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GROWTH OF MEROMORPHIC SOLUTIONS TO
HOMOGENEOUS AND NON-HOMOGENEOUS LINEAR

(DIFFERENTIAL-)DIFFERENCE EQUATIONS WITH
MEROMORPHIC COEFFICIENTS

YAN-PING ZHOU, XIU-MIN ZHENG

Abstract. In this article, we study the growth of meromorphic solutions

of homogeneous and non-homogeneous linear difference equations and linear
differential-difference equations. When there exists only one coefficient having

the maximal iterated order or having the maximal iterated type among those

having the maximal iterated order, and the above coefficient satisfies certain
conditions on its poles, we obtain estimates on the lower bound of the iterated

order of the meromorphic solutions. The case p = 1 is also discussed and

corresponding results are obtained by strengthening some conditions.

1. Introduction and statement of main results

Throughout this article, we use the standard notation and basic results of Nevan-
linna’s value distribution theory (see e.g. [7, 9, 17]). In addition, we use σ(f), τ(f),
λ(1/f) to denote respectively the order, the type, and the exponent of convergence
of the poles of a meromorphic function f(z) in the complex plane. For p ∈ N+, we
introduce the definitions of the iterated order, the iterated type and the iterated
exponent of convergence of the poles of f(z) as follows:

σp(f) = lim sup
r→∞

logp T (r, f)
log r

, τp(f) = lim sup
r→∞

logp−1 T (r, f)
rσp(f)

,

λp(
1
f

) = lim sup
r→∞

logpN(r, f)
log r

(see e.g. [8, 15]). In particular, σ1(f) = σ(f), τ1(f) = τ(f), λ1(1/f) = λ(1/f).
Recently, the properties of meromorphic solutions of complex difference equa-

tions have become a subject of great interest from the viewpoint of Nevanlinna
theory and its difference analogues. By this important tool, many scholars investi-
gated the homogeneous linear difference equation

Ak(z)f(z + ck) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0 (1.1)

and its special case

Ak(z)f(z + k) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = 0, (1.2)
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where k ∈ N+, ci(i = 1, . . . , k) are distinct non-zero complex constants, and ob-
tained many results on the growth and value distribution of meromorphic solutions
of (1.1) or (1.2) (see e.g. [2, 3, 4, 10, 11, 12, 13, 14, 18]).

When the coefficients of (1.1) or (1.2) are entire functions of finite order, Chiang-
Feng [4] and Laine-Yang [10] obtained the following two theorems, respectively.

Theorem 1.1 ([4]). Let Aj(z) (j = 0, 1, . . . , k) be entire functions such that there
exists an integer l(0 ≤ l ≤ k) such that

σ(Al) > max
0≤j≤k, j 6=l

{σ(Aj)}.

If f(z) (6≡ 0) is a meromorphic solution to (1.2), then we have σ(f) ≥ σ(Al) + 1.

Theorem 1.2 ([10]). Let Aj(z) (j = 0, 1, . . . , k) be entire functions of finite order
such that among those having the maximal order σ = max0≤j≤k{σ(Aj)}, exactly
one has its type strictly greater than the others. Then for any meromorphic solution
f(z) (6≡ 0) of (1.1), we have σ(f) ≥ σ + 1.

When there exists more than one coefficient having the infinite order among
entire functions of (1.2), Liu-Mao [13] obtained the following theorem.

Theorem 1.3 ([13]). Let Aj(z)(j = 0, 1, . . . , k) be entire functions. If there exists
an integer l (0 ≤ l ≤ k) such that

max{σ2(Aj) : j = 0, 1, . . . , k, j 6= l} ≤ σ2(Al) (0 < σ2(Al) <∞),

max{τ2(Aj) : σ2(Aj) = σ2(Al), j = 0, 1, . . . , k, j 6= l} < τ2(Al) (0 < τ2(Al) <∞),

then every meromorphic solution f(z)( 6≡ 0) of (1.2) satisfies σ(f) =∞ and σ2(f) ≥
σ2(Al).

Liu-Mao[13] considered the hyper-order of meromorphic solutions of the non-
homogeneous linear difference equation

Ak(z)f(z + k) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = F (z), (1.3)

where k ∈ N+, and obtained the following theorem.

Theorem 1.4 ([13]). Let Aj(z)(j = 0, 1, . . . , k) satisfy the hypothesis of Theorem
1.3, and F (z) (6≡ 0) be an entire function.

(i) If σ2(F ) < σ2(Al), or σ2(F ) = σ2(Al) and τ2(F ) < τ2(Al), then every
meromorphic solution f(z)( 6≡ 0) of (1.3) satisfies σ(f) =∞ and σ2(f) ≥ σ2(Al).

(ii) If σ2(F ) > σ2(Al), then every meromorphic solution f(z)( 6≡ 0) of (1.3)
satisfies σ(f) =∞ and σ2(f) ≥ σ2(F ).

Note that in Theorems 1.1–1.4, the coefficients of (1.1)-(1.3) are entire functions.
Naturally, a question arises: When the coefficients are meromorphic functions, the
above conclusions hold yet? The main aim of our article is to answer the question
for both the case of the homogeneous equation (1.1) and the case of the non-
homogeneous equation

Ak(z)f(z + ck) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = F (z), (1.4)

where k ∈ N+, ci(i = 1, . . . , k) are distinct non-zero complex constants, and obtain
the following results.

Firstly, we obtain the following Theorem 1.5 when p ≥ 2.
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Theorem 1.5. Let p ∈ N+ \ {1}, Aj(z)(j = 0, 1, . . . , k) and F (z) be meromorphic
functions. If there exists an integer l(0 ≤ l ≤ k) such that Al(z) satisfies

λp(
1
Al

) < σp(Al) <∞,

max{σp(Aj) : j = 0, 1, . . . , k, j 6= l} ≤ σp(Al),
max{τp(Aj) : σp(Aj) = σp(Al), j = 0, 1, . . . , k, j 6= l} < τp(Al) <∞.

(i) If σp(F ) < σp(Al), or σp(F ) = σp(Al) and τp(F ) 6= τp(Al), then every
meromorphic solution f(z) (6≡ 0) of (1.4) satisfies σp(f) ≥ σp(Al).

(ii) If σp(F ) > σp(Al), then every meromorphic solution f(z) of (1.4) satisfies
σp(f) ≥ σp(F ).

For p = 1, Latreuch-Beläıdi [11] considered the case of the homogeneous equation
(1.2), and obtained the following theorem.

Theorem 1.6 ([11]). Let Aj(z)(j = 0, 1, . . . , k) be meromorphic functions such
that λ( 1

Al
) < σ(Al) = σ(0 < σ <∞) and τ(Al) = τ(0 < τ <∞). Suppose that

max{σ(Aj) : j = 0, 1, . . . , k, j 6= l} ≤ σ and
∑

σ(Aj)=σ, j 6=l

τ(Aj) < τ.

If f(z) (6≡ 0) is a meromorphic solution of (1.2), then σ(f) ≥ σ(Al) + 1.

Further, we consider the case of the non-homogeneous equation (1.4), and obtain
the following theorem.

Theorem 1.7. Let Aj(z) (j = 0, 1, . . . , k) and F (z) be meromorphic functions. If
there exists an integer l(0 ≤ l ≤ k) such that Al(z) satisfies

λ(
1
Al

) < σ(Al) <∞,

max{σ(Aj) : j = 0, 1, . . . , k, j 6= l} ≤ σ(Al),∑
σ(Aj)=σ(Al), j 6=l

τ(Aj) < τ(Al) <∞.

(i) If σ(F ) < σ(Al), or σ(F ) = σ(Al) and
∑
σ(Aj)=σ(Al), j 6=l τ(Aj) + τ(F ) <

τ(Al), or σ(F ) = σ(Al) and
∑
σ(Aj)=σ(Al)

τ(Aj) < τ(F ), then every meromorphic
solution f(z) (6≡ 0) of (1.4) satisfies σ(f) ≥ σ(Al). Further, if F (z) ≡ 0, then
σ(f) ≥ σ(Al) + 1.

(ii) If σ(F ) > σ(Al), then every meromorphic solution f(z) of (1.4) satisfies
σ(f) ≥ σ(F ).

Remark 1.8. From the proof of Theorem 1.5, we can see that the condition
λp( 1

Al
) < σp(Al) in Theorem 1.5 can be replaced by δ(∞, Al) > 0; but from the

proof of Theorem 1.7, we can see that the condition λ( 1
Al

) < σ(Al) in Theorem 1.7
may not be replaced by δ(∞, Al) > 0.

Next, on the base of complex linear difference equations (1.1)-(1.4), we proceed
in this way by combining the reasoning methods from both complex differential
equations and complex difference equations, that is, we study the more general
complex linear differential-difference equations

n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci) = 0, (1.5)
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n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci) = F (z), (1.6)

where n,m ∈ N+, ci(i = 0, 1, . . . , n) are distinct complex constants.
Wu-Zheng [16] investigated the growth of meromorphic solutions of the homo-

geneous linear differential-difference equation (1.5) and obtained the following the-
orem.

Theorem 1.9 ([16]). Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m) be meromorphic
functions such that there exists an integer l(0 ≤ l ≤ k) satisfying

max{σ(Aij), (i, j) 6= (l, 0)} < σ(Al0) <∞ and δ(∞, Al0) > 0.

If f(z) (6≡ 0) is a meromorphic solution of (1.5), then we have σ(f) ≥ σ(Al0) + 1.

Similar to Theorem 1.7, we consider the non-homogeneous linear differential-
difference equations (1.6) and obtain the following theorem.

Theorem 1.10. Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . .m) and F (z) be meromor-
phic functions. If there exists an integer l(0 ≤ l ≤ n) such that

max{σ(Aij), (i, j) 6= (l, 0)} < σ(Al0) <∞ and δ(∞, Al0) > 0.

(i) If σ(F ) < σ(Al0), then every meromorphic solution f(z) (6≡ 0) of (1.6)
satisfies σ(f) ≥ σ(Al0). Further, if F (z) ≡ 0, then σ(f) ≥ σ(Al0) + 1.

(ii) If σ(F ) > σ(Al0), then every meromorphic solution f(z) of (1.6) satisfies
σ(f) ≥ σ(F ).

For the homogeneous or non-homogeneous linear differential-difference equation
(1.6), we obtain the following theorem under some different conditions from Theo-
rem 1.10.

Theorem 1.11. Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m) and F (z) be meromor-
phic functions. If there exists an integer l(0 ≤ l ≤ n) such that Al0(z) satisfies

λ(
1
Al0

) < σ(Al0) <∞,

max{σ(Aij), (i, j) 6= (l, 0)} ≤ σ(Al0),∑
σ(Aij)=σ(Al0), (i,j)6=(l,0)

τ(Aij) < τ(Al0) <∞.

(i) If σ(F ) < σ(Al0), or σ(F ) = σ(Al0) and
∑
σ(Aij)=σ(Al0), (i,j) 6=(l,0) τ(Aij) +

τ(F ) < τ(Al0), or σ(F ) = σ(Al0) and
∑
σ(Aij)=σ(Al0)

τ(Aij) < τ(F ), then every
meromorphic solution f(z) ( 6≡ 0) of (1.6) satisfies σ(f) ≥ σ(Al0). Further, if
F (z) ≡ 0, then σ(f) ≥ σ(Al0) + 1.

(ii) If σ(F ) > σ(Al0), then every meromorphic solution f(z) of (1.6) satisfies
σ(f) ≥ σ(F ).

Further, we generalize Theorems 1.10 and 1.11 into the iterated case, and obtain
the following theorem.

Theorem 1.12. Let p ∈ N+ \ {1}, Aij(z)(i = 0, 1, . . . , n, j = 0, 1, . . . ,m) and F (z)
be meromorphic functions. If there exists an integer l(0 ≤ l ≤ n) such that Al0(z)
satisfies

λp(
1
Al0

) < σp(Al0) <∞,
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max{σp(Aij) : (i, j) 6= (l, 0)} ≤ σp(Al0),

max{τp(Aij) : σp(Aij) = σp(Al0), (i, j) 6= (l, 0)} < τp(Al0) <∞.

(i) If σp(F ) < σp(Al0), or σp(F ) = σp(Al0) and τp(F ) 6= τp(Al0), then every
meromorphic solution f(z) (6≡ 0) of (1.6) satisfies σp(f) ≥ σp(Al0).

(ii) If σp(F ) > σp(Al0), then every meromorphic solution f(z) of (1.6) satisfies
σp(f) ≥ σp(F ).

Remark 1.13. From the proofs of Theorems 1.10 and 1.12, we can see respectively
that the condition δ(∞, Al0) > 0 in Theorem 1.10 can be replaced by λ( 1

Al0
) <

σ(Al0), and that the condition λp( 1
Al0

) < σp(Al0) in Theorem 1.12 can be replaced
by δ(∞, Al0) > 0; but from the proof of Theorem 1.11, we can see that the condition
λ( 1

Al0
) < σ(Al0) may not be replaced by δ(∞, Al0) > 0.

2. Preliminary lemmas

Lemma 2.1 ([6]). Let f(z) be a non-constant meromorphic function, c ∈ C, δ < 1,
and ε > 0, then

m(r,
f(z + c)
f(z)

) = o(
T (r + |c|, f)1+ε

rδ
)

for all r outside of a possible exceptional set E with finite logarithmic measure∫
E
dr
r <∞.

Remark 2.2 ([5]). Let f(z) be a meromorphic function, c be a non-zero complex
constant, then we have that for r →∞,

(1 + o(1))T (r − |c|, f) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f).

It follows that for p ∈ N+, σp(f(z + c)) = σp(f), µp(f(z + c)) = µp(f).

Lemma 2.1 and Remark 2.2 result in the following lemma.

Lemma 2.3 ([6]). Let f(z) be a non-constant meromorphic function, c, h ∈ C, c 6=
h, δ < 1, ε > 0, then

m(r,
f(z + c)
f(z + h)

) = o(
T (r + |c− h|+ |h|, f)1+ε

rδ
)

for all r outside of a possible exceptional set E with finite logarithmic measure∫
E
dr
r <∞.

Lemma 2.4 ([1]). Let f(z) be a meromorphic function with 0 < σp(f) < ∞ and
0 < τp(f) < ∞, then for any given β < τp(f), there exists a subset E of [1,+∞)
that has infinite logarithmic measure such that logp−1 T (r, f) > βrσp(f) holds for
all r ∈ E.

Lemma 2.5 ([4]). Let c1, c2 be two complex numbers such that c1 6= c2 and let f(z)
be a finite order meromorphic function. Let σ be the order of f(z), then for each
ε > 0, we have

m(r,
f(z + c1)
f(z + c2)

) = O(rσ−1+ε).
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3. Proofs of main results

Proof of Theorem 1.5. (i) We divide (1.4) by f(z + cl) to get

−Al(z) =
k∑

j=0, j 6=l

Aj(z)
f(z + cj)
f(z + cl)

− F (z)
f(z + cl)

. (3.1)

It follows from (3.1), Lemma 2.3 and Remark 2.2 that for any given ε > 0, we have

T (r,Al) = m(r,Al) +N(r,Al)

≤
k∑

j=0, j 6=l

m(r,Aj) +
k∑

j=0, j 6=l

m(r,
f(z + cj)
f(z + cl)

)

+m(r, F ) +m(r,
1

f(z + cl)
) +N(r,Al) +O(1)

≤
k∑

j=0, j 6=l

T (r,Aj) + o(T (r + 3c), f)1+ε)

+ T (r, F ) + (1 + o(1))T (r + |cl|, f) +N(r,Al) +O(1),

(3.2)

where c = max1≤j≤k{|cj |}, r 6∈ E1,mlE1 <∞, r →∞.
It follows from Lemma 2.4 that for the above ε, there exists a subset E2 with

infinite logarithmic measure such that for all r ∈ E2 and r →∞, we have

T (r,Al) > expp−1{(τp(Al)− ε)rσp(Al)}. (3.3)

Denote

σ1 = max
0≤j≤k

{σp(Aj) : σp(Aj) < σp(Al)}, τ1 = max
j 6=l
{τp(Aj) : σp(Aj) = σp(Al)}.

If σp(Aj) < σp(Al), then for the above ε and sufficiently large r, we have

T (r,Aj) ≤ expp−1{rσ1+ε}. (3.4)

If σp(Aj) = σp(Al), j 6= l, then for the above ε and sufficiently large r, we have

T (r,Aj) ≤ expp−1{(τ1 + ε)rσp(Al)}, j 6= l. (3.5)

By the definition of λp(1/Al), we have that for the above ε and sufficiently large r,

N(r,Al) ≤ expp−1{r
λp( 1

Al
)+ε}. (3.6)

If σp(F ) < σp(Al), then for the above ε and sufficiently large r, we have

T (r, F ) ≤ expp−1{rσp(F )+ε}. (3.7)

Now, we choose sufficiently small ε satisfying 0 < 2ε < min{σp(Al)−σ1, τp(Al)−τ1,
σp(Al)− λp( 1

Al
), σp(Al)− σp(F )}, and deduce from (3.2)-(3.7) that for r ∈ E2 \E1

and r →∞, we have

expp−1{(τp(Al)− ε)rσp(Al)}

< O(expp−1{rσ1+ε}) +O(expp−1{(τ1 + ε)rσp(Al)}) + 3T (2r, f)2

+ expp−1{rσp(F )+ε}+ expp−1{r
λp( 1

Al
)+ε}.

(3.8)

It follows by (3.8) that σp(f) ≥ σp(Al).
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If σp(F ) = σp(Al) and τp(F ) < τp(Al), then for the above ε and sufficiently large
r, we have

T (r, F ) ≤ expp−1{(τp(F ) + ε)rσp(Al)}. (3.9)

Now, we choose sufficiently small ε satisfying

0 < 2ε < min{σp(Al)− σ1, τp(Al)− τ1, σp(Al)− λp(
1
Al

), τp(Al)− τp(F )},

and deduce from (3.2)-(3.6) and (3.9) that for r ∈ E2 \ E1 and r →∞, we have

expp−1{(τp(Al)− ε)rσp(Al)}

< O(expp−1{rσ1+ε}) +O(expp−1{(τ1 + ε)rσp(Al)})

+ 3T (2r, f)2 + expp−1{(τp(F ) + ε)rσp(Al)}+ expp−1{r
λp( 1

Al
)+ε}.

(3.10)

It follows by (3.10) that σp(f) ≥ σp(Al).
If σp(F ) = σp(Al) and τp(F ) > τp(Al), then by Lemma 2.4, for the above ε,

there exists a subset E3 with infinite logarithmic measure such that for all r ∈ E3

and r →∞, we have

T (r, F ) > expp−1{(τp(F )− ε)rσp(Al)}. (3.11)

By the definition of τp(Al), we have that for the above ε and sufficiently large r,

T (r,Al) ≤ expp−1{(τp(Al) + ε)rσp(Al)}. (3.12)

From (1.4) and Remark 2.2 it follows that for sufficiently large r,

T (r, F ) ≤
k∑

j=0, j 6=l

T (r,Aj) + T (r,Al) + (k + 2)T (2r, f). (3.13)

Now, we choose sufficiently small ε satisfying 0 < 2ε < min{σp(Al) − σ1, τp(Al) −
τ1, τp(F ) − τp(Al)}, and from (3.4), (3.5) and (3.11)-(3.13) deduce that for r ∈
E3 \ E1 and r →∞, we have

expp−1{(τp(F )− ε)rσp(Al)}

< O(expp−1{rσ1+ε}) +O(expp−1{(τ1 + ε)rσp(Al)})

+ expp−1{(τp(Al) + ε)rσp(Al)}+ (k + 2)T (2r, f).

(3.14)

It follows by (3.14) that σp(f) ≥ σp(Al).
(ii) If σp(F ) > σp(Al), then we may suppose that σp(f) < σp(F ) on the contrary.

By (1.4) and Remark 2.2, we obtain

σp(Ak(z)f(z + ck) + · · ·+A1(z)f(z + c1) +A0(z)f(z)) < σp(F ),

a contradiction. Hence, we have σp(f) ≥ σp(F ). The proof is complete. �

Proof of Theorem 1.7. (i) If f(z) has infinite order, then the result holds yet. Now,
we suppose that f(z) has finite order. From (3.1), Lemma 2.5 and Remark 2.2 it
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follows that for any given ε > 0 and sufficiently large r, we have

T (r,Al)

= m(r,Al) +N(r,Al)

≤
k∑

j=0, j 6=l

m(r,Aj) +
k∑

j=0, j 6=l

m(r,
f(z + cj)
f(z + cl)

)

+m(r, F ) +m(r,
1

f(z + cl)
) +N(r,Al) +O(1)

≤
k∑

j=0, j 6=l

T (r,Aj) +O(rσ(f)−1+ε)

+ T (r, F ) + (1 + o(1))T (r + |cl|, f) +N(r,Al) +O(1)

≤
k∑

j=0, j 6=l

T (r,Aj) +O(rσ(f)−1+ε) + T (r, F ) +O(rσ(f)+ε) +N(r,Al)

≤
k∑

j=0, j 6=l

T (r,Aj) +O(rσ(f)+ε) + T (r, F ) +N(r,Al).

(3.15)

From Lemma 2.4 it follows that for the above ε, there exists a subset E4 with
infinite logarithmic measure such that for all r ∈ E4 and r →∞, we have

T (r,Al) > (τ(Al)− ε)rσ(Al). (3.16)

Denote

σ2 = max
0≤j≤k

{σ(Aj) : σ(Aj) < σ(Al)}, τ2 =
∑

σ(Aj)=σ(Al), j 6=l

τ(Aj).

If σ(Aj) < σ(Al), then for the above ε and sufficiently large r, we have

T (r,Aj) ≤ rσ2+ε. (3.17)

If σ(Aj) = σ(Al), j 6= l, then for the above ε and sufficiently large r, we have

T (r,Aj) ≤ (τ(Aj) + ε)rσ(Al), j 6= l. (3.18)

By the definition of λ( 1
Al

), we have that for the above ε and sufficiently large r,

N(r,Al) < r
λ( 1

Al
)+ε

. (3.19)

If σ(F ) < σ(Al), then for the above ε and sufficiently large r, we have

T (r, F ) ≤ rσ(F )+ε. (3.20)

Now, we may choose sufficiently small ε satisfying 0 < (k + 2)ε < min{σ(Al) −
λ( 1

Al
), σ(Al)−σ2, σ(Al)−σ(F ), τ(Al)− τ2}, and deduce from (3.15)-(3.20) that for

r ∈ E4 and r →∞, we have

(τ(Al)− τ2− (k+ 1)ε)rσ(Al) < O(rσ2+ε) + rσ(F )+ε+ r
λ( 1

Al
)+ε+O(rσ(f)+ε). (3.21)

It follows by (3.21) that σ(f) ≥ σ(Al).
If σ(F ) = σ(Al) and τ2 + τ(F ) < τ(Al), then for the above ε and sufficiently

large r, we have
T (r, F ) ≤ (τ(F ) + ε)rσ(Al). (3.22)
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Now, we may choose sufficiently small ε satisfying 0 < (k + 3)ε < min{σ(Al) −
λ( 1

Al
), σ(Al) − σ2, τ(Al) − τ(F ) − τ2}, and deduce from (3.15)-(3.19) and (3.22)

that for r ∈ E4 and r →∞, we have

(τ(Al)− τ(F )− τ2 − (k + 2)ε)rσ(Al) < O(rσ2+ε) + r
λ( 1

Al
)+ε +O(rσ(f)+ε). (3.23)

It follows by (3.23) that σ(f) ≥ σ(Al).
If σ(F ) = σ(Al) and τ2 + τ(Al) < τ(F ), then by Lemma 2.4, for the above ε,

there exists a subset E5 with infinite logarithmic measure such that for all r ∈ E5

and r →∞, we have
T (r, F ) > (τ(F )− ε)rσ(Al). (3.24)

By the definition of τ(Al), we have that for the above ε and sufficiently large r,

T (r,Al) ≤ (τ(Al) + ε)rσ(Al). (3.25)

Now, we may choose sufficiently small ε satisfying 0 < (k + 3)ε < min{σ(Al) −
σ2, τ(F )− τ(Al)− τ2}, and deduce from (3.13), (3.17)-(3.18) and (3.24)-(3.25) that
for r ∈ E5 and r →∞, we have

(τ(F )− τ(Al)− τ2 − (k + 2)ε)rσ(Al) < O(rσ2+ε) +O(rσ(f)+ε). (3.26)

It follows by (3.26) that σ(f) ≥ σ(Al).
Further, if F (z) ≡ 0, then by using a similar reasoning method as the one in

Theorem 1.6, we have σ(f) ≥ σ(Al) + 1.
(ii) If σ(F ) > σ(Al), then we may suppose that σ(f) < σ(F ) on the contrary.

By (1.4) and Remark 2.2, we obtain

σ(Ak(z)f(z + ck) + · · ·+A1(z)f(z + c1) +A0(z)f(z)) < σ(F ),

a contradiction. Hence, we have σ(f) ≥ σ(F ). The proof is complete. �

Proof of Theorem 1.10. (i) If f(z) has infinite order, then the result holds. Now,
we suppose that f(z) has finite order. We divide (1.6) by f(z + cl) to obtain

−Al0(z) =
n∑

i=0, i 6=l

m∑
j=0

Aij(z)
f (j)(z + ci)
f(z + ci)

f(z + ci)
f(z + cl)

+
m∑
j=1

Alj(z)
f (j)(z + cl)
f(z + cl)

− F (z)
f(z + cl)

.

(3.27)

By (3.27) and Remark 2.2, for sufficiently large r, we have

m(r,Al0)

≤
n∑

i=0, i 6=l

m∑
j=0

m(r,Aij) +
m∑
j=1

m(r,Alj) +
n∑
i=0

m∑
j=1

m(r,
f (j)(z + ci)
f(z + ci)

)

+
n∑

i=0, i 6=l

m(r,
f(z + ci)
f(z + cl)

) +m(r,
F (z)

f(z + cl)
) +O(1)

≤
n∑

i=0, i 6=l

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Alj) +
n∑
i=0

m∑
j=1

m(r,
f (j)(z + ci)
f(z + ci)

)

+
n∑

i=0, i 6=l

m(r,
f(z + ci)
f(z + cl)

) + T (r, F ) + (1 + o(1))T (r + |cl|, f) +O(1).

(3.28)
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By Lemma 2.5 it follows that for any given ε > 0, we have

m(r,
f(z + ci)
f(z + cl)

) = O(rσ(f)−1+ε), i = 0, 1, . . . , n, i 6= l. (3.29)

The logarithmic derivative lemma and Remark 2.2 result in that for sufficiently
large r, we have

m(r,
f (j)(z + ci)
f(z + ci)

) = O(log r), i = 0, 1, . . . , n, j = 1, 2, . . . ,m. (3.30)

Set δ = δ(∞, Al0) > 0, then for sufficiently large r, we have

m(r,Al0) ≥ δ

2
T (r,Al0). (3.31)

Substituting (3.29)-(3.31) into (3.28) yields that for sufficiently large r, we have

δ

2
T (r,Al0) ≤

n∑
i=0, i 6=l

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Alj) + T (r, F )

+O(log r) +O(rσ(f)−1+ε) + 2T (2r, f).

(3.32)

Then (3.32) results in

σ(Al0) ≤ max
(i,j)6=(l,0)

{σ(f), σ(f)− 1 + ε, σ(Aij), σ(F )}. (3.33)

If σ(F ) < σ(Al0), then by (3.33) and the fact σ(Aij) < σ(Al0), (i, j) 6= (l, 0), we
have σ(f) ≥ σ(Al0).

Further, if F (z) ≡ 0, then by Theorem 1.9 we have σ(f) ≥ σ(Al0) + 1.
(ii) If σ(F ) > σ(Al0), then we may suppose that σ(f) < σ(F ) on the contrary.

By (1.6) and Remark 2.2, we obtain

σ
( n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci)
)
< σ(F ),

a contradiction. Hence, we have σ(f) ≥ σ(F ). The proof is complete. �

Proof of Theorem 1.11. (i) If f(z) has infinite order, then the result holds. Now,
we suppose that f(z) has finite order. If σ(F ) < σ(Al0), or σ(F ) = σ(Al0) and

∑
σ(Aij)=σ(Al0), (i,j)6=(l,0)

τ(Aij) + τ(F ) < τ(Al0),
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then by (3.27) and Remark 2.2, we have that for sufficiently large r,

T (r,Al0)

= m(r,Al0) +N(r,Al0)

≤
n∑

i=0, i 6=l

m∑
j=0

m(r,Aij) +
m∑
j=1

m(r,Alj) +
n∑
i=0

m∑
j=1

m(r,
f (j)(z + ci)
f(z + ci)

)

+
n∑

i=0, i 6=l

m(r,
f(z + ci)
f(z + cl)

) +m(r,
F (z)

f(z + cl)
) +N(r,Al0) +O(1)

≤
n∑

i=0, i 6=l

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Alj)

+
n∑
i=0

m∑
j=1

m(r,
f (j)(z + ci)
f(z + ci)

) +
n∑

i=0, i 6=l

m(r,
f(z + ci)
f(z + cl)

)

+ T (r, F ) + (1 + o(1))T (r + |cl|, f) +N(r,Al0) +O(1).

(3.34)

Also (3.29) and (3.30) hold. Then by using a similar reasoning as in (3.16)-(3.23)
in the proof of Theorem 1.7, we have σ(f) ≥ σ(Al0).

If σ(F ) = σ(Al0) and ∑
σ(Aij)=σ(Al0)

τ(Aij) < τ(F ),

then by (1.6), Remark 2.2 and T (r, f (n)) ≤ (n + 1)T (r, f) + S(r, f), n ∈ N+, we
have that for sufficiently large r,

T (r, F ) ≤
∑

(i,j)6=(l,0)

T (r,Aij) + T (r,Al0) +
n∑
i=0

m∑
j=0

T (r, f (j)(z + ci))

≤
∑

(i,j)6=(l,0)

T (r,Aij) + T (r,Al0) +O(T (2r, f)) + S(r, f).
(3.35)

Then by using a similar reasoning method as (3.24)-(3.26) in Theorem 1.7, we have
σ(f) ≥ σ(Al0).

Further, if F (z) ≡ 0, then by (1.5), (3.29) and (3.30) it follows that

T (r,Al0) ≤
n∑

i=0, i 6=l

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Alj)

+O(rσ(f)−1+ε) +O(log r) +N(r,Al0).

(3.36)

From (3.36) it follows that σ(f) ≥ σ(Al0) + 1.
(ii) If σ(F ) > σ(Al0), then we may suppose that σ(f) < σ(F ) on the contrary.

By (1.6) and Remark 2.2, we obtain

σ(
n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci)) < σ(F ),

a contradiction. Hence, we have σ(f) ≥ σ(F ). The proof is complete. �
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Proof of Theorem 1.12. (i) If σp(F ) < σp(Al0), or σp(F ) = σp(Al0) and τp(F ) <
τp(Al0), then by (1.6) it follows that (3.34) holds. By the logarithmic derivative
lemma and Lemma 2.3, we may rewrite (3.34) as

T (r,Al0) ≤
n∑

i=0, i 6=l

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Alj) + S(r, f)

+ 3T (2r, f)2 + T (r, F ) +N(r,Al0) +O(1).

(3.37)

Then by using a similar reasoning method as (3.3)-(3.10) in Theorem 1.5, we have
σp(f) ≥ σp(Al0).

If σp(F ) = σp(Al0) and τp(F ) > τp(Al0), then (3.35) holds. Then by using a
similar reasoning method as (3.11)-(3.14) in Theorem 1.5, we have σp(f) ≥ σp(Al0).

(ii) If σp(F ) > σp(Al0), then we may suppose that σp(f) < σp(F ) on the contrary.
By (1.6) and Remark 2.2, we obtain

σp(
n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci)) < σp(F ),

a contradiction. Hence, we have σp(f) ≥ σp(F ). The proof is complete. �

4. Examples

The following examples show that the equalities in Theorems 1.7, 1.10 and 1.11
can be achieved, that is, these results are sharp.

Example 4.1. For Theorem 1.7, we consider the meromorphic functions

f(z) = e3z
2

tan z and g(z) = ez
3

tan z.

Case 1. σ(F ) < σ(Al) and F (z) 6≡ 0. Then f(z) satisfies the difference equation

A2(z)f(z + 2π) +A1(z)f(z + π) +A0(z)f(z) = F (z), (4.1)

where

A2(z) = e−3z2 cot z, A1(z) = ez
2−6πz−3π2

,

A0(z) = −ez
2
, F (z) = e12πz+12π2

.

Clearly, Aj(z), j = 0, 1, 2 and F (z) satisfy

λ(
1
A2

) = 1 < 2 = σ(A2),

σ(F ) = 1 < 2 = max{σ(A0), σ(A1)} = σ(A2),

τ(A0) + τ(A1) =
1
π

+
1
π

=
2
π
<

3
π

= τ(A2),

where l = k = 2. Then f(z) satisfies σ(f) = σ(A2) = 2.
Case 2. σ(F ) = σ(Al) and

∑
σ(Aj)=σ(Al), j 6=l τ(Aj) + τ(F ) < τ(Al). Then f(z)

satisfies (4.1), where

A2(z) = e−(7z2+12πz+12π2) cot z, A1(z) = ez
2−6πz−3π2

,

A0(z) = −ez
2
, F (z) = e−4z2 .
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Clearly, Aj(z), j = 0, 1, 2 and F (z) satisfy

λ(
1
A2

) = 1 < 2 = σ(A2),

σ(F ) = 2 = max{σ(A0), σ(A1)} = σ(A2),

τ(A0) + τ(A1) + τ(F ) =
1
π

+
1
π

+
4
π

=
6
π
<

7
π

= τ(A2),

where l = k = 2. Then f(z) satisfies σ(f) = σ(A2) = 2.
Case 3. σ(F ) = σ(Al). Then f(z) satisfies (4.1), where

A2(z) = ez
2−12πz−12π2

cot z, A1(z) = e−(z2+6πz+3π2),

A0(z) = −e−z
2
, F (z) = e4z

2
.

Clearly, Aj(z), j = 0, 1, 2 and F (z) satisfy

λ(
1
A2

) = 1 < 2 = σ(A2),

σ(F ) = 2 = max{σ(A0), σ(A1)} = σ(A2),

τ(A0) + τ(A1) + τ(A2) =
1
π

+
1
π

+
1
π

=
3
π
<

4
π

= τ(F ),

where l = k = 2. Then f(z) satisfies σ(f) = σ(A2) = 2.
Case 4. F (z) ≡ 0. Then g(z) satisfies the difference equation

A2(z)g(z +
3
2
π) +A1(z)g(z + π) +A0(z)g(z) = 0, (4.2)

where

A2(z) = e−( 9
2πz

2+ 27
4 π

2z+ 27
8 π

3) tan2 z,

A1(z) = 2e−(3πz2+3π2z+π3), A0(z) = −1.

Clearly, Aj(z), j = 0, 1, 2 satisfy

λ(
1
A2

) = 1 < 2 = σ(A2),

max{σ(A0), σ(A1)} = 2 = σ(A2), τ(A1) = 3 <
9
2

= τ(A2),

where l = k = 2. Then g(z) satisfies σ(g) = 3 = σ(A2) + 1.
Case 5. σ(F ) > σ(Al). Then g(z) satisfies (4.1), where

A2(z) = e−(6πz2+12π2z+8π3) cot z, A1(z) = e−(3πz2+3π2z+π3),

A0(z) = −1, F (z) = ez
3
.

Clearly, Aj(z), j = 0, 1, 2 and F (z) satisfy

σ(F ) = 3 > 2 = max{σ(A0), σ(A1)} = σ(A2),

where l = k = 2. Then g(z) satisfies σ(g) = σ(F ) = 3. Moreover, Aj(z), j = 0, 1, 2
satisfy

λ(
1
A2

) = 1 < 2 = σ(A2), τ(A1) = 3 < 6 = τ(A2),

these two conditions are not necessary for Case 5.
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Example 4.2. For Theorem 1.10, we consider the meromorphic functions

f(z) = e3z
2

tan z and g(z) = ez
3

tan z.

Case 1. σ(F ) < σ(Al0) and F (z) 6≡ 0. Then f(z) satisfies the differential-difference
equation

A21(z)f ′(z + 2π) +A20(z)f(z + 2π) +A11(z)f ′(z + π)

+A10(z)f(z + π) +A01(z)f ′(z) +A00(z)f(z) = F (z),
(4.3)

where

A21(z) = 2e−(12πz+12π2), A20(z) = −9πe−(12πz+12π2),

A11(z) = −e−(6πz+3π2), A10(z) = e−3z2 cot z,

A01(z) = −1, A00(z) = −9π, F (z) = e6πz+3π2
.

Clearly, Aij(z), i = 0, 1, 2, j = 0, 1 and F (z) satisfy

δ(∞, A10) = 1 > 0,

σ(F ) = 1 = max{σ(Aij), (i, j) 6= (1, 0)} < 2 = σ(A10),

where n = 2, m = l = 1. Then f(z) satisfies σ(f) = σ(A10) = 2.
Case 2.F (z) ≡ 0. Then g(z) satisfies the differential-difference equation

A21(z)g′(z + 2π) +A20(z)g(z + 2π) +A11(z)g′(z + π)

+A10(z)g(z + π) +A01(z)g′(z) +A00(z)g(z) = 0,
(4.4)

where

A21(z) = A20(z) = A11(z) = A00(z) ≡ 0,

A10(z) = e−(3πz2+3π2z+π3)(3z2 tan z + sec2 z), A01(z) = − tan z.

Clearly, Aij(z), i = 0, 1, 2, j = 0, 1 and F (z) satisfy

δ(∞, A10) = 1 > 0,

max{σ(Aij), (i, j) 6= (1, 0)} = 1 < 2 = σ(A10),

where n = m = l = 1. Then g(z) satisfies σ(g) = 3 = σ(A10) + 1.
Case 3. σ(F ) > σ(Al0). Then g(z) satisfies (4.3), where

A21(z) = − tan z, A20(z) = 3(z + 2π)2 tan z + sec2 z,

A11(z) ≡ 0, A10(z) = (3z2 + cot z sec2 z)e−(3πz2+3π2z+π3),

A01(z) = 1, A00(z) = 3z2 + cot z sec2 z,

F (z) = 3(3z2 tan z + sec2 z)ez
3
.

Clearly, Aij(z), i = 0, 1, 2, j = 0, 1 and F (z) satisfy

δ(∞, A10) = 1 > 0,

σ(F ) = 3 > 2 = σ(A10) > 1 = max{σ(Aij), (i, j) 6= (1, 0)},

where n = 2, m = l = 1. Then g(z) satisfies σ(g) = σ(F ) = 3.

We may use a similar method for constructing an example for Theorem 1.11; we
omit it here. Example 4.1 also illustrates Theorem 1.11, since Theorem 1.7 can be
seen as a special case of Theorem 1.11.
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