RELATIONSHIPS BETWEEN INTEGRABLE FUNCMIONS AND THEIR ABSOLUTE VALUES

ITHESIS

Presented to the Graduate Council of
 Southwest Texas State University
 in Partial Fulfillment of
 the Requirements

For the Degree of

MASTER OF ARTS

By

Terence W. McCabe, B_{0} S. San Marcos, Texas

May, 1972

ACKNOWLEDGMINTS
 The writer wishes to express his gratitude to Dre John Ao Chatfield for his continuel efforts in promoting an atmosphere most conducive for creative learning.

Terence W. McCabe

San Marcos, Texas
May, 1972
Chapter Page
I. INTRODUCTION AND DEFTNITIONS 1
 4
III. RELATIONSHIPS BEIWEEN $\int_{a}^{b} f d g$ AND $\int_{a}^{b} f|d g|$ 13
BIBLIOGRAPHY 27

CHAPTER I

INTRODUCTION AND DEFINITIONS

The purpose of this paper is to develop several relationships between integrals of the type $\int_{a}^{b} f d g, \int_{a}^{b}|f| d g, \int_{a}^{b} f d g\left|, \int_{a}^{b} f\right| d g \mid$, and $\int_{a}^{b}|f d g|$. Chapter II shows that if $\int_{a}^{b} f d g$ exists then $\int_{a}^{b} f d g$ exists. Chapter III shows the equivalency between the existence of $\int_{a}^{b} f d g$ and $\int_{a}^{b} f|d g|$ with the condition of bounded variation on g. Another theorem allows us to relax this condition while going from $\int_{a}^{b}|d g|$ to $\int_{a}^{b} f d g$. All functions used are from numbers to numbers. DEFINITION 1.1: The statement that $D=\left(x_{i}\right)_{i=0}^{n}$ is a subdivision of the closed interval (a, b) means that D is a finite subset of (a, b) such that $a=x_{0}, b=x_{n}$ and for each $i, x_{i}<x_{i+1}$ DEFINITION-1.2: The statement that D^{\prime} is a refinement of a subdivision D of (a, b) means D^{\prime} is a subdivision of (a, b) and D is a subset of D^{\prime}. DEFINITION 1.3: The statement that $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for the subdivision $\left(x_{i}\right)_{i=0}^{n}$ means if $0<i \leq n$ then $x_{i-1} \leq t_{i} \leq x_{i}$. DEFINITION 1.4: The statement that f is integrable with respect to g means that f and g are functions and there exists a number A such that if $e>0$ then there is a subdivision D of (a, b) such that ix $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence of D^{\prime} then

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right)\left[g\left(x_{i}\right)-g\left(x_{i=1}\right)\right]-A\right|<e
$$

We denote the number A by $\int_{a}^{b} f d g$. We will also denote the numbers $g\left(x_{i}\right)-g\left(x_{i-1}\right)$ by $d g_{i}$ and $f\left(t_{i}\right)$ by f_{i} when no misunderstanding is likely. The symbol $\sum_{D^{\prime}}$ will be used for $\sum_{i=1}^{n}$, As indicated before, (a, b) shall
denote the closed interval, containing both a and b. DEFINITION 1.5: If f and g are functions such that $\int_{a}^{b} f d g$ exists and if $D=\left(x_{i}\right)_{i=0}^{n}$ is a subdivision of (a, b) and $D_{1}=\left(x_{p}^{p}\right)_{p=0}^{m}$ is a refinement of D then
(1) D^{+}denotes the set such that x belongs to D^{+}if and only if $x=x_{i}$ for some x_{i} in D and for each p in $\left(x_{i=1}, x_{i}\right), f(p) \geq 0$.
(2) D^{∞} denotes the set such that x belongs to D^{∞} if and only if $x=x_{i}$ for some x_{i} in D and for each p in $\left(x_{i=1} x_{i}\right)$, $f(p)<0_{0}$
(3) $D^{ \pm}$denotes the set such $D^{ \pm}=D \infty\left(D^{+} U D^{\infty}\right)$. If $0<i \leq n$, then
(4) $i_{1} D_{1}$ denotes the set such that x belongs to D_{1} if and only if x is in D_{1} and $x_{i=1}<x \leq x_{i}$
(5) Dedg ≥ 0 denotes the set such that x belongs to Dodg ≥ 0 if and only if $x=x_{i}$ for some x_{i} in D and $g\left(x_{i}\right)=g\left(x_{i-1}\right) \geq 0$.
(6) $D \cdot d g<0$ denotes the set such that $(D \cdot d g<0)=D=(D \cdot d g \geqslant 0)$. When no consideration of the sign of f is needed, $D \cdot d g \geq 0$ will be denoted by +D and $\mathrm{D} \cdot \mathrm{dg}<0$ by -D .

DEFINITION 1.6: The statement that g is of bounded variation on ($a_{3} b$)
means that there exists a number $M>0$ such that if $D=\left(x_{i}\right)_{i=0}^{n}$ is a subdivision of (a, b) then $\underset{D}{\Sigma}\left|d g_{i}\right|<M$ If S is the set such that p belongs to S if and only if there is a subdirision $\left(x_{q}\right)_{q=0}^{m}$ of $\left(a_{g} b\right)$ such that $p=\sum_{q=1}^{m}\left|d g_{q}\right|$, then the least upper bound of s is denoted by $V_{a}^{b} g$ and is said to be the variation of g on (a, b). THEOREM 1.7: If $\int_{a}^{b} f d g$ exists and $e>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{p}\right)_{p=1}^{m}$ are interpolating sequences for the sub= divisions D and D^{\prime}, respectively, then $\left[1, p_{0} 304\right]$
and

$$
\begin{aligned}
& \sum_{D}\left|f\left(t_{p}^{p}\right) d g_{p} \quad \int_{x_{p-1}}^{x_{p}} f d g\right|<e, \\
& \sum_{D}\left|f\left(t_{i}\right) d g_{i}=\sum_{D^{\prime}} f\left(t_{p}^{i}\right) d g_{p}\right|<e, \\
& \sum_{D}^{\Sigma}\left|\int_{X_{i=1}}^{x_{i}} \quad \underset{i d g}{ } \quad \sum_{i} f\left(t_{p}^{y}\right) d g_{p}\right|<e
\end{aligned}
$$

CHAPTER II

THE EXISTENCE OF $\int_{a}^{b}|f| d g$
The first relatiorship to be considered is that between $\int_{a}^{b} f d g$ and $\int_{a}^{b}|f| d g$. The following sequence of theorems establish that if $\int_{a}^{b} f d g$ exists then $\int_{a}^{b}|f| d g$ exists. THEOREM 2.1: If $\int_{a}^{b} f d g$ exists and $e>0$ then there is a subdivision D of (a, b) such that if $D_{1}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for D_{1} then $\underset{D_{1} \pm}{\Sigma}\left|f\left(t_{i}\right) d g_{i}\right|<e_{e}$

Proof:

Let $e>0$. Since $\int_{a}^{b} f d g$ exists and $\frac{e}{2}>0$ then, by Theorem 1.7 , there is a subdivision D of (a, b) such that if $D_{1}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for D_{1} then

$$
\sum_{D_{1}}\left|f_{i} d g_{i}-\int_{X_{i=1}}^{X_{i}} f d g\right|<\frac{e}{2}
$$

Let $D_{1}=\left(X_{i}\right)_{i=0}^{n}$ be a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ be an interee polating sequence for D_{1}. For each t_{i} in $D_{1} \pm_{\text {, }}$ let q_{i} be a number such that q_{i} is in $\left(X_{i=1}, x_{i}\right)$ and if $f\left(t_{i}\right) \geq 0$ then $f\left(q_{i}\right)<0$ and if $f\left(t_{i}\right)<0$ then $f\left(q_{i}\right) \geq 0$. Therefore, for each x_{i} in $D_{1} \pm,\left|f\left(t_{i}\right)-f\left(q_{i}\right)\right| \geq f\left(t_{i}\right)$. Now, $\quad e=\frac{e}{2}+\frac{e}{2}$

Therefore,

$$
\begin{aligned}
& >\sum_{D_{1} \pm}\left|\int_{x_{i-1}}^{x_{i}} f d g-f\left(q_{i}\right) d g_{i}\right|+\sum_{D_{1} \pm}\left|f\left(t_{i}\right) d g_{i}-\int_{x_{i-1}}^{x_{i}} f d g\right| \\
& \geq \sum_{D_{1} \pm}\left|f\left(t_{i}\right) d g_{i}-f\left(q_{i}\right) d g_{i}+\int_{x_{i-1}}^{x_{i}} f d g-\int_{x_{i-1}}^{x_{i}} f d g\right| \\
& =\sum_{D_{1} \pm}\left|f\left(t_{i}\right)-f\left(q_{i}\right)\right| \cdot\left|d g_{i}\right| \\
& \geq \sum_{D_{1} \pm}\left|f\left(t_{i}\right)\right| \cdot\left|d g_{i}\right| \\
& =\sum_{D_{1} \pm}\left|f\left(t_{i}\right) d g_{i}\right| 0 \\
& \quad \sum\left|f\left(t_{i}\right) d g_{i}\right|<e .
\end{aligned}
$$

THEOREM 2.2: If $\int_{a}^{b} f d g$ exists and $e>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{p}\right)_{p=0}^{m}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{p}\right)_{p=1}^{m}$ are interpolating sequences for D and D_{1}, respectively, then

$$
\Sigma\left|\left.\right|_{D i}\right| f\left(t_{i}\right)\left|d g_{i}-\sum_{i} D_{1}\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right|<e \theta
$$

Proof:
Let $\theta>0$. Since $\int_{a}^{b} f d g$ exists and $\frac{\theta}{2}>0$ then, by Theorem 1.7;
there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{p}\right)_{p=0}^{m}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{\gamma}\right)_{p=1}^{m}$ are interpolating sequences for D and D_{1}, respectively, then

$$
\sum_{D}\left|f\left(t_{i}\right) d g_{i}-\sum_{i} D_{i}\left(t_{p}^{\prime}\right) d g_{p}\right|<\frac{e}{2}
$$

Let $D_{1}=\left(x_{p}^{i}\right)_{p=0}^{m}$ be a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{B}\right)_{p=1}^{m}$
be interpolating sequences for D and D_{1}, respectively. Hence,

$$
\Sigma\left|\left|f\left(t_{i}\right)\right| d g_{i}-\sum_{i}^{\Sigma} D_{i} f\left(t_{p}\right) d g_{p}\right|
$$

$$
\begin{aligned}
& =\begin{array}{c}
\Sigma \\
\mathrm{Dt}
\end{array}|\quad \cdot \quad|+\begin{array}{c}
\Sigma \\
\mathrm{D} m
\end{array} \quad \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{D^{+}}|\cdot|+\underset{D^{-}}{\sum\left|f\left(t_{i}\right) d g_{i}-\sum_{i^{D}} f_{p}\left(t_{p}^{\prime}\right) d g_{p}\right|} \\
& \leq \sum_{D}\left|f\left(t_{i}\right) d g_{i}=\sum_{i D_{1}} f\left(t_{p}^{\prime}\right) d g_{p}\right| \\
& <\frac{e}{2} \\
& <\mathrm{e} \text { 。 }
\end{aligned}
$$

Therefore, $\quad \Sigma\left|\left|f\left(t_{i}\right)\right| d g_{i}-\sum\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right|<e$
THEOREM 2.3: If $\int_{a}^{b} f d g$ exists and $e>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D and for each i, $0<i \leq n$, Iet $i_{i} M=\left(y_{q}\right)_{q=0}^{I_{i}}$ denote the subdivision of $\left(x_{i-1}, x_{i}\right)$, such that z is in i^{M} if and only if (1) z is x_{i-1} or x_{i}, or (2) z is x_{p}^{\prime} or x_{p-1}^{\prime}, where x_{p}^{\prime} is in $D_{1} \pm$; and let $\left(z_{p}\right)_{p=1}^{m}$ and $\left(w_{q}\right)_{q=1}^{l_{i}}$ be interpolating sequences for D_{1} and $i_{i} M_{s}$ respectively, then
(A) $\sum_{D \pm}^{\Sigma}\left|\sum_{i^{M+}} \sum_{i^{M-}} \sum_{q^{D}}\right| f\left(z_{p}\right)\left|\left[g\left(x_{p}^{\prime}\right)-g\left(x_{p-1}^{8}\right)\right]\right|$

$$
<e+\sum_{D \pm}\left|\sum_{i} \sum_{U_{i}}\right| f\left(w_{q}\right)\left|\left[g\left(y_{q}\right)-g\left(y_{q-1}\right)\right]\right|
$$

(C) $\sum_{D \pm}\left|\sum_{i}^{M+\cdot d g<0}\right| f\left(w_{q}\right)\left|\cdot d g_{q}\right|<e$
(D) $\sum_{D \pm}\left|\sum_{i}\right| f\left(f_{q}\right)\left|\cdot d E \geq 0 . d g_{q}\right|<e$
(E) $\quad \sum_{D^{ \pm}}\left|\sum_{i}\right| f\left(f^{\prime}\left(N_{q}\right) \mid \cdot d g<0\right) \mid<e$
(F) $\quad \sum_{D^{+}}\left|\sum_{i}\right| D_{1}^{+}\left|f\left(z_{p}\right)\right| \cdot d g_{p} \mid<e$

Proof:
(A) Let $e>0$. By Theorem 2.2, since $\int_{a}^{b} f d g$ exists and $e>0$ then there is a subdivision $D=\left(X_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D and $\left(z_{p}\right)_{p=1}^{m}$ and $\left(t_{i}\right)_{i=1}^{n}$ are interpolated sequences for D_{1} and D, respectively, then

$$
\begin{aligned}
& \Sigma\left|\left|f\left(t_{i}\right)\right| d g_{i}-\sum_{i D_{1}}\right| f\left(z_{p}\right)\left|d g_{p}\right|<e \\
& D^{+} U D^{-}
\end{aligned}
$$

Let $D_{1}=\left(x_{p}^{1}\right)_{p=0}^{m}$ be a refinement of D. For each x_{i} in D_{2} let i^{M} be defined as in hypothesis of theorem and let $M=\underset{i=1}{\frac{n}{U}} i^{M}$. Thus, M is a refinement of D and D_{1} is a refinement of M. $A l s o$, for each i, let $\left(w_{q}\right)_{q=1}^{l_{i}}$ be an interpolating sequence for ${ }_{i} M_{\text {. }}$ Hence,

$$
\begin{aligned}
& e>\sum_{M^{+}} \left\lvert\,\left\{\left.\begin{array}{l}
M^{-} \\
\left|f\left(w_{q}\right)\right| d g_{q}-\Sigma \\
q^{-} \\
D_{1}
\end{array}\left|f\left(z_{p}\right)\right| d g_{p} \right\rvert\,\right.\right. \\
& =\left.\sum_{D^{+}}\right|_{U D^{\infty}}\left|+\sum_{D \pm} \sum_{i}\right|_{M^{+}}\left|{ }_{i} M^{\infty}\right| \\
& \gtrsim \sum_{D^{+}}\left|\sum_{i^{+}} \sum_{U_{i}}\right| f\left(w_{q}\right)\left|d g_{q}-\sum_{i^{M+} U_{i} M^{\infty}} \sum_{q^{D}}^{D_{1}}\right| f\left(z_{p}\right)\left|d g_{p}\right|
\end{aligned}
$$

Therefore,

(B) Let $e>0$. Since $\int_{a}^{b} f g^{\text {exists }}$ and $\frac{e}{3}>0$ then, by Theorem
1.7, there is a subdivision $D_{2}=\left(x_{i}\right)_{i=0}^{d}$ such that if $A_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{s}$ is a refinement of D_{2} and $A_{2}=\left(w_{q}\right)_{q=0}^{r}$ is a refinement of A_{1} and $\left(z_{p}\right)_{p=1}^{S}$ and $\left(t_{q}\right)_{q=1}^{r}$ are interpolating sequences for A_{1} and A_{2},
respectively, then

$$
\sum_{A_{1}}\left|f\left(z_{p}\right) d g_{p}-\sum_{p^{A}} f\left(t_{q}\right) d g_{q}\right|<\frac{e}{3}
$$

Since $\int_{a}^{b} f d g$ exists and $\frac{e}{3}>0$ then there is a subdivision D_{3} of (a, b) such that if $D_{1}=\left(X_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D_{3} and $\left(z_{p}\right)_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$
\sum_{D_{1}^{ \pm}}\left|f\left(z_{p}\right) d g_{p}\right|<\frac{e}{3}
$$

$$
\text { Let } D=D_{2} U D_{3}=\left(x_{i}\right)_{i=0}^{n} \text { Let } D_{1}=\left(x_{p}^{y}\right)_{p=0}^{m} \text { be a refinement }
$$

of D and for each X_{i} in D, let ${ }_{i} M$ be defined as in hypothesis and $M=\sum_{i=1}^{n} i_{i}$. Let M_{1} be the refinement of D such that x belongs to M_{1} if and only if x is in D or there is an x_{i} in D such that x is in $i^{M^{+}}$, i^{M-} or $i^{M t} \cdot d g<0$. For each i, let ${ }_{i} M_{1}=\left(y_{j}\right)_{j=0}^{k_{i}}$. Notice that M is a refinement of M_{1}. For each y_{j} in M_{i} let z_{j}^{\prime} be in (y_{j-1}, y_{j}). Thus,

$$
\underset{M_{1} \pm}{\Sigma}\left|f\left(z_{j}^{\prime}\right) d g_{j}\right|<\frac{e}{3} \quad \text { and } \quad \Sigma\left|f\left(w_{q}\right) d g_{q}\right|<\frac{e}{3}
$$

Therefore,
$\sum\left|\sum_{D^{ \pm} i^{M+} \cdot d g \geq 0}\right| f\left(w_{q}\right)\left|\left[g\left(y_{q}\right)-g\left(y_{q-1}\right)\right]\right|$
$=\sum_{D^{ \pm} i^{M++} \cdot d g \geq 0} \sum_{q\left(w_{q}\right) d g_{q} \mid}$

$\leq \sum \sum_{D^{ \pm} M^{ \pm \pm} U_{i} M_{q}+\cdot d g_{q} \geq 0} \quad+\sum_{M^{ \pm}}\left|f\left(w_{q}\right) d g_{q}\right|$

$$
\begin{aligned}
& <\sum_{D^{ \pm}}\left|\sum_{j_{1}} f\left(w_{q}\right) d g_{q}-f\left(z_{j}^{\mathbf{l}}\right) d g_{j}\right|+\frac{e}{3}+\frac{e}{3} \\
& \left.\leq \begin{array}{l}
\Sigma \\
M_{1}
\end{array} \right\rvert\,+\frac{2}{3} e \\
& <\frac{e}{3}+\frac{2}{3} e \\
& =\quad e \text {. } \\
& \begin{array}{l}
\Sigma\left|\sum_{D^{ \pm}}\right| \underset{M^{+}}{ }\left|f\left(w_{q}\right)\right|\left[g\left(y_{q}\right)-g\left(y_{q-1}\right)\right] \mid<e
\end{array}
\end{aligned}
$$

Thus,

By similar argument, parts C, D and E are also true. Using these results, the following establishes part F as the main conclusion of the theorem.
(F) For each of the previous parts, A, B, C, D and E, let the arbitrary positive number be $\frac{e}{5}$. Since $\int_{a}^{b} f d g$ exists and $\frac{e}{5}>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D and $M=\prod_{i=1}^{n}\left({ }_{i} M\right)$, as defined in hypothesis, is a refinement of D then parts A, B, C, D and E are true.

Let $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ be a refinement of D and $\left(z_{p}\right)_{p=1}^{m}$ be an inter polating sequence for D_{1}. For each $i M_{\text {, }}$ let w_{q} be in (y_{q-1}, y_{q}) for each y_{q} in i^{M}. Hence,

$$
\begin{aligned}
& \begin{array}{l}
\Sigma\left|\begin{array}{l}
\Sigma_{i} \\
D^{+} \\
D_{1}^{+} U_{i} D_{1}^{-}
\end{array}\right| f\left(z_{p}\right)\left|d g_{p}\right|
\end{array} \\
& =\Sigma_{D^{ \pm}}\left|\sum_{i} \sum^{++_{i} M-}{ }_{q} D_{1}\right| f\left(z_{p}\right)\left|d g_{p}\right| \\
& \left.<\frac{e}{5} \not \sum \sum_{D^{ \pm}} \sum_{M^{+}}\left|f\left(W_{i} M^{-}\right)\right| d g_{q} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{e}{5}+\Sigma \sum_{D^{ \pm}}|\underset{i}{ }| \underset{M+d g \geq 0}{\Sigma}\left|f\left(w_{q}\right)\right| d g_{q}\left|+\underset{D^{ \pm}}{ }\right| \sum_{i}|\underset{M+d g<0}{ }| f\left(w_{q}\right)|d g q|
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{e}{5}+\frac{e}{5}+\frac{e}{5}+\frac{e}{5}+\frac{e}{5} \\
& =e \text {. }
\end{aligned}
$$

Thus,

$$
\Sigma \left\lvert\, \begin{aligned}
& \Sigma\left|f\left(z_{p}\right)\right| d g_{p} \mid<e \\
& D^{ \pm} D_{1}+U_{i} D_{1}^{-}
\end{aligned}\right.
$$

Finally, with the preceding theorems we can establish the following result.
THEOREM 2.4: If $\int_{a}^{b} f d g$ exists then $\int_{a}^{b}|f| d g$ exists.
Proof:
Let $e>0$. Since $\int_{a}^{b} f d g$ exists and $\frac{e}{4}>0$ then, by Theorem 2.1, there is a subdivision $D_{2}=\left(x_{i}\right)_{i=0}^{k}$ of (a, b) such that if $D_{1}=\left(x_{p}\right)_{p=0}^{m}$ is a refinement of D_{2} and $\left(t_{p}\right)_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$
\sum_{D_{1} \pm}\left|f\left(t_{p}^{0}\right) d g_{p}\right|<\frac{e}{4}
$$

Since $\int_{a}^{b} \mathrm{fdg}$ exists and $\frac{e}{4}>0$ then, by Theorem 2.2, there is a subdivision $D_{3}=\left(x_{i}\right)_{i=0}^{I}$ of (a, b) such that if $D_{1}=\left(x_{p}^{8}\right)_{p=0}^{m}$ is a refinement of D_{3} and $\left(t_{i}\right)_{i=1}^{l}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ are interpolating sequences for D_{3} and D_{1}, respectively, then

$$
\underset{D_{3}+U D_{3}-}{\Sigma\left|f\left(t_{i}\right)\right| d g_{i}-\sum_{i \cdot 1}\left|f\left(t_{p}^{\prime}\right)\right| d g_{p} \left\lvert\,<\frac{e}{4}\right., ~}
$$

Since $\int_{a}^{b} f d g$ exists and $\frac{e}{4}>0$ then, by Theorem 2.3 , there exists a subdivision $D_{4}=\left(x_{i}\right)_{i=0}^{j}$ of (a, b) such that if $D_{1}=\left(x_{p}^{8}\right)_{p=0}^{m}$ is a
refinement of D_{4} and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$
\begin{aligned}
& \Sigma|\Sigma| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right|<\frac{e}{4} \\
& D_{4}^{ \pm}{ }_{i} D_{i}^{+} U_{i} D_{1}
\end{aligned}
$$

Let $D=D_{2} U_{3} D_{3} D_{4}=\left(x_{i}\right)_{i=0}^{n}$. Let $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ be a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{1}\right)_{p=1}^{m}$ be interpolating sequences for D and D_{1}, respectively. Thus,

$$
(a, b) \text { such that if } D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m} \text { is a refinement of } D \text { and }\left(t_{i}\right)_{i=1}^{n}
$$ and $\left(t_{p}^{1}\right)_{p=1}^{m}$ are interpolating sequences for D and D_{1}, respectively, then $\quad\left|\begin{array}{l}\Sigma \\ D\end{array}\right| f\left(t_{i}\right)\left|d g_{i}-\sum_{D_{1}}\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right|<e$,

therefore, $\int_{a}^{b}|f| d g$ exists $[2$, p. 28].

$$
\begin{aligned}
& \left|\sum_{D}\right| f\left(t_{i}\right)\left|d g_{i}-\sum_{D_{1}}^{\Sigma}\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right| \\
& \leq \sum_{D}^{\Sigma}| | f\left(t_{i}\right)\left|d g_{i}-\underset{i}{ } \sum_{1}\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right| \\
& \leq \sum_{D+U D^{-}}^{\Sigma\left|f\left(t_{i}\right)\right| d g_{i}-\sum_{i} D_{1}\left|f\left(t_{p}^{\prime}\right)\right| d g_{p}\left|+\underset{D^{ \pm}}{\Sigma}\right| f\left(t_{i}\right) d g_{i}| |} \\
& +\sum_{D^{ \pm}}\left|\sum_{i} D_{1}\right| f\left(t_{p}^{\prime}\right)\left|d g_{p}\right|
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{e}{2}+\underset{D_{\dagger}^{+}}{ }\left|f\left(t_{p}^{\prime}\right) d g_{p}\right|+\frac{e}{4} \\
& <\frac{3}{4} e+\frac{e}{4} \\
& =e \text {. } \\
& \text { Since for each e }>0 \text { there is a subdivision } D=\left(x_{i}\right)_{i=0}^{n} \text { of }
\end{aligned}
$$

Using this theorem, another relationship can be established
between $\int_{a}^{b} f d g$ and $\int_{a}^{b} f d|g|$.
THEOREM 2.5: If $\int_{a}^{b} f d g$ exists then $\int_{a}^{b} f d g \mid$.
Proof:

$$
\begin{gathered}
\text { Since } \int_{a}^{b} f d g \text { exists then } \int_{a}^{b} g d f \text { exists }[2, p \text { 53] and is } \\
f(b) g(b)=f(a) g(a)-\int_{a}^{b} f d g
\end{gathered}
$$

Since $\int_{a}^{b} g d f$ exists then, by Theorem 2.4, $\int_{a}^{b}|g| d f$ exists. Since $\int_{a}^{b}|g| d f$ exists then $\int_{a}^{b} f d g \mid$ exists.

CHAPTER III
RELATIONSHIPS BETWEEN $\int_{a}^{b} f d g$ AND $\int_{a}^{b} f|d g|$

The next relationship to be shown is between the integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} f|d g|$. It has been found that if g is of bounded variation on (a, b), then equivalent statements can be made regarding these integrals. The following theorem allows us to prove an equivalent statem ment as the next theorem.

THEOREM 3.1: If g is of bounded variation on (a, b) and $e>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{v}\right)_{p=0}^{m}$ is a refinement of D then

$$
\sum_{+D} \sum_{D_{1}}\left|d g_{p}\right|+\Sigma \cdot \Sigma\left|d g_{p}\right|<e
$$

Proof:
Let $e>0$. Since g is of bounded variation on (a, b) and $\frac{\theta}{2}>0$ then there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D then

$$
\sum_{D^{\prime}}\left|d g_{p}\right| \geq \sum_{D}\left|d g_{i}\right| \geq V_{a}^{b} g-\frac{e}{2}
$$

Let $D^{\prime}=\left(x_{p}^{1}\right)_{p=0}^{m}$ be a refinement of D. Since $V_{a}^{b} g$ is the Ieast upper bound of such summations on (a, b) then

$$
V_{a}^{b} g-\sum_{D^{\prime}}\left|d g_{p}\right| \geq 0 \quad \text { and } \quad V_{a}^{b} g-\sum_{D}\left|d g_{i}\right| \geq 0
$$

also.,

$$
\left|V_{a}^{b}-\sum_{D}\right| d g_{p}| |<\frac{e}{2} \text { and }\left|V_{a}^{b} g-\sum_{D}\right| d g_{i}| |<\frac{e}{2}
$$

Thus,

$$
\begin{aligned}
& \sum_{D^{\prime}}\left|d g_{p}\right|-\sum_{D}\left|d g_{i}\right| \\
& =\left|\sum_{D^{\prime}}\right| d g_{p}\left|-\sum_{D}\right| d g_{i}| | \\
& =\left|\sum_{D^{\prime}}\right| d g_{p}\left|-V_{a^{\prime}}^{b} g+V_{a^{\prime}}^{b}-\sum_{D}\right| d g_{i}| | \\
& \leq\left|\sum_{D^{\prime}}\right| d g_{p}| |-V_{a}^{b} g\left|+\left|V_{a}^{b} g-\Sigma\right| d g_{i}\right| \mid \\
& <\frac{e}{2}+\frac{e}{2} \\
& =e \cdot
\end{aligned}
$$

Therefore, $\quad \sum_{D^{\prime}}\left|d g_{p}\right|-\sum_{D}\left|d g_{i}\right|<e$.

Also notice that

$$
\sum_{D} d g_{i}=\sum_{D+D^{\prime}} d g_{p}+\sum_{D} \sum_{D^{\prime}} d g_{p}
$$

Hence,

$$
\begin{aligned}
\sum_{+D}\left|d g_{i}\right| & =\sum_{+D}^{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|+\underset{+D-D^{\prime}}{\Sigma} \sum_{p}-\left|d g_{p}\right| \\
& \leq \sum_{+D}^{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|
\end{aligned}
$$

and

$$
\sum_{D}+\sum_{D}\left|d g_{p}\right| \geq \sum_{D}^{\Sigma}\left|d g_{i}\right| \geq 0
$$

Similarly,

$$
\sum_{-D} \Sigma_{-D}\left|d g_{p}\right| \geq \sum_{-D}\left|d g_{i}\right|
$$

Therefore,

$$
\begin{aligned}
& \sum_{+D} \sum_{-D^{\prime}}\left|d g_{p}\right|+\sum_{-D} \sum_{D}\left|d g_{p}\right| \\
& \leq \Sigma_{+D}^{\Sigma^{\prime}} \Sigma_{-D^{\prime}}\left|d g_{p}\right|+\underset{-D}{ }+\sum_{D^{\prime}}\left|d g_{p}\right|+\left[\sum_{D}+\sum_{D^{\prime}}\left|d g_{p}\right|-\underset{D}{\Sigma}\left|d g_{i}\right|\right] \\
& +\left[\sum_{-D=D^{\prime}}\left|d g_{p}\right|-\sum_{-D}\left|d g_{i}\right|\right] \\
& =\sum_{D^{\prime}}\left|\mathrm{dg}_{\mathrm{p}}\right|-\underset{D}{\Sigma}\left|\mathrm{dg}_{\mathrm{i}}\right| \\
& <\quad e \text {. }
\end{aligned}
$$

Hence,

$$
\sum_{+_{D}} \sum_{-D^{\prime}}\left|d g_{p}\right|+\sum_{-D} \sum_{D^{\prime}}\left|d g_{p}\right|<e .
$$

THEOREM 3.2: If g is of bounded variation on (a, b) then the following two statements are equivalent:
(1) $\int_{a}^{b} f d g$ exists.
(2) $\quad \int_{a} f|d g|$ exists.

Proof:
If either integral exists then there is a subdivision $\left(y_{r}\right)_{r=0}^{p}$ of (a, b) such that for each r, either f is bounded on $\left(y_{r-1}, y_{r}\right)$ or gis constant on $\left(y_{r-1}, y_{r}\right)\left[2\right.$, p. 51]. Thus, $\int_{y_{r-1}}^{y_{r}} f d g=0$ or $\int_{y_{r-1}}^{y_{r}}|d g|=0$ for each $\left(y_{r-1}, y_{r}\right)$ on which f is not bounded. Hence, in the following proof we shall consider the case where f is bounded on. (a, b).
(2) implies (1)

Let $e>0$. Since $\int_{a}^{b} f|d g|$ exists then f is bounded by some number $M>1$ on each subinterval of (a, b) on which g is not constant. Since $\int_{a}^{b} f|d g|$ exists and $\frac{e}{2}>0$ then, by Theorem 1.7 , there is a subdivision $D_{1}=\left(x_{i}\right)_{i=0}^{j}$ of (a, b) such that if $D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D_{1} and $\left(t_{i}\right)_{i=1}^{j}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ are interpolating sequences for D_{1} and D^{\prime}, respectively, then

$$
\Sigma_{D_{1}}\left|f\left(t_{i}\right)\right| d g_{i}\left|-\sum_{D^{\prime}} f\left(t_{p}^{\prime}\right)\right| d g_{p}| |<\frac{e}{2}
$$

Since g is of bounded variation on (a, b) and $\frac{e}{4 M}>0$ then there is a subdivision $D_{2}=\left(x_{i}\right)_{i=0}^{k}$ of (a, b) such that if $D^{\prime}=\left(x_{p}^{p}\right)_{p=0}^{m}$ is a
refinement of D_{2} then

$$
\sum_{D}^{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|+\underset{-D}{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|<\frac{e}{4 M}
$$

Let $D=D_{1}$ U $D_{2}=\left(x_{i}\right)_{i=0}^{n}$. Let $D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ be a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ be interpolating sequences for D and D^{\prime}, respectively. Hence,

$$
\begin{aligned}
& \left|\sum_{D} f\left(t_{i}\right) d g_{i}-\sum_{D^{\prime}} f\left(t_{p}^{\prime}\right) d g_{p}\right|
\end{aligned}
$$

$$
\begin{aligned}
& -\underset{+D}{\Sigma} \sum_{-D^{\prime}} f_{p} d g_{p}-\sum_{D} \sum_{D} f_{p} d g_{p} \mid \\
& \leq\left|\underset{\sim}{\operatorname{D}} \mathrm{f}_{i}\left(-\left|d g_{i}\right|\right)-\underset{-D}{\Sigma} \sum_{-D^{\prime}} f_{p}\left(-\left|d g_{p}\right|\right)\right| \\
& +\left|\sum_{+D} f_{i}\right| d g_{i}\left|-\sum_{+D} \sum_{D^{\prime}} f_{p}\right| d g_{p}| |+\mid \underset{+D}{\sum \sum_{-D} f_{p}\left(-\left|d g_{p}\right|\right) \mid} \\
& +\left|\sum_{-D}^{\Sigma} \sum_{D} f_{p}\right| d g_{p}| | \\
& \leq \sum_{-D}^{\Sigma}\left|f_{i}\right| d g_{i}\left|-\sum_{i^{\prime}}^{\Sigma f_{p}}\right| d g_{p}| |+\sum_{D}\left|f_{i}\right| d g_{i}\left|-\sum_{i}^{\sum} \sum_{p}\right| d g_{p}| | \\
& +\sum_{+D}^{\Sigma} \Sigma_{D}\left|f_{p}\right|\left|d g_{p}\right|+\sum_{-D} \sum_{D}^{\prime}\left|f_{p}\right|\left|d g_{p}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\begin{array}{|c|}
\Sigma \\
-D
\end{array}|\quad|+\underset{+D}{\Sigma}|\quad| \\
& +M\left(\underset{+D}{\Sigma} \underset{D^{\prime}}{\Sigma}\left|d g_{p}\right|+\underset{-D}{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|\right) \\
& <\boldsymbol{\Sigma}|+|+\underset{+D}{\Sigma}| \quad \bullet \quad|+M\left(\frac{e}{4 M}\right) \\
& \left.=\begin{array}{r}
\Sigma \\
-D
\end{array}|\quad|+\underset{+D}{\Sigma}|\quad| \quad \right\rvert\,+\frac{e}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{-D^{\prime}}{\Sigma}\left|f_{i}\right| d g_{i}\left|-\underset{i^{\prime}}{\Sigma f_{p}\left|d g_{p}\right|}-\underset{i^{\prime}}{\sum f_{p}}\right| d g_{p} \mid+\underset{i^{\prime}}{\sum_{D^{\prime}} f_{p}\left|d g_{p}\right| \mid} \\
& +\sum_{t_{D}}^{\sum}\left|f_{i}\right| d g_{i}\left|-\sum_{i} \sum_{D^{\prime}} f_{p}\right| d g_{p}\left|-\sum_{i} \sum_{D^{\prime}} f_{p}\right| d g_{p}\left|+\sum_{i^{\prime}}^{\sum f_{p}}\right| d g_{p}| | \\
& +\frac{e}{4} \\
& \leq \underset{-D}{\Sigma}\left|f_{i}\right| d g_{i}\left|-\underset{i}{\Sigma D^{i}} \underset{p}{ }\right| d g_{p}| |+\underset{+D}{\Sigma}\left|f_{i}\right| d g_{i}\left|-\underset{D_{D}}{\Sigma f_{p}}\right| d g_{p}| | \\
& +\sum_{-D} \sum_{D} \sum_{D}\left|f_{p}\right|\left|d g_{p}\right|+\sum_{D} \sum_{-D} \sum_{p}\left|f_{p}\right|\left|d g_{p}\right|+\frac{e}{4} \\
& \leq \sum_{D}^{\Sigma}\left|f_{i}\right| d g_{i}\left|-\sum_{D^{\prime}}^{\Sigma} \Sigma f_{p}\right| d g_{p}| |+\sum_{-D} \sum_{D^{\prime}} \sum^{M}\left|d g_{p}\right| \\
& +\underset{+D}{\Sigma} \sum_{D} M\left|d g_{p}\right|+\frac{e}{4} \\
& <\frac{e}{2}+M\left(\underset{-D}{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|+\underset{+D}{\Sigma} \sum_{D^{\prime}}\left|d g_{p}\right|\right)+\frac{e}{4} \\
& <\frac{e}{2}+M\left(\frac{e}{4 M}\right)+\frac{e}{4} \\
& =\quad e \text {. } \\
& \text { Since for each } e>0 \text { there is a subdivision } D=\left(x_{i}\right)_{i=0}^{n} \text { of } \\
& \text { (} a, b \text {) such that if } D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m} \text { is a refinement of } D \text { and }\left(t_{i}\right)_{i=1}^{n} \\
& \text { and }\left(t_{p}^{p}\right)_{p=1}^{m} \text { are interpolating sequences for } D \text { and } D^{\prime} \text {, respectively, } \\
& \text { then } \quad\left|\begin{array}{l}
\Sigma \\
D
\end{array} f\left(t_{i}\right) d g_{i}-\sum_{D} f\left(t_{p}^{\prime}\right) d g_{p}\right|<e,
\end{aligned}
$$ therefore, $\int_{a}^{b} f d g$ exists $[2, p .28]$.

(1) implies (2)

Let $e>0$. Since $\int_{a}^{b} f d g$ exists and g is of bounded variation on (a, b) then $\int_{a}^{b} f d V_{g}$ exists, where $V_{g}(x)=V_{a}^{Z_{g}}$ for each x in (a, b) $[2, p, 66]$. Since f is bounded on (a, b) then there is an $M>1$ such that $M>|f(x)|$ for each x in (a, b). Since $\int_{a}^{b} f V_{g}$ exists and
$\frac{e}{2}>0$ then there is a subdivision D_{1} of (a, b) such that if $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D_{1} and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for
D^{\prime} then

$$
\left|\sum_{D^{\prime}} f\left(t_{i}\right) d V_{g_{i}}-\int_{a^{b}}^{b} d V_{g}\right|<\frac{e}{2}
$$

Since g is of bounded variation on (a, b) and $\frac{e}{2 M}>0$ then there is a subdivision D_{2} of (a, b) such that if $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D_{2} then

$$
\sum_{D}\left|V_{x_{i-1}}^{x_{i}}-\left|d g_{i}\right|\right|<\frac{e}{2 M}
$$

Let $D=D_{1} U D_{2}$. Let $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ be a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ be an interpolating sequence for D^{\prime}. For each i, let $V_{X_{i-1}}^{x_{i}}$ be denoted by V_{g}. Hence,

$$
\begin{aligned}
& \left|\sum_{D^{\prime}} f\left(t_{i}\right)\right| d g_{i}\left|-\int_{a}^{b} f d V_{g}\right| \\
& \leq\left|\sum_{D^{\prime}} f\left(t_{i}\right)\right| d g_{i}\left|-\sum_{D^{0}} f\left(t_{i}\right) V_{g_{i}}+\sum_{D^{\prime}} f\left(t_{i}\right) V_{g_{i}}-\int_{a}^{b} f V_{g}\right|
\end{aligned}
$$

$$
\begin{aligned}
& <\sum_{D}\left|f\left(t_{i}\right)\right| d g_{i}\left|-f\left(t_{i}\right) V_{g_{i}}\right|+\frac{e}{2} \\
& =\sum_{D^{\prime}}\left|f\left(t_{i}\right)\right|\left|V_{g_{i}}-\left|d g_{i}\right|\right|+\frac{e}{2} \\
& \leq \sum_{D^{\prime}} M\left|V_{g_{i}}-\left|d g_{i}\right|\right|+\frac{e}{2} \\
& =M \sum_{D}\left|V_{i}-\left|d g_{i}\right|\right|+\frac{e}{2} \\
& <M\left(\frac{e}{2 M}\right)+\frac{e}{2} \\
& =e \text {. }
\end{aligned}
$$

Since $\int_{a}^{b} f d V g$ is a number such that if $e>0$ then there is a
subdivision D of (a, b) such that if $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of
D and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for D^{\prime} then

$$
\left|\sum_{D^{\prime}} f\left(t_{i}\right)\right| d g_{i}\left|-\int_{a}^{b} f d V_{g}\right|<e
$$

therefore, $\int_{a}^{b}|d g|$ exists, by Definition 1.3.
With further investigation, it has been found that given the existence of $\int_{a}^{b}|d g|$, the proof of the existence of $\int_{a}^{b} f d g$ does not require the condition of bounded variation for g on (a, b). The following are two preliminary theorems in preparation for the desired result. THEOREM 3.3: If $\int_{a}^{b}|d g|$ exists then $\int_{a}^{b}|f d g|$ exists.

Proof:

By Theorem 2.4, since $\int_{a}^{b}|d g|$ exists then $\int_{a}^{b}|f||d g|$ exists and $\int_{a}^{b}|f d g|$ exists.

THEOREM 3.4: If $\int_{a}^{b} f|d g|$ exists and g is not of bounded variation on (a, b) then for each $e>0$ there is a subinterval (c, d) of (a, b) such that $|f(x)|<e$ for each x in (c, d. .

Proof:
Assume the conclusion is false. Therefore, there is an $e>0$ such that if (c, d) is any subinterval of (a, b) then there is an x in (c, d) such that $|f(x)| \geq$ e. Since $\int_{a}^{b}|f d g|$ exists and e. >0 then there is a subdivision D of (a, b) such that if $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ is a refinement of D and $\left(t_{i}\right)_{i=1}^{n}$ is an interpolating sequence for D^{\prime} then, by Definition 1.3. $\quad\left|\sum_{D^{\prime}}\right| f\left(t_{i}\right) d g_{i}\left|-\int_{a}^{b}\right| f d g| |<e$.

Since g is not of bounded variation on (a, b) and $1+\frac{1}{e} \int_{a}^{b}|f d g|>0$ then there is a refinement $D^{\prime}=\left(x_{i}\right)_{i=0}^{n}$ of D such that

$$
\sum_{D^{\prime}}\left|d g_{i}\right|>1+\frac{1}{e} \int_{a}^{b}|f d g|
$$

From our assumption, there exists an interpolating sequence for D^{\prime}, $\left(t_{i}\right)_{i=1}^{n}$, such that for each $\left(x_{i-1}, x_{i}\right),\left|f\left(t_{i}\right)\right| \geq e$. Hence,
and

$$
\left|\sum_{D^{\prime}}\right| f_{i} d g_{i}\left|-\int_{a}^{b}\right| f d g| |<e
$$

$$
\sum_{D^{\prime}}\left|f_{i} d g_{i}\right|<e+\int_{a}^{b}|f d g|
$$

Thus,

$$
\begin{aligned}
e+\int_{a}^{b}|f d g| & >\sum_{D^{\prime}}\left|f_{i} d g_{i}\right| \\
& \geq \sum_{D^{\prime}} e\left|d g_{i}\right| \\
& =e \sum_{D^{\prime}}\left|d g_{i}\right| \\
& \geq e\left(1+\frac{1}{e} \int_{a}^{b}|f d g|\right) \\
& =e+\int_{a}^{b}|f d g|
\end{aligned}
$$

Therefore,

$$
e+\int_{a}^{b}|f d g|>e+\int_{a}^{b}|f d g|
$$

This is a contradiction. Thus, the assumption is false and the
theorem is true.
THEOREM 3.5: If $\int_{a}^{b} f|d g|$ exists then $\int_{a}^{b} f d g$ exists.
Proof:
Let $e>0$. Since $\int_{a}^{b} f|d g|$ exists then, by Theorem 3.3, $\int_{a}^{b}|f d g|$ exists. Since $\int_{a}^{b}|f d g|$ exists and $\frac{e}{6}>0$ then, by Theorem 1.7, there is a subdivision $D_{1}=\left(z_{1}\right)_{l=0}^{n}$ of (a, b) such that if $D_{2}=\left(x_{i}\right)_{i=0}^{m}$ is a refinement of $D_{1}, D_{3}=\left(x_{p}^{\prime}\right)_{p=0}^{k}$ is a refinement of D_{2} and
$\left(t_{i}\right)_{i=1}^{m}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{k}$ are interpolating sequences for D_{2} and D_{3}, respectively, then

$$
\sum_{D_{2}}| | f\left(t_{i}\right) d g_{i}\left|-\underset{i}{\sum D_{3}} \underset{p}{ }\right| f\left(t_{p}\right) d g_{p}| |<\frac{e}{6}
$$

Let A be the set such that z_{1} belongs to A if and only if z_{1}
is in D_{1} and g is of bounded variation on $\left(z_{1-1}, z_{1}\right)$. Since for each z_{I} in $A, \int_{Z_{I-1}}^{Z_{1}} f|d g|$ exists and g is of bounded variation on $\left(z_{1-1}, z_{1}\right)$ then, by Theorem 3.2, $\int_{Z_{I-1}}^{Z_{I}}$ fdg exists. Since for each Z_{1} in $A_{\text {, }}$ $\int_{Z_{I-1}}^{Z_{I}}$ fdg exists and $\frac{e}{6 n}>0$ then, by Theorem 1.7 , there is a subdivision $A_{I}=\left(c_{r}\right)_{r=0}^{k_{I}}$ of $\left(z_{I-1}, z_{I}\right)$ such that if $A_{I}^{\prime}=\left(c_{p}^{\prime}\right)_{p=0}^{j_{I}}$ is a refinement of A_{1} and $\left(t_{p}\right)_{p=1}^{j I}$ is an interpolating sequence for A_{1}^{\prime} then

$$
\sum_{A_{1}^{\prime}}\left|f\left(t_{p}\right) d g_{p}-\int_{c}^{c}{ }_{p-1}^{1} f d g\right|<\frac{e}{6 n}
$$

and

$$
\sum_{A_{I}}\left|\int_{c_{r-1}^{c} r}^{c_{r}}-\sum_{r_{i}} f\left(t_{p}\right) d g_{p}\right|<\frac{e}{6 n}
$$

For each z_{1} in D_{1} which is not A, let A_{1} be the set such that x belongs to A_{1} if and only if $x=z_{1}$.
 ment of D. Thus, D and D^{\prime} are refinements of D_{1} such that D^{\prime} is a refinement of D_{0} Let $\left(t_{i}\right)_{i=1}^{\alpha}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ be interpolating sequences for D and D^{\prime}, respectively.

Let C be the set such that x belongs to C if and only if X is
in D and there is a z_{1} in A such that $z_{1-1}<x \leq z_{1}$. Let C' be the set such that x belongs to C^{\prime} if and only if x is in D^{\prime} and there is an x_{i} in D such that x_{i} is in C and $x_{i-1}<x \leq x_{i}$. Let B be the set $D-C$ and B^{\prime} be the set $D^{\prime}-C^{\prime}$. Therefore, for each x_{i} in B, g is not of bounded variation on $\left(x_{i-1}, x_{i}\right)$. For each x_{i} in B, since g is not of bounded variation on $\left(x_{i-1}, x_{i}\right), \int_{x_{i-1}}^{x_{i}}|d g|$ exists and $\frac{e}{6 n\left(\left|d g_{i}\right|+1\right)}>0$ then, by Theorem 3.4, there is a subinterval ($\left.c, d\right)_{i}$ of $\left(x_{i-1}, x_{i}\right)$ such that for each x in $(c, d)_{i},|f(x)|<\frac{e}{6 n\left(\left|d g_{i}\right|+1\right)}$. For each x_{i} in B, let q_{i} be in $(c, d)_{i}$ Hence,

$$
\begin{aligned}
& \left|\sum_{D} f\left(t_{i}\right) d g_{i}-\sum_{D^{\prime}} f\left(t_{p}\right) d g_{p}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left|\frac{\Sigma}{C} f_{i} d g_{i}-\sum \int_{C}^{X_{i_{i}}} f d g\right|+\left|\sum_{C=1}^{\Sigma} \int_{X_{i-1}}^{x_{i}} f d g-\sum_{C} f_{p} d g_{p}\right| \\
& +\begin{array}{c}
\Sigma \\
B
\end{array}\left|+\left|+\Sigma_{B}\right| \cdots\right| \\
& \leq \quad \sum_{C}\left|f_{i} d g_{i}-\int x_{i=1}^{x_{i}} f d g\right|+\sum_{C}\left|\int_{x_{i-1}}^{x_{i}} f d g-\sum_{C^{\prime}} f_{p} d g_{p}\right| \\
& +\begin{array}{c}
\Sigma \\
B
\end{array}|\cdot|+\begin{array}{c}
\Sigma \\
B^{\prime}
\end{array}|\cdot|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{B}|\quad|+\left|\begin{array}{c}
\\
B^{\prime}
\end{array}\right| \cdot 1 \\
& <\sum_{I=1}^{n} \frac{e}{6 n}+\sum_{I=1}^{n} \frac{e}{6 n}+\frac{\Sigma}{B}|\cdot|+\sum_{B}|\cdot|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e}{6}+\frac{e}{6}+\sum_{B}\left|f_{i} d g_{i}\right|+\sum_{B^{\prime}}\left|f_{p} d g_{p}\right| \\
& =\frac{e}{3}+\sum_{B}\left|f\left(t_{i}\right) d g_{i}\right|+\sum_{B^{8}}\left|f\left(t_{p}\right) d g_{p}\right| \\
& =\frac{e}{3}+\sum_{B}\left|f\left(t_{i}\right) d g_{i}\right|-\sum_{B}\left|f\left(q_{i}\right) d g_{i}\right| \\
& +\sum_{B^{\prime}}\left|f\left(t_{p}\right) d g_{p}\right|-\sum_{B}\left|f\left(q_{i}\right) d g_{i}\right|+2 \sum_{B}\left|f\left(q_{i}\right) d g_{i}\right| \\
& \leq \frac{e}{3}+\sum_{B}| | f\left(t_{i}\right) d g_{i}\left|-\left|f\left(q_{i}\right) d g_{i}\right|\right| \\
& +\sum_{B}| | f\left(q_{i}\right) d g_{i}\left|-\sum_{i^{B \prime}}\right| f\left(t_{p}^{\prime}\right) d g_{p}| |+2 \sum_{B}\left|f\left(q_{i}\right)\right|\left|d g_{\dot{i}}\right| \\
& <\frac{e}{3}+\frac{e}{6}+\frac{e}{6}+2 \underset{B}{6 n\left(\left|d g_{i}\right|+1\right)}\left|d g_{i}\right| \\
& \leq \frac{2}{3} e+2\left(\frac{e}{6}\right) \sum_{B} \frac{1}{n} \\
& \leq \frac{2}{3} \mathrm{e}+\frac{\mathrm{e}}{3}(1) \\
& =0 \text {. } \\
& \text { Since for each } e>0 \text { there is a subdivision } D=\left(x_{i}\right)_{i=0}^{n} \text { of } \\
& \text { (} a, b \text {) such that if } D^{\prime}=\left(x_{p}^{\prime}\right)_{p=0}^{m} \text { is a refinement of } D \text { and }\left(t_{i}\right)_{i=1}^{n} \\
& \text { and }\left(t_{p}^{\prime}\right)_{p=1}^{m} \text { are interpolating sequences for } D \text { and } D^{\prime} \text {, respectively, } \\
& \left|\sum_{D}^{\Sigma} f\left(t_{i}\right) d g_{i}-\sum_{D^{\prime}} f\left(t_{p}^{0}\right) d g_{p}\right|<e,
\end{aligned}
$$ then

therefore, $\int_{a}^{b} f d g$ exists [2, p. 28].
THEOREM 3.6: If $\int_{a}^{b} f d g$ and $\int_{a}^{b}|f d g|$ both exist then $\int_{a}^{b} f|d g|$ exists. Proof:

Let $e>0$. Since $\int_{a}^{b}|f d g|$ exists and $\frac{e}{4}>0$ then, by Theorem 1.7, there is a subdivision $D_{2}=\left(x_{i}\right)_{i=0}^{k}$ of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$
is a refinement of D_{2} and $\left(t_{i}\right)_{i=1}^{k}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ are interpolating sequences for D_{2} and D_{1}, respectively, then

$$
\sum_{D_{2}}| | f\left(t_{i}\right) d g_{i} \left\lvert\,-\sum_{i_{1}}^{\Sigma\left|f\left(t_{p}^{\prime}\right) d g_{p}\right| \left\lvert\,<\frac{e}{4} .\right.}\right.
$$

Since $\int_{a}^{b} \mathrm{fdg}$ exists and $\frac{e}{4}>0$ then, by Theorem 2.1, there is a subdivision D_{3} of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D_{3} and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$
\sum_{D_{1}^{ \pm}}\left|f\left(t_{p}^{\prime}\right) d g_{p}\right|<\frac{e}{4}
$$

Since \int_{a}^{b} fag exists and $\frac{e}{4}>0$ then, by Theorem 2.3, there is a subdivision D_{4} of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D_{4} and $\left(t_{p}^{1}\right)_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$
\left.\begin{array}{l|l|}
\Sigma & \Sigma \\
D_{4}^{ \pm} & \left|f\left(t_{p}\right) d g_{p}\right| \mid
\end{array} \right\rvert\,<\frac{e}{4} .
$$

Let $D=D_{2}$ U D_{3} U $D_{4}=\left(x_{i}\right)_{i=0}^{n}$. Let $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ be a refinemont of D and $\left(t_{i}\right)_{i=1}^{n}$ and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ be interpolating sequences for D and D_{1}, respectively. Hence,

$$
\begin{aligned}
& \left|\Sigma f\left(t_{i}\right)\right| d g_{i}\left|-\sum_{D_{1}} f\left(t_{p}^{\prime}\right)\right| d g_{p}| | \\
& \leq \sum_{D^{+}}| | f\left(t_{i}\right)| | d g_{i}\left|=\underset{i}{D_{1}}\right| f\left(t_{p}^{\prime}\right)| | d g_{p}| | \\
& +\underset{D^{-}}{\Sigma}\left|-\left|f\left(t_{i}\right)\right|\right| d g_{i}\left|-\underset{i^{D}}{\Sigma}-\left|f\left(t_{p}^{p}\right)\right|\right| d g_{p}| |+\underset{D^{ \pm}}{\Sigma}\left|f\left(t_{i}\right) d g_{i}\right| \\
& +\underset{D_{i}^{ \pm} D_{1}}{\Sigma}\left|f\left(t_{p}\right) d g_{p}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.<\sum_{D^{+}}| | f_{D^{-}} d g_{i}\left|-\sum_{i} D_{1}\right| f_{p} d g_{p}| |+\frac{e}{4}+\underset{D^{ \pm} i_{i} D_{1}}{\Sigma} \sum_{p} d g_{p} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& +\begin{array}{l}
\Sigma \\
D^{ \pm}{ }_{i} D_{1}^{ \pm}
\end{array}\left|f_{p} \mathrm{dg}_{\mathrm{p}}\right| \\
& <\sum_{D}|\quad \bullet \quad|+\frac{e}{4}+\frac{e}{4}+\underset{D_{1}^{ \pm}}{\Sigma}\left|f_{p} d g_{p}\right| \\
& <\frac{e}{4}+\frac{e}{2}+\frac{e}{4} \\
& =\mathrm{e} \text {. }
\end{aligned}
$$

Since for each $e>0$ there is a subdivision $D=\left(x_{i}\right)_{i=0}^{n}$ of (a, b) such that if $D_{1}=\left(x_{p}^{\prime}\right)_{p=0}^{m}$ is a refinement of D and $\left(t_{p}^{\prime}\right)_{p=1}^{m}$ and $\left(t_{i}\right)_{i=1}^{n}$ are interpolating sequences for D_{1} and D, respectively, then $\quad\left|\sum_{D} f\left(t_{i}\right)\right| d g_{i}\left|-\sum_{D_{1}} f\left(t_{p}^{i}\right)\right| d g_{p}| |<e$, therefore, $\int_{a}^{b} f|d g|$ exists $[2, p .28]$.

The questions of reciprocity of the relationships between several of the integrais arise. If $\int_{a}^{b}|f| d g$ exists then $\int_{a}^{b} f d g$ does not neces. sarily exist. For example, if f is the function defined as follows:
$f(x)=1$, if x is a rational number
$f(x)=-1$, if x is an irrational number
and $g(x)=x$, for each x in (a, b), then $\int_{a}^{b}|f| d g$ exists but $\int_{a}^{b} f d g$ does not exist; $\int_{a}^{b} g d|f|$ exists but $\int_{a}^{b} g d f$ does not; and $\int_{a}^{b}|f d g|$ exists but $\int_{a}^{b} f|d g|$ does not.

If $\int_{a}^{b} f d g$ exists then $\int_{a}^{b} f|d g|$ does not necessarily exist. For
example, if f and g are functions such that $f(x)=1$ for each number x and $g(x)=x \sin \frac{1}{x}$ for each number $x \neq 0$ and $g(0)=0$, then $\int_{0}^{2} f d g$ exists but $\int_{0}^{2} f|d g|$ does not.

BIBLIOGRAPHY

1. Helton, Burrell W. "Integral Equations and Product Integrals." Pacific Journal of Mathematics, Vol. XVI, 1966.
2. Hildebrandt, T. H. Theory of Integration. New York: Academic Press, 1963.
