contribute to social vulnerability are equally 

important. The non-dominated set that is being selected in each iteration is what is called 

the Pareto-optimal front (Rygel, L. et al. 2006). This gives practitioners an opportunity to 

examine the Pareto-optimal fronts, and ultimately make a value judgment among the 

alternatives to arrive at a decision (Goldberg 2006). 

Although the analysis showed that the two methods have a moderate positive 

monotonic correlation, some block groups that were classified as low vulnerability using 
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the additive aggregation fell into the high vulnerability classification using the Pareto 

ranking. This proves that the additive aggregation has the potential to obscure block 

groups that score high in one or two of the indicator, therefore, researchers and urban 

managers should be aware of this drawback when assessing social vulnerability. 

 In addition, the Pareto ranking offered more variability in the spatial distribution 

of vulnerability due to its algorithm that treats block groups as a multi-objective 

optimization problem where several indicators of vulnerability are present 

simultaneously, and it is not possible or wise to combine the indicators into a single 

number. Therefore, Pareto ranking has the potential to give city officials an opportunity 

to consider optimizing the block groups in order of vulnerability.  

Finally, this research concludes that SOVI maps created in this comparison 

between the two aggregation methods are a useful tool to visualize the spatial distribution 

of vulnerable populations to flood hazards. However, validating the results through 

qualitative approaches that aim at understanding the historical and structural factors that 

constrain the adaptive capacity of vulnerable populations will help Austin and Travis 

managers in their effort to implement strategies and allocate resources that will serve the 

need of Travis County citizens (Singh et al. 2016). This could be accomplished through 

semi-structured interviews with local practitioners from a broader array of people before 

using the SOVI maps to disburse funds or allocate resources.    
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