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A Q-ANALOGUE OF KUMMER’S EQUATION

LUKUN JIA, JINFA CHENG, ZHAOSHENG FENG

ABSTRACT. In this article we define a g-analogue of Kummer’s equation. It
has two singular points. Near the singular point at zero, using the Frobenius
method, we obtain two linearly independent series solutions in any one of
three cases according to the difference of roots of the characteristic equation.
Near the singular point at infinity, given that the only formal series solution
is divergent, we find two integral solutions which are convergent under some
condition. Finally, using the g-analogue of Kummer’s equation, we deduce six
contiguous relations about the ¢-hypergeometric series 1 ®q.

1. INTRODUCTION

Kummer’s equation can be written as [5]
zu” (z) + (b — 2)u'(2) — au(z) = 0, (1.1)

where a,b, z € C. It has a regular singular point at z = 0 and an irregular singular
point at z = co. We know that there are two formal series solutions around z = 0,
ie.

n=0 (1.2)

where (a),, is the shifted factorial or Pochhammer symbol defined by

1, iftn=0,

= \ale+ D@+ @tn-1), i1,

and 1 F(a;b;2) is a generalized hypergeometric series. The solutions u; and us
can be considered as functions of a, b, z with the other two variables held constant.
Then wu; defines an entire function of a or z except when b = 0,—-1,—2,.... As a
function of b it is analytic except for poles at the non-positive integers. us defines
an entire function of a or z except when b = 2,3,.... As a function of b it is analytic
except for poles at the positive integers greater than 1.
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The formal series solution at z = co is
oo

ug =z ¢ Z (=1)*(@)nla+1-b)n =27 %F, (a, a+1—0b;—; f%) (1.3)

nlzn

n=0

The series ug is divergent, but it has an integral representation.

1 > —ztya—1 c—a—1
) /0 e P 1+ 1) dt. (1.4)
This integral converges for Re ¢ > 0 and Re z > 0 and is a solution of the Kummer’s
equation.

Let 0 < ¢ < 1. For a function u(z) of the complex variable z with z # 0, define
its g-derivative as

us =

u(z) — u(gz)
D =—— 1.
and its nth order g-derivative as
Dj'u(z) = Dg(D ™ u(z)). (1.6)
An nth order ¢-difference equation is
Po(Dy)u(z) =0, (L.7)

where P,(-) is an nth order polynomial.
When ¢ tends to 1, the g-difference operator D, “tends” to the usual derivation.
Hence every differential equation can be discretized by a g-difference equation.
The Euler’s hypergeometric equation

2(1—2)u"(2) + [c— (a+ b+ 1)2]u/(2) — abu(z) =0 (1.8)
has a g-analogue difference equation
2(q° =" 2) Diu(2) +[[clg — (a°[al +q° [b+1]¢) 2] Dyu(2) — [aly[b]qu(z) = 0, (1.9)

where a,b,¢,z € C and [a], = %. Some of series solutions of equation (1.9) are
obtained in the form of basic hypergeometric series in [4]. However, it seems that
nowadays very little has been known about the g-analogues of Kummer’s equation.

In this study, we define a g-analogue of Kummer’s equation. In trying to get
formal series solutions, we find that the Frobenius method used in the classical
ordinary differential equations is also applicable to the g-difference equations when
the singular point is regular. At the regular singular point of zero, the characteristic
equation has two roots. According to the difference of these two roots, there are
three cases to consider. For each case, we obtain two linearly independent series
solutions. Near the irregular singular point at infinity, given that the only formal
series solution is divergent, we find two integral solutions which are convergent un-
der certain condition. Finally, six contiguous relations about the ¢-hypergeometric
series 1P are presented.

The rest of this article is organized as follows. In section 2, we obtain a g-analogue
difference equation satisfied by the ¢g-hypergeometric series .®,. As a special case,
we have a g-analogue of Kummer’s equation. In section 3, we define the singular
points for the second order ¢-difference equations. For the g-analogue of Kummer’s
equation it has two singular points at 0 and co. At the singular point 0, using the
Frobenius method we obtain the series solutions of the g-analogue of Kummer’s
equation. At the singular point oo, given the only series solution is divergent, we
derive two integral solutions which are convergent under some condition. In section



EJDE-2017/31 A Q-ANALOGUE OF KUMMER’S EQUATION 3

4, by using the g-analogue of Kummer’s equation, we find six contiguous relations
about the g-hypergeometric series 1 ;.

2. ¢-ANALOGUE OF KUMMER’S EQUATION

For the convenience of statement of ¢-difference equations, we still use the def-
inition of the basic hypergeometric series defined in [6]. Let 0 < ¢ < 1, a basic
hypergeometric series or ¢-hypergeometric series is

ai,...,Q
r(I)s bl br;q’z :T<I>S(a1,...7ar;b1,.--7bs;q72)
1y-++5Ys

(o)
Z a1, -(ah(])n o
(b1:q) ...(bs;q)n(q;q)n ’

(2.1)

where r,s € N:={0,1,2,...}, a1,...,a:,b1,...,bs,2 € C and (a;q),, is g-shifted
factorial defined by

(a;q) 1, ifn=0,
a; =

s din (1-a)(1—aq)-(1—ag"?t), ifn>1.
To avoid zeros in the denominator of series (2.1)), we require that

b17"'7b57é17q_17q_27""

For the series in (2.1)),
(n 4 1)th term (1—-ayq") - (1 —arq")z
nthterm (1 —bygm) -+ (1 — beqn)(1 — gnt1)’

The series (2.1)) will terminate if an only if, for some ¢ = 1,...,r, we have a; €
{1,¢74,¢72,...}. Ifa; = ¢ F (k =0,1,2,...), then all terms in the series with
n > k will vanish. In the non-vanishing case, by the ratio test, the convergence

radius of (2.1) is 1.

Since

RTINSk Sk AR ek M
—1(1-g)" =1 1-q 1l—g¢ l1—q

we can view the g¢-shifted factorial as a g-analogue of the shifted factorial. Hence
+®s is a g-analogue of . Fs by the formal (termwise) limit [4]

ay

q“, g
) NI+
L]bl qbsan (1 Q) Tz

P

lim , P,
q—?l

B I 2.2
bobiE e (22

The hypergeometric series

r A1y ...y Qp
u(z)—r s bl,u-,bs’z
is a formal solution of the differential equation [IJ:

{604+4b1—1)---(d+bs—1)—2z(6+a1) (0 +ar) }u(z) =0, (2.3)

d

where § = z-.
zZ
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It has a g-analogue difference equation

[Ga(a" 70 + by = 1]g) -+~ (¢ 76 + [bs — 1))

(2.4)
- Z(qaléq + [al]q) Tt (qaréq + [ar]q) u(z) =0,
where ]
6g = 2Dg, [alg = 1—q°

For solutions of the equation ([2.4]) we have the following result.
Theorem 2.1. The equation (2.4) has a series solution as

T@S(qa:l? cte 7qa7l;qb1’ M "qbs;q7 (]‘ - Q)1+Sirz)

which converges when |(1 — q)1T*7"2] < 1.

Proof. Let @ := . ®,(q™,...,q%;q¢",...,q";q,(1 — q)***"2). By a straightfor-
ward calculation, it holds

> e (@) (1 — q)n(iFs=r)n
[q% 10, + [bs — 1]4], @5 = [bs — 1], Z 1_;)((11)152)” q) ((qbs;qq))n_l(q;q)n '

Then, it gives
(@70 + (b1 — 1) -+ (g% 18 + [bs — 1

) P
o . g (g7 g1 — )" O
=[b1 —1g--[bs — 1] +Z (1 _q)a( Y1 Q)1 (25 ) n1(q; Q)

n=1
=[by — 1], ot Z (@™ @)ns1 - (g5 Dnga (1 — ) FDEFs = o0t
! = (1 =) ("5 @) (4" Dn(a Dns1

Thus, we have
5q(q" 1y + (b1 — 1]g) -+ (g7 76, + [bs — 1)) P

- i L @)t (¢ @) g (1 — g) (D AFs—r)pn (2.5)
o (L =) " @)n - (> @)n(a: D)
and
— (0" ("5 Qg (1 — )T 2n
qaré + |ar T(I)s =
(700 + larlo) nz:% (1= )@ @)n - (¢ (g Dn
That is,

2(q" 0 + [al] ) (g “rdq + [ar]q)rq)s

i U @) nt1 o (@7 q)np1 (1 — g)nirs—rgndt (2.6)
— 1 =) (¢"5@)n - (¢°;@)n(q: On

Since the right-hand sides of (2.5 . ) and (2.6)) are the same, we arrive at our conclu-
sion. (I

We consider the case where r = s = 1 in (2.4)) and the resulting equation is called
the g-analogue of Kummer’s equation. Let a; = a and b; = ¢, it can be re-written
as

¢°zD2u(z) + ([dly — 4°2)Dyu(z) — [alu(z) = 0. (2.7)
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In the next section, we will study other solutions of ([2.7)) and discuss the properties
of these solutions.

3. SOLUTIONS OF THE ¢-ANALOGUE OF KUMMER’S EQUATION

Just as in the second-order ordinary differential equations, we try to find the
formal series solutions of . First of all, we give the definition of singular points
of the second order ¢-difference equations.

Consider the g¢-difference equation:

pg(z)Dgu(z) + p1(2)Dgu(z) + po(z)u(z) =0 (3.1)

where pa2(2), p1(z) and po(z) are analytic in the neighborhood of z = z5. When
p2(20) # 0, the point zq is called an ordinary point of the equation (3.1). When
p2(z0) = 0 and p1(z¢) and/or po(zp) is not zero, then z = zp is called a singular
point of . The point z = zq is called a regular singular point of if

T Gt ) 1 C) R, (z — 20)*po(2)

220 pz(z) 220 P2 (z)

both exist. If one of these limits does not exist, the singular point is irreqular.
It is easy to see that the equation (2.7) has singular points at z = 0 and z = co.
So we have two cases to consider.

3.1. Solutions at z = 0. Equation (2.7) has the form as in (3.1)), where

p2(2) = ¢%2, pi(z) = [dg — %2, po(z) = —lal,-

Both of them are analytic near zero. Moreover, it holds

—C

o Pz) _ #(dg —a%2) _ [clag

2
i lim 2"po(2) =
2—0 pz(z) q°z

and
z—0 D2 (Z)

Thus, the singular point z = 0 is regular. We know that by using the Frobenius
method [7] one can find the formal series solutions of the second order ordinary
differential equations. In fact, as we can see below, the Frobenius method is also
applicable to the second order ¢-difference equations. Note that the detailed pro-
cedure to find the formal series solutions of the g-difference equations is described
in [].

Let

Llu] = ¢°zDju(z) + ([l — 4*2)Dqu(z) — [alqu(z). (3.2)

Then equation (2.7) becomes L[u] = 0. Since both difference operators D2 and D,
are linear, the operator L[] is also linear, i.e.,

Llau + f] = aL[u] + 5.

for any complex numbers « and .
We assume the solution of the form

u=Y"dp2"" with dy # 0. (3.3)
n=0
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It holds
Dyu(z) =Y dn[A + ]z,
L (3.4)
D2u(z) = Z dp[A 4+ nlg[A +n — 1]z 372

n=0

Substituting (3.3), (3.4) in (3.2)), we obtain
- Z dn[A +nfq(q“ N +n—1]g + [C}q)z/\+n_l
- (3.5)

- Z dn(q“[A + nlq + [a]q)zM—".

Changing the indices of n in the second term of (3.5) and then isolating the
terms with n = 0, we have

Llu] = do[N¢(g“[A — 1] + [C}q)z/\_1

n[A+n]q(¢° A +n—1]g + [C]q)z/\ﬂhl

Z YN+ n =1+ [a] )2
Choosing the ¢,’s to satlsfy the recurrence relations:
duld + 1l (@ A+ — 1y +[dg) = dua(@® D +n— 1+ [aly).  (3.7)
From the equation ([3.7)
(@)1=

" @ (38

becomes
Llu] = do[Ag(q°[A — 1]g + [C]q)z)\_l- (3.9)

The equation
[Mg(g°[A = 1]g +[clg) =0 (3.10)

is called the indicial equation.
The solutions of the above indicial equation are

A=0orA=1-c.

According to the values of the above roots, there are three cases to consider about
the solutions of (2.7)).

Case 1. If ¢ is not an integer, by (3.8) we have
uy = u[x=0 = do1®1(¢"; ¢% ¢, (1 — q)2),
Ug = 'U/|)\:1—c = dOZl_Clq)l( ot (.7 q 7Q7 (1 - q)Z)

Since ¢ is not an integer, the solutions u; and uy are linearly independent. Thus,
any linear combination of u; and us is a solution of the equation (2.7)).

Case 2. If ¢ =1, then
uy = ulr=0 = Ulr=1—c = do1P1(¢"; ¢; ¢, (1 — q)2).
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To obtain the other solution, we note that (3.9) becomes

Lu] = do[\22*" (3.11)
Then differentiating with respect to A in (3.11)), we have
ou OL[u _ AMn _
23] = % = 2dy2> 1[A]qqq_71q +do\2A M n . (3.12)

If A = 0, then the right-hand side of (3.12]) is zero. Thus, the other solution of (2.7

is

_Ou
Y2 =55 heo
e a. 1— )"
:dolnz—i—doz (q 7Q)n( Q) z

(¢ Dnlq; O

n=1

1
[IDZ"HHQZ (17q1+g 1— qoti _1)]

Case 3. If ¢ is an integer and ¢ # 1, there are two cases to consider.
(i) If ¢ < 1, then in the equation (3.8), when A = 0 and n = 1—¢, the denominator
(%), = 0. Thus, we take dy = go(l —¢). Since

(q/\Jrc; Q)lfc = (1 - q>‘+c) T (1 - q)\)a

our assumed solution (3.3)) has the form

1 _ q /\+a ) (1 _ q)nzn
_ A n
=907 Z >\+c

(q“l; Dn
A Z (1- q (1 —g) 2"
e ”C Qn (qA“; Qn
0 )\+a n.n
goz Jn(l—q)"z
+ D A

(e q) - (L0

Hence, the first 1 — ¢ terms of u, vanish when A = 0. Then the first solution takes
the form

n:lfc

(qa'q)n(l - q)"Z"
T—c (€ Dn—14¢(G Dn

g0
(4% q)—c

n

Uy = ug|>\:0 =

-]

For the solution ug|y=1—., let m =1 — ¢ > 0. Then we find

qm a+m ) (1_q>n n+m
tgh=1- C_QOZ QQ) (q1+m,q)

o (1= g™ @n-m(l — )" 2"
- Z (¢ nfm(q”m;q)nfm
— (qc’ q)—C(l - qm)(Qa q)m

(@5 @)m(1 —q)™
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Thus, u; and u|y=1_. are not linearly independent. To obtain the other linearly
independent solution, we note that

a1 (=g (1 =gt

Llugy] = goz

(1—q)? ’
whose derivative with respect to A is
ou OL[uy]
L[] = J
[ o\ ) oA
1— A\2 1— Atc—1
R e
(1-q) (3.13)
1— qA)(l _ q)\+c—1) .
—_9 ZA 1 )\ lnq(
90 (1-4q)?
A 2 At+c—1
A—1 (¢ —1)q
— Ing————————.

If A =0, the right-hand side of (3.13)) is zero. Thus, the other solution is

i Z q(qQ)cJ)(l(;fz))
nlc{ (€ @n— 1:(2,)(1) [hlz—l—lan( giti 1 jz“ﬂ‘)
+1q21qq}}

(ii) If ¢ > 1, then in the equation (3.8)), when A = 1 —c and n = ¢ — 1, the
denominator (¢**1;¢q),, = 0. Hence, we take dy = ho(1 — ¢**t¢~1). Since

Q1= (1= (1= M),

our assumed solution (3.3 takes a new form

(qAJrl

(1 - (@ 9)n o
up, :=hg (I—g)"z™m
,;) (@ (5 q)n
:hO Z (1 - q>‘+671)(q/\+av q) (1 _ q)nz/\Jrn
= ()T D
hO - (q/\Jra’ (]) A+
(@5 q)e—2 n;_l (@ @n—ct1 (@ q)n( )

So the first ¢ — 1 terms of u;, vanish when A =1 —c.
Then the first solution takes the form

o B hoZl_c
w1 = Ul = (42¢q)e—2

0 a—c+1.

(q ’q)n _ nzn
(Q;q)n7c+1(Q;Q)n(1 )T

n=c—1
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Let k =c—1> 0. Then it has

up|r=0 = ho z% e 0 C)nz((]?(;)z)n (1—g)"2"

(1—-q(g
=h
Onz; (0% @)n—k(@3 Dk

_ (=N ([@ % @)e—2(3:@)e1
(qa c+1 )C 1(17 )c 1

Thus, u; and up|x—¢ are not linearly independent.
For the other solution, by (3.9), it has

(1—gMAQ =g 12

a.

7q)n*k (1 . q)nsznfk

L =h
= o (1—q)?
whose derivative with respect to A is
8uh 6L[uh]
L | =
Can ] =
*lng(l —gMeTh)?
= — hO
(1= )" (3.14)
o A=) =D g '
’ (1-q)
1— A 1— Atc—1)2
+ ho( d ()f ;]2 ) Az
—q
If A =1 — ¢, the right-hand side of ({3.14)) is zero. Thus the other solution is
)
20N amie
c—2 a c+1
_hozl Clnqz )") ( _q)nzn
n:O ’q
l1—c 0 a c+1
1O
+ 1—¢q)"2" [lnz
( ;q c—2 n_zl{ n+1 c(q Q)n( q)
n—1 ;
1 q27c+j
HHQZ( 1+] *1_qa—c+1+j)+lnq' > 1_q2—c+j”'

Consequently, we obtain the following results.

Theorem 3.1. FEquation (2.7) has a regular singular point zero. At the singular
point zero:

(i) if ¢ is not an integer, then there are two linearly independent series solutions
up = do1®1(q";q% ¢, (1 — q)z2),
uy = doz' "1 @1 (¢ ¢* % q, (1 - q)2).
(ii) If ¢ = 1, then there are two linearly independent series solutions

up = do1®1(q%; q: 4, (1 — q)2),
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= (q%q)n(1— q)2"
U =dolnz +d
2o 0 Z (@ On (@ 0)n

n=1

[lnz+lnq2( i 1_1]a+j—1>]

(iii) If ¢ is a non-positive integer, then there are two linearly independent series

90 — n(1—gq)"z
Uy =
(¢ q)—c n=zl—c (¢ @)n— 1+c(q,Q)

——golnqz q q ))

o0
n(1—
DY { D,
Cop—l—c n 1+c(q7 Q)
n—1 n—1
1 1 gt
anz (1 — 41 _qa+j> +1Ing Z 1 _qc+j]}'
=0 i=0,j#—¢
(iv) If ¢ is a positive integer such that ¢ > 1, then there are two linearly inde-

pendent series solutions

solutions

h Zl_c = qa_c—’_l;q n n.n

(@ @2 = (G Dn—c+1(3D)n

Uy =

c—2 a c+1. )n
= —hoz'"*Ing Y —)(1 — Q"
n:O “q

h 1—c s a—c+1
0% Z ((] 7q) (1 7q)nzn|:1nz

(@7 @)e-2 2| UG Dntr-c(e: D)

1 n—-1 q2 c+j
HU‘IZ( gt 1_qafc+1+j>+1nq Z 1_q27c+jj|}'
§=0,j#c—2

+

As a solution of (2.7)), we now seek other representation forms of 1@y, especially

in its integral representation forms.

Theorem 3.2. For 0 < ¢ <1, |z| <1 and Re(a) > 0, it holds

c q*;9) 0o -
121(¢":¢%q,2) = Mﬂ’o(q( * 2 —34,q%)
b o0 b o0 (315)

_ Ty(e) Yot (gt )
~ Dy(a)Ty(c—a) /0 (q°79; q) oo (2t; q)oodqt'

Proof. By a direct calculation, we have

a. 0 ct+n.
1<1>1(q“;qc;q,z):(q’Q)°°Z U E

(€ Qoo 7= (G Dn (¢ oo
_ (qa7Q)oo = Zn > (q67a;q)m m(aJrn)
(4% @)oo 7;) (¢ Dn ,;0 @D
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= (4%9) am
(059 4 Z m(zq™ q) 1
(qa7Q)OO Z q)m am
(0% 9) Z q) 1

m=0
(4 0) -
— 10 HA/0 P (g, p — ay
(qc,q)oo(Z,q)oo2 O(Q s 2y 74,4 )
To prove the second equality, we note that

Py(a) = L% (1 _ gyi-e

(4% ¢)0
Then, it yields

(4% @)oo _

M0 P c—a ,.__.,a

(€% @)oo (21 @) g™ 5 =0

_ (4% f: (4% @)oo ( ") am
(0% @)oo 2= (471 q) oo (2q )oo(QaQ)oo
(¢%;9)

dyt

(0% @) 1 /1 (qt; @)oot
(©Doe(@G: @)oo 1=q Jo (€°7% @)oo (2t @)oo

_ Ly(c) P (gt g)oo
a Ly(a)ly(c —a) /0 (q°79%; @)oo (21; Q)oodqt.

]

The ¢-hypergeometric series 1®; also has a g-analogue of Barnes’ contour inte-
gral. The proof is very similar to [2, (4.2.2)].

Theorem 3.3.
191(a;¢5¢,2)
 (49)e —1)/“" (47" @)oo (09" @)oo ™(=2)"
(€ 0) o0 (@5 @)oo 207 [ _i0e (aq®; @)oo sin s (3.16)

JD9 L T ) g,

Lg(a) 2mi J_ioe  Tglc+s)Lg(1+s)

3.2. Solutions at co. For the solutions near infinity, we rewrite the equation (2.7
as

¢“rulg®z) = L+ ¢ +q%(a - 1)z]U( 2)+ 1+ (q —Dzu(z) =0.  (3.17)
Then let t = 27!, p= ¢! and w(t) = u(t~!). Then ) becomes
tw(p?t) — [P 2 (1—p)+ (1 +p7 )t ]w(pt)+[p° 2(1—p)+p° Hlw(t) = 0. (3.18)
Equation has a g-derivative form

t?’Dgw(t) + [Pt — e — 2]t Dpw(t) + p©3[—a]w(t) = 0, (3.19)
where
w(t) — w(pt)
Dyu(t) = L=,
(1=p)t (3.20)

o v w(p®t) = (1+plw(pt) + pw(t)
Dyw(t) = (1 —p)2pt? ’
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and [a], = 11—p“

Equation (3.19)) has the form as the one given in (3.1)), where
pa(t) = t%, pu(t) = p 7t = [ = 2pt?, po(t) = p* =l
All of them are analytic near zero. Since

c—a—34 ) 2
) e 2,07
t—0 p2(t) t—0 tg
does not exist, the singular point ¢ = 0 of the equation (3.19) is irregular. Thus the
singular point z = oo of the equation (2.7) is irregular.
If we still assume that the form of the solution is

u = i fo2™™ with fo # 0, (3.21)

n=0

then we find

Dyu = Z fald =nlg? 7,
n=0

., (3.22)
Dgu = Z Fald = nlgA —n — 1],z "2
n=0
Substituting (3.21) and (3.22)) into the equation (2.7) leads to
Z fnlA = ”]q(qcp‘ —n—1]g+ [C]q)zAinil
=0 (3.23)

=D (g = nlg + [aly) 2 = 0.

Changing the indices of the first term of (3.23)) and then isolating terms with n = 0,
we have

Z faad=n+1g (¢ = nly + [C]q)z’\_"

- Z fn (qa[)‘ - n]q + [a]q>z>\_n - fO(qa[)‘]q + [a]q)z’\ =0

n=1

From the third term of the last equation, we have the indicial equation

Jo(q*[N4 + [alg) = 0.

In view of fy # 0, there is one solution A = —a.
From the rest terms, we obtain a recurrence relation between f,, and f,_; for
any n > 1:
q/\Jrcfa(]_ _ qf)\Jrnfl)(l _ qfcf)wkn)
(1 —ga=2n)(1 - q)gnt

From the recurrence relation, when A = —a, we deduce that

n(c—2a) (qa; q)n(qachrl; q)
(@:q)n(1 —q)ngnin=1/2

fn:*

fn—1~

fo = (12 ” fo.
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Thus, we obtain a formal series solution as

0 n(c—2a)(a. a—c+1.
—a nd (¢“;9)n(q i Dn
= -1 . 3.24
uz = foz ng:o( ) (G On(— q)nqn(n—l)/z z ( )

Unfortunately, the series in is divergent, so it does not directly give a
solution of the equation (2.7). However, it is possible to find integral solutions
which are convergent under some conditions. Before that we need some properties
about the definite g-integral.

Suppose ¢,z € C. The definite g-integral of a function f(t) is

| = -0 s, (3.25)
j=0
From this definition we can deduce a more general formula:
/0 f(t)dqgg(t) ::/0 F()Dag(t)dgt = f(2¢")(g9(2¢") — g(z¢’™)),  (3.26)
j=0

and a g-analogue of integration by parts [3]:

/OZ 9(qt)dq f(t) = g(2)f(2) —g(0)f(0) — /O f)dqg(t). (3.27)

The improper g-integral of f(t) on [0, +00) is defined by

o0

/ Ftdgt=(1-0) 3 @ f(@). (3.28)

j=—o00

Now, we need a formula about the g-derivative of a definite g-integral.

Proposition 3.4. If o, z € C\{0}, then for any positive integer k, it holds
k—1 i—k

oF =F J- j=k
az az q q
7=0

where D, is the g-derivative with respect to z.

Proof. By the definition (3.25)

1
azF
t)ydgt = (1 —
|7 s qzo

Then the g-derivative with respect to z of the above definite g-integral is

Dq(/oaik f(z,t)dqt)

7=0 Jj=0 q
SR S PR < S YL SRR S S S T
(1-q)z [( q)j:o azkf(z7 ozzk) (1 q)jz::() ozzkf(qz’ azk)
H1-0Y Siften ) -0 -0) Y S fen )]
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— q ¢ — ¢ " ¢ *
+ Z O[Zk+1 f(q27 @) - Z CVZk+1 f(qza OéZk )
j=0 7=0
azk it quk
= /0 D, f(z,t)dgt — T f(qz,

— vz
Jj=0

g "

).

azk

Remark 3.5. When ¢ — 1, the formula (3.29) becomes

d/ [aF el k 1
a(/o f(%t)dqt) :/o &f(%t)dqt— Wf(z,w%

which is fundamental in calculus.

Next, we try to find an integral solution of (2.7)) which has the form

(1*411)1122 g
u(z) = E % g(qt)dqt, (3.30)
0
where the g-analogue of exponential function is

E; % = ((1 - q)g2t; @)oo

Recall that the g-derivative with respect to z of E azt g
_ _ 2
D,E, 9=t — —qtE; 1 =t
By Proposition [3:4] we have
1
(1—q)q2= a2
Dyui(z) = / _ntq 1 Ztg(qt)dqt
0

1 )
. — - PO .
(1—q)g322 1 9lat) t=1/(1-q)¢*z (3:31)

1
(I=a)e=
= —/ o nt;qQZtg(qt)dqt,
0

and

1
1—-q)q2=
Dius(z) = —Dq(/( ) nt;qZZtg(qt)dqt)
0

1
1— 22

_ /( a)q q3t2Eq_q3Ztg(qt)dqt

0 (3.32)

—q®zt
+ (1 _ q)q322 ntq ! g(qt)’tzl/(l—q)qu

1
(-a)a2=
:/ e q3t2E;q3Ztg(qt)dqt.
0

Substituting (3.30)), (3.31), (3.32) in (2.7), we deduce that

ﬁli
(1—-a)gz —g22t\ ¢ —qzt\ a
/0 9(at)[= Dy (E; ) 12 — Dy o (B %")g
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2
—q zt —qzt
qt[c]qEq - [a]qEq Jdgt

1
(1-a)e?= — g3z c— —qz a—
- / B0 D, (g(t)g" ) + B9 Dy (g()* 1)

— 2 —
— qt[dqE; T g(qt) — [algE, Pt g(qt)dyt

(1,;”22 —q2at c—1,2 a—1
= E; T {Dyt(9(t)q ) + [1 = (1 — q)q2t] Dyt (g(t)g" )
0

— g(at)lgtlclq + [alg = (1 = g)qlalq2t]}dgt = 0.

where D, ; is the g-derivative with respect to t. We then get a g-difference equation
about g(t) as

{1+1[g— (1 —q)gzlt}g(qt) — {g* " +[¢° " — ¢* (1 — q)gz]t}g(t) = 0. (3.33)

From the recurrence relation ([3.33)), one can obtain the following result immedi-
ately.

Lemma 3.6. The solution of the q-difference equation (3.33)) is

a1 ([((M=9)gz — gt @)
9(t) = gof ([(1—q)gz — ¢t )’

where gy is a nonzero constant.
Thus, we can re-express u1(z) as
1
(-a)a%z 1-— — qlqt;
ul(z) _ goqa—l/ 1-a)q Eq—qztta—l ([( Q)qz q_]q (I)oo dqt. (334)
0 (X = @)az — ¢**]qt; @)oo

To consider the convergence of the g-integral in (3.34]), in view of the definition of
the definite g-integral, we obtain

/7(1—@(122 pastga-1_ (1= 0)az — dlgt: @) dt
q
0 (l

(1-¢q)gz — ¢°%qt; @)oo

j—1
*i (@ D)o (11— @)gz — dl =3 @)
o _ a 1 2“2“([(1*(])(]2*(]07’1](1 q)z’q)

Denote the j-th term of the infinite series in (3.35) as a;. Then, we find

(3.35)

1— ¢ a- q)qz q°~?]

aj+1 (1—q)z ’
jﬂool a; |_th£lo‘1—qj71 1— ¢ ~1[(1-q)g2—q] _‘q |
(1-q)z

If Re(a) > 0, then |¢%| < 1. By the ratio test, the infinite series in converges
absolutely.

Since there is another g-analogue of the exponential function, we also need to
try another integral solution of the equation (2.7):

us(z) = /000 e, “glqt)dt, (3.36)

where
—zt __ 1
I (=1 =q)2t; )
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The g-derivative of e, ** with respect to z is
D e—zt _te —zt
So we further have -
Dyu() =~ [ te glatyist,
0

o0
2 _ 2 _—=zt
un(z)—/o t%e, *"g(qt)dyt
Substituting (3.36), (3.37) in (2.7) gives

/OOC g(qt) [ — (Dq,teq*Zt)qct2 = (Dy e, gt — ([a alg + [C]qt)egn} dgt

(3.37)

= /OOO e, [qut (g(t)q“Qtz) + Dy (g(t)qaflt) = 9(qt)([a]q + [C]qt)} dgt =0,

where D, ; is the g-derivative with respect to t. From the above equation, we obtain
a g-difference equation about g(t):

(L+t)g(qt) — (¢* " +¢° %) g(t) = 0. (3.38)
For the solution of (3.38)), it is not difficult to obtain the following lemma.
Lemma 3.7. The solution of the q-difference equation (3.38)) is

_ —t; q)oo
t) = gnt® 1 ( ’
9(t) = g0 (=T
where gy is a nonzero constant.
Thus, we can re-express us(z) as
(oo}
-1 —etja-1 (T0h @)oo
uz(2) = goq® / e, YT ——————d,t. 3.39)
) o T Tt (

For the convergence of the g-integral in (3.39)), by the definition of the improper
g-integral (3.28]) we have

/OO 6_Ztta_1 (_qt; Q)oo dqt
0

/ (¢~ @)oo
_ f: (=)o
= (C = @)@ 2 ) (=4 4o (3.40)

o] j=—1

::Zaj—l— Z aj ::II+IQ.
j=0 j=—00

Then, we obtain
; a1+ (1 —q)¢/2](1 + gt
lim || = ‘q [1+ (-9 Zj](l ) e
j—too ! ay Jj—+4oo 1+ ¢+

If Re(a) > 0, then |¢*] < 1. By the ratio test, the infinite series I; converges
absolutely.
For the infinite series

:i I G T )P (3.41)
= (1= 9)a77 2 0)oc (-7 q)o0
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we denote the jth term of (3.40) by b;, and find that
14¢77
1+ (1 —q)g 77 21+ g7

Again by the ratio test, the infinite series Iy converges absolutely. Thus, if Re(a) >

0, the g-integral in (3.39) converges absolutely.
Consequently, for the equation (2.7)) we have the following result.

lim |b]+1’— lim

j—+oo

=0<1

lg~“

j—too

Theorem 3.8. When Re(a) > 0, the equation (2.7)) has two convergent integral
solutions:

T ((1 ~ 9)gz — dlat;q)
(1—q)g*=z — — ]
Uy = goqa—l/ v Eq—qztta—l q)qz — 4149t q)oo dyt,
0

([(1 = q)gz — ¢*%qt; @)oo

0o —at:
Uy = goqafl/ 6qutta71 ( cq_(;q)oo dqt.
0 (—a° "t q)oo

4. CONTIGUOUS RELATIONS

Since 191(¢% ¢% ¢, (1 — q)z) is a solution of , we now consider contiguous
relations about 1®1(¢%; ¢% ¢, (1 — q)z). It is easily verified that
Dy (191(¢" ¢4, (1 = 9)2)) = 1:(;(:1@1@“; q°:q, (1 = q)2).
By (2.7), the function 1®1(¢**;¢°7%; ¢, (1 — g)z) also satisfies
qc_lzDgu(z) + ([e—1), - q“_lz)un(z) —[a —1],u(z) = 0.
From the above two equations, we obtain a contiguous relation:
Proposition 4.1. When |z| < 1/(1 — q), we have
[cg(le = 1g = ¢"'2)191(¢% ¢% g, (1 — 9)2)
= lelgle = Uq1®1(¢" 54" 0, (1 — 9)2) (4.1)
+q¢ Halgz1@1(g ¢ g, (1 - g)2) = 0.

Using (2.7)), we deduce a set of four relations from which six contiguous relations
can be derived by equating the (%) pairs of them. The first two relations are as
follows.

Lemma 4.2. When |z| < 1/(1 — q), it holds
0q(®) = —[—aly(P(at) — @), (4.2)
3g(®) = —[1 = ¢|g(P(c—) — ), (4.3)

where
0g = 2Dy, @ =1®1(¢";¢%q, (1 —q)2),
P(at) = 1P1(¢“ 5 ¢% q, (1 — q)2),
P(c—) =1P1(¢% ¢ 0, (1 — q)2).

Proof. Since

a n

191(¢% ¢% ¢, (1 - )z Z
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where [n]}, = [1]4[2]; - - - [n]q, we have
e (qa. g
= . (4.4)
2 (o T
On the other hand, we know that
oo a+1 a.
q 7q n n. n
o= (G BT/ O
—= n(G; q) (@ Dn(G D
& a a+1 (45)
_ Z n 1 (]- - Q)
n=1 [n - 1]11
and
- (g% @)n (4% @)n
P(c—)—d = — 1—q)"2"
=2 =3 (antwan - @an@a) 7
e c—1(,a n (46)
-y U
— [e—1g(a% q)n [n — 1]}
Combining the equations (4.4) and (4.5), we arrive at relation . Similarly,
relation (4.3]) is proved by combining (4.4) and ( . (I
To obtain the other two relations, we rewrite as
{04(¢°718¢ + [ — 1)) — 2(¢"3¢ + [alg) yu(2) = 0. (4.7)

By reducing the order of §, in the equation (4.7), we have the following lemma.
Lemma 4.3. When |z| < 1/(1 — q), it holds
3¢(®) = (¢* "z + ¢ *[a — )@ — ¢'[a — ], @(a), (4.8)

3g(P) = 2¢"" P+ 2 lo ]qq)(c—i—) (4.9)

[clq

where

dg = 2Dy, @ =1P1(¢":¢%q, (1 —q)2),
®(a—) =191(¢“ "5 ¢%q, (1 — q)2),
®(c+) =1P1(¢% ¢ g, (1 — q)2).

Proof. To prove 7 by we have
{5q(qc_15q +[e—1]g) — Z(qa_l(sq +[a—1]g)}@(a—) = 0. (4.10)

The operator d,(q°~ 16, + [c — 1],) can be factored as

e—1 _ — (go—1 a— c—a le — alg —alylc—a
6q(q° 0g + [c = 1g) = (¢" "6q + [ l]q)(q oq + ] )+[1 Jal Jq-
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A direct calculation gives
(@7 '6q + la— 1]g)@(a—)

= (@ e gt —1]42"
=2 @0, b1l *Z T,
_ = (¢~ 1aQ) a—1 [afl]q a—
=2 o [n—l]q(q L )” Ha

19

(4.11)

Note that the operators qa_léq + [a — 1), and ¢°~ %0, + [Zzif]f‘ are commutative.

Then (4.10) becomes

-

This implies the relation (4.8]).
The proof of (4.9) is similar. By (4.7, we have

{0q(q°0q + [clg) — 2(¢"0q + [alg) }@(c+) = 0.
Factor the operator z(¢%d, + [al,) as
2(q“0q + [alq) = 2¢""(q°0q + [clq) + z[a — c]q.

Note that

n

(404 + [clg) @(c+)

(@%qQ)n  q°2" — (¢%n [dgz
‘ (qC+1;q)n [n — 1]; + ; (qC+1;q)n [’I’L];

(it (e ) g,

“tliq) [n]q

M

n

tqu

1

3
Il

(g
. ®.

c

Then (4.12) becomes
(6 — 2¢"%)[c]g® — z[a — c]¢®(c+) = 0.
So, relation (4.9) is established.

[c—a]_z a— — alg[c — alg®(a—) =
ot~ 2)lo— 1@+ 1~ alyfe — aly@(a=) =0,

(4.12)

(4.13)

O

Consequently, by Lemmas [£.2] and we can derive six contiguous relations as

follows.
Theorem 4.4 (contiguous relations). When |z| < 1/(1 — q), it holds

[—alg®(at) = [1 = clg®(c—) = ([=alg = [1 = ) ®,

[—alq®(at) — ¢ [a — cJ@(a—) = ([~aly — ¢'*[a — ]y — ¢"2)®,
(

[—alglelg®(at) + zla — ] @(c+) = [clq([-aly — ¢" " 2) D,
¢' o~ cg®(a—) = [1 = cg®(c—) = (¢" "z — [1 — a]y) P,
[clq[1 = clg®(c=) + zla — ] ®(c+) = [clq([1 — g — "7 2) @,
¢ )@ (a—) + 2@(ct) = ¢' (],
where

O =191(q%q¢%q, (1 —-q)z),
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D(at) =191(¢°F;¢%q, (1 — q)2),
B(ct) = 1P1(¢% ¢%5q, (1 — q)2).
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