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Stochastic perturbations of the Allen–Cahn

equation ∗

Tony Shardlow

Abstract

Consider the Allen-Cahn equation with small diffusion ε2 perturbed
by a space time white noise of intensity σ. In the limit, σ/ε2 → 0, so-
lutions converge to the noise free problem in the L2 norm. Under these
conditions, asymptotic results for the evolution of phase boundaries in
the deterministic setting are extended, to describe the behaviour of the
stochastic Allen-Cahn PDE by a system of stochastic differential equa-
tions. Computations are described, which support the asymptotic deriva-
tion.

1 Introduction

Consider the Itô stochastic partial differential equation

du =
[
ε2uxx + f(u)

]
dt+ σ dW (t),

ux =0 at x = 0, 1, u = g at t = 0.
(1)

where ε� 1, the system is gradient f = −∇F (u), and W is a space–time white
noise. Thus, if ei is an orthonormal basis for L2(0, 1) and βi are IID standard
Brownian motions then

W (t) =
∑

eiβi(t).

A full introduction to space-time white noise and the theory of stochastic PDEs
is given by [4]. The potential F will be a double well potential having wells of
equal depth and minima at s±. We have in mind particularly

F (u) =
1

8
(1− u2)2, f(u) := −∇F (u) =

1

2
(u− u3), (2)
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Figure 1: Solution of stochastic Allen–Cahn: ε = 0.08, σ = 0.00: surface and
contour plots. Computed ∆t = 0.005 and ∆x = 0.008

which when substituted in (1) yields the Allen–Cahn equation and where s± =
±1.
Figures 1–5 show typical solutions of the Allen–Cahn equation with small

noise and with Neumann conditions. The right hand figure gives a tracking of
the interface position, defined as the contour u = 0. The solutions were com-
puted using the backward Euler finite difference scheme described in [11]; in the
figures ∆t denotes time step and ∆x denotes the grid spacing of the discretisa-
tion. The initial condition consists of three regions, two taking value +1 and the
third taking value −1. For the unperturbed equation σ = 0, eventually the two
inner interfaces disappear, leaving a single region where the solution is approx-
imately −1 away from the boundary. With homogeneous Dirichlet boundary
conditions, there would be a boundary layer, where the solutions changes rapidly
at the boundary, to satisfy the boundary condition.
There are many results for the equation in case σ = 0. The equation was

originally written down as a model of the evolution of the alignments in crys-
tals [1]. Chafee-Infante [3] study the equation on a bounded domain as a bi-
furcation problem in the limit ε → 0. The equation is shown to have only two
stable equilibria for ε sufficiently small, corresponding to solutions of only one
phase. New equilibria are created as ε→ 0, but all are unstable. The equation
exhibits meta stability, meaning that solutions quickly move to a state where u
takes values near the minima of F except at interfacial layers of width ε. These
states are not equilibria, but do persist for exponentially long amounts of time.
The evolution of the meta stable states has been described as an ODE in the
positions of the interface by a number of authors [12, 6, 2].
The effect of perturbations on the Allen-Cahn equation has been studied
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Figure 2: Solution of stochastic Allen–Cahn: ε = 0.08, σ = 0.015: surface
and contour plots. Computed with ∆t = 0.005 and ∆x = 0.008. The ratio
σ/
√
ε = 0.05.
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Figure 3: as in Figure 2, except a different realisation of the noise.
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Figure 4: Solution of stochastic Allen–Cahn: ε = 0.08, σ = 0.1: surface and
contour plots. Computed ∆t = 0.005 and ∆x = 0.008. The ratio σ/

√
ε = 0.35.
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Figure 5: Solution of stochastic Allen–Cahn: as in Figure 4 but a different
realisation.
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previously by Laforgue-O’Malley [8, 7] and Reyna-Ward [10, 13]. These pa-
pers discuss small deterministic perturbations of the operator and indicate that
metastability is very sensitive to perturbation. The present work tackles stochas-
tic perturbations, but brings out a similar result, that the exponential drift
responsible for the metastability may be dominated by noise.
To accurately describe the nature of the ODE approximation to (1) with

σ = 0, introduce U , the solution to the free space problem

Uxx + f(U) = 0, U(±∞) = s±, U(0) = 0. (3)

Let h = (h1, . . . , hN ) denote the positions of the interfaces. Let αi = (−1)iα0,
where α0 = ±1 indicates whether u(0) ≈ s±. Ward [12] uses the following
approximation to solutions u of (1) when ε is small

uh = C0 +

N∑
i=1

{
U
(αi(x− hi)

ε

)
− Ci

}
, Ci =

{
s+, αi = 1;

s−, αi = −1;
(4)

This is not the only way to define an approximation uh, see for example [2] for
a slightly different approach.
For convenience, fix h0 = 0 and hN+1 = 1 as the positions of the homoge-

neous Neumann boundaries. The ODE describing the evolution of h is

dhi

dt
=
2ε

‖U ′‖2

[
µi+1e

−σi+1(1+δi,N )ε
−1`i+1 − µie

−σi(1+δi,1)ε
−1`i
]
, i = 1, . . . , N

(5)

where `i := hi − hi−1 denotes the distance between interfaces; δi,j is the Kro-
necker delta function; µi and σi are positive constants described later in terms
of F (in case F given by (2), µi = 4, ‖U ′‖2 = 2/3, σi = 1 ). This equation
holds upto the time of collapse of an interface (when hi+1−hi ≤ ε, some i) upto
exponentially small terms. This result has been established rigorously in [2].
In this paper, the above results are extended somewhat to include the case

where σ > 0. Equation (1) is well posed for all time; its existence and uniqueness
properties are described in [5]. The simplest case is when f is globally Lipschitz
from L2(0, 1) to itself, in which case a mild solution exists taking values in
L2(0, 1). In §2, we show rigorously for Dirichlet boundary conditions that in
this case the basic structure of the problem is preserved when σ � ε1/2; in
particular, for initial data in L2(0, 1) and all T > 0, there exists K such that

E‖uε,0(t)− uε,σ(t)‖
2 ≤ Kσ2/ε, 0 ≤ t ≤ T, (6)

where uε,σ is the solution of (1) with diffusion coefficient ε
2 and noise intensity

σ. (The function f(u) = u − u3 is not Lipschitz as required, but experiments
indicate the same phenomena hold). When σ � ε1/2, the noise dominates
the solution, a consequence of space–time white noise having being ill posed in
L2(0, 1) (viz., E‖W (t)‖2 =∞).
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An SDE is formally derived in §3 to account for the motion of the interfaces
when σ � ε1/2. The interface positions h are defined as being the minimiser of
‖V ‖ where V := u− uh over h ∈ RN with hi+1− hi ≥ ε and N = 1, 2, . . . . The
SDE is

dhi =
ε

‖U ′‖2
1

1−Ai

[
µi+1e

−σi+1(1+δi,N )ε
−1`i+1 − µie

−σi(1+δi,1)ε
−1`i
]
dt

+
σε1/2

‖U ′‖
dβi(t) +O(‖V ‖

2) dt,

where Ai := Cε
−1/2〈ei, V 〉, for a constant C and a unit vector ei (to be defined

later), and βi(·) are IID standard Brownian motions. The equation may become
singular even when V is order ε1/2, as is expressed by the term 1/(1 − Ai).
The term Ai is large when V has a considerable component in U

′′((x − hi)/ε),
which essentially describes the direction of a branching interface as depicted in
Figure 6. When the equation makes sense, the term Ai has a negligible effect
on the dynamics of h as it is multiplied by exponentially small terms.
The precise relation between the Brownian motions βi and the white noise

W is described in §3. However, when βi and W are considered independent,
we expect that the trajectories of the interfaces h given by the stochastic PDE
and stochastic ODE should converge weakly as V becomes small. By (6), for
an initial condition u0 = u

h, E‖V ‖2 is order σ2/ε. Thus, let h̃ be a solution of

dhi =
ε

‖U ′‖2

[
µi+1e

−σi+1(1+δi,N )ε
−1`i+1 − µie

−σi(1+δi,1)ε
−1`i
]
dt+

σε1/2

‖U ′‖
dβi(t),

(7)

for initial condition h = h0 (that is, we neglect 1/(1 − Ai) and the error
O(‖V ‖2) ). Let h minimise ‖u − uh‖ where u solves (2) with u0 = uh0 . We
would like

EG(h̃(t))−EG(h(t))→ 0 as σ/ε2, ε→ 0 (8)

for smooth test functionals G : RN → R where the expectation is taken over all
h̃ (resp., h) which have dimension N at time t.
The last section of this paper, §4, covers numerical experiments that sup-

port (8). The experiments compute the mean and variance of the deviation of
the interface position from its initial position for the asymptotic SDE (7) and
for (1) for a single interface initial condition. Thus, we take the first steps to
examine (8) for g(x) = (x−h0) and g(x) = (x− x̂)2, where x̂ = Eh. The compu-
tations indicate agreement between the two dynamical systems for σ/ε1/2 = 0.1
and 0.035.

2 Finite time limits as σ → 0

The finite time limits in σ and ε of the stochastic Allen–Cahn equations (1)
with homogeneous Dirichlet boundary conditions are studied. Throughout this
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Figure 6: Plot of U (dashed) and U + 〈V, ei〉ei (solid) when hi = 0, Ai = 1,
F (u) = (1 − u2)2/8, and ε = 0.08.

section we take the nonlinearity f to be globally Lipschitz from L2(0, 1) to itself.
Denote the solution of the Allen–Cahn equation (1) by uε,σ, and let uε := uε,0,
the solution to the noise free problem.

The space–time white noise W may be considered in terms of its Fourier
expansion. If ei is a complete orthonormal system for L2(0, 1), and βi is a
sequence of independent standard Brownian motions, the process W (·) may be
thought of as

W (t) =

∞∑
i=1

eiβi(t).

It is clear thatW (·) does not converge in L2(0, 1). However, stochastic integrals
can be defined with respect to an operator that smoothes the processW (·) [4].
This is made explicit by the Itô isometry. The Itô isometry in infinite dimensions
states that, for a linear operator Φ mapping H to H ,

E
∣∣ ∫ t
0

Φ(s) dW (s)2
∣∣ = ∫ t

0

‖Φ(s)‖2HS ds. (9)

(‖ · ‖HS is the Hilbert-Schmidt norm, see [4]). It will be important to estimate

this quantity when Φ(s) = e−ε
2A(t−s).

Lemma 2.1 For all t > 0, there exists Ct > 1 such that

C−1t
ε
≤

∫ t
0

‖e−ε
2A(t−s)‖2HS ds ≤

Ct

ε
, 0 < ε ≤ 1.

Proof This result is proved for A with homogeneous Dirichlet conditions.
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(lower bound) When A is defined with Dirichlet conditions, its eigenvalues
are k2π2 for k = 1, 2, . . . . Hence, from (9),

∫ t
0

‖e−ε
2A(t−s)‖2HS ds =

∞∑
k=1

1

2ε2k2π2
(1− e−2ε

2k2tπ2)

≥
∞∑

k=b1/εc

1

2ε2k2π2
(1− e−2tπ

2

)

≥
1

2ε2π2
(1− e−2tπ

2

)

∫ ∞
b1/εc

1

s2
ds

≥
1

2επ2
(1 − e−2tπ

2

).

(upper bound) For all t > 0, there exists a constant Kt so that

(1− e−2λtπ
2

) ≤ Ktλ, for 0 ≤ λ ≤ 1.

Hence,

∫ t
0

‖e−ε
2A(t−s)‖2HS ds ≤

b1/εc∑
k=1

1

2ε2k2π2
(1 − e−2ε

2k2tπ2)

+
∞∑

k=1+b1/εc

1

2ε2k2π2
(1− e−2ε

2k2tπ2)

≤

b1/εc∑
k=1

Ktε
2k2

2π2ε2k2
+

∞∑
k=b1/εc+1

1

2ε2k2π2

≤
Kt

2π2ε
+

1

2ε2π2

∞∑
k=1+b1/εc

1

k2

≤
Kt

2π2ε
+

ε

2ε2π2
,

as required. ♦

Lemma 2.2 Consider t > 0; for a constant Cγ depending on γ,

‖A−γ(I − e−At)‖ ≤ Cγ t
γ , 0 < γ ≤ 1;

‖Aγe−At‖ ≤ Cγ t
−γ , γ > 0.

Proof This is a standard result on fractional powers of sectorial operators [9].
♦

Theorem 2.3 Fix T > 0. There are three limits as ε, σ → 0:
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1. In the limit ε, σ → 0 with σ/ε1/2 → 0,

E sup
0≤t≤T

‖uε,σ(t)− uε(t)‖
2 → 0;

2. Suppose further that f is globally Lipschitz from H−r(0, 1) to H−r(0, 1).
For each r > 1/2, there exists a process u(·) taking values in H−r(0, 1)
such that in the limit ε, σ → 0 with σ/ε1/2 → ν,

E sup
0≤t≤T

‖uε,σ(t)− u(t)‖
2
H−r(0,1) → 0;

3. In the limit σ/ε1/2 →∞,

E sup
0≤t≤T

‖uε,σ(t)‖
2 →∞.

Proof (i) Clearly,

uε,σ(t)− uε(t) =

∫ t
0

e−ε
2A(t−s)

[
f(uε,σ(s)) − f(uε(s))

]
ds

+ σ

∫ t
0

e−ε
2A(t−s) dW (s).

The stochastic integral may be bounded as follows: by the Itô Isometry (9) and
for 0 ≤ t ≤ T ,

E‖

∫ t
0

e−ε
2A(t−s) dW (s)‖2 =

∫ t
0

‖e−ε
2A(t−s)‖2HS ds

(by Lemma 2.1)

≤
CT

ε
.

Therefore, denoting the Lipschitz constant of f by K, we have for 0 ≤ t ≤ T ,

(
E‖uε,σ(t)− uε(t)‖

2)1/2 ≤

∫ t
0

K(E‖uε,σ(s)− uε(s)‖
2)1/2 ds+ C

1/2
T

σ

ε1/2
.

By applying Gronwall’s lemma, we have proved

(
E sup
0≤t≤T

‖uε,σ(t)− uε(t)‖
2
)1/2

≤
σ

ε1/2
eKtC

1/2
T → 0, as σ/ε1/2 → 0. (10)
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(ii) Consider a sequence (σn, εn) with σn → 0 and σn/ε
1/2
n → ν as n → ∞.

For n,m ∈ N, the Variation of Constants formula gives

uεn,σn(t)− uεm,σm(t) =

∫ t
0

(e−ε
2
nA(t−s) − e−ε

2
mA(t−s))f(uεn,σn(s)) ds

+

∫ t
0

e−ε
2
mA(t−s)

[
f(uεn,σn(s))− f(uεm,σm(s))

]
ds

+ (σn − σm)

∫ t
0

e−ε
2
nA(t−s) dW (s)

+ σm

∫ t
0

(e−ε
2
nA(t−s) − e−ε

2
mA(t−s)) dW (s).

Each term can be bounded inH−2r(0, 1) for r ≥ 1/4. Recall that in the Dirichlet
case that ‖ · ‖−r := ‖A−r · ‖ is equivalent to the H−2r(0, 1) norm. This norm is
used here to gain the necessary inequalities.
Consider the first term: By Lemma 2.2 (without loss take εm > εn),(
E‖

∫ t
0

(e−ε
2
nA(t−s) − e−ε

2
mA(t−s))f(uεn,σn(s)) ds‖

2
−r

)1/2

≤

∫ t
0

‖A−r(I − e−(ε
2
m−ε

2
n)A(t−s))‖ · ‖e−ε

2
nA(t−s)‖ · (E‖f(uεn,σn)‖

2)1/2 ds

(by Lemma 2.2)

≤C

∫ t
0

(t− s)r(ε2m − ε
2
n)
rK(E‖uεn,σn‖

2)1/2 ds.

By (10), E‖uεn,σn‖
2 may be bounded uniformly in limits εn, σn → 0 subject to

σn/ε
1/2
n being bounded. Hence, there exists a constant C1 with(

E‖

∫ t
0

(e−ε
2
nA(t−s) − e−ε

2
mA(t−s))f(uεn,σn(s)) ds‖

2
−r

)1/2

≤C1(ε
2
m − ε

2
n)
r

∫ t
0

(t− s)r ds.

Consider the second term:(
E‖

∫ t
0

e−ε
2
mA(t−s)

[
f(uεn,σn(s))− f(uεm,σm(s))

]
ds‖2−r

)1/2

≤K

∫ t
0

(
E‖uεn,σn(s)− uεm,σm(s)‖

2
−r

)1/2
ds.

Consider the third term: By the Itô isometry,

E‖

∫ t
0

e−ε
2
nA(t−s) dW (s)‖2−r =

∫ t
0

‖A−re−ε
2
nA(t−s)‖2HS ds

=

∫ t
0

∞∑
k=1

1

(k2π2)2r
e−2ε

2
nk
2π2(t−s) ds,
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which is finite for r > 1/4.
Consider the fourth term: by Lemma 2.2 and the Itô isometry, we have for

0 ≤ t ≤ T ,

E‖

∫ t
0

(e−ε
2
nA(t−s) − e−ε

2
mA(t−s)) dW (s)‖2−r

≤

∫ t
0

‖A−r(I − e(ε
2
n−ε

2
m)A(t−s))‖2‖e−ε

2
nA(t−s)‖2HS ds

≤‖A−r(I − e(ε
2
n−ε

2
m)At)‖2

∫ t
0

‖e−ε
2
nA(t−s)‖2HS ds

≤C2(ε2n − ε
2
m)
2rt2r

CT

εn

≤
C2CT t

2r

εn
(ε2n − ε

2
m)
2r

Thus, taking a limit (σ, ε)→ 0 with σ2/ε bounded above, there exists a constant
C2 such that for 0 ≤ t ≤ T ,

(
E‖uεn,σn(t)− uεm,σm(t)‖

2
−r

)1/2
≤ C2((ε

2
n − ε

2
m)
r + (σn − σm))

+

∫ t
0

K
(
E‖uεn,σn(s)− uεm,σm(s)‖

2
−r

)1/2
ds.

Gronwall’s inequality now gives, for a constant C3

(
E sup
0≤t≤T

‖uεn,σn(t)− uεm,σm(t)‖
2
−r

)1/2
≤ C((e2m − e

2
n)
r + (σn − σm))e

KT .

If εn, σn are Cauchy, the sequences uεn,σn are Cauchy with respect to

(
sup
0≤t≤T

E‖ · ‖2−r

)1/2

and thus a limiting process exists. The above formula also gives uniqueness for
if uεn,σn → u1 and uεm,σm → u2 where (εn, σn) and (εm, σm) are both Cauchy,
then, by the above,

(
E sup
0≤t≤T

‖u1(t)− u2(t)‖
2
−r

)1/2
≤
(
E sup
0≤t≤T

‖uεn,σn(t)− uεm,σm(t)‖
2
−r

)1/2

+
(
E sup
0≤t≤T

‖uεn,σn(t)− u1(t)‖
2
−r

)1/2

+
(
E sup
0≤t≤T

‖u2(t)− uεm,σm(t)‖
2
−r

)1/2
→0.
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(iii) Suppose that E‖uε,σ(t)‖2 <∞ uniformly as σ/ε1/2 →∞ for 0 ≤ t ≤ T .
For simplicity take u0 = 0. Then, argue for a contradiction as follows: from the
Variation of Constants formula and the Itô isometry,

E‖uε,σ(t)‖
2 =E

[
‖

∫ t
0

e−ε
2A(t−s)f(uε,σ(s)) ds‖

2
]

+ 2σE
[〈∫ t

0

e−ε
2A(t−s)f(uε,σ(s)) ds,

∫ t
0

e−ε
2A(t−s) dW (s)

〉]

+ σ2E
[ ∫ t
0

‖e−ε
2A(t−s)‖2HS ds

]
.

The third term is positive and order σ2/ε by Lemma 2.1; the first term is
positive; thus, to gain a contradiction, we show the second has lower order than
σ2/ε. Indeed, for 0 ≤ t ≤ T

σE
[〈 ∫ t

0

e−ε
2A(t−s)f(uε,σ(s)) ds,

∫ t
0

e−ε
2A(t−s) dW (s)

〉]

≤σE
[ ∫ t
0

e−ε
2A(t−s)f(u(s))2 ds

]1/2
E
[ ∫ t
0

‖e−2ε
2A(t−s)‖2HS ds

]1/2
,

≤σ
C
1/2
T

ε1/2
K sup
0≤t≤T

(
E‖u(t)‖2

)1/2
,

which is clearly order σ/ε1/2. ♦

3 Formal derivation of an SDE

The positions of the interfaces hi are well defined in the deterministic case σ = 0
as the contours of u = (s+ + s−)/2. In the case σ > 0, the interface may be
wrinkled, making the contour ill defined. We choose h by solving the following
minimisation problem: let h minimise

‖u− uh‖ (11)

over h ∈ RN with |hi+1 − hi| ≥ ε and over N = 1, 2, . . . . In this case, letting

V := u− uh, φi :=
αi

ε
U ′
(αi(x− hi)

ε

)
,

we have by differentiating (11) with respect to hi

〈φi, V 〉 = 0.

We’ll need the following asymptotic properties as we go along [12]:
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1. The solution U of (3) satisfies

U(x) = s+ − a+e
−σ+x, x→∞;

U(x) = s− + a−e
σ−x, x→ −∞.

where s± are the zeros of f ; σ± = (−f ′(s±))1/2;

log a± = log(±s±) +

∫ s±
0

( s±

(2F (η))1/2
+

1

η − s±

)
dη.

2.

‖U ′‖2 ≈

∫ ∞
−∞

U ′(x)2 dx =

∫ s+
s−

(2F (x))1/2 dx.

3. For case f(u) = 1
2 (u− u

3); these quantities evaluate to s± = ±1; ‖U ′‖2 =
2/3; a± = 2; σ± = 1.

Assume that h obeys the Itô equation

dh = ψ(h, t, ω) dt+Θ(h, t, ω) dβ(t), (12)

where Θ = diag(θ1, . . . , θN ) and ψ = (ψ1, . . . , ψN )
T and β(t) is a vector of N

Brownian motions, to be specified later in terms of W (t).
Apply the Itô formula to u = uh + V using (4) and (12),

du =−
∑
i

φi dhi −
1
2

∑
i

φixθ
2
i dt+ dV

=−
(∑
i

φiψi +
1
2φixθ

2
i

)
dt+

∑
i

φiθi dβi(t) + dV,

where φix = (φi)x. Take the inner product with φi:

〈φi, du〉

=
{
− ψi‖φi‖

2 +
∑
i

1
2 〈φix, φi〉

}
dt− ‖φi‖θi dβi(t) +

∑
i6=j

θj〈φi, φj〉 dβj(t).

Note that

〈φix, φi〉 =
[
φ2i
]1
0
.

This quantity is very small and is neglected as the asymptotics of U show that
φi is exponentially small away from the layers. Similarly, 〈φi, φj〉 is negligible
for i 6= j. Hence, we’ll work with

〈φi, du〉 = −ψi‖φi‖
2 dt− ‖φi‖θi dβi(t) (13)
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To compare, multiply (1) by φi:

〈φi, du〉 = 〈φi, ε
2uxx + f(u)〉 dt+ σ〈φi, dW (t)〉. (14)

Let

βi(t) :=
1

‖φi‖

∫ t
0

〈φi, dW (s)〉.

The βi(t) are continuous martingales with variance

Eβi(t)
2 =

1

‖φi‖2

∫ t
0

‖〈φi, ·〉‖
2
HS ds =

1

‖φi‖2

∫ t
0

‖φi‖
2 ds = t.

Therefore βi(t) are standard Brownian motions. Moreover, the processes βi(t)
are independent (upto exponentially small terms), because

E〈βi(t), βj(t)〉 = t
〈φi, φj〉

‖φi‖ · ‖φj‖
.

Thus (14) becomes

〈φi, du〉 = 〈φi, ε
2uxx + f(u)〉 dt+ σ dβi(t). (15)

Equate coefficients in (13) and (15):

−ψi‖φi‖
2 =〈φi, ε

2uxx + f(u)〉, (16)

−θi‖φi‖
2 =σ‖φi‖. (17)

Expand the RHS of (16):

〈φi, ε
2uxx + f(u)〉 = 〈φi, ε

2uhxx + f(u
h)〉+ 〈φi, L

hV 〉+O(‖V ‖2) , (18)

where Lhu = ε2uxx + df(uh)u. Write the first term

〈φi, ε
2uhxx + f(u

h)〉 =
〈
φi, ε

2uhxx +

N∑
i=1

f
(
U
(αi(x − hi)

ε

))〉
+
〈
φi, E

〉
, (19)

where

E := f(uh)−
∑
i

f(U(αi(x − hi)/ε)).

Because U solves (3), the first term is zero and, by the asymptotic analysis
in [12], the quantity

〈φi, E〉 ≈ 2ε
(
µ̃i+1e

−σi+1ε
−1`i+1 − µ̃ie

−σiε
−1`i
)
, i = 1, . . . , N (20)
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where `i := hi − hi−1 (recall h0 := 0 and hN+1 := 1) and µ̃i := (aiσi)2 and
µ̃1 = µ̃N+1 = 0 and

ai =

{
a+, if αi = 1;

a−, if αi = −1;
, σi =

{
σ−, if αi = 1;

σ+, if αi = −1;
.

Consider the second term in (18): let L(u) = ε2uxx + f(u) so that

〈φi, L
hV 〉 = 〈Lhφi, V 〉+Bi = 〈L(u

h)hi , V 〉+Bi (21)

where Bi are boundary terms, which may be neglected for internal layers [12].
We wish to compute L(uh)hi . First note that

L(uh) =
∑
i

〈φi,L(u
h)〉

φi

‖φi‖2
+ lower order terms.

Consequently, from (19)

〈L(uh)hi , V 〉 = 〈φi,L(u
h)〉
〈φix, V 〉

‖φi‖2
= 〈φi,L(u

h)〉Ai, (22)

where Ai := 〈φix, V 〉/‖φi‖2.
Collecting (16), (18), and (22), we have

−ψi‖φi‖
2 = 〈φi, E〉+ 〈φi, E〉Ai,

and so

ψi =
1

1−Ai

〈φi, E〉

‖φi‖2
+O(‖V ‖2) . (23)

Finally, from (20), (23), and (17), the SDE is

dhi =
1

1−Ai

2

‖φi‖2

(
µ̃i+1e

−σi+1ε
−1`i+1 − µ̃ie

−σiε
−1`i
)
dt+

σ

‖φi‖
dβi(t).

The term ‖φi‖ is independent of i (upto exponentially small terms) and hence
we write ‖φi‖ = ε−1/2‖U ′‖ giving

dhi =
1

1−Ai

2ε

‖U ′‖2

(
µ̃i+1e

−σi+1ε
−1`i+1 − µ̃ie

−σiε
−1`i
)
dt+

σε1/2

‖U ′‖
dβi(t).

Similarly, Ai may be better written

Ai =
C

ε1/2
〈ei, V 〉,

where

C :=
‖U ′′‖

‖U ′‖2
, ei(x) =

φix

‖φix‖
≈

U ′′((x− hi)/ε)

‖U ′′((x− hi)/ε)‖
.
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In the case where hi is a neighbour of the boundary (i = 1 or i = N), one term
drops out (viz., µ̃1 = 0 or µ̃N+1 = 0) and the boundary terms Bi in (21) should
be evaluated to give the lowest contribution. [12] computes the contribution
from Bi and this contribution is not effected by the stochastic perturbation: let
µi = (aiσi)

2 and δi,j denote the Kronecker delta, then for i = 1, . . . , N

dhi =
1

1−Ai

2ε

‖U ′‖2

(
µi+1e

−σi+1(1+δi,N )ε
−1`i+1 − µie

−σi(1+δi,1)ε
−1`i
)
dt

+
σε1/2

‖U ′‖
dβi(t).

4 Numerical Experiments

We would like to show that the trajectories of the interfaces described by (2)
and (7) converges weakly on a finite time interval in the small σ/ε1/2 limit. To
this end, consider an initial condition u0 = uh where h = (0.4). We compute
the mean and variance of the deviation of the interface position from x = 0.4 for
both (2) (with initial condition u0) and (7) (with initial condition h0). Clearly,
the average at time t is taken over realisations where the single interface persists
at time t. The diagrams show the mean and variance on a time interval [0, 200]
for parameter values (ε, σ) = (0.08, 0.01) and (0.08, 0.03). The trajectory of the
interface for the noise free problem (ε = 0.08, σ = 0) is shown for reference.
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