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EXISTENCE OF BOUNDED SOLUTIONS OF NEUMANN
PROBLEM FOR A NONLINEAR DEGENERATE ELLIPTIC

EQUATION

SALVATORE BONAFEDE

Communicated by Pavel Drabek

Abstract. We prove the existence of bounded solutions of Neumann problem
for nonlinear degenerate elliptic equations of second order in divergence form.

We also study some properties as the Phragmén-Lindelöf property and the

asymptotic behavior of the solutions of Dirichlet problem associated to our
equation in an unbounded domain.

1. Introduction

We consider the equation
m∑
i=1

∂

∂xi
ai(x, u,∇u)− c0|u|p−2u = f(x, u,∇u) in Ω, (1.1)

where Ω is a bounded open set of Rm, m ≥ 2, c0 is a positive constant, ∇u is
the gradient of unknown function u and f is a nonlinear function which has the
growth of rate p, 1 < p < m, respect to gradient ∇u. We assume that the following
degenerate ellipticity condition is satisfied,

λ(|u|)
m∑
i=1

ai(x, u, η)ηi ≥ ν(x)|η|p, (1.2)

where η = (η1, η2, . . . , ηm), |η| denotes the modulus of η, ν and λ are positive
functions with properties to be specified later on.

We study the nonlinear Neumann boundary problem for (1.1) with the boundary
condition

m∑
i=1

ai(x, u,∇u) cos(−→n , xi) + c2|u|p−2u+ F (x, u) = 0 (c2 > 0), x ∈ ∂Ω, (1.3)

where ∂Ω is locally Lipschitz boundary (see [1]) and −→n = −→n (x) is the outwardly
directed (relative to Ω) unit vector normal to ∂Ω at every point x ∈ ∂Ω.

Many results for linear and quasilinear elliptic equations of second order have
been established starting with pionering papers [13, 16], and arriving to the most
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recent [2, 7, 20, 21, 22]. For example, in the very recent paper [21] the existence of
positive solutions for p-Laplacian, with nonlinear Neumann boundary conditions,
is proved by a priori estimates and topological methods.

The Dirichlet problem for the equation of the type (1.1) in nondegenerate case
on bounded domains was studied by Boccardo, Murat and Puel in [3, 4], using
the method of sub and supersolutions. Afterwards, Drabek and Nicolosi in [8],
assuming condition (1.2), studied the weak solvability of general boundary value
problem for equation (1.1), obtaining more general results than [3, 4]. Let us also
mention, on the related topic and in degenerate-case, [5, 6] and [10, 11].

In this article the basic idea of [8] is used: the question of the existence of solu-
tions is handled by priori estimates, in the energy space corresponding to the given
problem and in L∞, together with the theory of equations with pseudomonotone
operators.

This article is organized as follows. In Section 2 we formulate the hypotheses, we
state our problem and the main existence theorem. Section 3 consists of preliminary
assertions which are sufficient in the proof of our main results. In Section 4 we
prove the existence theorem and we give an example where all our assumptions are
satisfied. In Section 5 we study asymptotic behavior of the solution of the Dirichlet
problem associated to equation (1.1) in an unbounded domain. Finally, in Section
6 we shall show that a theorem, like the Phragmén-Lindelöf one, holds for Dirichlet
problem, in the case of p-Laplacian, in a cylindrical unbounded domain of Rm; the
analogous question for higher-order linear equations was first investigated by P.D.
Lax in [14].

2. Hypotheses and formulation of the main results

We shall suppose that Rm (m ≥ 2) is the m-dimensional Euclidean space with
elements x = (x1, x2, . . . , xm). Let Ω be an open bounded nonempty subset of
Rm, ∂Ω be locally lipschitzian. The symbols measm(·) and meas(·) will denote the
m-dimensional Lebesguel measure and the (m−1)-dimensional Hausdorff measure,
respectively.

We denote by Lq(∂Ω), (1 ≤ q <∞) the Lebesgue space of q-summable functions
on ∂Ω with respect to the (m − 1)-dimensional Hausdorff measure, with obvious
modifications if q =∞.

Let p be a real number such that 1 < p < m. We use, on the weight function
ν(x), the hypothesis

(H1) ν : Ω→ (0,+∞) is a measurable function such that

ν(x) ∈ L1
loc(Ω),

( 1
ν(x)

) 1
p−1 ∈ L1

loc(Ω).

We shall denote by W 1,p(ν,Ω) the set of all real functions u ∈ Lp(Ω) having the
weak derivative ∂u

∂xi
with the property ν

∣∣ ∂u
∂xi

∣∣p ∈ L1(Ω), for i = 1, . . . ,m. W 1,p(ν,Ω)
is a Banach space respect to the norm

‖u‖1,p =
[ ∫

Ω

(|u|p + ν|∇u|p) dx
]1/p

.

The space W̊ 1,p(ν,Ω) is the closure of C∞0 (Ω) in W 1,p(ν,Ω). Put W = W 1,p(ν,Ω)∩
L∞(Ω).
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Remark 2.1. There exists a positive number K0 such that for every u ∈W 1,p(ν,Ω)
it is also minΩ(u,K) ∈ W 1,p(ν,Ω) for every K ≥ K0. Details concerning this
assertion can be found in Nicolosi [19].

Remark 2.2. For every u ∈ W and for every γ > 0 it is u|u|γ ∈ W . Details
concerning this assertion can be found in Guglielmino and Nicolosi [10].

We have alsothe following hypotheses
(H2) There exists t > m

p−1 such that

1
ν(x)

∈ Lt(Ω).

From (H1) and (H2) there is a continuous inclusion ξ of W 1,p(ν,Ω) in W 1,pτ (Ω),
where τ = (1 + 1

t )
−1. So, from Sobolev embedding, if we set

p? =
mp

m− p+m/t
,

then, we have W 1,p(ν,Ω) ⊂ Lp
?

(Ω) and there exists ĉ > 0 depending only on
m, p, t,Ω and ‖1/ν‖Lt(Ω) such that for every u ∈W 1,p(ν,Ω)(∫

Ω

|u|p
?

dx
)1/p?

≤ ĉ‖u‖1,p.

In this connection see, for instance, [11], [12] and [17, Theorem 3.1].
Next, by the theorem of trace for Sobolev spaces (see for instance [18, Cap. 2,

pag.77] or [13]), we know that for any u ∈W 1,pτ (Ω), there exists a unique element
γ0u ∈ Lp̃(∂Ω) where

p̃ = pτ(m− 1)(m− pτ)−1 =
(m− 1)p

m− p+m/t

and, the mapping γ0 is continuous linear from W 1,pτ (Ω) to Lp̃(∂Ω). Obviously,
γ0 ◦ξ is a continuous linear map of W 1,p(ν,Ω) to Lp̃(∂Ω) and for u|∂Ω = (γ0 ◦ξ)(u),
the trace of u on ∂Ω, the following inequality holds:(∫

∂Ω

|u|∂Ω|p̃ ds
)1/p̃

≤ c′‖u‖1,p, for all u ∈W 1,p(ν,Ω),

where c′ is a positive constant depending only on m, p, t,Ω and ‖1/ν‖Lt(Ω) .
When clear from the context, for u ∈ W 1,p(ν,Ω), we shall write u instead of

u|∂Ω.

Remark 2.3. Hypotheses (H1) and (H2) imply that W 1,p(ν,Ω) is compactly em-
bedded in Lp(Ω). The proof of this assertion is the same as that for p = 2 (see
[11]). Furthermore, as the linear and continuous map γ0 from W 1,pτ (Ω) in Lq(∂Ω)
is compact for every q: 1 ≤ q < p̃ (see [18, Cap. 2, pag.103]), then, it is also
compact the embedding γ0 ◦ ξ of W 1,p(ν,Ω) in Lq(∂Ω). It will be useful to note
that W 1,p(ν,Ω) is reflexive. For the proof of this fact it is possible to use the same
procedure as in [1, pag.46].

We need the following structural hypotheses:
(H3) The functions f(x, u, η), ai(x, u, η) (i = 1, 2, . . . ,m) are Caratheodory func-

tions in Ω × R × Rm, i.e. measurable with respect to x for every (u, η) ∈
R× Rm and continuous with respect to (u, η) for almost all x ∈ Ω.
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(H4) The function F (x, u) is a Caratheodory function in ∂Ω×R, i.e. measurable
with respect to x for every u ∈ R and continuous with respect to u for
almost all x ∈ ∂Ω.

(H5) There exist a number σ and a function f∗(x) such that

max
(
0,

2− p
2
)
< σ < 1, f∗ ∈ L1(Ω),

|f(x, u, η)| ≤ λ(|u|)
[
f∗(x) + |u|p−1+σ +

(
ν1/p(x)|η|

)p−1+σ + ν(x)|η|p
]

(2.1)

holds for almost all x ∈ Ω and for all real numbers u, η1, η2, . . . , ηm
(H6) There exists a function F ∗ ∈ L∞(∂Ω) such that

|F (x, u)| ≤ λ(|u|) + F ∗(x) (2.2)

holds for almost all x ∈ ∂Ω and for every u ∈ R.
(H7) There exists a function F0 ∈ L∞(∂Ω) such that

uF (x, u) + F0(x) ≥ 0 (2.3)

holds for almost all x ∈ ∂Ω and for every u ∈ R.
(H8) There exist a nonnegative number c1 < c0 and a function f0 ∈ L∞(Ω) such

that for almost all x ∈ Ω and for all real numbers u, η1, η2, . . . , ηm,

uf(x, u, η) + c1|u|p + λ(|u|)ν(x)|η|p + f0(x) ≥ 0 . (2.4)

(H9) There exists a function a∗ ∈ Lp/(p−1)(Ω) such that for almost all x ∈ Ω and
for real numbers u, η1, η2, . . . , ηm,

|ai(x, u, η)|
ν1/p(x)

≤ λ(|u|)
[
a∗(x) + |u|p−1 + ν(p−1)/p(x)|η|p−1

]
. (2.5)

(H10) Condition (1.2) is satisfied for almost all x ∈ Ω and for all real numbers
u, η1, η2, . . . , ηm; the function λ : [0,+∞) → [1,+∞) is monotone and
nondecreasing.

(H11) For almost all x ∈ Ω and all real numbers u, η1, η2, . . . , ηm, τ1, τ2, . . . , τm,
the inequality

m∑
i=1

[
ai(x, u, η)− ai(x, u, τ)

]
(ηi − τi) ≥ 0 (2.6)

holds while the inequality holds if and only if η 6= τ .

In this article we study the problem of finding a function u ∈W such that∫
Ω

{ m∑
i=1

ai(x, u,∇u)
∂w

∂xi
+ c0|u|p−2uw + f(x, u,∇u)w

}
dx

+
∫
∂Ω

{c2|u|p−2uw + F (x, u)w} ds = 0

(2.7)

holds for every w ∈ W . Hypotheses (H1)–(H6)and (H10) provide the correctness
for this problem. We shall prove the following result:

Theorem 2.4. Let (H1)–(H11) be satisfied. Then (2.7) has at least one solution.



EJDE-2017/270 EXISTENCE OF BOUNDED SOLUTIONS OF NEUMANN PROBLEM 5

3. Auxiliary results

The first result of this section is an a priori estimate in L∞(Ω) ∩ L∞(∂Ω) for
every solution of (2.7).

Lemma 3.1. Let (H1)–(H10) be satisfied and let u be a solution of (2.7). Then

‖u‖L∞(Ω) + ‖u‖L∞(∂Ω) ≤ K (3.1)

where

K = 2
{ 2
c3

[‖f0‖L∞(Ω) + ‖F0‖L∞(∂Ω)]
}1/p

, c3 = min(c2, c0 − c1).

Proof. Let us take w = u|u|γ as a test function in (2.7) (see Remark 2.2) where γ
is a positive number. We deduce that∫

Ω

|u|γ
{

(γ + 1)
m∑
i=1

ai(x, u,∇u)
∂u

∂xi
+ c0|u|p + f(x, u,∇u)u

}
dx

+
∫
∂Ω

{
c2|u|γ+p + F (x, u)u|u|γ

}
ds = 0.

By using (H7), (H8) and (H10) we obtain∫
Ω

|u|γ
{[ γ + 1
λ(‖u‖L∞(Ω))

− λ(‖u‖L∞(Ω))
]
ν|∇u|p + (c0 − c1)|u|p − f0

}
dx

+
∫
∂Ω

{c2|u|γ+p − F0|u|γ} ds ≤ 0.

Set γ such that γ > [λ(‖u‖L∞(Ω))]2 − 1, from the above inequality it follows that

c3

[ ∫
Ω

|u|γ+p dx+
∫
∂Ω

|u|γ+p ds
]
≤
∫

Ω

|f0||u|γ dx+
∫
∂Ω

|F0||u|γ ds.

Then, by Hölder’s inequality

c3

[ ∫
Ω

|u|γ+p dx+
∫
∂Ω

|u|γ+p ds
]

≤
[( ∫

Ω

|u|γ+p dx
) γ
γ+p

+
(∫

∂Ω

|u|γ+p ds
) γ
γ+p
]

×
[( ∫

Ω

|f0|(γ+p)/p dx
) p
γ+p

+
(∫

∂Ω

|F0|(γ+p)/p ds
) p
γ+p
]
.

The above inequality implies(∫
Ω

|u|γ+p dx
) p
γ+p

+
(∫

∂Ω

|u|γ+p ds
) p
γ+p

≤ 2
p
p+γ+1

c3

{
‖f0‖L∞(Ω)(measm Ω)

p
γ+p + ‖F0‖L∞(∂Ω)(meas ∂Ω)

p
γ+p
}

Letting γ → +∞ we obtain (3.1). The proof is complete. �

The second result of this Section is an a priori estimate for every solution u of
(2.7), in the norm of W 1,p(ν,Ω).
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Lemma 3.2. Let (H1)–(H10) be satisfied and let u be a solution of (2.7). Then
there exists a constant M > 0 such that

‖u‖1,p ≤M,

where M depends only on c0, c1, c2, σ, p, ‖f0‖L∞(Ω), ‖f∗‖L1(Ω), λ(s), measm Ω,
meas ∂Ω and ‖F0‖L∞(∂Ω).

Proof. We have (see the proof of the Lemma 3.1):∫
Ω

|u|γ
{[ γ + 1
λ(‖u‖L∞(Ω))

− λ(‖u‖L∞(Ω))
]
ν|∇u|p + (c0 − c1)|u|p

}
dx

+
∫
∂Ω

c2|u|γ+p ds

≤
∫
∂Ω

|F0||u|γ ds+
∫

Ω

|f0||u|γ dx.

Set γ such that γ > λ(K)[1 + λ(K)] − 1, where K is the constant defined in
previous Lemma. Then, from the last inequality we obtain∫

Ω

|u|γ [ν|∇u|p + (c0 − c1)|u|p] dx ≤ Kγ
(∫

Ω

|f0| dx+
∫
∂Ω

|F0| ds
)
. (3.2)

On the other hand if we take w(x) = u(x) as a test function in relation (2.7), we
have∫

Ω

{ m∑
i=1

ai(x, u,∇u)
∂u

∂xi
+ c0|u|p + f(x, u,∇u)u

}
dx+

∫
∂Ω

F (x, u)u ds ≤ 0.

Applying inequalities (1.2), (2.1), (2.3) and Lemma 3.1 we obtain

min
( 1
λ(K)

, c0

)
‖u‖p1,p

≤ λ(K)
∫

Ω

[
f∗|u|+ |u|p+σ + |u|(ν1/p|∇u|)p−1+σ + |u|ν|∇u|p

]
dx+

∫
∂Ω

|F0| ds.

Then, there exists a constant K1, depending only on c0, c1, c2, σ, λ(s), ‖f0‖L∞(Ω)

and ‖F0‖L∞(∂Ω), such that

‖u‖p1,p ≤ K1

∫
Ω

[f∗|u|+ |u|p+σ + |u|τ
′
ν|∇u|p] dx+ ‖F0‖L∞(∂Ω) meas ∂Ω, (3.3)

where τ ′ = σ
2

p
p−1+σ (see also [8, (3.4)]).

We use (3.1), (3.2) to estimate the first term on the right-hand side of previous
inequality: ∫

Ω

f∗|u| dx ≤ ‖u‖L∞(Ω)‖f∗‖L1(Ω) ≤ K‖f∗‖L1(Ω)∫
Ω

|u|p+σ dx ≤ ‖u‖p+σL∞(Ω) measm Ω ≤ Kp+σ measm Ω,∫
Ω

|u|τ
′
ν|∇u|p dx ≤ Kτ ′

(∫
Ω

|f0| dx+
∫
∂Ω

|F0| ds
)

if τ ′ > λ(K)[1 + λ(K)]− 1.

In the case τ ′ ≤ λ(K)[1 + λ(K)]− 1, we first apply Young’s inequality to obtain

|u|τ
′
≤ ε+ C(ε, τ ′, γ)|u|γ , γ > λ(K)[1 + λ(K)]− 1;
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hence,∫
Ω

|u|τ
′
ν|∇u|p dx ≤ ε‖u‖p1,p + C(ε, τ ′, γ)Kγ

(∫
Ω

|f0| dx+
∫
∂Ω

|F0| ds
)
.

The above inequalities and (3.3) give ‖u‖1,p ≤M , where M depends only on c0, c1,
c2, p, σ, ‖f0‖L∞(Ω) , ‖F0‖L∞(∂Ω), measm Ω, meas ∂Ω, ‖f∗‖L1(Ω), λ(s). The proof
is complete. �

We want to emphasize that the constants K and M in previous Lemmas do not
depend on u. Moreover, Hypothesis (H2) in such Lemmas is only used for defining
the trace of u on ∂Ω.

The following lemma will be useful in verifying the assumptions of the Leray-
Lions Theorem in the proof of Lemma 3.4.

Lemma 3.3. Let (H1), (H3), (H9)–(H11) be satisfied. Let u ∈ W 1,p(ν,Ω) and
{un} be a sequence in W 1,p(ν,Ω) such that there exists a constant Λ > 0 for which
‖un‖1,p ≤ Λ and λ(|un(x)|) ≤ Λ for almost all x ∈ Ω and for every n = 1, 2, . . ..
Moreover, let us suppose limn→+∞ ‖un − u‖Lp(Ω) = 0 and

lim
n→+∞

∫
Ω

m∑
i=1

[ai(x, un,∇un)− ai(x, un,∇u)]
∂(un − u)

∂xi
dx = 0. (3.4)

Then

lim
n→+∞

∫
Ω

ν|∇un −∇u|p dx = 0.

The proof of the above lemma is an easy modification of the proof of [8, Lemma
3.3]. The following Lemma is a direct application of the Leray-Lions Theorem.

Lemma 3.4. Assume that λ(s) ≡ λ, with λ a positive constant. Let us suppose
that (H1)–(H4), (H9)–(H11) are satisfied. Let us suppose moreover that for every
u ∈ R, (η1, . . . , ηm) ∈ Rm and for almost all x ∈ Ω, it holds

|f(x, u, η)| ≤ λ,

and for almost all x ∈ ∂Ω and for all u ∈ R,

|F (x, u)| ≤ λ.

Then (2.7) has at least one solution.

Proof. Let us consider the operator

A(u, v) : W 1,p(ν,Ω)×W 1,p(ν,Ω)→ (W 1,p(ν,Ω))?,

defined by〈
A(u, v), w

〉
=
∫

Ω

{ m∑
i=1

ai(x, u,∇v)
∂w

∂xi
+ c0|u|p−2uw + f(x, u,∇u)w

}
dx

+
∫
∂Ω

[c2|u|p−2uw + F (x, u)w] ds

for every w ∈W 1,p(ν,Ω), and the operator T : W 1,p(ν,Ω)→ (W 1,p(ν,Ω))? defined
by

T (u) = A(u, u), u ∈W 1,p(ν,Ω).



8 S. BONAFEDE EJDE-2017/270

Using (H9), it is easy to check that the operator A(u, v) is a bounded operator.
Moreover,〈
A(v, v), v

〉
≥ min(

1
λ
, c0)‖v‖p1,p − λ‖v‖1,p

[
(measm Ω)(p−1)/p + c′(meas ∂Ω)(p̃−1)/p̃

]
.

Hence

lim
‖v‖1,p→+∞

〈
T (v), v

〉
‖v‖1,p

= +∞.

Now, we shall verify that the operator A(u, v) satisfies the other assumptions of
the Leray-Lions Theorem (see [15, Theorem 1]; see, also, [9]):

(i) Continuity and monotony in v: from (H11),

〈A(u, u)−A(u, v), u− v〉 ≥ 0.

Moreover, we observe that

lim
n→+∞

〈
A(un, vn), w

〉
=
〈
A(u, v), w

〉
for every w ∈W 1,p(ν,Ω),

if
(un, vn)→ (u, v) in W 1,p(ν,Ω)×W 1,p(ν,Ω).

For example, we prove that

lim
n→+∞

∫
∂Ω

|vn|p−2vnw ds =
∫
∂Ω

|v|p−2vw ds. (3.5)

Now, Hypothesis (H2) implies

‖vn − v‖Lp(∂Ω) ≤ c′(meas ∂Ω)(p̃−p)/pp̃‖vn − v‖1,p
then vn → v in Lp(∂Ω). Let E be an arbitrary measurable subset of ∂Ω. It results∫

E

|vn|p−1|w| ds ≤
∫
E

|vn|p ds+
∫
E

|w|p ds.

The strong convergence of vn to v in Lp(∂Ω) implies that {|vn|p} are equiintegrable.
Then the above inequality together with Hypothesis (H2) imply that {|vn|p−1|w|}
is also an equiintegrable sequence of functions. Hence (3.5) follows from Vitali’s
theorem.

(ii) Continuity of A(u, v) with respect to v: let un ⇀ u in W 1,p(ν,Ω) and
limn→∞〈A(un, un) − A(un, u), un − u〉 = 0, then, by Lemma 3.3, un → u in
W 1,p(ν,Ω); hence, by previous observation, we have that A(un, v) ⇀ A(u, v) in
(W 1,p(ν,Ω))?, for every v ∈W 1,p(ν,Ω).

(iii) Continuity of
〈
A(u, v), u

〉
in u: we observe that if v ∈ W 1,p(ν,Ω), un ⇀ u

in W 1,p(ν,Ω) and A(un, v) ⇀ v′ in (W 1,p(ν,Ω))?, then un → u in Lp(Ω), un → u
in Lp(∂Ω), hence

lim
n→∞

〈
A(un, v), un − u

〉
= 0

and, therefore, 〈A(un, v), un〉 →
〈
v′, u

〉
(see, also, [11, note (15)], where the special

case p = 2 is treated, but for Dirichlet problem, and, Remark 2.3).
Thus, all the assumptions of the Leray-Lions theorem (Hypothesis II) are satis-

fied. Hence the equation Tu = 0 has at least one solution u ∈W 1,p(ν,Ω).
We shall prove that u ∈ L∞(Ω) ∩ L∞(∂Ω). We set:

Ωk = {x ∈ Ω : u > k}, ∂Ωk = {x ∈ ∂Ω : u > k}.
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From (2.7), choosing w = u−min(u, k), k > K0 (for K0 see Remark 2.1), we have∫
Ωk

{ m∑
i=1

ai(x,w + k,∇w)
∂w

∂xi
+ c0|w + k|p−1w + f(x,w + k,∇w)w

}
dx

+
∫
∂Ωk

{c2|w + k|p−1w + F (x,w + k)w} ds = 0.

Applying condition (1.2) we obtain

min
( 1
λ
, c0
)
‖w‖p1,p ≤ λ

∫
Ωk

w dx+ λ

∫
∂Ωk

w ds.

The above inequality and (H4) imply

‖w‖p−1
1,p ≤

λ[ĉ(measm Ω)(p?−p̃)/p?p̃ + c′]
min( 1

λ , c0)
[(measm Ωk)(p̃−1)/p̃ + (meas ∂Ωk)(p̃−1)/p̃].

For h > k we have(∫
Ω

|w|p̃ dx
) p−1

p̃

+
(∫

∂Ω

|w|p̃ ds
) p−1

p̃

≥ (h− k)p−1
{

(measm Ωh)(p−1)/p̃ + (meas ∂Ωh)(p−1)/p̃
}
.

For h > 0, denote
ϕ(h) = {measm Ωh + meas ∂Ωh}.

We have
ϕ(h) ≤ α

(h− k)p̃
[ϕ(k)]

p̃−1
p−1 , if h > k > K0

where the positive constant α depends only on ĉ, c′, c0, λ, m, p, t, Ω.
Note that p̃−1

p−1 > 1, then it follows from a lemma of Stampacchia [17, Lemma 3.11]
that ess supΩ u+ess sup∂Ω u < +∞. By this way also ess supΩ(−u)+ess sup∂Ω(−u) <
+∞. Hence u ∈ L∞(Ω) ∩ L∞(∂Ω). �

4. Proof of Theorem 2.4

Proof. Let K be the constant defined in Lemma 3.1. We define

Ai(x, u, η) =


ai(x,−K, η) if u < −K
ai(x, u, η) if |u| ≤ K
ai(x,K, η) if u > K,

in Ω× R× Rm. For every positive integer n we define:

fn(x, u, η) =

f(x, u, η) if |f | ≤ n

n f(x,u,η)
|f(x,u,η)| if |f | > n

in Ω× R× Rm,

Fn(x, u) =

F (x, u) if |F | ≤ n

n F (x,u)
|F (x,u)| if |F | > n

in ∂Ω× R.
The functions Ai(x, u, η), fn(x, u, η), Fn(x, u), satisfy (H3)–(H11). It is sufficient

to note, for example, that in Ω× R× Rm,

|fn(x, u, η)| ≤ |f(x, u, η)|,
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and, that (H8) holds with |f0(x)| instead of f0(x). Analogous considerations verify
the others assumptions. On the other hand, for every u ∈ R, (η1, . . . , ηm) ∈ Rm
and for almost all x ∈ Ω it holds that

|fn(x, u, η)| ≤ n ,
and for almost all x ∈ ∂Ω and for all u ∈ R,

|Fn(x, u)| ≤ n.
Then, it follows from Lemma 3.4 that, for every n ∈ N, there exists un ∈ W such
that ∫

Ω

[ m∑
i=1

Ai(x, un,∇un)
∂w

∂xi
+ c0|un|p−2unw + fn(x, un,∇un)w

]
dx

+
∫
∂Ω

[c2|un|p−2unw + Fn(x, un)w] ds = 0

(4.1)

for every w ∈W . An a priori estimate of Lemma 3.1 yields

‖un‖L∞(Ω) + ‖un‖L∞(∂Ω) ≤ K, for every n ∈ N, (4.2)

and hence (4.1) can be written in the equivalent form∫
Ω

[ m∑
i=1

ai(x, un,∇un)
∂w

∂xi
+ c0|un|p−2unw + fn(x, un,∇un)w

]
dx

+
∫
∂Ω

[c2|un|p−2unw + Fn(x, un)w] ds = 0.

(4.3)

It follows from Lemma 3.2 that for every n ∈ N,

‖un‖1,p ≤M. (4.4)

On the basis of (4.2) and (4.4) there exists a subsequence of {un} (denoted again
by {un}) such that {un} converges weakly to u in W 1,p(ν,Ω) and {un} converges
weakly* in L∞(Ω) and in L∞(∂Ω) where u ∈ W and ‖u‖L∞(Ω) + ‖u‖L∞(∂Ω) ≤ K.
We shall prove that u ∈W is the solution of (2.7).

To pass to the limit in (4.3) for n→ +∞ we have to prove that

lim
n→+∞

∫
Ω

ν|∇un −∇u|p dx = 0. (4.5)

Now, the compact embedding of W 1,p(ν,Ω) in Lp(Ω) implies the strong conver-
gence of un to u in Lp(Ω) and hence also almost everywhere in ∂Ω (see Remark
2.3). Then, taking into account Lemma 3.3, to get (4.5) it will be sufficient to prove
that (3.4) it holds.

Let us take w = |un−u|γ(un−u) as a test function in (4.3) where γ is a positive
number. We deduce∫

Ω

{ m∑
i=1

ai(x, un,∇un)(γ + 1)|un − u|γ
∂(un − u)

∂xi

+ c0|un|p−2un|un − u|γ(un − u) + fn(x, un,∇un)|un − u|γ(un − u)
}
dx

+
∫
∂Ω

{c2|un|p−2un|un − u|γ(un − u) + Fn(x, un)|un − u|γ(un − u)} ds

= 0.
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From the above inequality, taking into account (1.2), (2.1), (2.2), (4.2), we obtain∫
Ω

|un − u|γ |∇un|pν dx

≤
∫

Ω

m∑
i=1

ai(x, un,∇un)(γ + 1)|un − u|γ
∂u

∂xi

+ c0K
p−1

∫
Ω

|un − u|γ+1 dx+ 2Kλ(K)
∫

Ω

[|f∗|+Kp−1+σ + 1]|un − u|γ dx

+ c2

∫
∂Ω

|un|p−1|un − u|γ+1 ds+
∫
∂Ω

[|F ∗|+ λ(K)]|un − u|γ+1 ds,

where γ is such that γ+1
λ(K) − 4Kλ(K) > 1.

By Lebesgue theorem, the first three addends in the right hand side of previous
inequality go to 0 as n → +∞ (see, [8, Lemma 3.4, pp. 229-230]). We prove, for
example, that

lim
n→∞

∫
∂Ω

[|F ∗|+ λ(K)]|un − u|γ+1 ds = 0,

this integral is absent in [8]. It results that a.e. x ∈ ∂Ω,

[|F ∗|+ λ(K)]|un − u|γ+1 ≤ (2K)γ+1[|F ∗|+ λ(K)] ∈ L1(∂Ω).

As un → u a.e. in ∂Ω, it will be enough to apply Lebesgue theorem again. Then,
it follows

lim
n→+∞

∫
Ω

|un − u|γ |∇un|pν dx = 0,

and, so, applying Hölder inequality

lim
n→+∞

∫
Ω

|un − u||∇un|pν dx = 0. (4.6)

By (4.3) we obtain∫
Ω

m∑
i=1

[ai(x, un,∇un)− ai(x, un,∇u)]
∂(un − u)

∂xi
dx

= −
∫

Ω

c0|un|p−2un(un − u) dx−
∫

Ω

fn(x, un,∇un)(un − u) dx

−
∫

Ω

m∑
i=1

ai(x, u,∇u)
∂(un − u)

∂xi
dx

+
∫

Ω

m∑
i=1

[ai(x, u,∇u)− ai(x, un,∇u)]
∂(un − u)

∂xi
dx

−
∫
∂Ω

c2|un|p−2un(un − u) ds−
∫
∂Ω

Fn(x, un)(un − u) ds.

Now, all addends in the right-hand side of previous inequality go to 0 as n→ +∞.
For example, we shall estimate the second and the last addend. We have∫

Ω

|fn(x, un,∇un)||un − u| dx

≤ λ(K)
∫

Ω

[Kp−1+σ + 1 + |f∗|]|un − u| dx+ 2λ(K)
∫

Ω

|un − u||∇un|pν dx.
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From the Lebesgue theorem and (4.6), the above inequality implies

lim
n→+∞

∫
Ω

fn(x, un,∇un)(un − u) dx = 0.

Next ∫
∂Ω

|Fn(x, un)||un − u| ds ≤ [λ(K) + ‖F ∗‖L∞(∂Ω)]
∫
∂Ω

|un − u| ds.

Taking into account that the imbedding of W 1,p(Ω) in L1(∂Ω) is compact (see
Remark 2.3), the above inequality implies

lim
n→+∞

∫
∂Ω

Fn(x, un)(un − u) dx = 0.

For details concerning others passage to the limit see [8, pag. 228]. Consequently∫
Ω

m∑
i=1

[ai(x, un,∇un)− ai(x, un,∇u)]
∂(un − u)

∂xi
dx

tends to zero as n→ +∞. So, un → u in W 1,p(ν,Ω).
Now, to prove that the function u ∈ W is the solution of (2.7) it is sufficient to

pass to the limit as n→∞. For example, we prove that

lim
n→+∞

∫
∂Ω

Fn(x, un)w ds =
∫
∂Ω

F (x, u)w ds (4.7)

for every w ∈W .
We fix ε > 0 and a point x0 ∈ ∂Ω such that un(x0) → u(x0) as n → +∞ and

the function F (x0, u) is continuous with respect u. Then there is a number nε ∈ N
such that for any n > nε,

−n < F (x0, u(x0))− ε < F (x0, un(x0)) < ε+ F (x0, u(x0)) < n.

These inequalities and the definition of the function Fn(x, u) imply that for any
n > nε, Fn(x0, un(x0)) = F (x0, un(x0)) and

|Fn(x0, un(x0))− F (x0, u(x0))| < ε.

In this way Fn(x, un(x))→ F (x, u(x)) a.e. on ∂Ω. Next, from definition of Fn(x, u)
and (2.2) we have

|Fn(x, un(x))w(x)| ≤ [λ(K) + ‖F ∗‖L∞(∂Ω)]|w(x)|

a.e. x ∈ ∂Ω. Now, a new application of the Lebesgue theorem gives (4.7). The
proof is complete. �

Now, we show an example where all assumptions are satisfied. Let Ω be a
bounded open set of Rm such that 0 ∈ ∂Ω. Put

ν(x) = |x|γ for 0 < γ < p− 1.

Then the function ν satisfies Hypotheses (H1) and (H2) with t such that
m

p− 1
< t <

m

γ
.

Consider the boundary-value problem

− div
( |x|γ

1 + |u|p
|∇u|p−2∇u

)
+ eu − |u|p + |x|γ |∇u|p = g(x) in Ω, (4.8)
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|x|γ

1 + |u|p
|∇u|p−2

m∑
i=1

∂u

∂xi
cos(−→n , xi) +

1
e
u|u|p−2 +

eu−1

2
= 0 on ∂Ω, (4.9)

where g(x) ∈ L∞(Ω). In this case we have:

ai(x, u,∇u) =
|x|γ

1 + |u|p
|∇u|p−2 ∂u

∂xi
, i = 1, 2, . . . ,m;

f(x, u,∇u) = eu − |u|p − u|u|p−2 + |x|γ |∇u|p − g(x), c0 = 1;

F (x, u) =
1
2e
u|u|p−2 +

eu−1

2
; c2 =

1
2e
.

If we put λ(|u|) = e|u|
p

, it is possible to verify all the Hypotheses (H3)–(H11). To
verify (H3), for example, it will be sufficient to note that the function (|u|p + ueu)
has minimum (≤ 0) in (−∞,+∞).

Hence, BVP (4.8), (4.9) has at least one weak solution in the sense (2.7), i.e.
there exists at least one u ∈W such that∫

Ω

|x|γ

1 + |u|p
|∇u|p−2∇u∇w dx+

∫
Ω

[eu − |u|p + |x|γ |∇u|p]w dx

+
∫
∂Ω

{1
e
u|u|p−2 +

eu−1

2
}
w ds

=
∫

Ω

gw dx

holds for every w ∈W .
Examples concerning the Dirichlet problem related to (1.1) can be found in [8,

Section 6].

5. Asymptotic behavior near infinity of solutions to the Dirichlet
problem for (1.1)

Let Ω = {x ∈ Rm : |x| > r}, r be a positive constant. For n ∈ N, we denote

Ωn = Ω ∩ {x ∈ Rm : |x| < n}.

We introduce the hypothesis

(H12) The function ν = ν(x) : Ω → (0,+∞) is a measurable function such that
ν ∈ L∞(Ω). For every n ∈ N, there exists a real number δn > max(mp ,

1
p−1 )

such that 1/ν ∈ Lδn(Ωn).

We set

L1(Ω) + Lp/(p−1)(Ω) = {f1(x) + f2(x) : f1 ∈ L1(Ω), f2 ∈ Lp/(p−1)(Ω)}.

Let (H3), (H5), (H8)–(H12) be satisfied with f0 ∈ L1(Ω) ∩ L∞(Ω), f∗ ∈ L1(Ω) +
Lp/(p−1)(Ω) and let u ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω) such that∫

Ω

{ m∑
i=1

ai(x, u,∇u)
∂w

∂xi
+ c0|u|p−2uw + f(x, u,∇u)w

}
dx = 0 (5.1)

for every w ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω). The function u exists because of [8, Theorem
2.2].
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Theorem 5.1. Let (H3), (H5), (H8)–(H12) be satisfied, with the function f∗ in
L1(Ω) + Lp/(p−1)(Ω), and

|f0(x)|+ |a∗(x)| ≤ c̃e−δ1|x|, x ∈ Ω, (5.2)

with c̃ and δ1 positive constants. Let us consider u ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω) that
satisfies (5.1) for every w ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω). Then∫

|x|>λ
|u|p dx ≤ Ce−δ3λ (5.3)

for every λ ≥ r, where δ3 and C are positive constants depending on known param-
eters.

Proof. Let us define in Rm a Lipschitzian function θ(x), 0 ≤ θ(x) ≤ 1, such that
θ(x) = 0 if 0 < |x| < r+1, θ(x) = 1 if |x| > r+2. Define in Rm the function θR(x),
0 ≤ θR(x) ≤ 1, such that θR(x) = 1 if |x| < R, θR(x) = 0 if |x| > R + 1, and let
θR(x) be a Lipschitzian function.

Take in (5.1) as a test function w = u|u|γeγτ(x)θθR where τ(x) = β|x| if |x| < L,
τ(x) = βL for |x| > L and the positive constants γ, β will be stated later on.
Moreover, let us suppose that real numbers L, R are such that r + 2 < L < R.

After easy computations, by (1.2) and (2.4), we obtain∫
Rm

eγτ(x)|u|γθθR
{[ γ + 1
λ(‖u‖L∞(Ω))

− λ(‖u‖L∞(Ω))
]
ν|∇u|p

+ (c0 − c1)|u|p
}
dx

≤ γ
∫

Rm

m∑
i=1

|ai(x, u,∇u)|
∣∣∣∂τ(x)
∂xi

∣∣∣|u|γ+1eγτ(x)θθR dx

+
∫

Rm

m∑
i=1

|ai(x, u,∇u)||u|γ+1eγτ(x)|∇θ|θR dx

+
∫

Rm

m∑
i=1

|ai(x, u,∇u)||u|γ+1eγτ(x)|∇θR|θ dx

+
∫

Rm
eγτ(x)|f0||u|γθθR dx.

(5.4)

Now, we choose γ in such that

γ + 1
λ(‖u‖L∞(Ω))

− λ(‖u‖L∞(Ω)) = 2.

Then, we can estimate from below the left-hand side of (5.4) by

2
∫
r+2<|x|<L

eγβ|x||u|γν|∇u|p dx+ (c0 − c1)
∫
r+2<|x|<L

eγβ|x||u|γ+p dx. (5.5)
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Next, we shall estimate every addend of right hand side of (5.4). By (2.5), (5.2)
and the definitions of τ(x), θ(x), θR(x), it results that

γ

∫
Rm

m∑
i=1

|ai(x, u,∇u)|
∣∣∣∂τ(x)
∂xi

∣∣∣|u|γ+1eγτ(x)θθR dx

≤ γβ
∫
|x|<L

eγβ|x|
m∑
i=1

|ai(x, u,∇u)||u|γ+1 dx

≤ γβd1

[ ∫
Rm
|a∗(x)|eγβ|x| dx+ eγβ(r+2)

]
+ 2mγβλ(‖u‖L∞(Ω))‖ν‖

1/p
L∞(Ω)

∫
r+2<|x|<L

eγβ|x||u|γ+p dx

+mγβλ(‖u‖L∞(Ω))‖ν‖
1/p
L∞(Ω)

∫
r+2<|x|<L

eγβ|x||u|γν|∇u|p dx;

(5.6)

∫
Rm

m∑
i=1

|ai(x, u,∇u)||u|γ+1eγτ(x)|∇θ|θR dx

≤ eγβ(r+2)

∫
|x|<r+2

m∑
i=1

|ai(x, u,∇u)||u|γ+1|∇θ| dx

≤ d2e
γβ(r+2)λ(‖u‖L∞(Ω))‖u‖γ+1

L∞(Ω)

×
∫
|x|<r+2

[a∗(x)ν1/p + |u|p−1ν1/p + ν|∇u|p−1] dx

≤ d3e
γβ(r+2);

(5.7)

∫
Rm

m∑
i=1

|ai(x, u,∇u)||u|γ+1eγτ(x)|∇θR|θ dx

≤ eγβL
∫
R<|x|<R+2

m∑
i=1

|ai(x, u,∇u)||u|γ+1|∇θR| dx

≤ d4e
γβLλ(‖u‖L∞(Ω))‖ν‖

1/p
L∞(Ω)

(
‖u‖γ+1

L∞(Ω) + 1
)

×
[ ∫

R<|x|<R+2

|a∗(x)| dx+
∫
R<|x|<R+2

(|u|p + ν|∇u|p) dx
]
;

(5.8)

∫
Rm

eγτ(x)|f0||u|γθθR dx ≤ c̃‖u‖γL∞(Ω)

∫
Rm

e(γβ−δ1)|x| dx, (5.9)

where the constants di (i = 1, 2, 3, 4) are positive and depend only on m, p, λ(s),
‖u‖L∞(Ω), ‖u‖1,p, ‖ν‖L∞(Ω), ‖a∗‖L1(Ω) and r.

From (5.4), estimates (5.5)–(5.9), letting R→ +∞, we obtain

2
∫
r+2<|x|<L

eγβ|x||u|γν|∇u|p dx+ (c0 − c1)
∫
r+2<|x|<L

eγβ|x||u|γ+p dx

≤ d3e
γβ(r+2) + γβd1

[
c̃

∫
Rm

e(γβ−δ1)|x| dx+ eγβ(r+2)
]

+ 2mγβλ(‖u‖L∞(Ω))‖ν‖
1/p
L∞(Ω)

∫
r+2<|x|<L

eγβ|x||u|γ+p dx
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+mγβλ(‖u‖L∞(Ω))‖ν‖
1/p
L∞(Ω)

∫
r+2<|x|<L

eγβ|x||u|γν|∇u|p dx

+ c̃‖u‖γL∞(Ω)

∫
Rm

e(γβ−δ1)|x| dx,

for every real numbers L > r + 2, β > 0; where γ is a fixed real number, γ > 2.
Fix β such that

0 < β < min
(δ1
γ
,

c0 − c1
2mγλ(‖u‖L∞(Ω))‖ν‖

1/p
L∞(Ω)

,
2

mγλ(‖u‖L∞(Ω))‖ν‖
1/p
L∞(Ω)

)
.

Then, for every L > r + 2, we obtain∫
r+2<|x|<L

eγβ|x||u|γ+p dx ≤M

where M depends only on m, p, r, β, γ, c0, c1, c̃, λ(s), ‖u‖L∞(Ω), ‖u‖1,p, ‖ν‖L∞(Ω)

and δ1. Letting L→ +∞, the above inequality implies∫
|x|>r

eδ2|x||u|γ+p dx ≤M1 (5.10)

where δ2 = γβ and M1 = eγβ(r+2)‖u‖γ+p
L∞(Ω) measm(r < |x| < r + 2) + M . Hence

(5.3) follows from (5.10). The proof is complete. �

We give an example where Hypothesis (H12) is satisfied. Let Ω = {x ∈ Rm :
|x| > 1}. We consider the function ν : Ω→ (0,+∞) defined by

ν(x) =
[
(|x| − 1)e−(|x|−1)

]γ
, γ ∈ (0, (p− 1)/m).

Then

ν(x) ≤
(1
e

)γ
, x ∈ Ω.

For every integer n ≥ 2, we set Ωn = {x ∈ Rm : 1 < |x| < n}. Then, the function
1/ν(x) ∈ Lδn(Ωn) for every δn satisfying m/(p− 1) < δn < 1/γ.

6. Phragmén-Lindelöf theorem

Now, we shall consider weak solutions of (1.1) for the Dirichlet problem, with
p-Laplacian, in a cylindrical unbounded domain.

Let 0 ≤ a < b ≤ +∞ and define the set

πa,b = {x ∈ Rm : x′ ∈ Ω′, a < xm < b},

where x′ = (x1, . . . , xm−1), Ω′ is a bounded domain in Rm−1, m ≥ 3, with a smooth
boundary ∂Ω′; πa = πa,∞. Let p be a real number such that 1 < p < m− 1.

For the next theorem we need the following hypotheses:

(H13) Let ν̂ = ν̂(x′) : Ω′ → (0,+∞) be a measurable such that

ν̂ ∈ L∞(Ω′),
(1
ν̂

)
∈ Lt(Ω′),

with t > max(mp ,
1
p−1 );
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(H14) Let f(x, u, η) be a Caratheodory function in π0 × R × Rm such that for
almost all x = (x′, xm) ∈ π0 and for all (u, η) ∈ R× Rm,

|f(x, u, η)| ≤ λ(|u|)[f∗(x) + ν̂(x′)|η|p], f∗ ∈ L1(π0) + Lp/(p−1)(π0),

c1|u|p + uf(x, u, η) ≥ −f0(x), f0 ∈ L1(π0) ∩ L∞(π0),

where λ : [0,+∞)→ [1,+∞) is a monotone nondecreasing function and c1
is a positive constant.

Theorem 6.1. Let (H13), (H14) be satisfied. Let λ̃ : [0,+∞) → [1,+∞) be a
nondecreasing function such that λ̃(s) ≤ λ(s) for all s ≥ 0. Let c0 be a positive
constant such that c0 > c1. Let u ∈ W̊ 1,p(ν̂, π0) ∩ L∞(π0) satisfy∫

π0

{ ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂w

∂xi
+ c0|u|p−2uw + f(x, u,∇u)w

}
dx = 0 (6.1)

for an arbitrary function w ∈ W̊ 1,p(ν̂, π0) ∩ L∞(π0) (the function u exists by [8,
Theorem 2.2]). Let us assume that for some a ≥ 0,

c1|u|p + uf(x, u, η) ≥ 0

for almost all x ∈ πa and for all (u, η) ∈ R× Rm.
Then there exists a positive constant α, depending on m, p, t, Ω′, ‖u‖L∞(π0), ‖u‖1,p,
λ(s), ‖ν̂‖L∞(Ω′) and ‖1/ν̂‖Lt(Ω′), such that∫

π0

eαxm ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx ≤ D ,

where D is a positive number depending only on known parameters.

Proof. For the sake of simplicity, we will assume throughout that

c1|u|p + uf(x, u, η) ≥ 0 (6.2)

for almost all x ∈ π0 and for all (u, η) ∈ R × Rm. Let θ(x) ∈ C1(R) be a function
such that θ(x) = 1 if x < 1

2 , θ(x) = 0 if x > 1, 0 ≤ θ(x) ≤ 1, |θ′(x)| ≤ β.
For every b ≥ 0, we consider θb(xm) = θ(xm − b). It results 0 ≤ θb(xm) ≤ 1 and

|θ′b(xm)| ≤ β for all b ≥ 0. Let b be a real number, b > 0. Let us prove that∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx+
∫
π0

{c0|u|p + f(x, u,∇u)u} dx

=
∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂

∂xi
(θbu) dx

+
∫
π0

{c0|u|p + f(x, u,∇u)u}θb dx.

(6.3)

The function w = (θc(xm) − θb(xm))u ∈ W̊ 1,p(ν̂, π0) ∩ L∞(π0), c > b > 0, so by
(6.1), we have∫

π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂

∂xi
[(θc − θb)u] + c0|u|p(θc − θb)

+ f(x, u,∇u)(θc − θb)u dx = 0,
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hence, in (6.3) the right hand side does not depend on b. It results∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂

∂xi
(θbu) dx+

∫
π0

c0|u|pθb dx+
∫
π0

f(x, u,∇u)uθb dx

=
∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pθb dx+
∫
π0

ν̂

λ̃(|u|)

∣∣∣ ∂u
∂xm

∣∣∣p−2 ∂u

∂xm
uθ′b dx (6.4)

+
∫
π0

c0|u|pθb dx+
∫
π0

f(x, u,∇u)uθb dx.

By (H13) and (6.2), Hölder’s inequality and the definition of function θb it follows
that∣∣∣ ∫

π0

ν̂

λ̃(|u|)

∣∣∣ ∂u
∂xm

∣∣∣p−2 ∂u

∂xm
uθ′b dx

∣∣∣
≤ β(sup

Ω′
ν̂)1/p

(∫
π
b+ 1

2 ,b+1

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx)(p−1)/p(∫
π
b+ 1

2 ,b+1

|u|p dx
)1/p

.

(6.5)

Next, from the weighted Friedrichs inequality (see, [17, Corollary 3.3]), we have∫
Ω′
|u|p dx′ ≤ α1

∫
Ω′
ν̂(x′)

m−1∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx′, (6.6)

where the positive constant α1 depends only on m, p, Ω′ and ‖1/ν̂‖Lt(Ω′).
From (6.5) and (6.6) we obtain∣∣∣ ∫
π0

ν̂

λ̃(|u|)

∣∣∣ ∂u
∂xm

∣∣∣p−2 ∂u

∂xm
uθ′b dx

∣∣∣ ≤ ∫
π0

ν̂
∣∣∣ ∂u
∂xm

∣∣∣p−1

|u| |θ′b| dx

≤ α2(sup
Ω′

ν̂)1/p

∫
π
b+ 1

2 ,b+1

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx, (6.7)

where the positive constant α2 depends only on m, p, β, Ω′ and ‖1/ν̂‖Lt(Ω′). Hence

lim
b→+∞

∫
π0

ν̂

λ̃(|u|)

∣∣∣ ∂u
∂xm

∣∣∣p−2 ∂u

∂xm
uθ′b dx = 0. (6.8)

From (6.4), letting b → +∞, taking into account that the left hand side does not
depend on b, by Lebesgue theorem and (6.8) we obtain (6.3).

Next, by (6.2), (6.3), c0 > c1, an easy computation gives∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx ≤ ∫
π0

ν̂

λ̃(|u|)

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂

∂xi
(θbu) dx, (6.9)

for every b > 0.
From (6.9) and (6.7) we obtain∫
π
b+ 1

2

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx ≤ λ(‖u‖L∞(π0))[α2(sup
Ω′

ν̂)1/p + 1]
∫
π
b+ 1

2 ,b+1

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx
= (α3 + 1)

∫
π
b+ 1

2 ,b+1

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx,



EJDE-2017/270 EXISTENCE OF BOUNDED SOLUTIONS OF NEUMANN PROBLEM 19

for every b > 0, where the positive constant α3 depends on m, p, β, Ω′, ‖ν̂‖L∞(Ω′),
‖u‖L∞(π0), λ(s) and ‖1/ν̂‖Lt(Ω′) Consequently,

Ib+1(u) ≤ α3

α3 + 1
Ib(u), ∀b > 0,

where, for every a ≥ 0,

Ia(u) =
∫
πa

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx, A = I0(u) <∞.

This formula, by induction, gives

Ib+n(u) ≤ snIb(u) ≤ Asn,
for n ∈ N, b > 0 and s = α3

α3+1 . We can write last relation in this way

Ib+n(u) ≤ Aen log s, for every b > 0, n ∈ N ∪ {0}.
It is simple to verify that above inequality gives

Iλ(u) ≤ α4e
−λα̃, for all λ > 0,

where α4 = Aeα̃ and α̃ = − log s > 0.
Now, fixing α such that 0 < α < α̃, we have∫

π0

eαxm ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx =
+∞∑
j=0

∫
πj,j+1

eαxm ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx
≤

+∞∑
j=0

eα(j+1)

∫
πj,j+1

ν̂

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p dx
≤

+∞∑
j=0

eα(j+1)Ij(u)

≤ α4

+∞∑
j=0

eα(j+1)e−jα̃ < +∞.

The proof is complete. �

As in Section 4, we will show an example where all assumptions are fulfilled. Let
Ω′ = {x′ = (x1, x2, . . . , xm−1) ∈ Rm−1 : |x′| < 1}. Put

ν̂(x′) = [d(x′, ∂Ω′)]ρ = (1− |x′|)ρ

for ρ : 0 < ρ < min
(
p
m , (p − 1)

)
. Then the function ν̂ satisfies (H13) with t

arbitrarily taken as follows:

max
(m
p
,

1
p− 1

)
< t <

1
ρ
.

Let us define in π0 × R× Rm → R the function f(x, u, η) by

f(x, u, η) = ueu(1− |x′|)ρ|η|p − g1(x),

where g1(x) ∈ L∞(π0) has compact support. It is possible to verify (H14) by setting
λ(|u|) = e2|u|, and, taking into account that

1
2
|u|p + uf(x, u, η) ≥ −2

1
p−1 |g1(x)|

p
p−1 (6.10)
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for almost all x ∈ π0 and for all (u, η) ∈ R × Rm. Then, from [8, Theorem 2.2],
there exists a function u ∈ W̊ 1,p(ν̂, π0) ∩ L∞(π0) such that∫

π0

{ (1− |x′|)ρ

e2|u|

m∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂w

∂xi
+ |u|p−2uw + ueu(1− |x′|)ρ|∇u|pw

}
dx

=
∫
π0

g1w dx

for every arbitrary function w ∈ W̊ 1,p(ν̂, π0) ∩ L∞(π0). In this case c0 = 1.
From (6.10) because of the support of g1, there exists a positive number a such

that
1
2
|u|p + uf(x, u, η) ≥ 0

for almost all x ∈ πa and for all (u, η) ∈ R×Rm. So, it is possible to apply Theorem
6.1 to the function u.
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