RELATIONSHIPS BETWEEN INTEGRABLE FUNCTIONS

AND THEIR ABSOLUTE VALUES

THESIS

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

,

the Requirements

For the Degree of

MASTER OF ARTS

By

Terence W. McCabe, B. S.

San Marcos, Texas

May, 1972

ACKNOWLEDGMINTS

The writer wishes to express his gratitude to Dr. John A. Chatfield for his continual efforts in promoting an atmosphere most conducive for creative learning.

Terence W. McCabe

San Marcos, Texas

May, 1972

TABLE OF CONTENTS

1

,

ź

Chapte	er									Page
I.	INTRODUCTION AND DEFINITIONS	•	Ð	8	0	9	e	¢	٠	1
II.	THE EXISTENCE OF $\int_{a}^{b} f dg \cdots \cdots \cdots \cdots$	ø		¢	9	G	æ	•	ø	4
III.	RELATIONSHIPS BETWEEN $\int_{a}^{b} f dg$ and $\int_{a}^{b} f dg $	ø	4		٠	¢	G	ø		13
	BIBLIOGRAPHY	8	•				8	٩	•	27

ζ

.

CHAPTER I

INTRODUCTION AND DEFINITIONS

The purpose of this paper is to develop several relationships between integrals of the type $\int_{a}^{b} fdg$, $\int_{a}^{b} [f]dg$, $\int_{a}^{b} fd[g]$, $\int_{a}^{b} f[dg]$, and $\int_{a}^{b} [fdg]$. Chapter II shows that if $\int_{a}^{b} fdg$ exists then $\int_{a}^{b} f$ dg exists. Chapter III shows the equivalency between the existence of $\int_{a}^{b} fdg$ and $\int_{a}^{b} f[dg]$ with the condition of bounded variation on g. Another theorem allows us to relax this condition while going from $\int_{a}^{b} f[dg]$ to $\int_{a}^{b} fdg$. All functions used are from numbers to numbers.

<u>DEFINITION 1.1</u>: The statement that $D = (x_i)_{i=0}^n$ is a subdivision of the closed interval (a,b) means that D is a finite subset of (a,b) such that $a = x_0$, $b = x_n$ and for each i, $x_i < x_{i+1}$.

<u>DEFINITION-1.2</u>: The statement that D' is a refinement of a subdivision D of (a,b) means D' is a subdivision of (a,b) and D is a subset of D'. <u>DEFINITION 1.3</u>: The statement that $(t_i)_{i=1}^n$ is an interpolating sequence for the subdivision $(x_i)_{i=0}^n$ means if $0 < i \le n$ then $x_{i-1} \le t_i \le x_i$. <u>DEFINITION 1.4</u>: The statement that f is integrable with respect to g means that f and g are functions and there exists a number A such that if e > 0 then there is a subdivision D of (a,b) such that if $D' = (x_i)_{i=0}^n$ is a refinement of D and $(t_i)_{i=1}^n$ is an interpolating sequence of D' then

$$\begin{vmatrix} n \\ \Sigma \\ i=1 \\ D' \end{vmatrix} f(t_i)[g(x_i) - g(x_{i-1})] - A < e.$$

We denote the number A by $\int_{a}^{b} fdg$. We will also denote the numbers $g(x_{i}) - g(x_{i-1})$ by dg_{i} and $f(t_{i})$ by f_{i} when no misunderstanding is likely. The symbol Σ will be used for $\sum_{i=1}^{n}$. As indicated before, (a,b) shall D^{i}

denote the closed interval, containing both a and b. <u>DEFINITION 1.5</u>: If f and g are functions such that $\int_{a}^{b} f dg$ exists and if $D = (x_{i})_{i=0}^{n}$ is a subdivision of (a,b) and $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a refinement of D then

(1) D⁺ denotes the set such that x belongs to D⁺ if and only if $x = x_i$ for some x_i in D and for each p in (x_{i-1}, x_i) , $f(p) \ge 0$.

(2) D⁻ denotes the set such that x belongs to D⁻ if and only if $x = x_i$ for some x_i in D and for each p in (x_{i-1}, x_i) , f(p) < 0.

(3) D^{\pm} denotes the set such $D^{\pm} = D - (D^{+} U D^{-})_{\circ}$ If $0 < i \leq n$, then

(4) D_1 denotes the set such that x belongs to D_1 if and only if x is in D_1 and $x_{i-1} < x \le x_i$.

(5) $D \cdot dg \ge 0$ denotes the set such that x belongs to $D \cdot dg \ge 0$ if and only if $x = x_i$ for some x_i in D and $g(x_i) - g(x_{i-1}) \ge 0$.

(6) $D \cdot dg < o$ denotes the set such that $(D \cdot dg < o) = D - (D \cdot dg \ge o)$. When no consideration of the sign of f is needed, $D \cdot dg \ge o$ will be denoted by +D and $D \cdot dg < o$ by -D.

DEFINITION 1.6: The statement that g is of bounded variation on (a,b)

means that there exists a number M > 0 such that if $D = (x_1)_{1=0}^n$ is a subdivision of (a,b) then $\sum_{D} |dg_1| < M$. If S is the set such that p belongs to S if and only if there is a subdivision $(x_q)_{q=0}^m$ of (a,b) such that $p = \frac{m}{2} |dg_q|$, then the least upper bound of S is denoted by $q_{g=1}^{b}$ and is said to be the variation of g on (a,b). <u>THEOREM 1.7</u>: If $\int_{a}^{b} fdg$ exists and e > 0 then there is a subdivision $D = (x_1)_{1=0}^n$ of (a,b) such that if $D^{t} = (x_1^{t})_{p=0}^m$ is a refinement of D and $(t_1)_{i=1}^n$ and $(t_p^{t})_{p=1}^m$ are interpolating sequences for the subdivisions D and D^t, respectively, then [1, p. 304]

$$\begin{split} & \sum_{D^{i}} \left| f(t_{p}^{i}) dg_{p} - \int_{x_{p-1}}^{x_{p}} f dg \right| < e, \\ & \sum_{D^{i}} \left| f(t_{j}) dg_{j} - \sum_{D^{i}} f(t_{p}^{i}) dg_{p} \right| < e, \\ & \sum_{D^{i}} \left| \int_{x_{j-1}}^{x_{j}} f dg - \sum_{p} f(t_{p}^{i}) dg_{p} \right| < e. \end{split}$$

and

CHAPTER II

THE EXISTENCE OF
$$\int_{a}^{b} |f| dg$$

The first relationship to be considered is that between $\int_{a}^{b} fdg$ and $\int_{a}^{b} |f| dg$. The following sequence of theorems establish that if $\int_{a}^{b} fdg$ exists then $\int_{a}^{b} |f| dg$ exists. THEOREM 2.1: If $\int_{a}^{b} fdg$ exists and e > 0 then there is a subdivision D of (a,b) such that if $D_{1} = (x_{i})_{i=0}^{n}$ is a refinement of D and $(t_{i})_{i=1}^{n}$ is an interpolating sequence for D_{1} then $\sum_{D_{1}\pm} |f(t_{i})dg_{i}| < e$.

Proof:

Let e > 0. Since $\int_{a}^{b} fdg$ exists and $\frac{e}{2} > 0$ then, by Theorem 1.7, there is a subdivision D of (a,b) such that if $D_{1} = (x_{i})_{i=0}^{n}$ is a refinement of D and $(t_{i})_{i=1}^{n}$ is an interpolating sequence for D_{1} then

$$\sum_{D_{1}} \left| f_{i} dg_{i} - \int_{x_{i-1}}^{x_{i}} f dg \right| < \frac{e}{2}$$

Let $D_1 = (x_i)_{i=0}^n$ be a refinement of D and $(t_i)_{i=1}^n$ be an interpolating sequence for D_1 . For each t_i in $D_1 \pm$, let q_i be a number such that q_i is in (x_{i-1}, x_i) and if $f(t_i) \ge 0$ then $f(q_i) < 0$ and if $f(t_i) < 0$ then $f(q_i) \ge 0$. Therefore, for each x_i in $D_1 \pm$, $|f(t_i) - f(q_i)| \ge f(t_i)$.

Now, $e = \frac{e}{2} + \frac{e}{2}$

$$\sum_{D_{1} \pm} \left| \int_{x_{i-1}}^{x_{i}} f dg - f(q_{i}) dg_{i} \right| + \sum_{D_{1} \pm} \left| f(t_{i}) dg_{i} - \int_{x_{i-1}}^{x_{i}} f dg \right|$$

$$\sum_{D_{1} \pm} \left| f(t_{i}) dg_{i} - f(q_{i}) dg_{i} + \int_{x_{i-1}}^{x_{i}} f dg - \int_{x_{i-1}}^{x_{i}} f dg \right|$$

$$= \sum_{D_{1} \pm} \left| f(t_{i}) - f(q_{i}) \right| \cdot \left| dg_{i} \right|$$

$$\geq \sum_{D_{1} \pm} \left| f(t_{i}) \right| \cdot \left| dg_{i} \right|$$

$$= \sum_{D_{1} \pm} \left| f(t_{i}) dg_{i} \right| \cdot \left| dg_{i} \right|$$

$$= \sum_{D_{1} \pm} \left| f(t_{i}) dg_{i} \right| \cdot \left| dg_{i} \right|$$

Therefore,

THEOREM 2.2: If $\int_{a}^{b} f dg$ exists and e > 0 then there is a subdivision $D = (x_{i})_{i=0}^{n}$ of (a,b) such that if $D_{1} = (x_{p}^{*})_{p=0}^{m}$ is a refinement of D and $(t_{i})_{i=1}^{n}$ and $(t_{p}^{*})_{p=1}^{m}$ are interpolating sequences for D and D_{1} , respectively, then

$$\sum_{i=1}^{|f(t_i)|} dg_i - \sum_{i=1}^{|f(t_i)|} dg_p < e.$$

Proof:

Let e > 0. Since $\int_{a}^{b} fdg$ exists and $\frac{e}{2} > 0$ then, by Theorem 1.7, there is a subdivision $D = (x_{i})_{i=0}^{n}$ of (a,b) such that if $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a refinement of D and $(t_{i})_{i=1}^{n}$ and $(t_{p}^{i})_{p=1}^{m}$ are interpolating sequences for D and D_{1} , respectively, then

$$\sum_{D} \left| f(t_i) dg_i - \sum_{p} f(t_p) dg_p \right| < \frac{e}{2} \cdot \frac{1}{2}$$

Let $D_1 = (x_p^i)_{p=0}^m$ be a refinement of D and $(t_i)_{i=1}^n$ and $(t_p^i)_{p=1}^m$ be interpolating sequences for D and D_1 , respectively. Hence,

$$\sum \left| f(t_i) \right| dg_i - \sum f(t_p) dg_p \right|$$

$$D + U D - i^{D_1}$$

5

$$= \sum_{p+1} | \cdot | + \sum_{p-1} | \cdot |$$

$$= \sum_{p+1} \left| f(t_1) ds_1 - \sum_{1} f(t_1) ds_p \right| + \sum_{p-1} - f(t_1) ds_1 - \sum_{1} - f(t_2) ds_p \right|$$

$$= \sum_{p+1} \left| \cdot \right| + \sum_{p-1} f(t_1) ds_1 - \sum_{1} f(t_1) ds_p \right|$$

$$\leq \sum_{p+1} \left| f(t_1) ds_1 - \sum_{1} f(t_1) ds_p \right|$$

$$\leq \frac{e}{2}$$

$$< e \cdot$$
Therefore, $\sum_{p+1} \left| f(t_1) ds_1 - \sum_{1} f(t_1) ds_p \right| < e$

$$= \sum_{p+1} | \cdot | f(t_1) ds_1 - \sum_{1} f(t_1) ds_p | < e$$

$$= \frac{e}{2}$$

$$< e \cdot$$
Therefore, $\sum_{p+1} \left| f(t_1) ds_1 - \sum_{1} f(t_1) ds_p \right| < e$

$$= (a_1)^n_{1=0} \text{ of } (a,b) \text{ such that if } D_1 = (x_1^*)^m_{p=0} \text{ is a refinement of } D$$
and for each 1, $0 < i \le n$, let $\frac{1}{2}M = (y_q)^{\frac{1}{2}}$ denote the subdivision of
$$(x_{1-1}, x_1) \text{ such that } z \text{ is in } \frac{1}{2}M \text{ if and only if } (1) z \text{ is } x_{1-1} \text{ or } x_1, \text{ or}$$

$$(2) z \text{ is } x_p^* \text{ or } x_{p-1}^*, \text{ where } x_p^* \text{ is in } D_1 \pm z \text{ and let } (z_p)^m_{p=1} \text{ and } (w_q)^{\frac{1}{2}}$$

$$= \sum_{p=1}^{p} \left| \sum_{p=1}^{p} | f(w_q)| \cdot ds_q \right| < e$$

$$(A) \sum_{p=1}^{p} \sum_{p=1}^{p} \sum_{p=1}^{p} | f(w_q)| \cdot ds_q | < e$$

$$(C) \sum_{p=1}^{p} \sum_{p=1}^{p} | f(w_q)| \cdot ds_q | < e$$

$$(D) \sum_{p=1}^{p} \sum_{p=1}^{p} | f(w_q)| \cdot ds_q | < e$$

$$(D) \sum_{p=1}^{p} \sum_{p=1}^{p} | f(w_q)| \cdot ds_q | < e$$

$$(E) \sum_{p=1}^{p} | \sum_{p=1}^{p} | f(w_q)| \cdot ds_q | < e$$

$$(E) \sum_{p=1}^{p} | \sum_{p=1}^{p} | f(z_p)| \cdot ds_p | < e$$

١

,

•••

-

6

C

Proof:

(A) Let e > 0. By Theorem 2.2, since $\int_{a}^{b} fdg$ exists and e > 0then there is a subdivision $D = (x_{i})_{i=0}^{n}$ of (a,b) such that if $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a refinement of D and $(z_{p})_{p=1}^{m}$ and $(t_{i})_{i=1}^{n}$ are interpolated sequences for D_{1} and D, respectively, then

$$\sum \left| \left| f(t_i) \right| dg_i - \sum \left| f(z_p) \right| dg_p \right| < e$$

$$D^+ U D^- i^D 1$$

Let $D_1 = (x_p^*)_{p=0}^m$ be a refinement of D. For each x_i in D, let i^M be defined as in hypothesis of theorem and let $M = \overset{n}{\bigcup}_{i=1}^{M} M_{i=1}^{M}$. Thus, M is a refinement of D and D_1 is a refinement of M. Also, for each i, let $(w_q)_{q=1}^{l_i}$ be an interpolating sequence for M_i^M . Hence,

$$e > \Sigma \left| \left| f(w_q) \right| dg_q - \Sigma \left| f(z_p) \right| dg_p \right|$$

$$M^+ U M^- \qquad q^{D_1}$$

$$= \sum_{D^+} \left| \cdot \right| + \sum_{D^\pm} \sum_{i} \left| \cdot \right|$$

$$D^+ U D^- \qquad D^\pm i^{M^+} U_i^{M^-}$$

$$\geq \sum_{D^\pm} \left| \sum_{i} \left| f(w_q) \right| dg_q - \sum_{i} \sum_{M^+} \left| f(z_p) \right| dg_p \right|$$

$$\geq -\Sigma \left| \sum_{D^\pm} \left| f(w_q) \right| dg_q \right| + \sum_{D^\pm} \sum_{i} \sum_{M^+} \sum_{i} \left| f(z_p) \right| dg_p \right|$$

Therefore,

respectively, then

$$\sum_{A_1} \left| f(z_p) dg_p - \sum_{p \neq 2} f(t_q) dg_q \right| < \frac{e}{3}.$$

Since $\int_{a}^{b} fdg$ exists and $\frac{e}{3} > 0$ then there is a subdivision D_{3} of (a,b) such that if $D_{1} = (x_{p}^{*})_{p=0}^{m}$ is a refinement of D_{3} and $(z_{p})_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$\sum_{D_1^{\pm}} |f(z_p) dg_p| < \frac{e}{3}.$$

Let $D = D_2 U D_3 = (x_i)_{i=0}^n$. Let $D_1 = (x_i^*)_{p=0}^m$ be a refinement

of D and for each x_i in D, let M_i be defined as in hypothesis and $M = \bigcup_{i=1}^{n} M_i$. Let M_i be the refinement of D such that x belongs to M_i if and only if x is in D or there is an x_i in D such that x is in M^{\pm} , M^{-} or $M^{+} \cdot dg < 0$. For each i, let $M_i = (y_j)_{j=0}^{k_i}$. Notice that M is a refinement of M_i . For each y_j in M_i , let z_j^{+} be in (y_{j-1}, y_j) . Thus, $\sum_{\substack{i = 1 \\ j = 1}} f(z_j^{+})dg_j < \frac{e}{3}$ and $\sum_{\substack{i = 1 \\ j = 1}} f(w_q)dg_q < \frac{e}{3}$.

Therefore,

$$\sum_{\substack{D^{\pm} i^{M^{\pm} \cdot dg \ge 0}}} \sum_{\substack{g \in Q_{q}}} \left[g(y_{q}) - g(y_{q-1}) \right]$$

 $= \sum_{\substack{D^{\pm} i^{M+\bullet} dg \ge 0}} \sum_{\substack{f(w_q) dg_q \\ g \ge 0}} \int_{D^{\pm} i^{M+\bullet} dg \ge 0}$

 $= \sum \sum f(w_q) dg_q + \sum \sum f(w_q) dg_q - \sum \sum f(w_q) dg_q$ $D^{\pm} i^{M^{\pm}} \cdot dg \ge 0 \qquad D^{\pm} i^{M^{\pm}} \qquad D^{\pm} i^{M^{\pm}}$

$$\leq \sum_{\substack{D^{\pm} i \\ D^{\pm} i \\ }} \sum_{\substack{M^{\pm} U \\ i \\ M^{\pm} \bullet d_{g_{q}} \geq 0 \\ M^{\pm} \\ M^$$

 $< \Sigma \Sigma f(w_q) dg_q + \Sigma \Sigma f(z_j^{*}) dg_j - \Sigma \Sigma f(z_j^{*}) dg_j + \frac{e}{3}$ $D^{\pm} i^{M^{+} \bullet} dg_q \ge 0 U_i^{M^{\pm}} \qquad D^{\pm} i^{M^{\pm}}_1 \qquad D^{\pm} i^{M^{\pm}}_1$

$$\leq \sum_{\substack{D^{\pm} \ i^{M^{\pm}U_{i}M^{\pm} \cdot dg \geq 0 \\ D^{\pm} \ i^{M^{\pm}U_{i}M^{\pm} \cdot dg \geq 0 \\ j^{M_{1}} }}} \sum_{\substack{M_{1}^{\pm} \ m^{\pm} \cdot dg \geq 0 \\ D^{\pm} \ j^{M_{1}} }} \sum_{\substack{D^{\pm} \ j^{M_{1}} \\ M_{1}^{\pm} }} \frac{\sum_{\substack{D^{\pm} \ j^{M_{1}} \\ f(w_{q})dg_{q} }} - f(z_{j}^{*})dg_{j} \right| + \frac{e}{3} + \frac{e}{3} } + \frac{e}{3} }$$

$$\leq \sum_{\substack{M_{1} \ M_{1} \\ M_{1} }} \left| + \frac{2}{3} e \right| + \frac{2}{3} e$$

$$= e \cdot \sum_{\substack{D^{\pm} \ M_{1} \\ M^{\pm} + dg \geq 0 }} \sum_{\substack{D^{\pm} \ M^{\pm} + dg \geq 0}} \sum_{\substack{D^{\pm} \ M^{$$

Thus,

By similar argument, parts C, D and E are also true. Using these results, the following establishes part F as the main conclusion of the theorem.

(F) For each of the previous parts, A, B, C, D and E, let the arbitrary positive number be $\frac{e}{5}$. Since $\int_{a}^{b} fdg$ exists and $\frac{e}{5} > 0$ then there is a subdivision $D = (x_{i})_{i=0}^{n}$ such that if $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a refinement of D and $M = \bigcup_{i=1}^{n} (M_{i})$, as defined in hypothesis, is a i=1

refinement of D then parts A, B, C, D and E are true.

Let $D_1 = (x_p^*)_{p=0}^m$ be a refinement of D and $(z_p)_{p=1}^m$ be an interpolating sequence for D_1 . For each M_1 , let w_q be in (y_{q-1}, y_q) for each y_q in M_1 . Hence,

Thus,

Finally, with the preceding theorems we can establish the following result. THEOREM 2.4: If $\int_a^b f dg$ exists then $\int_a^b |f| dg$ exists.

Proof:

Let e > 0. Since $\int_{a}^{b} f dg$ exists and $\frac{e}{4} > 0$ then, by Theorem 2.1, there is a subdivision $D_{2} = (x_{i})_{i=0}^{k}$ of (a,b) such that if $D_{1} = (x_{p})_{p=0}^{m}$ is a refinement of D_{2} and $(t_{p}^{i})_{p=1}^{m}$ is an interpolating sequence for D_{1} then $\sum_{D_{1} \pm} |f(t_{p}^{i}) dg_{p}| < \frac{e}{4}$

Since $\int_{a}^{b} fdg$ exists and $\frac{e}{4} > 0$ then, by Theorem 2.2, there is a subdivision $D_{3} = (x_{i})_{i=0}^{1}$ of (a,b) such that if $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a refinement of D_{3} and $(t_{i})_{i=1}^{1}$ and $(t_{p}^{i})_{p=1}^{m}$ are interpolating sequences for D_{3} and D_{1} , respectively, then

$$\sum_{j=1}^{D} |f(t_{j})| dg_{j} - \sum_{j=1}^{D} |f(t_{p})| dg_{p}| < \frac{e}{4}$$

Since $\int_{a}^{b} f dg$ exists and $\frac{e}{4} > 0$ then, by Theorem 2.3, there exists a subdivision $D_{4} = (x_{i})_{i=0}^{j}$ of (a,b) such that if $D_{1} = (x_{p}^{i})_{p=0}^{m}$ is a

refinement of D_4 and $(t_p^*)_{p=1}^m$ is an interpolating sequence for D_1 then $\begin{array}{c|c} \Sigma & \left| f(t_p^*) \right| dg_p \right| < \frac{e}{4} \\ D_4^{\pm} & i^{D_1^{\pm} U} i^{D_1^{\pm}} \end{array}$ Let $D = D_2 U D_3 U D_4 = (x_i)_{i=0}^n$. Let $D_1 = (x_p^*)_{p=0}^m$ be a refinement of D and $(t_i)_{i=1}^n$ and $(t_p^*)_{p=1}^m$ be interpolating sequences for D and D_1 , respectively. Thus,

$\sum_{D} f(t_i) dg_i - \sum_{D_1} f(t_p) dg_p$							
$ \leq \sum_{D} \left f(t_i) dg_i - \sum_{j=1}^{D} f(t_j) dg_j \right $							
$ \leq \sum_{\mathbf{D}^{\pm} \mathbf{U} \mathbf{D}^{-}} \mathbf{f}(\mathbf{t}_{i}) d\mathbf{g}_{i} - \sum_{\mathbf{D}^{\pm} \mathbf{D}_{1}} \mathbf{f}(\mathbf{t}_{p}^{\dagger}) d\mathbf{g}_{p} + \sum_{\mathbf{D}^{\pm}} \mathbf{f}(\mathbf{t}_{i}) d\mathbf{g}_{i} $							
+ $\sum_{\mathbf{D}^{\pm}} \left \sum_{\mathbf{i}^{D_{1}}} \mathbf{f}(\mathbf{t}_{\mathbf{p}}) d\mathbf{g}_{\mathbf{p}} \right $							
$< \frac{e}{4} + \frac{e}{4} + \sum_{\substack{D^{\pm} i^{D_{1}^{\pm}}}} \sum_{p \neq i^{D_{1}^{\pm}}} f(t_{p}^{\bullet}) dg_{p} + \sum_{\substack{D^{\pm} i^{D_{1}^{\pm} U} i^{D_{1}^{\pm}}}} \sum_{p \neq i^{D_{1}^{\pm} U} i^{D_{1}^{\pm}}}$							
$< \frac{e}{2} + \Sigma \left f(t_p^{\dagger}) dg_p \right + \frac{e}{4}$ D_{\uparrow}^{\pm}							
$< \frac{3}{4}e + \frac{e}{4}$							
≍ e.							
Since for each $e > 0$ there is a subdivision $D = (x_i)_{i=0}^n$ of							
(a,b) such that if $D_1 = (x_p^{\dagger})_{p=0}^{m}$ is a refinement of D and $(t_i)_{i=1}^{n}$							
and $(t_p^{\dagger})_{p=1}^{m}$ are interpolating sequences for D and D ₁ , respectively,							
then $\left \begin{array}{c} \Sigma f(t_i) dg_i - \Sigma f(t_p^i) dg_p \\ D \end{array} \right < e,$							
therefore b [d. a crists [2, p, 28]							

therefore, $\int_a^b |f| dg$ exists [2, p. 28].

Using this theorem, another relationship can be established between $\int_{a}^{b} f dg$ and $\int_{a}^{b} f d|g|$. THEOREM 2.5: If $\int_{a}^{b} f dg$ exists then $\int_{a}^{b} f d|g|$. Proof:

Since
$$\int_{a}^{b} fdg$$
 exists then $\int_{a}^{b} gdf$ exists [2, p; 53] and is $f(b)g(b) - f(a)g(a) - \int_{a}^{b} fdg$.

Since $\int_{a}^{b} gdf$ exists then, by Theorem 2.4, $\int_{a}^{b} |g| df$ exists. Since $\int_{a}^{b} |g| df$ exists then $\int_{a}^{b} fd|g|$ exists.

CHAPTER III

RELATIONSHIPS BETWEEN $\int_{a}^{b} f dg$ and $\int_{a}^{b} f dg$

The next relationship to be shown is between the integrals $\int_{a}^{b} f dg$ and $\int_{a}^{b} f |dg|$. It has been found that if g is of bounded variation on (a,b), then equivalent statements can be made regarding these integrals. The following theorem allows us to prove an equivalent statement as the next theorem.

THEOREM 3.1: If g is of bounded variation on (a,b) and e > 0 then there is a subdivision $D = (x_i)_{i=0}^n$ of (a,b) such that if $D_1 = (x_p)_{p=0}^m$ is a refinement of D then

$$\sum_{p} \sum_{p} |dg_{p}| + \sum_{p} \sum_{p} |dg_{p}| < e.$$

Proof:

Let e > 0. Since g is of bounded variation on (a,b) and $\frac{e}{2} > 0$ then there is a subdivision $D = (x_i)_{i=0}^n$ of (a,b) such that if $D^{i} = (x_p^{i})_{p=0}^m$ is a refinement of D then

$$\sum_{D^{\dagger}} \left| dg_{p} \right| \geq \sum_{D} \left| dg_{1} \right| \geq V_{a}^{b}g - \frac{e}{2}.$$

Let $D^{*} = (x_{p}^{*})_{p=0}^{m}$ be a refinement of D. Since $V_{a}^{b}g$ is the least upper bound of such summations on (a,b) then

بر بر

$$\begin{aligned} & V_{a}^{b}g - \sum_{D'} |dg_{p}| \ge 0 & \text{and} \quad V_{a}^{b}g - \sum_{D} |dg_{i}| \ge 0; \\ & also, & \left| V_{a}^{b}g - \sum_{D'} |dg_{p}| \right| < \frac{e}{2} \text{ and} \quad \left| V_{a}^{b}g - \sum_{D} |dg_{i}| \right| < \frac{e}{2}. \end{aligned}$$

13

 $\sum_{D'} |dg_p| - \sum_{D} |dg_i|$ Thus, $= \left| \sum_{D'} |dg_{p}| - \sum_{D} |dg_{i}| \right|$ $= \left| \sum_{D_{i}} \left| dg_{p} \right| - V_{a}^{b}g + V_{a}^{b}g - \sum_{D} \left| dg_{i} \right| \right|$ $\leq \left| \sum_{D_{i}} |dg_{p}| - V_{a}^{b}g \right| + \left| V_{a}^{b}g - \sum_{D_{i}} |dg_{i}| \right|$ $< \frac{e}{2} + \frac{e}{2}$ = e. Therefore, $\sum_{D'} |dg_p| - \sum_{D} |dg_i| < e$. Also notice that $\sum_{i=1}^{D} \operatorname{dg}_{i} = \sum_{i=1}^{D} \sum_{j=1}^{D} \operatorname{dg}_{j} + \sum_{j=1}^{D} \sum_{j=1}^{D} \operatorname{dg}_{j} \cdot$ $\sum_{p \in \mathbb{Z}} |dg_{1}| = \sum_{p \in \mathbb{Z}} \sum_{p \in \mathbb{Z}} |dg_{p}| + \sum_{p \in \mathbb{Z}} \sum_{p \in \mathbb{Z}} |dg_{p}|$ Hence, $\leq \sum_{p + D} \sum_{p + D} |dg_{p}|$ $\sum_{\substack{p \in D \\ p \in D}} \sum_{j \in D} |dg_{j}| = \sum_{\substack{p \in D \\ p \in D}} |dg_{j}| \ge 0.$ and $\sum_{D} \sum_{D} |dg_{p}| \ge \sum_{D} |dg_{i}|.$ Similarly, Therefore, $\sum_{\substack{p \in D \\ p \in D}} \sum_{\substack{p \in D \\ p \in D}} \left| dg_{p} \right| + \sum_{\substack{p \in D \\ p \in D}} \sum_{\substack{p \in D \\ p \in D}} \left| dg_{p} \right|$ $\leq \sum_{p} \sum_{p} \left| dg_{p} \right| + \sum_{p} \sum_{p} \left| dg_{p} \right| + \left[\sum_{p} \sum_{p} \left| dg_{p} \right| - \sum_{p} \left| dg_{i} \right| \right]$ + $\left[\sum_{D} \sum_{D} |dg_{p}| - \sum_{D} |dg_{i}| \right]$ $= \sum_{D} |dg_{p}| - \sum_{D} |dg_{i}|$ < e.

Hence,
$$\sum_{\substack{D \\ T_D = D}} \left| dg_p \right| + \sum_{\substack{D \\ T_D = D}} \left| dg_p \right| < e$$

THEOREM 3.2: If g is of bounded variation on (a,b) then the following two statements are equivalent:

(1)
$$\int_{a}^{b} f dg$$
 exists.
(2) $\int_{a}^{b} f |dg|$ exists.

Proof:

If either integral exists then there is a subdivision $(y_r)_{r=0}^p$ of (a,b) such that for each r, either f is bounded on (y_{r-1}, y_r) or g is constant on $(y_{r-1}, y_r)[2, p. 51]$. Thus, $\int_{y_{r-1}}^{y_r} fdg = 0$ or $\int_{y_{r-1}}^{y_r} f[dg] = 0$ for each (y_{r-1}, y_r) on which f is not bounded. Hence, in the following proof we shall consider the case where f is bounded on (a,b).

(2) implies (1)

Let e > 0. Since $\int_a^b f|dg|$ exists then f is bounded by some number M > 1 on each subinterval of (a,b) on which g is not constant. Since $\int_a^b f|dg|$ exists and $\frac{e}{2} > 0$ then, by Theorem 1.7, there is a subdivision $D_1 = (x_1)_{i=0}^j$ of (a,b) such that if $D^i = (x_1^i)_{p=0}^m$ is a refinement of D_1 and $(t_1)_{i=1}^j$ and $(t_p^i)_{p=1}^m$ are interpolating sequences for D_1 and D^i , respectively, then

$$\sum_{D_1} \left| f(t_i) | dg_i \right| - \sum_{i D'} f(t_p) | dg_p | \left| < \frac{e}{2} \right|$$

Since g is of bounded variation on (a,b) and $\frac{e}{4M} > 0$ then there is a subdivision $D_2 = (x_i)_{i=0}^k$ of (a,b) such that if $D^i = (x_p)_{p=0}^m$ is a

refinement of D_2 then

$$\sum_{\substack{p \in D \\ p \in D}} \sum_{p \in D} |dg_p| + \sum_{\substack{p \in D \\ -D + D'}} \sum_{p \in D} |dg_p| < \frac{e}{4M}$$

ς,

Let $D = D_1 \cup D_2 = (x_i)_{i=0}^n$. Let $D' = (x_p')_{p=0}^m$ be a refinement of D and $(t_i)_{i=1}^n$ and $(t_p')_{p=1}^m$ be interpolating sequences for D and D', respectively. Hence,

$$\begin{aligned} \left| \sum_{D} f(t_{1}) ds_{1} - \sum_{D} f(t_{p}) ds_{p} \right| \\ &= \left| \sum_{D} f_{1} ds_{1} + \sum_{D} f_{1} ds_{1} - \sum_{D} \sum_{D} f_{p} ds_{p} - \sum_{D} \sum_{D} f_{p} ds_{p} \right| \\ &- \sum_{D} \sum_{D} f_{p} ds_{p} - \sum_{D} \sum_{D} f_{p} ds_{p} \right| \\ &\leq \left| \sum_{D} f_{1} (- |ds_{1}|) - \sum_{D} \sum_{D} f_{p} (- |ds_{p}|) \right| \\ &+ \left| \sum_{D} f_{1} |ds_{1}| - \sum_{D} \sum_{D} f_{p} |ds_{p}| \right| + \left| \sum_{D} \sum_{D} f_{p} (- |ds_{p}|) \right| \\ &+ \left| \sum_{D} \sum_{D} f_{p} |ds_{p}| \right| \\ &\leq \sum_{D} \left| f_{1} |ds_{1}| - \sum_{D} \sum_{D} f_{p} |ds_{p}| \right| + \sum_{D} \left| f_{1} |ds_{1}| - \sum_{D} f_{p} |ds_{p}| \right| \\ &+ \left| \sum_{D} \sum_{D} f_{p} |ds_{p}| \right| \\ &\leq \sum_{D} \left| f_{1} |ds_{1}| - \sum_{D} f_{p} |ds_{p}| \right| + \sum_{D} \sum_{D} \left| f_{1} |ds_{1}| - \sum_{D} f_{p} |ds_{p}| \right| \\ &+ \sum_{D} \sum_{D} \left| f_{p} |ds_{p}| + \sum_{D} \sum_{D} \left| f_{p} |ds_{p}| \right| \\ &+ \sum_{D} \sum_{D} \left| f_{p} |ds_{p}| + \sum_{D} \sum_{D} M |ds_{p}| \\ &= \sum_{D} \left| \cdot \right| + \sum_{D} \sum_{D} M |ds_{p}| + \sum_{D} \sum_{D} M |ds_{p}| \\ &+ M \left(\sum_{D} \sum_{D} |ds_{p}| + \sum_{D} \sum_{D} M |ds_{p}| \right) \\ &< \sum_{D} \left| \cdot \right| + M \left(\frac{D}{4M} \sum_{D} |ds_{p}| + \sum_{D} \sum_{D} M |ds_{p}| \right) \\ &= \sum_{D} \left| \cdot \right| + M \left(\frac{D}{4M} \sum_{D} |ds_{p}| + \sum_{D} \sum_{D} M |ds_{p}| \right) \\ &= \sum_{D} \left| \cdot \right| + M \left(\frac{D}{4M} \sum_{D} |ds_{D}| + \sum_{D} \sum_{D} M |ds_{D}| \right) \\ &= \sum_{D} \left| \cdot \right| + M \left(\frac{D}{4M} \sum_{D} |ds_{D}| + \sum_{D} \sum_{D} M |ds_{D}| \right) \\ &= \sum_{D} \left| \cdot \right| + M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| + \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}{4M} \right) \\ &= \sum_{D} \left| \cdot \right| \\ &+ M \left(\frac{D}$$

$$= \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| - \sum_{i} f_{p}| dg_{p}| + \sum_{i} f_{p}| dg_{p}| + \sum_{i} f_{p}| dg_{p}| |$$

$$+ \sum_{i} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| - \sum_{i} f_{p}| dg_{p}| + \sum_{i} f_{p}| dg_{p}| |$$

$$+ \frac{e}{4}$$

$$\leq \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| | + \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| |$$

$$+ \sum_{D} \sum_{i} |f_{p}| |dg_{p}| + \sum_{D} \sum_{i} |f_{p}| |dg_{p}| + \frac{e}{4}$$

$$\leq \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| + \sum_{D} \sum_{D} |f_{p}| dg_{p}| + \frac{e}{4}$$

$$\leq \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| + \sum_{D} \sum_{D} |f_{p}| |dg_{p}| + \frac{e}{4}$$

$$\leq \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| + \sum_{D} \sum_{D} |f_{p}| dg_{p}| + \frac{e}{4}$$

$$\leq \sum_{D} |f_{1}| dg_{1}| - \sum_{i} f_{p}| dg_{p}| + \frac{e}{4}$$

$$\leq \frac{e}{2} + M \left(\sum_{D} \sum_{D} |dg_{p}| + \frac{e}{4}$$

Since for each e > 0 there is a subdivision $D = (x_i)_{i=0}^n$ of (a,b) such that if $D^i = (x_p^i)_{p=0}^m$ is a refinement of D and $(t_i)_{i=1}^n$ and $(t_p^i)_{p=1}^m$ are interpolating sequences for D and Dⁱ, respectively, then $\left|\sum_{D} f(t_i) dg_i - \sum_{D^i} f(t_p^i) dg_p\right| < e$,

therefore, $\int_{a}^{b} f dg$ exists [2, p. 28].

(1) implies (2)

е.

Let e > 0. Since $\int_{a}^{b} fdg$ exists and g is of bounded variation on (a,b) then $\int_{a}^{b} fdV_{g}$ exists, where $V_{g}(x) = V_{a}^{x}g$ for each x in (a,b) [2, p. 66]. Since f is bounded on (a,b) then there is an M > 1such that M > |f(x)| for each x in (a,b). Since $\int_{a}^{b} fdV_{g}$ exists and $\frac{e}{2} > 0 \text{ then there is a subdivision } D_1 \text{ of } (a,b) \text{ such that if } D^{\bullet} = (x_i)_{i=0}^n$ is a refinement of D_1 and $(t_i)_{i=1}^n$ is an interpolating sequence for D^{\bullet} then $\left| \sum_{D^{\bullet}} f(t_i) dV_{g_i} - \int_a^b f dV_g \right| < \frac{e}{2}$. Since g is of bounded variation on (a,b) and $\frac{e}{2M} > 0$ then there is a

subdivision D₂ of (a,b) such that if D' = $(x_i)_{i=0}^n$ is a refinement of

$$D_2 \text{ then } \sum_{\mathbf{D}^*} \left| \mathbf{v}_{\mathbf{x}_{i-1}}^{\mathbf{x}_i} g - \left| dg_i \right| \right| < \frac{e}{2M} \cdot$$

Let $D = D_1 \cup D_2$. Let $D^{i} = (x_{i})_{i=0}^{n}$ be a refinement of D and $(t_{i})_{i=1}^{n}$ be an interpolating sequence for Dⁱ. For each i, let $V_{x_{i-1}}^{x_{i}}$ be denoted by $V_{g_{i}}$. Hence,

$$\begin{split} \left| \sum_{D} f(t_{i}) | dg_{i} \right| &= \int_{a}^{b} f dV_{g} \right| \\ &\leq \left| \sum_{D} f(t_{i}) | dg_{i} \right| &= \sum_{D} f(t_{i}) V_{g_{i}} + \sum_{D} f(t_{i}) V_{g_{i}} - \int_{a}^{b} f dV_{g} \right| \\ &\leq \left| \sum_{D} f(t_{i}) | dg_{i} \right| - \sum_{D} f(t_{i}) V_{g_{i}} \right| + \left| \sum_{D} f(t_{i}) V_{g_{i}} - \int_{a}^{b} f dV_{g} \right| \\ &< \sum_{D} \left| f(t_{i}) | dg_{i} \right| - \left| f(t_{i}) V_{g_{i}} \right| + \frac{e}{2} \\ &= \sum_{D} \left| f(t_{i}) \right| \left| V_{g_{i}} - \left| dg_{i} \right| \right| + \frac{e}{2} \\ &\leq \sum_{D} M \left| V_{g_{i}} - \left| dg_{i} \right| \right| + \frac{e}{2} \\ &\leq M \left| \sum_{D} V_{g_{i}} - \left| dg_{i} \right| \right| + \frac{e}{2} \\ &= M \left| \sum_{D} V_{g_{i}} - \left| dg_{i} \right| \right| + \frac{e}{2} \\ &\leq M \left(\left| \frac{e}{2M} \right| \right) + \frac{e}{2} \\ &= e. \\ &\text{Since } \int_{a}^{b} f dV_{g} \text{ is a number such that if } e > 0 \text{ then there is a} \end{split}$$

subdivision D of (a,b) such that if $D' = (x_i)_{i=0}^n$ is a refinement of

D and $(t_i)_{i=1}^n$ is an interpolating sequence for D' then

$$\left| \sum_{D^{\dagger}} f(t_{i}) | dg_{i} | - \int_{a}^{b} f dV_{g} \right| < e_{\bullet}$$

therefore, $\int_{a}^{b} f |dg|$ exists, by Definition 1.3.

With further investigation, it has been found that given the existence of $\int_{a}^{b} f |dg|$, the proof of the existence of $\int_{a}^{b} f dg$ does not require the condition of bounded variation for g on (a,b). The following are two preliminary theorems in preparation for the desired result. THEOREM 3.3: If $\int_{a}^{b} f |dg|$ exists then $\int_{a}^{b} |fdg|$ exists.

Proof:

By Theorem 2.4, since $\int_a^b f |dg|$ exists then $\int_a^b |f| |dg|$ exists and $\int_a^b |fdg|$ exists.

THEOREM 3.4: If $\int_{a}^{b} f |dg|$ exists and g is not of bounded variation on (a,b) then for each e > 0 there is a subinterval (c,d) of (a,b) such that |f(x)| < e for each x in (c,d).

Proof:

Assume the conclusion is false. Therefore, there is an e > 0such that if (c,d) is any subinterval of (a,b) then there is an x in (c,d) such that $|f(x)| \ge e$. Since $\int_{a}^{b} |fdg|$ exists and e > 0 then there is a subdivision D of (a,b) such that if $D^{\dagger} = (x_{i})_{i=0}^{n}$ is a refinement of D and $(t_{i})_{i=1}^{n}$ is an interpolating sequence for D^t then, by Definition 1.3, $\left| \sum_{D^{\dagger}} |f(t_{i})dg_{i}| - \int_{a}^{b} |fdg| \right| < e$.

Since g is not of bounded variation on (a,b) and $1 + \frac{1}{e} \int_{a}^{b} |fdg| > 0$ then there is a refinement $D^{i} = (x_{i})_{i=0}^{n}$ of D such that

$$\sum_{D} \left| dg_{i} \right| > 1 + \frac{1}{e} \int_{a}^{b} \left| f dg \right|.$$

From our assumption, there exists an interpolating sequence for D', $(t_i)_{i=1}^n$, such that for each (x_{i-1}, x_i) , $|f(t_i)| \ge e$. Hence, $\left| \sum_{D'} |f_i dg_i| - \int_a^b |f dg| \right| < e$ $\sum_{\mathbf{p}_{i}} |\mathbf{f}_{i} d\mathbf{g}_{i}| < \mathbf{e} + \int_{a}^{b} |\mathbf{f} d\mathbf{g}|.$ and

ν.

Thus,

$$e + \int_{a}^{b} |fdg| > \sum_{D'} |f_{i}dg_{i}|$$

$$\geq \sum_{D'} e |dg_{i}|$$

$$= e \sum_{D'} |dg_{i}|$$

$$\geq e (1 + \frac{1}{e} \int_{a}^{b} |fdg|)$$

$$= e + \int_{a}^{b} |fdg|.$$

Therefore,

$$e + \int_{a}^{b} |fdg| > e + \int_{a}^{b} |fdg|$$

This is a contradiction. Thus, the assumption is false and the theorem is true. THEOREM 3.5: If $\int_{a}^{b} f |dg|$ exists then $\int_{a}^{b} f dg$ exists.

Proof:

Let e > 0. Since $\int_{a}^{b} f |dg|$ exists then, by Theorem 3.3, $\int_{a}^{b} |fdg|$ exists. Since $\int_a^b |fdg|$ exists and $\frac{e}{6} > 0$ then, by Theorem 1.7, there is a subdivision $D_1 = (z_1)_{1=0}^n$ of (a,b) such that if $D_2 = (x_1)_{i=0}^m$ is a refinement of D_1 , $D_3 = (x_p^*)_{p=0}^k$ is a refinement of D_2 and

 $(t_i)_{i=1}^m$ and $(t_p)_{p=1}^k$ are interpolating sequences for D_2 and D_3 , respectively, then

$$\sum_{D_2} |f(t_i)dg_i| - \sum_{i \stackrel{D_3}{i}} |f(t_p)dg_p| < \frac{e}{6}.$$

Let A be the set such that z_1 belongs to A if and only if z_1 is in D_1 and g is of bounded variation on (z_{1-1}, z_1) . Since for each z_1 in A, $\int_{z_{1-1}}^{z_1} f|dg|$ exists and g is of bounded variation on (z_{1-1}, z_1) then, by Theorem 3.2, $\int_{z_{1-1}}^{z_1} fdg$ exists. Since for each z_1 in A, $\int_{z_{1-1}}^{z_1} fdg$ exists and $\frac{e}{6n} > 0$ then, by Theorem 1.7, there is a subdivision $A_1 = (c_r)_{r=0}^{k_1}$ of (z_{1-1}, z_1) such that if $A_1^{i} = (c_r^{i})_{p=0}^{j_1}$ is a refinement of A_1 and $(t_p)_{p=1}^{j_1}$ is an interpolating sequence for A_1^{i} then $\sum_{A_1^{i}} f(t_p) dg_p - \int_{c_{p-1}^{i_p}}^{c_1^{i_p}} fdg | < \frac{e}{6n}$

and
$$\sum_{A_1} \left| \int_{c_{r-1}}^{c_r} f dg - \sum_{p \in r} f(t_p) dg_p \right| < \frac{e}{6n}$$

For each z_1 in D_1 which is not A, let A_1 be the set such that x belongs to A_1 if and only if $x = z_1$.

Let
$$D = D_1 \cup \begin{pmatrix} n \\ 0 \\ 1=1 \end{pmatrix} = (x_1)_{1=0}^{\alpha}$$
 and $D^* = (x_1^*)_{p=0}^{m}$ be a refine-

ment of D. Thus, D and D' are refinements of D₁ such that D' is a refinement of D. Let $(t_i)_{i=1}^{\alpha}$ and $(t_j)_{p=1}^m$ be interpolating sequences for D and D', respectively.

Let C be the set such that x belongs to C if and only if x is

in D and there is a z_1 in A such that $z_{1-1} < x \le z_1$. Let C' be the set such that x belongs to C' if and only if x is in D' and there is an x_i in D such that x_i is in C and $x_{i-1} < x \le x_i$. Let B be the set D - C and B' be the set D' - C'. Therefore, for each x_i in B, g is not of bounded variation on (x_{i-1}, x_i) . For each x_i in B, since g is not of bounded variation on (x_{i-1}, x_i) , $\int_{x_{i-1}}^{x_i} f|dg|$ exists and i-1

 $\frac{e}{6n(|dg_{i}| + 1)} > 0 \text{ then, by Theorem 3.4, there is a subinterval (c,d)}_{i}$ of (x_{i-1}, x_{i}) such that for each x in $(c,d)_{i}$, $|f(x)| < \frac{e}{6n(|dg_{i}| + 1)}$. For each x_{i} in B, let q_{i} be in $(c,d)_{i}$. Hence,

$$\begin{aligned} & \left| \sum_{D} f(t_{1}) dg_{1} - \sum_{D} f(t_{p}) dg_{p} \right| \\ \leq & \left| \sum_{C} f(t_{1}) dg_{1} - \sum_{C} f(t_{p}) dg_{p} \right| + \sum_{B} \left| f(t_{1}) dg_{1} \right| + \sum_{B} \left| f(t_{p}) dg_{p} \right| \\ \leq & \left| \sum_{C} f_{1} dg_{1} - \sum_{C} f_{x_{1-1}}^{X_{1}} fdg \right| + \left| \sum_{C} f_{x_{1-1}}^{X_{1}} fdg - \sum_{C} f_{p} dg_{p} \right| \\ + & \sum_{B} \left| \cdot \cdot \right| + \sum_{B} \right| \cdot \cdot \\ \leq & \sum_{C} \left| f_{1} dg_{1} - f_{x_{1-1}}^{X_{1}} fdg \right| + \sum_{C} \left| f_{x_{1-1}}^{X_{1}} fdg - \sum_{C} f_{p} dg_{p} \right| \\ + & \sum_{B} \left| \cdot \cdot \right| + \sum_{B} \right| \cdot \cdot \\ = & \sum_{C} \left| f_{1} dg_{1} - f_{x_{1-1}}^{X_{1}} fdg \right| + & \sum_{C} \left| f_{x_{1-1}}^{X_{1}} fdg - \sum_{C} f_{p} dg_{p} \right| \\ + & \sum_{B} \left| \cdot \cdot \right| + & \sum_{B} \right| \cdot \cdot \\ = & \sum_{D_{1}} \sum_{D_{1}} \left| f_{1} dg_{1} - f_{x_{1-1}}^{X_{1}} fdg \right| + & \sum_{D_{1}} \sum_{D_{1}} \left| f_{x_{1-1}}^{X_{1}} fdg - \sum_{C} f_{p} dg_{p} \right| \\ + & \sum_{B} \left| \cdot \cdot \right| + & \sum_{B} \right| \cdot \cdot \\ = & \sum_{D_{1}} \sum_{D_{1}} \left| f_{1} dg_{1} - f_{x_{1-1}}^{X_{1}} fdg \right| + & \sum_{D_{1}} \sum_{D_{1}} \left| f_{x_{1-1}}^{X_{1}} fdg - \sum_{C} f_{p} dg_{p} \right| \\ + & \sum_{D_{1}} \left| \cdot \cdot \right| + & \sum_{B} \right| \cdot \cdot \\ \end{bmatrix} \end{aligned}$$

$$= \frac{e}{6} + \frac{e}{6} + \sum_{B} |f_{i}dg_{i}| + \sum_{B^{i}} |f_{P}dg_{P}|$$

$$= \frac{e}{3} + \sum_{B} |f(t_{i})dg_{i}| + \sum_{B^{i}} |f(t_{P})dg_{P}|$$

$$= \frac{e}{3} + \sum_{B} |f(t_{i})dg_{i}| - \sum_{B} |f(q_{i})dg_{i}|$$

$$+ \sum_{B^{i}} |f(t_{P})dg_{P}| - \sum_{B} |f(q_{i})dg_{i}| + 2\sum_{B} |f(q_{i})dg_{i}|$$

$$\leq \frac{e}{3} + \sum_{B} ||f(t_{i})dg_{i}| - |f(q_{i})dg_{i}||$$

$$+ \sum_{B} ||f(q_{i})dg_{i}| - \sum_{iB^{i}} |f(t_{P}^{i})dg_{P}|| + 2\sum_{B} |f(q_{i})||dg_{i}||$$

$$\leq \frac{e}{3} + \frac{e}{6} + \frac{e}{6} + 2\sum_{B} \frac{e}{6n(|dg_{i}| + 1)} |dg_{i}|$$

$$\leq \frac{2}{3} + 2(\frac{e}{6}) \sum_{B} \frac{1}{n}$$

$$\leq \frac{2}{3} + \frac{e}{3} (1)$$

Since for each e > 0 there is a subdivision $D = (x_i)_{i=0}^n$ of (a,b) such that if $D' = (x_p')_{p=0}^m$ is a refinement of D and $(t_i)_{i=1}^n$ and $(t_p')_{p=1}^m$ are interpolating sequences for D and D', respectively, then $\left| \sum_{D} f(t_i) dg_i - \sum_{D'} f(t_p') dg_p \right| < e$,

therefore, $\int_{a}^{b} f dg$ exists [2, p. 28]. THEOREM 3.6: If $\int_{a}^{b} f dg$ and $\int_{a}^{b} |f dg|$ both exist then $\int_{a}^{b} f |dg|$ exists. Proof:

Let e > 0. Since $\int_{a}^{b} |fdg|$ exists and $\frac{e}{4} > 0$ then, by Theorem 1.7, there is a subdivision $D_{2} = (x_{i})_{i=0}^{k}$ of (a,b) such that if $D_{1} = (x_{i}^{*})_{p=0}^{m}$

23

is a refinement of D_2 and $(t_1)_{i=1}^k$ and $(t_p)_{p=1}^m$ are interpolating sequences for D_2 and D_1 , respectively, then

$$\sum_{D_2} \left| \left| f(t_i) dg_i \right| - \sum_{i D_1} \left| f(t_p) dg_p \right| \right| < \frac{e}{4}.$$

Since $\int_{a}^{b} fdg$ exists and $\frac{e}{4} > 0$ then, by Theorem 2.1, there is a subdivision D_{3} of (a,b) such that if $D_{1} = (x_{p}^{*})_{p=0}^{m}$ is a refinement of D_{3} and $(t_{p}^{*})_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$\sum_{\substack{D_1^{\pm}}} \left| f(t_p) dg_p \right| < \frac{e}{4}.$$

Since $\int_{a}^{b} fdg$ exists and $\frac{e}{4} > 0$ then, by Theorem 2.3, there is a subdivision D_{4} of (a,b) such that if $D_{1} = (x_{p}^{*})_{p=0}^{m}$ is a refinement of D_{4} and $(t_{p}^{*})_{p=1}^{m}$ is an interpolating sequence for D_{1} then

$$\sum_{\substack{D_{4}^{\pm} \\ D_{4}^{\pm} }} \left| \begin{array}{c} \Sigma \\ D_{1}^{\pm} \\ D_{1}^{\pm} \end{array} \right| \left| \begin{array}{c} f(t_{p}) dg_{p} \\ D_{1}^{\pm} \\ D_{1}^{\pm} \end{array} \right| \left| \begin{array}{c} < \frac{e}{4} \\ \\ \end{array} \right|$$

Let $D = D_2 U D_3 U D_4 = (x_i)_{i=0}^n$. Let $D_1 = (x_p^i)_{p=0}^m$ be a refinement of D and $(t_i)_{i=1}^n$ and $(t_p^i)_{p=1}^m$ be interpolating sequences for D and D_1 , respectively. Hence,

$$\begin{aligned} \left| \sum_{D} f(t_{i}) | dg_{i} \right| &= \sum_{D_{1}} f(t_{p}^{*}) | dg_{p} | \\ \leq \sum_{D^{+}} \left| \left| f(t_{i}) \right| | dg_{i} \right| &= \sum_{i^{D_{1}}} \left| f(t_{p}^{*}) | | dg_{p} \right| \\ &+ \sum_{D^{-}} \left| - \left| f(t_{i}) \right| | dg_{i} \right| &= \sum_{i^{D_{1}}} - \left| f(t_{p}^{*}) \right| | dg_{p} \right| \right| &+ \sum_{D^{\pm}} \left| f(t_{i}) dg_{i} \right| \\ &+ \sum_{D^{\pm}} \sum_{i^{D_{1}}} \left| f(t_{p}^{*}) dg_{p} \right| \end{aligned}$$

$$< \sum_{\substack{D^{+} \\ D^{+} \\ U \\ D^{-} \\ D^{+} \\ U \\ D^{-} \\ D^{+} \\ D^{+$$

Since for each e > 0 there is a subdivision $D = (x_i)_{i=0}^n$ of (a,b) such that if $D_1 = (x_p^i)_{p=0}^m$ is a refinement of D and $(t_p^i)_{p=1}^m$ and $(t_i)_{i=1}^n$ are interpolating sequences for D_1 and D, respectively, then $\left|\sum_{D} f(t_i) |dg_i| - \sum_{D_1} f(t_p^i) |dg_p|\right| < e$,

therefore, $\int_{a}^{b} f |dg|$ exists [2, p. 28].

The questions of reciprocity of the relationships between several of the integrals arise. If $\int_a^b |f| dg$ exists then $\int_a^b f dg$ does not neces-sarily exist. For example, if f is the function defined as follows:

f(x) = 1, if x is a rational number

f(x) = -1, if x is an irrational number

and $g(\mathbf{x}) = \mathbf{x}$, for each x in (a,b), then $\int_a^b |f| dg$ exists but $\int_a^b f dg$ does not exist; $\int_a^b g d|f|$ exists but $\int_a^b g df$ does not; and $\int_a^b |f dg|$ exists but $\int_a^b f| dg|$ does not.

If $\int_{a}^{b} f dg$ exists then $\int_{a}^{b} f |dg|$ does not necessarily exist. For

25

example, if f and g are functions such that f(x) = 1 for each number x and $g(x) = x \sin \frac{1}{x}$ for each number $x \neq 0$ and g(0) = 0, then $\int_0^2 f dg$ exists but $\int_0^2 f |dg|$ does not.

•

BIBLIOGRAPHY

- 1. Helton, Burrell W. "Integral Equations and Product Integrals." <u>Pacific Journal of Mathematics</u>, Vol. XVI, 1966.
- 2. Hildebrandt, T. H. <u>Theory of Integration</u>. New York: Academic Press, 1963.

·· .