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Abstract: Background. Alzheimer’s is a disease for which there is no cure. Diagnosing Alzheimer’s
disease (AD) early facilitates family planning and cost control. The purpose of this study is to predict
the presence of AD using socio-demographic, clinical, and magnetic resonance imaging (MRI) data.
Early detection of AD enables family planning and may reduce costs by delaying long-term care.
Accurate, non-imagery methods also reduce patient costs. The Open Access Series of Imaging Studies
(OASIS-1) cross-sectional MRI data were analyzed. A gradient boosted machine (GBM) predicted the
presence of AD as a function of gender, age, education, socioeconomic status (SES), and a mini-mental
state exam (MMSE). A residual network with 50 layers (ResNet-50) predicted the clinical dementia
rating (CDR) presence and severity from MRI’s (multi-class classification). The GBM achieved
a mean 91.3% prediction accuracy (10-fold stratified cross validation) for dichotomous CDR using
socio-demographic and MMSE variables. MMSE was the most important feature. ResNet-50 using
image generation techniques based on an 80% training set resulted in 98.99% three class prediction
accuracy on 4139 images (20% validation set) at Epoch 133 and nearly perfect multi-class predication
accuracy on the training set (99.34%). Machine learning methods classify AD with high accuracy.
GBM models may help provide initial detection based on non-imagery analysis, while ResNet-50
network models might help identify AD patients automatically prior to provider review.

Keywords: Alzheimer’s disease; extreme gradient boosting; deep residual learning; convolutional
neural networks; machine learning; dementia

1. Introduction

Alzheimer’s disease (AD) is a degenerative brain disease with no cure [1]. AD is the most common
type of dementia; it is the sixth leading cause of death in the United States [2]. AD is characterized by
progressive cerebral cortex atrophy leading to memory loss, increasing cognitive deficits, and potential
loss of motor functions [3]. In 2019, there were 5.8 million people of all ages diagnosed with AD,
the prediction is 14 million with AD by 2050 [2]. Specifically, one in ten people over 65 years of age
have AD, with females more likely to have AD than males [3].

Due to the lengthy prodromal period for AD, it is commonly diagnosed in seniors [4]. Earlier
diagnosis of AD would facilitate treatment interventions and family planning, and it could save
up to $7.9 trillion dollars annually [2]. Unfortunately, differential diagnosis of AD is an intense,
time consuming, and costly process involving physical and mental exams, laboratory and neurology
tests, as well as neurological imaging (magnetic resonance imaging—MRI, computed tomography—CT,
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and positron emission tomography—PET) [4]. As an example, the cost for a brain MRI may range
from $600 to $1300 [5], and for the uninsured or underinsured this might be infeasible.

1.1. Background

Dementia is not identical to the normal mental deterioration associated with aging [2]. It is
a progressive, chronic disease with symptoms that may include the loss of memory, communication
problems, behavioral changes, and personality changes. Individuals with dementia are often not
oriented to time or place and may not remember to eat regularly or practice good hygiene. AD is the
most common (60%–80%) form of dementia [2]. Normal “forgetful” elderly individuals can be assisted
to remember; however, those with AD may not even recall reminders. This fact is unsurprising since
the etiology of AD (and other dementias) is damage to brain cells visible by imagery. AD is associated
with atrophy of the cerebral cortex, which is the outer (grey wrinkled) covering of the cerebrum in the
brain. The irreversible atrophy derives from amyloid plaque formation and neurofibrillary tangles.
Amyloid (protein) plaques bind to and destroy nerve synapses (where nerves touch) resulting in
memory loss, an early symptom of AD. Neurofibrillary tangles, from a twisted protein strand, damage
neurons, and nerve synapses.

AD has an extremely slow onset. The prodromal period may be 10–20 years while plaques
and tangles continue spreading through the cortex [3]. Definitive diagnosis is complicated because
amyloid plaque formation and neurofibrillary tangles are present even in seniors with good cognitive
functioning [6,7], although in lesser numbers and without the predictable pattern present in AD brain
scans. To that end, diagnostics from brain MRIs, CT scans, and PET scans are useful for monitoring the
progression of AD. Brain volume atrophy, especially in the hippocampal areas, also reflects the decline
in cognitive functions characteristic of AD pathology [8].

Scores from longitudinal clinical tests, like the mini-mental state exam (MMSE), clinical dementia
rating (CDR), and Alzheimer’s disease assessment scale (ADAS), have shown high correlation with AD
disease progression [4,9]. Mapping this association is helpful because it allows clinicians to provide
interventions in the asymptomatic preclinical period. To clarify, while there is no cure for AD the
progression may be slowed, and the symptoms treated. Common treatments include memory drugs,
behavior mediation, sleep treatments, occupational therapy, and assisted living [2]. Thus, the early
identification of AD is vital to slowing the progression of the disease.

1.2. Related Research

Mapping the progression of AD thorough all six stages requires complex non-linear multifactorial
multi-modal modeling. Researchers have used growth mixture modeling (GMM) to model the decay
of preclinical MMSE scores of individuals (n = 528) over 75 years of age [10]. GMM was used to
detect both group and individual changes. Bhagwat et al. [4] modeled AD symptom progression
classes for one thousand participants over six years with the MMSE scores and the AD AS scale.
The authors predicted AD progression using MRI imaging, genetic and clinical characteristics, and by
applying a Siamese neural network, which is a network with two or more identical equally weighted
subnetworks. Zhang et al. [11,12] used a subset of the Open Access Series of Imaging Studies
(OASIS) data (n = 126) and proposed methods to identify binary-coded AD using Eigenbrain imagery.
They eliminated individuals under 60 and incomplete observations, modeled AD as binary, limited
their analyses to a very small subset of coronal slice images, and used 10-fold cross-validation run
50 times. (Our approach is somewhat similar; however, in this paper, we use 51 slices, all available
imagery data, random image generation, and multi-class classification using ResNet-50 on a 20%
blinded validation set.) Bansal et al. [13] applied several machine learning (ML) models to the OASIS
brains dataset to classify binary-coded AD; however, they used the entirety of the data set, which may
have resulted in overfitting and prevented the generation of true performance metrics.

A related study focused on predicting the individual Alzheimer’s disease assessment scale
(ADAS) and MMSE scores [14]. The researchers used an anatomically partitioned artificial neural
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network, cross-sectional baseline data sets, three sets of Alzheimer’s disease neuroimaging initiative
cohort data, and two MRI measures. Another study used MRI brain images of tissue perfusion and
perfusion scores to develop discrimination maps, which successfully distinguished AD, mild cognitive
decline, and subjective cognitive decline [15]. Other researchers applied ML to Alzheimer’s disease
neuroimaging initiative data (n = 805) to predict AD clinical scores [9]. By using soft-split sparse
regression-based random forests to estimate missing longitudinal scores they produced more accurate
predictions than traditional random forest methods.

Other research demonstrated that fractal descriptors were more accurate for support vector
machine (SVM) classification of abnormal MRI brain images for AD than discrete wavelet transform
or empirical mode decomposition [16]. The authors achieved at best 87% binary class classification
accuracy on the OASIS-1 dataset using variational mode decomposition. In a very small sample,
another study on automatic classification of AD achieved 100% accuracy using SVM and 10-fold
cross-validation with 35 test images and 35 controls [17]. Another study used 33 T2-weighted, MRI brain
images and used a multiclass SVM, which correctly classified 91% of the 33 images after training [18].
Due to the small size of images, none of the models discussed were applied to a blinded validation
set. The study also considered cognitive scores but did not build models devoid of imagery data
to estimate performance. Further, neither of these studies provides a multi-class classification nor
evaluates non-imagery models as done in this study.

This work extends these researchers’ efforts. This study has two objectives. The first objective
is to build machine learning models, specifically, gradient boosted machines (GBM), that effectively
predict both the presence of AD using ML methods without imagery or imagery-related variables.
The second objective is to build imagery models using deep learning techniques, specifically a residual
network with 50 layers (ResNet-50), that improves previous classification efforts. The significance of
this paper follows.

1. Our multi-class classification of 98.99% may be the highest in the literature for multi-class
classification, particularly on a blinded validation set.

2. There are no other readily available papers that apply ResNet-50 to MRI AD detection.
3. This may be the first paper to compare both imagery and non-imagery analysis.
Non-imagery methods may be particularly relevant to the poor and underserved, as methods

that adequately forecast AD without imagery reduce the costs of imaging. Imagery methods that are
increasingly accurate may help providers with diagnostics.

2. Materials and Methods

2.1. Data and Software

The Open Access Series of Imaging Studies (OASIS-1) is publicly available data that provides
researchers access to cross-sectional and longitudinal MRI data [19]. The data derive from the work
of Marcus et al. [20]. The full data set contains cross-sectional data (N = 416) derived from MRI
studies at Washington University. The OASIS-1 data include MRI imagery in image format as well as
patient socio-demographics and clinical variables in data frame format. In this study, we used the
atlas-registered, gain-field corrected images provided as well as the associated data in the data frame.
Many studies use the Alzheimer’s disease neuroimaging initiative (for examples, see [14,15]), and many
others use OASIS-1 (for examples, see [11,12]). For our study, OASIS-1 is readily accessible, provides
reasonable demographics for proof of concept, and extends well longitudinally for future work.

The MRI imagery data included {x = 176, y = 208, z = 176} images of the {sagittal (x,y), axial (x,z),
coronal (y,z)} planes for each of the N = 416 observations, respectively. The second dimension, y = 208,
was defined as the number of slices. All images were from right-handed men and women (a control)
aged 18 to 96. Both the imagery and non-imagery data sources were used in this study. In this study,
the imagery data were restricted to the center 51 slices (78 through 128), as the outer slices contain
less information about AD presence and severity. The total number of valid training images used
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for classification was 16,661 using and 80% training set; however, images were processed through
an image generation algorithm to increase the learning of the ResNet model. The remaining 4139
images were used as a validation set. Images were padded with 3 voxels, so the total image voxels
used was over 644 million.

Both R Statistical Software version 3.5 (“Feather Spray”) [21] and Anaconda Python version
3.6 [22] were used for this study. R was used for processing the labels and non-imagery analysis,
while Python was used for constructing and running the ResNet-50 model.

2.2. Dependent Variable

For this study, the single response variable (label) was the Washington University Clinical
Dementia Rating (CDR), which was developed to measure dementia severity [7]. The CDR was
measured as follows:{0= non-demented; 0.5 = very mild dementia; 1 = mild dementia; 2 = moderate
dementia}. This instrument is reliable in estimating clinical dementia, which is largely related to AD [2].
Since only two cases in the N = 416 data set involved moderate dementia, the values of CDR were
recoded as follows: {0 = non-demented, 1 = very mild dementia, 2 = mild or moderate dementia}.
This recoding still resulted in imbalanced classes. The distribution of the dependent variable values
was {316, 70, 30} for {no dementia, very mild dementia, mild or moderate dementia}, respectively.

There were also three sets of predictor variables available in the OASIS-1 dataset: Demographic
variables, clinical predictor variables, and imagery predictor variables. Each of these sets of variables
is defined in the following sections.

2.2.1. Socio-Demographic Predictor Variables, Non-Imagery Data

Several independent variables from the OASIS-1 dataset provided patient sociodemographic
characteristics. A listing of these variables with their associated operational definitions follows.

• Gender: {0 = Female, 1 = Male}, 100% complete (416 of 416);
• Age: (18, 96) years of age, 100% complete (416 of 416);
• Education: {1 < high school (HS), 2 = HS Graduate, 3 = Some College, 4 = College Graduate,

5 = Beyond College Graduate}, 56% complete (235 of 416);
• Socioeconomic Status (SES): (1 = lower, 2 = lower middle, 3 = middle, 4 = upper middle, 5 = upper),

52% complete (216 of 416).

While much of the data were complete, education and SES were not. Imputation using the median
was used to facilitate the non-imagery analysis. While a large percentage of observations were missing,
analyses were run omitting the variables, including non-response as a factor level, and including
imputation using the median. The median was selected based on performance.

2.2.2. Clinical Predictor Variables, Non-Imagery Data

Clinical predictor variables were also available. These variables include the mini-mental state
exam (MMSE) score, the atlas scaling factor, the estimated total intracranial volume, and the normalized
whole brain volume. Three of the four variables require imagery (all except the MMSE), so they were
not used in the non-imagery model. The definitions of these variables follow.

• Mini-mental state exam (MMSE): (0,30). The MMSE is a 30-point questionnaire that has been
shown to be valid and reliable in identifying dementia [7,23]. The variable was 56% complete
(235 of 416). Missing values were imputed with the median. The MMSE was included in the
non-imagery model.

• Atlas scaling factor (ASF): (0.88–1.56) (observed). The ASF is a one-parameter scaling factor that
allows for comparison of the estimated total intracranial volume (eTIV) based on differences in
human anatomy [19]. This variable was 100% complete (416 of 416) [10].
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• Estimated total intracranial volume (eTIV): (1132–1992) mm3 [24]. The eTIV variable estimates
intracranial brain volume. This variable was 100% complete (416 of 416).

• Normalized whole brain volume (nWBV): (0.64–0.90) mg (observed). This variable measures the
volume of the whole brain. This variable was 100% complete (416 of 416).

2.2.3. Imagery Variables

The imagery used in this study was the masked version of the gain-field corrected, atlas-registered
image to the Talairach atlas space. These images were preprocessed with spatial normalization of the
3D brain images. The intensity inhomogeneity (IIH) or gain field are intensity variations (i.e., noise)
not related to the patient’s anatomical image, which include patient movement, nearby static fields,
radio-frequency variation, or other non-patient sources [25]. These gain field variations were corrected
to form an averaged 3D image. Next, the identifying 3D facial and non-brain values were masked.
The Talairach space is, then, a 3D coordinate system (called an atlas) used for mapping locations of
brain features [26]. The averaged 3D images are spatially normalized into the Talairach space with
a transform that maps the subject’s brain image to a reference brain and smooths out individual
brain anatomy size and shape differences [26,27]. Figure 1 illustrates the sagittal, axial, and coronal
viewpoints as well as the resolution used in this study.

Figure 1. Axial, sagittal, and coronal slices (respectively).

2.3. Non-Imagery Models

2.3.1. Imputation, Cross Validation, and Pseudo-Random Seeds

For the non-imagery data file, imputation was used to complete missing data fields. Education
level and socio-economic status (SES) had high percentages of missing data (44% and 48%, respectively).
Medians were imputed to investigate whether the variables might still be useful in forecasting. All other
variables were 100% complete, including all imagery.

K-fold cross validation was used to assess the non-imagery model, where k = 10. This technique
subdivides the data into five separate folds or sections. Nine folds are used for training the models,
and one-fold is used for evaluating the performance after training. Each fold serves as a validation set
one time, and performance metrics are calculated based on the results from all 10 training runs.

Pseudo-random seeds were used for the replication of the results. The use of random seeds
ensures that the results were not due simply to the selection of random numbers via pseudo-random
number generation. Further, random seeds allow for the replication of exact results.
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2.3.2. Gradient Boosted Tree Ensembles (Gradient Boosting)

Gradient boosted tree ensembles were used to classify AD using the socio-demographic variables
and MMSE. A gradient boosted tree ensemble, known often as gradient boosted machines (GBM),
is a model that optimizes prediction accuracy based on iterations of weaker decision/classification
tree models. A classification tree model seeks to split the independent variables at various points
in an effort to create a decision tree that provides a classification vote. Often, the Gini impurity or
cross-entropy formulae are used to determine those splits (Equation 1 and Equation 2) [28,29]. In these
equations, k is the number of classes and pi is the proportion of cases belonging to case i.

Gini impurity :
k∑

i=1

pi(1− pi). (1)

Cross− entropy : –
k∑

i=1

pi log(pi) (2)

With these equations, in a greedy fashion the splitting algorithm is trying to achieve homogeneity
within each subset of the tree. To avoid overfitting, the trees are pruned by limiting the number of
internal splits/branches. In this implementation, individual trees grew no more than three branches to
avoid overfitting. Each tree recommends a classification status (e.g., no AD or AD). Figure 2 illustrates
a sample classification tree.

Figure 2. A sample tree classification with a maximum of three branches. MMSE - mini-mental
state exam.

At a high level, a gradient boosted tree ensemble is a collection of tree models that is derived
by sequentially incorporating, in an additive manner, direct residual errors (i.e., boosting). At each
iteration a differentiable loss function is optimized (e.g., area under the curve) [30]. A good discussion
of trees, forests, and boosting is from Chen [31].

The R Statistical Software Package, XGBoost [32], was used to implement gradient boosting.
The XGBoost implementation of gradient boosting is ideal for this use case. First, this approach
has seen considerable success in prediction accuracy across a variety of datasets. Second, XGBoost
takes advantage of unique algorithms that minimizes computation complexity, which allows gradient



Brain Sci. 2019, 9, 212 7 of 16

boosting to scale fairly easily in parallel fashion. A hyperparameter grid search provided parameters
for use in building the trees and a ten-fold cross-validation provided accuracy metrics.

2.4. Imagery Data

2.4.1. Pre-processing: Min–Max Scaling, PCA Investigation, and Pseudo-Random Seeds

While gradient-boosted forests are scale invariant, ResNet-50 (an adaptation of a CNN) is not.
The data for the ResNet were min–max scaled based on the data set minimum and maximum values,
{0, 5089}. The minimum value for any voxel is known to be zero; however, extracting the maximum
value ensured that no values in either the training or validation set would be below zero. The leakage
of information from the validation set was at most one value (assuming 5089 was randomly assigned
to the validation set).

After splitting the data into training and validation sets, principal component analysis (PCA)
was used to extract significant Eigenbrain imagery separately to avoid bias [33,34]. Eigenbrains are
reconstructed images based on Eigenvectors (orthogonal). Analysis of these structures, rather than
original imagery, failed to improve the performance of the ResNet. The NiBabel library in Anaconda
Python 3.6 provided the MRI import utility, while scikit-learn provided the PCA algorithm. Once again,
pseudo-random seeds were used for replication in all analysis.

2.4.2. Extraction and Manipulation of Individual Images

The 416 observations contained 208 slices of 176 voxels × 176 voxels. Fifty-one of these slices
(range 78–128) were used in the analysis. These slices were extracted and saved as .png single channel
(grayscale) files from the original format in a separate directory. Matching classification labels were
replicated for each individual picture (i.e., CDR = 0 for patient 1 was replicated 51 times for each
associated slice.) As part of the modeling process, the images were padded with 3 voxels on all
sides and subjected to random image transformation to improve the ML learning. Not all images
were valid. Instead of 51 × 416 = 21,216 images, there were only 20,800 contained within all MRIs.
Without considering the unique (and infinite) transformations, the total images include more than 640
million voxels.

2.4.3. Flow from the Dataframe, Training and Validation Set, and Training Image Generation

Due to the large size of the dataset, file names and associated labels for each slice were saved in
a data frame. This data frame was randomly divided into two separate data frames, an 80% training
set and a 20% validation set. A flow_from_dataframe function was used to load the image in batches
of 128 (investigated through tuning) by randomly selecting file names in the training data frame.
A training image generator then rescaled the data to be between 0 and 1 (dividing by 255 for grayscale).
That same generator randomly rotated the images up to 20 degrees, zoomed up to 10%, shifted the
height and width up to 10%, sheared up to 10%, and horizontally flipped some images. By editing the
training images in this fashion, the ML model learns to adapt to deviations in the expected format.
The validation data were left intact. No processing of those images was done to avoid the infusion of
bias from manipulation. Those images were unknown.

2.4.4. Deep Learning with Residual Networks (ResNet-50), and Imagery Data

ResNet-50 was used to classify CDR based solely on MRI imagery data. The model relied on
Keras (TensorFlow backend) [35]. ResNet-50 is a residual deep learning network (with 50 layers),
which attempts to address the problem of vanishing gradients that occur during back-propagation of
convolutional neural networks (CNN). The ResNet-50 model was developed by He, Zhang, and Sun,
and an ensemble of these ResNet models of various depths won imagery classification awards [36].
Increasing the depth of the network should increase the accuracy of the network, as long as over-fitting
is considered. However, the problem with increased depth is that the signal required to change
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the weights, which arises from the end of the network by comparing ground-truth and prediction
(observed versus predicted) becomes very small at the earlier layers because of the increased depth
of the network. It essentially means that earlier layers remain almost unlearned. This is called the
“vanishing gradient” problem, as the matrix of second order derivatives (the gradient) in the nonlinear
optimization that attempts to tune weights becomes near zero. The second problem with training
the deeper networks is, performing the optimization on huge parameter space and therefore naively
adding the layers leading to higher training error. Residual networks allow training of such deep
networks by constructing the network through modules called residual models. This is called the
degradation problem. The ResNet-50 architecture is documented in [37]. The loss-metric optimized
was categorical cross-entropy (formula 2).

Convolutional blocks are a major component of the ResNet-50 model. These networks apply
multiple filters (e.g., 3 × 3-pixel size filter) to images to classify. These filters are moved by strides
across the original image. The values in the filters (which are learned) are multiplied against the
values in the images. The results of those filters are pooled (e.g., maximum values extracted after the
application of filters), which is effectively down sampling while retaining the most important features.
Figure 3 is a symbolic picture of CNN.

Figure 3. Example convolutional neural network for AD classification (read from right to left)

3. Results

3.1. Descriptive Statistics

The data from the OASIS-1 study included 416 patient diagnostic files with 100 of those files
confirming dementia. No patients under the age of 60 were diagnosed with dementia, as this is a rare
event. One might assume that in GBM models, then, age would be the most important predictor (it
is not). The table of dementia vs. non-dementia patients and associated statistics and frequencies
adopted from the OASIS (2018) data is shown in Table 1. Due to the apparently dichotomous split at
age 60, imagery and non-imagery models were run with the entirety of the dataset as well as with
a subset of those 60 and above. ResNet-50 is capable of handling imbalanced data without techniques
such as synthetic minority oversampling when trained sufficiently. Oversampling techniques often
helps GBM models.
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Table 1. Descriptive statistics for dementia by age and gender (adopted from Open Access Series of
Imaging Studies—OASIS, 2018).

Non-Demented Demented
Age N n Mean Male Female n Mean Male Female CDR 0.5/1/2

<20 19 19 18.53 10 9 0 0 0 0 0/0/0
[20, 30) 119 119 22.82 51 68 0 0 0 0 0/0/0
[30, 40) 16 16 33.38 11 5 0 0 0 0 0/0/0
[40, 50) 31 31 45.58 10 21 0 0 0 0 0/0/0
[50, 60) 33 33 54.36 11 22 0 0 0 0 0/0/0
[60, 70) 40 25 64.88 7 18 15 66.13 6 9 12/3/0
[70, 80) 83 35 73.37 10 25 48 74.42 20 28 32/15/1
[80, 90) 62 30 84.07 8 22 32 82.88 13 19 22/9/1

[90,
100) 13 8 91.00 1 7 5 92.00 2 3 4/1/0

Total 416 316 n/a 119 197 100 n/a 41 59 70/28/2

CDR—Clinical Dementia Rating.

Most of the patients in the dataset exhibited no dementia (n = 316). Only two demonstrated
moderate dementia. Table 2 provides the frequency distribution for CDR by gender. Due to only two
individuals experiencing moderate dementia, CDR 1 and CDR 2 were combined for the imagery analysis.

Table 2. Clinical dementia rating (CDR) frequency distribution by gender.

CDR = 0,
No Dementia

CDR = 0.5,
Very Mild Dementia

CDR = 1,
Mild Dementia

CDR = 2,
Moderate Dementia

Male 119 31 9 1
Female 197 39 19 1

Total 316 70 28 2

The average patient in the dataset was 52.7 years old with a slightly less than perfect mental state
evaluation (27.5 out of 30), an estimated brain volume of 1480.53 mm3, and 79% of the intracranial
cavity occupied by the brain (nWBV). Table 3 displays statistics for the quantitative variable statistics.

Table 3. Descriptive statistics for the quantitative variables (n = 416).

Variable Mean SD Median Min Max

Age 52.70 25.08 56 18 96
Mini-Mental State Exam 27.50 3.13 29 14 30

eTIV (Intracranial Volume) 1480.53 158.34 1475 1123 1992
nWBV (Brain Volume) 0.79 0.06 0.8 0.64 0.89

ASF (Atlas Scaling Factor) 1.2 0.13 1.19 0.88 1.56

SD—standard deviation.

Qualitative variables model responses follow: 62% women, 28% college graduates, and 30%
middle class. Spearman’s rank correlation between SES and education indicated a negative correlation
(r = –0.715, p < 0.01). For the 121 individuals without a high school education, 119 were in the lower
middle and lower classes. Figure 4 displays barplots for the variables of gender, SES, and education.
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Figure 4. Bar charts of qualitative variables.

3.2. Correlations and Variable Transformations

Correlation between ASF and eTIV is negative and significant (t414 = −88.7, p < 0.001) as is the
correlation between age and nWBV (t414 =−36.4, p < 0.001), an expected finding. Older individuals tend
to lose brain volume. While some machine learning methods require transformations, tree methods are
location/scale invariant, and ResNet (like all neural-net based models) benefits primarily from scaling.
Thus, transformations (other than regularization through min–max scaling for imagery models) were
not pursued. The scatterplot matrix of all variables is shown in Figure 5.

Figure 5. Correlation plots of all quantitative variables eTIV—estimated Total Intracranial Volume;
ASF - Atlas Scaling Factor; nWBV—normalized Whole-Brain Volume.
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3.3. Transformation of MRIs and Eigenbrain Development

Figure 6 shows the Eigenbrain associated with Figure 1. The Eigenbrain images were derived
via PCA. In PCA, images were restructured by building linear combinations of the original imagery
where the first reconstructed image captures the most variability, the second captures the second
most, etc. PCA maximizes the likelihood function in Equation 3 where Vector a and scalar λ form
the Eigenspace (eigenvector and eigenvalue), while matrix R is the correlation matrix [38]. For each
eigenvector indexed i, variance capture of the remaining variance was maximized. There are k total
eigenvectors, where k is the number of columns in the dataset.

Maxa(i) Li = aT
i R ai − λ (aT

i ai), I = {1, 2 . . . k}. (3)

Figure 6. Eigenbrain imagery associated with Figure 1.

3.4. Gradient Boosting with XGBoost and No Imagery

Gradient boosted random forests were used to model dichotomous CDR (presence or absence) as
a function of socio-demographics and MMSE scores (no imagery or imagery-derived variables such
as ASF or eTIV). Hyperparameter grid search was used for tuning parameters. Ten-fold stratified
cross-validation provided accuracy metrics. Stratification addresses the class imbalance problem.
To avoid overfitting, the tree depth was constrained to three, a size investigated during grid search.
The GBM achieved a mean of 91.3% classification accuracy with socio-demographic and MMSE
variables. The gain, relative importance of the variable based on the appearance in the trees, is depicted
in Figure 7, while Figure 8 is the receiver operating characteristic (ROC) curve. From Figure 7,
the MMSE test would appear to be the most valuable classifier with age following. From Figure 8,
the area under the curve is shown to be solidly in the 90th percentile for all of the 10 folds.
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Figure 7. Variable importance. SES - socioeconomic status.

Figure 8. Receiver operating characteristic (ROC) curve. AUC—area under the curve.

3.5. ResNet-50 (Deep Learning) with Keras

ResNet-50 was run to classify MRI imagery. The batch size for analysis was 64. Each epoch
took between 213 and 711 seconds to run on an Acer Predator G-9 with an Intel I7-6700, 64GB of fast
random-access memory, an NVidia GTX 980M graphical processing unit (GPU), running Windows 10.
The maximum run time was due to additional processing activities. A total of 152 epochs were run,
and the total run time for this analysis alone was 10.2 hours. The ResNet-50 was able to run on the
computer’s GPU, although other processing functions were off-loaded to the central processing unit
(CPU). Initial runs on the GPU were at least four times as long.

As depicted in Figure 9, ResNet-50 performed on the training set correctly (and surprisingly)
classified 98.99% of the validation set at 133 epochs. The training set and test set nearly converged
in accuracy. The loss metrics dropped accordingly to near zero on both sets. ResNet-50 proves to be
a good automatic classifier.
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Figure 9. Classification accuracy versus epoch.

4. Discussion

Extreme gradient-boosted tree models provided 91.3% accuracy with only cognitive and
socio-demographics data. The two most important variables in predicting AD were MMSE and
(of course) age. What is interesting is that MMSE had higher feature importance when no patients
below 60 in the dataset had AD.

With imagery data, ResNet-50 correctly classified 98.99% of the validation set and 99.34% of
the training set AD by severity after 152 epochs. The multi-class classification accuracy of 98.99%
achieved using image recognition and ResNet-50 are superior to others found in the literature ([11]
(95%), [12] (96.5%), [16] (87%), and [18] (97%)) with the exception of another very small study in [17]
(100% 10-fold CV), and such results support the notion that ML methods might be used as the first
screening for diseases such as AD. In all cases, these studies consisted of smaller samples. Such results
support the notion that ML methods might be used as the first screening for diseases such as AD.

Another interesting finding was that while image methods may support radiologists’ processes,
non-imagery methods were reasonable at classifying the present of AD during screening. The area
under the curve in eight of the 10 folds was 96% or better. MMSE and age were powerful screening
tools for AD. Coupling these tools with ML imagery analysis to support radiologists and physicians
may help to diagnose earlier. An MRI generated for any reason might be automatically screened as
part of a best-practice policy.

The ResNet-50 multi-class classification itself is an improvement over previous studies such
as [12,13] that used cross-validation (which exposes the validation set to the same pre-processing as
the training set thus inducing bias) and binary classification. Further, it demonstrates that ResNet-50
can provide excellent predictions when trained and applied to Alzheimer’s MRI imagery. The study
team saved the trained weights for use in additional medical image classification and is providing the
code for replication.

There were several limitations of this study. First, only 51 slices of each patient’s MRI were used
in the imagery analysis. Doing so might have eliminated slices that were helpful in diagnosing AD.
Second, the actual number of individuals in the study, 416, was small (although the number of images
was certainly sufficient). This limits the generalizability of the findings for both the GBM and ResNet
models, as they would need re-training on an additional dataset. This retraining is not problematic,
but slightly different classification accuracies would be likely.

Future work will investigate the classification capability of the pre-trained ResNet-50 on some
additional datasets including ADNI and will extend to time series (longitudinal) MRIs. Further,
some modifications of ResNet, implementation of other network schemes, and early identification
based on longitudinal analysis will be explored.
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What is noteworthy here is that the analysis with and without imagery resulted in reasonable
classification accuracy. The implication here was that AD might be detected by the MMSE and the
associated socio-demographics of the patient early on without imagery evaluation, potentially reducing
costs. Further, feeding information already collected into ML algorithms might help identify patients
at risk. In addition, application of ML image recognition to MRIs will successfully code and classify
AD for confirmation by providers with high accuracy, even if a patient’s intended visit was not for AD.
ML algorithms may flag these images automatically for review.
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