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NONLINEAR SUBELLIPTIC SCHRODINGER EQUATIONS
WITH EXTERNAL MAGNETIC FIELD

KYRIL TINTAREV

ABSTRACT. To account for an external magnetic field in a Hamiltonian of
a quantum system on a manifold (modelled here by a subelliptic Dirichlet
form), one replaces the the momentum operator %d in the subelliptic symbol
by %d — a, where o« € TM* is called a magnetic potential for the magnetic
field B = da.

We prove existence of ground state solutions (Sobolev minimizers) for non-
linear Schrodinger equation associated with such Hamiltonian on a gener-
ally, non-compact Riemannian manifold, generalizing the existence result of
Esteban-Lions [5] for the nonlinear Schrodinger equation with a constant mag-
netic field on RN and the existence result of [6] for a similar problem on
manifolds without a magnetic field. The counterpart of a constant magnetic
field is the magnetic field, invariant with respect to a subgroup of isometries.
As an example to the general statement we calculate the invariant magnetic
fields in the Hamiltonians associated with the Kohn Laplacian and for the
Laplace-Beltrami operator on the Heisenberg group.

1. INTRODUCTION

In this paper we study nonlinear Schrodinger equations with external magnetic
field on (generally) non-compact Riemannian manifolds. A summary exposition on
the magnetic Schrodinger operator can be found in [I]. The scope of the paper
includes subelliptic Hamiltonians.

Let M be a differentiable n-dimensional Riemannian manifold and let a be a
1-form on M. We consider the quadratic form

1 1
EO:/ a(fdufua,fdufua)du (1.1)
M 1 1

where 1 is the Riemannian measure of M and a € TM?° (called the symbol of the
quadratic form), is a smooth Hermitian bilinear form with real-valued coefficients
defined on fibers T'M;.

The form F is understood in physics as a generalized Hamiltonian for a quantum
particle on M in presence of the external magnetic field 8 = da. In general, a
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magnetic field is a closed 2-form that does not have to be exact. Quantization
of systems with a non-potential magnetic field is more complicated (see [I0] and
references therein) and is not considered here. The potential « is defined by 3 up to
an arbitrary closed form and the energy is invariant under the gauge transformation
(a,u) — (o + d, eu).

The (stationary) nonlinear Schrédinger equation for complex-valued functions
on M in the weak form is:

1 1
/ (a(;du — ua, gdv —va) + Auv — [u|!2uv)dp = 0, (1.2)
M

v € C§°(M). In what follows we will use the notation ala] := a(a, @), Eglu] :=
Eo(u,u) ete. for quadratic forms.

Let H(M) be the Hilbert space defined as the closure of C§°(M; C) with respect
to the Hilbert norm ([, (|du|® + |u|2)d,u)1/2. For an open set 2 C M the subspace
H'(Q) will be the closure of C§°(2) in H*(M).

We assume that the symbol a and the number 2* are related via the Sobolev
inequality for the real-valued functions u € H'(M):

| (el + P> el € 227 (1)

and that, in restriction to H'(Q) with any bounded  C M, and with ¢ € (2,2%),
this imbedding is compact.

This is true, for example, when al¢] > ¢[£|* with some ¢ > 0 (the uniformly
elliptic case) and when M satisfies the assumption below. In this case 2* =
% for n > 2, and 2* = oo for n = 2. The relation holds as well when
M is a Lie group and the symbol of Ey is a = Zj X; ® X, where X; € TM,
j = 1,...,m, are left-invariant vector fields. If the subsequent commutators of
X, span the whole tangent space of M (Hérmander condition), then there exists
a N > n, called homogeneous dimension, such that holds with 2* = %
(8, @ 19] and references therein).

Let now HL(M) (resp. HL(Q)) be the closure of C§°(M;C) (resp. C5°(22;C))
in the metric of

Efu] = Eolu] + [[ul22 a1 4y (1.4)
The following inequality is an elementary generalization of the diamagnetic inequal-
ity, well known for the Euclidean case (see e.g. [13]).

Lemma 1.1. Let a € TM* and let a be as above. The following inequality is true
for every uw € C§°(M;C) at every point where u # 0:

aldu — iua] > ald|ul]. (1.5)

Proof. Let v, w be the real and the imaginary parts of u. The assertion follows
from the following chain of identities that use the bilinearity of a and the chain
rule:

aldu — iua] — ald|u|] = aldu] + |ul*ala] — 2va(a, dw) + 2wa(a, dv)
— |u| 72 {v*a[dv] + w?aldw] + 2vwa(dv, dw) }
= |u|? {afvdw — wdv] + 2|u|?a(a, wdv — vdw) + |u|*ala] }
= |u|"2a[wdv — vdw + |u|?a] > 0.

O
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Proposition 1.2. The following inequality holds:
B(u) > [||ullF arys u € Ho(M). (1.6)

Moreover, the space HL(M) is continuously imbedded into L(M, ), q € (2,2*, and
for any bounded open Q C M the imbedding of H:(Q) into LI(2, i) is compact.

Proof. Using approximation operators T, : C3(M) — C§(M), Tou := (u®+€2)1/? —
€, one can immediately deduce from Lemma (see for details the proof of Lemma
7.6 in [7]) that v € HL(M) = |u| € HY(M) with Ey(u) > |||“H|%11(M)' Thus,
by applied to |u|, the space HL(M) is continuously embedded into L9 (M, y)
and for any open bounded (), the subspace H(Q) is compactly embedded into
LI, p). O

Critical points of the map u — (E(u), [ |u|?%dp), H — R? provide solutions of the
equation (up to a scalar multiple). We look here for solutions of the ground
state type, that is, the minimizers in the problem

cq:= inf  Elul,qe€ (2,2). (1.7)

S s luldp=1

By analogy with the semilinear elliptic problem for the Laplacian on R™ without a
magnetic field, the minimum in the problem is not expected to exist without
substantial additional assumption. Existence of a minimizer is known for in
the Euclidean case with a constant magnetic field ([5]). If the field is not constant, or
a potential term is added to the equation, existence of minimum has been derived
from various penalty conditions at infinity, typically involving a potential term
JV(x)|u* in the energy (see [12]). One may also observe absence of minimizer
if the penalty condition is appropriately reversed ([5]). In this paper we consider
invariant (which, in case of a discrete group, means space-periodic) magnetic fields
on manifolds that are co-compact with respect to their isometry groups, a class
that includes homogeneous Riemannian spaces and in particular, Lie groups.

Let I be a subgroup of the isometry group of M, closed in the CO-topology. We
assume that there is a compact set K C M such that

UJnk =M. (1.8)
nel

We assume that the symbol a is invariant with respect to the transformations
n € I. This is true, in particular, if it is the symbol of the Laplace-Beltrami operator
or of an invariant subelliptic operator as defined above.

Consider now the condition of invariance of the magnetic field 8. The invariance
relation Vn, nB = 3, where n : TM},)J2 — TM?%? is the natural action of the isometry
n € I on 2-forms, written in terms of the magnetic potential « is equivalent to
d(na —a) = 0 where  : TMy, — TM; is the natural action of n € I on the
cotangent bundle of M. For a technical reason (existence of global magnetic shifts)
we put a somewhat stronger condition on «, namely that

Vn € I,no — o is exact. (1.9)

This will allow to construct global magnetic shifts relative to n € I in the next
section.
The main result of this paper is
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Theorem 1.3. Let a and p be invariant under the action of the group I. Assume

(1.3), (L.8), (1.9). Then the problem (L.7) has a point of minimum which, up to

the constant multiple is a non-trivial solution of (1.2]).

Remark 1.4. The statement of the theorem remains true if one replaces in the
energy the term [ |ul? in Eu] with [V(2)|ul?du, V € L}, (M, u), infpr Vo> 0
provided that V on =V, n € I. This generalization does not require any essential
changes in the proof.

The proof of the existence of the minimum in is based on the concentration
compactness principle (see [I4} [15] for a fundamental exposition for the subcritical
case). One can use here the approach of [3[18], and we give an essentially equivalent
proof, using a general “multi-bump” expansion for bounded sequences (in the spirit
of [16]) from [I7].

In what follows we assume conditions of Theorem

2. CONCENTRATION COMPACTNESS WITH MAGNETIC SHIFTS

By (1.9), for every n € I there exists a v, € C°°(M) such that
no — o = diy,. (2.1)

This implies that diy;q = 0, so that 1q is constant on connected components of M.
Since the relation (2.1)) is satisfied by ), — 1i4, we normalize 1), by setting

ia(x) =0, z€ M. (2.2)
Let
gnpu=e"1uon, wue O (M). (2.3)

The action g, on u € C§°(M) (as well as its continuous extension below) is called
a magnetic shift. We set

D= {gn}nel- (2.4)

Lemma 2.1. Every operator g € D extends by continuity to a unitary operator
on HL(M). The (renamed) set D of extended operators is a multiplicative operator
group on HL(M).

Proof. Tt suffices to prove that

Gn1 =gy s (2.5)
Gn-1 = g;

for every i € I. To prove ([2.5)), note that from (2.1]) and (2.2)) it follows immediately
that

g = —(t6y1 0m). (2.7)

1 i, —1

Then solving the equation g,u = v, one has v = e~ ¥non 'y o N =e 1

uomn .
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In order to prove ([2.6)), consider the following calculations, taking into account
invariance properties of a and pu, (2.7)) and (1.9)):

Ey(u, gyv) = / e "a (du+ iua, d(v on) — idyv on+i(von)a)du
M
_ / e~ Wnon g ((du) o N 4i(uwon n " o, dv + wa) dp
M

= / entq (duon™) +i(uon™)(a+ dip,—1),dv + iva) du
M
= Eo(gy-1u,v), u,v € Cg°(M).

O

Lemma 2.2. The group D on HL(M) is a set of dislocations according to [I7], i.e.
a set of unitary operators on a separable Hilbert space satisfying the condition:

(*) Any sequence g € D thatl does not converge to zero weakly has a strongly
convergent subsequence.

We recall that a sequence of operators g in a Banach space FE is called strongly
convergent if for every = € E, gpx converges.

Proof. Assume that g,, # 0. Then there exist u,v € C§°(M) and a renamed
subsequence of 7y, such that (g, u,v) /4 0, so that n;l(supp u) Nsuppov # B. Let
x, € suppu be such that ngzp € suppw. Since suppw is compact, a renamed
subsequence of xj converges to some z € suppu. Since supp v is compact and 7y
are isometries, a renamed subsequence of 7,z converges, and therefore 7, converges
to some 7 € I in the compact-open topology (cf. [II]) and therefore uniformly on
compact sets. Then g,, v converges for any v € C§°(M) by convergence of integrals
under uniform convergence.

Since operators in D are unitary, it suffices to verify the strong operator con-
vergence on C§°(M), which in turn follows from convergence of integrals under
uniform convergence. O

Definition 2.3. Let u,u, € H}(M). We will say that uy, converges to u D-weakly,
which we will denote as uy, > u, if for all ¢ € HL(M),

lim sup(g(ur —u), ) = 0. (2.8)
k—oo geD

Lemma 2.4. Let u, € H:(M) be a bounded sequence. Then

e 2 0= up — 0 in LI(M, p), q € (2,2%). (2.9)

Proof. If g, ur, — 0, then due to the inequality (1.6)), |ux| o — 0 in H'(M).
Then |ug| — 0 in LY(M, u) by [2, Lemma 3.7] (when a is uniformly elliptic, one can
also refer to [0, Lemma 2.6]). O



6 K. TINTAREV EJDE-2004/123

Theorem 2.5 ([I7]). Let uj, € H be a bounded sequence. Then there exist w™ €
H, g,(cn) € D, k,n € N, such that for a renumbered subsequence

—1

g =id, g g™ =0 forn#m, (2.10)
-1
w™ =w — lim g,in) U, (2.11)
> w2 < limsup [|ugl|? (212)
neN

u -y gMwm 2o, (2.13)

neN

Lemma 2.6. Let D be the group of magnetic shifts in H: (M), let uy, be a bounded
sequence in H'(M) and let w™ be as in Theorem Then the corresponded
renamed subsequence uy satisfies

[ tulrau =3 [ w®rede, ge 22), (2.14)
M neN’M

Proof. Apply Theorem for the bounded (by sequence |ug| in H'(M)
equipped with the dislocation group Dy := {v — vomn,n € I. Since the weak
convergence in both spaces H! and H} implies convergence in measure, the weak
limits in the (H!, Dy)-case, written in terms of those in the (H}, D)-case,
are |w(™|. Note now that g,, — 0 (in (H', D)) implies that for any compact set
K C M, dineK,0) — co. Indeed, if nix) were bounded for some z; € K, then,
since ny, are isometries, 1y converges in the CO topology (cf. [TI1]). Then the asser-
tion of the lemma follows elementarily from restriction of |w(™)| to disjoint balls of
arbitrarily large radius. O

3. MAGNETIC SCHRODINGER EQUATION ON THE HEISENBERG GROUP

In this section we give an example of a manifold with a subelliptic energy form
and a potential magnetic field to which Theorem applies.

Let H? be the space R?, whose elements we denote as n = (z,y,t), equipped
with the group operation

7’)077/ — (g;+x’,y+y/,t+t/+2(xy'—yx')) (31)

This group multiplication endows H? with the structure of a Lie group with
e = 0. Two invariant vector fields X = 0, + 2yd; and Y = 9, — 220, satisfy the
bracket condition, namely, together with 7' = [X,Y] they form the basis in the
tangent space, which yields the homogeneous dimension N = 4 and 2* = 4. The
Riemannian structure is fixed by setting the scalar product at TH? so that the
given basis X, Y, T is orthonormal. The Riemannian measure and the left and the
right Haar measure on H? coincide with the Lebesgue measure.

The Sobolev inequality holds with the subelliptic symbol a = X X+Y ®Y
for 2 < ¢ < 4 and with the elliptic symbol X @ X + Y QY + T ® T for 2 < ¢ < 6,
and for any open bounded 2 there is compactness in the Sobolev imbedding for
functions with support in Q [8], [].

Every homogeneous magnetic field on the Heisenberg group has a form g =
Adt Ndx+ Bdy Adt+ (C —2By+2Ax)dx Ady with arbitrary constants A, B,C € R
(one can verify by direct substitution, and the field is uniquely defined by its
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value at the origin due to transitivity). A magnetic potential « satisfying 5 = da,
can be written in the following form, uniequely up to the differential of an arbitrary
function:

1 1 1
o= §A(tdz —zdt+ 22 dy —2zydx)+ iB(ydt —tdy —2xydy+yidx) + §C(zdy —ydx).
The function 1, that satisfies naw — o = di),;, and the normalization condition
Ye(x,y,t) =0 is as follows:

w(m’,y’,t’) (.’E, Y, t)

1 1 1
= §A(t'1‘ — 2t — 2y — ) + iB(y’t —ty—y e — 2y + 50(33’3/ —y'x).
Once we evaluate a(X) = $A(t—4ay)+ 2By* —1Cy and a(Y) = 3A2? + 1 B(—t -
dzy) + %Cw, we can write the invariant subelliptic energy functional Ey on the
Heisenberg group as

ior ivot ‘2 2
10u 2 Ou 3 1 1
S S (CAx? 4+ ZB(—t—4 = 2
iy STy (4 x4+ 5 (—t — 4zy) + QCJ:)U\ Ydx dy dt,

10 2 0 1 3 1
Bolul = [ (1555 + Ju57 — (GA( = 4o9) + 1By* = 50yl

so that Theorem [I.3] gives existence of the minimizer in the inequality
Boful + [ udz > clulloqa, (3.2
for 2 < g < 4.

For the same reason one has existence of the minimizer with 2 < ¢ < 4 that
corresponds to

B 10u 2 Ou 1 3
Bolul = [ (Pla.u. 013 50 + 25 = (GA( = day)+ 1 By
1 2 10u 2 Ou
- 50y)u| + Q(%%t)b@ Tt

1 1
- (%sz + §B(—t — dxy) + §C:v)u|2)dx dy dt,

where P, are bounded positive measurable functions, bounded away from zero,
periodic with respect to the group shifts with z’,y’, 2’ € Z.
The existence result applied to the uniformly elliptic case involves the functional

_ 10u 2 Ou |1 3 5 1 9
Eo[u] —/M(P(xay»t)\g%‘f‘gya (§A(t 4xy)+ZBy 503/)“\
10u 2 Ou 3, , 1 1 9

+ R( t)|1@fl(B — Az)ul?)dx dy dt

r,Y, ot 9 Y z)u T ayat,

with 2 < ¢ < 6 (we used here the evaluation a(9;) = 1(By — Az)), assuming that
P, Q, R satisfy the same conditions as P, @ in the previous example.
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4. PROOF OF THEOREM [L.3|

Proof. Let uj be a minimizing sequence for the relation (1.7)) We apply Theorem 2.5

S 10 2 ) < - (4.1)

At the same time we have (2.14]). From (2.14) and (4.1]) follows that
D ™ an < gt (4.2)
where t,, = ||w(”)||qu(X .- Note now that 1l can be written as > t, = 1, so

that, since ¢ > 2, > ti/q = 1 only if all but one of t,,, say for n = ng, equals zero.
We conclude that w(™) is the minimizer for (1.7). O

Remark 4.1. We note that from the proof of Theorem [I.3|follows that that for any
minimizing sequence uy for there is a sequence 7, such that g, u, converges
to the minimizer in H}(M). Indeed, with nr = (n;°)~" as above we have a weak
convergence and convergence of the norms, and thus the norm convergence.
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