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Abstract. In this article, we study the eigenvalues of the Dirichlet fractional

Laplacian operator (−∆)α/2, 0 < α < 1, restricted to a bounded planar

domain Ω ⊂ R2. We establish new sharper lower bounds in the sense of the
Weyl law for the of sums of eigenvalues, which advance the recent results

obtained in several articles even in a more general setting.

1. Introduction

Fractional Laplacian operators are usually considered as the prototype of non-
local operators [9]. From an application standpoint, non-local operators recently
attracted a great deal of attention as they appear in many studies such as graphene
models [14], dislocation of crystals [11], obstacle problems [27], non-local minimal
surfaces [8], and nonlinear & nonlocal evolution equations with anomalous diffusion
in continuum mechanics [6, 16].

In this article, we establish estimates for the eigenvalues {λ(α)
j }∞j=1 of the frac-

tional Laplacian operators (−∆)α/2, 0 < α < 1, restricted to a planar domain. To
this end, we consider the eigenvalue problem defined by

(−∆)α/2uj = λ
(α)
j uj in Ω,

uj = 0 in R2\Ω,
(1.1)

where Ω is a bounded connected domain with smooth boundary in R2. Since Ω is
bounded, the spectrum of the fractional Laplacian is discrete and the eigenvalues
{λ(α)

j }∞j=1 (including multiplicities) can be sorted in an increasing order.
There are several equivalent ways to define the fractional Laplacian operator.

For suitable test functions, including all functions u ∈ C∞0 (R2), it can be defined
as

(−∆)α/2u(x) = Aα lim
ε→0+

∫
{|y|>ε}

u(x+ y)− u(x)
|y|2+α

dy, (1.2)

where Aα is a well-known positive normalizing constant. In the course of proving
analogous estimates involving eigenvalues of the fractional Laplacian, some of the
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known methods fail mainly due to the fractional power and non-locality of such
operators. However, we can get around to this impediment by considering the
fractional Laplacian operator on Ω ⊂ R2 as a pseudo-differential operator with
symbol |µ|α as

̂(−∆)α/2|Ωu(µ) = |µ|αû(µ), 0 < α ≤ 2, u ∈ Hα/2
0 (Ω). (1.3)

Here, Hα/2
0 (Ω) denotes the Sobolev space of order α/2 and the Fourier transform

is defined as
û(µ) = (2π)−1

∫
R2
e−iµ·xu(x) dx.

When Ω = R2, one can look at [12, Proposition 3.3] for the proof of the equivalence
between the definitions in (1.2) and (1.3).

The fractional Laplacian can also be considered as the infinitesimal generator of
the semigroup of the symmetric α-stable process, and therefore the two share the
same set of eigenvalues. That allows one to use probabilistic machinery to prove
estimates involving the fractional Laplacian operator. Let Xt denote the symmetric
α−stable process with the characteristic function

e−t|µ|
α

= E
(
eiµ·Xt

)
=
∫

R2
eiµ·yp

(α)
t (y)dy, t > 0, µ ∈ R2, (1.4)

where p
(α)
t (r, s) = p

(α)
t (r − s) is called the transition density of the symmetric

α−stable process (or the heat kernel of the fractional Laplacian). Even though
we do not know any particular process corresponding to α ∈ (0, 1), it is worth
mentioning that α = 1 is called the Cauchy process. Another α−stable process of
importance is the Holtsmark distribution (α = 3/2) that is used to model gravita-
tional fields of stars (See e.g., [33]). Moreover, α−stable processes share many of
the basic properties of the Brownian motion. One of the most important features of
the symmetric α−stable processes (0 < α < 2) is that they do not have continuous
paths, which is related to non-locality of the fractional Laplacian operator [4, 7].

Although the case α = 2 (i.e., Dirichlet Laplacian operator) is excluded in this
paper, it is worthwhile to pause here to review some of the pertinent results in-
volving the eigenvalues of the Dirichlet Laplacian operator. There is an exten-
sive literature devoted to the inequalities involving the eigenvalues of the Dirichlet
Laplacian. One may consult the articles [1, 2, 3, 13, 15, 18, 19, 21, 22, 29] and
references therein for a through literature review. Note that these results are re-
markably similar to what’s already known for the fractional Laplacian, even though
methods differ greatly mostly due to the non-locality of the fractional Laplacian.
The legendary Weyl asymptotics result proved in [32] is the first such result that
we report. Around 1912, Weyl [32] considered the eigenvalue problem

−∆uj = λjuj in Ω,

uj = 0 in ,R2\Ω,
(1.5)

and proved that the eigenvalues λk of the Dirichlet Laplacian over the bounded
domain Ω ⊂ R2 satisfy the following asymptotic result

λk ∼
4πk
|Ω|

as k →∞, (1.6)

where |Ω| designates the area of Ω. Almost 50 years later, Pólya [25] proved that
if Ω is a plane covering domain (i.e, their congruent non-overlapping translations
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cover R2 without gaps), then the eigenvalues λk of the Dirichlet Laplacian satisfy

λk ≥
4πk
|Ω|

(1.7)

for any integer k ≥ 1. Pólya also conjectured that his result in (1.7) could be
generalized to an arbitrary bounded domain in Rd for d ≥ 2. This question still
remains open. The closest result to Pólya’s inequality for an arbitrary bounded
domain in Rd is due to Li and Yau [23]. It gives a lower bound for the sum of the
eigenvalues of the Dirichlet Laplacian operator, which is sharp in the sense of Weyl
asymptotics. In [30], the authors generalized this result by proving the following
counterpart of the Li-Yau inequality for the fractional Laplacian operator (−∆)α/2,
0 < α ≤ 2:

k∑
j=1

λ
(α)
j ≥ 2

α+ 2
(4π)α/2|Ω|−α2 k1+α

2 . (1.8)

To look at this inequality from a different perspective, we can take the Legendre
transform of the following result by Laptev [20] and obtain (1.8),∑

j

(
z − λ(α)

j

)
+
≤ α|Ω|

4π(α+ 2)
z1+ 2

α . (1.9)

Setting α = 2 in (1.9) gives an earlier result by Berezin [5]. As before, we recover
the original Li-Yau inequality after an application of the Legendre transform to
Berezin’s result. Thus, in what follows, we call (1.8) as the Berezin-Li-Yau inequal-
ity.

For 0 < α ≤ 2, the following refinement of the Berezin-Li-Yau type result was
also obtained in [30],

k∑
j=1

λ
(α)
j ≥ 2

α+ 2
(4π)α/2|Ω|−α2 k1+α

2 +
α

48(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
kα/2 (1.10)

where I(Ω), the moment of inertia, is defined by

I(Ω) = min
y∈R2

∫
Ω

|x− y|2 dx.

By a translation of the origin and a rotation of axes if necessary, in the sequel, we
assume that the origin is the center of mass of Ω and that

I(Ω) =
∫

Ω

|x|2 dx. (1.11)

Remark 1.1. (1) Equation (1.10) generalizes an earlier result obtained by Melas
[24].

(2) Setting α = 2 in (1.10) simplifies the right hand side, which allows one to
take the Legendre transform and obtain a similar Berezin type bound with a shift.

The most recent result improving (1.10) appeared in [28] where they obtained
that for 0 < α ≤ 2,

k∑
j=1

λ
(α)
j ≥ 2

α+ 2
(4π)α/2|Ω|−α2 k1+α

2 +
α

48(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
kα/2

+
α3

12288(α+ 2)2

|Ω|4−α2
(4π)2−α2 I(Ω)2

k
α−2

2

(1.12)
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In [31] the authors sharpened (1.12) for 1 ≤ α ≤ 2 by showing that the eigen-
values {λ(α)

j }∞j=1 of the fractional Laplacian operator in (1.1) defined on Ω ⊂ R2

satisfy
k∑
j=1

λ
(α)
j ≥ 2

α+ 2
(4π)α/2|Ω|−α2 k1+α

2 +
α

16(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
kα/2

− α

640(α+ 2)
|Ω|4−α2

(4π)2−α2 I(Ω)2
k
α−2

2 .

(1.13)

In view of [28, 30, 31], our aim in this article is to advance the results with a
focus on obtaining a sharper lower bound for the Berezin-Li-Yau inequality in the
case of a fractional Laplacian with α ∈ (0, 1) defined on a planar domain. Precisely,
we shall establish the following main result.

Theorem 1.2. For 0 < α < 1, k ≥ 1 the eigenvalues {λ(α)
j }∞j=1 of the fractional

Laplacian operator (1.1) defined on Ω ⊂ R2 satisfy
k∑
j=1

λ
(α)
j ≥ 2

α+ 2
(4π)α/2|Ω|−α2 k1+α

2 +
α

48(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
kα/2

+
α3

(α+ 1)(α+ 2)322α+1

|Ω|1+ 3α
2

(4π)
α+1

2 I(Ω)α+ 1
2

k
1−α

2 .

(1.14)

It is worth noting that 1− α > 0 > α− 2 for 0 < α < 1, thereby improving the
earlier result (1.12).

Recently, Chen and Song [10] obtained that eigenvalues of the fractional Lapla-
cian satisfy

λ
(αp)
j ≤

(
λ

(α)
j

)p
(1.15)

for each j and any constant p ∈ (0, 1]. Since the eigenvalues are in the increasing
order, λ(αp)

j ≤ λ
(αp)
k for each 1 ≤ j ≤ k. Thus, Theorem 1.2 along with an

application of (1.15) leads to the following more general results.

Corollary 1.3. For any 0 < α, p < 1, and each k ≥ 1, the eigenvalues {λ(α)
j }∞j=1

of the fractional Laplacian operator (1.1) defined on Ω ⊂ R2 satisfy
k∑
j=1

(
λ

(α)
j

)p ≥ 2
pα+ 2

(4π)
pα
2 |Ω|−

pα
2 k1+ pα

2 +
pα

48(pα+ 2)
|Ω|2−

pα
2

(4π)1− pα2 I(Ω)
k
pα
2

+
p3α3

(pα+ 1)(pα+ 2)322pα+1

|Ω|1+ 3pα
2

(4π)
pα+1

2 I(Ω)pα+ 1
2

k
1−pα

2 .

(1.16)

(
λ

(α)
k

)p ≥ 2
pα+ 2

(4π)
pα
2 |Ω|−

pα
2 k

pα
2 +

pα

48(pα+ 2)
|Ω|2−

pα
2

(4π)1− pα2 I(Ω)
k
pα
2 −1

+
p3α3

(pα+ 1)(pα+ 2)322pα+1

|Ω|1+ 3pα
2

(4π)
pα+1

2 I(Ω)pα+ 1
2

k
−1−pα

2 .

(1.17)

In view of the recent work [17, 26], it is worth noting that one can easily extend
this for elliptic operators Ef defined by a kernel f on R2

Efu(x) = lim
ε→0+

∫
{|y|>ε}

(u(x+ y)− u(x))f(y) dy, (1.18)
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where f satisfies

f(y) ≥ σ Aα
|y|α+2

, (1.19)

with the same normalizing constant Aα in (1.2) and σ > 0. Notice that f(y) =
Aα|y|−α−2 corresponds to the fractional Laplacian definition. This is particularly
important for mixed stable processes. Now, let us consider the eigenvalue problem
defined by

−Efuj = λjuj in Ω,

uj = 0 in R2\Ω.
(1.20)

It is shown in [26] that the spectrum of Ef is also discrete and the eigenvalues
{λj}∞j=1 (including multiplicities) can be sorted in an increasing order. Also, the
set of Fourier transforms {ûj}∞j=1 of {uj}∞j=1 forms an orthonormal set in L2(R2)
since the set of eigenfunctions {uj}∞j=1 is an orthonormal set in L2(Ω). Note that we
use the same notation for eigenvalues and eigenfunctions to illuminate the striking
similarities though they might be different for each Ef .

Using an analogous approach, we can establish remarkable estimates for certain
eigenvalue problems involving elliptic operators as follows:

Corollary 1.4. For 0 < α < 1, k ≥ 1 the eigenvalues {λj}∞j=1 of problem (1.20)
defined on Ω ⊂ R2 satisfy

k∑
j=1

λj ≥
2σ
α+ 2

(4π)α/2|Ω|−α2 k1+α
2 +

σα

48(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
kα/2

+
σα3

(α+ 1)(α+ 2)322α+1

|Ω|1+ 3α
2

(4π)
α+1

2 I(Ω)α+ 1
2

k
1−α

2 .

(1.21)

and hence

λk ≥
2σ
α+ 2

(4π)α/2|Ω|−α2 k α2 +
σα

48(α+ 2)
|Ω|2−α2

(4π)1−α2 I(Ω)
k
α
2−1

+
σα3

(α+ 1)(α+ 2)322α+1

|Ω|1+ 3α
2

(4π)
α+1

2 I(Ω)α+ 1
2

k
−1−α

2 .

(1.22)

Note that because of the additional third term on the right of (1.21) and (1.22),
these estimates also improve the main result of [17], which is simply the multiple
of the lower bound stated in (1.10) [30] by σ.

The outline of this article is as follows: In Section 2, we present relevant facts
on the eigenvalues and eigenfunctions of the fractional Laplacian operator that are
essential to prove our main results. In Section 3 we first report on some intermediate
steps and provide the proof of our main results. Finally, we concisely discuss why
our method works for certain elliptic operators in a more general setting.

2. Preliminaries

In this section, we review some of the relevant definitions and facts that play an
important role in proving the estimates in (1.14). In spite of crucial differences, the
machinery given can also be used to obtain analogous bounds for other operators,
see for example [24, 30].
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Throughout this article, we define the ball of radius r centered at x in R2 as
Br(x) := {y ∈ R2 : |x − y| ≤ r} and the volume of the unit disk B1(x) ⊂ R2 as
ω2 = π.

We begin this section with a review of some well-known properties of the eigen-
functions of the fractional Laplacian operator. By using Plancherel’s theorem, one
can show that the set of eigenfunctions {uj}∞j=1 is an orthonormal set in L2(Ω) be-
cause the set of Fourier transforms {ûj}∞j=1 of {uj}∞j=1 also forms an orthonormal
set in L2(R2). To ease the notation in what follows we set

Uk(µ) :=
k∑
j=1

|ûj(µ)|2 =
1

4π2

k∑
j=1

∣∣∣ ∫
Ω

e−iz·µuj(z) dz
∣∣∣2 ≥ 0. (2.1)

Notice that the integral is taken over Ω instead of R2 because the support of uj is
Ω. Interchanging the sum and integral and using ‖ûj‖2 = 1, we obtain∫

R2
Uk(µ) dµ = k. (2.2)

The following upper bound for Uk is obtained by utilizing Bessel’s inequality:

Uk(µ) ≤ 1
(2π)2

∫
Ω

|e−iz·µ|2 dz =
|Ω|
4π2

. (2.3)

Furthermore, we observe that Uk defined by (2.1) also satisfies∫
R2
|µ|αUk(µ) dµ =

k∑
j=1

λ
(α)
j (2.4)

because
λ

(α)
j =

〈
uj , λ

(α)
j uj

〉
=
〈
uj , (−∆)α/2|Ωuj

〉
=
〈
ûj ,

̂(−∆)α/2|Ωuj
〉

=
〈
ûj , |µ|αûj

〉
=
∫

R2
|µ|α|ûj(µ)|2 dµ.

(2.5)

Next, we find an estimate for |∇Uk|. Notice that
k∑
j=1

|∇ûj(µ)|2 ≤ 1
4π2

∫
Ω

∣∣ize−iz·µ∣∣2 dz =
I(Ω)
4π2

. (2.6)

For every µ, Hölder’s inequality together with (2.3) and (2.6) yields

|∇Uk(µ)| ≤ 2
( k∑
j=1

|ûj(µ)|2
)1/2( k∑

j=1

|∇ûj(µ)|2
)1/2

≤ Λ :=
1

2π2
|Ω|1/2I(Ω)1/2.

(2.7)

Now assume that BR(0) is the symmetric rearrangement of Ω so that |Ω| = πR2.
Notice that

I(Ω) ≥
∫
BR(0)

|x|2 dx =
1
2
πR4 =

1
2π
|Ω|2, (2.8)
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roughly leading to

Λ ≥ |Ω|3/2

2
√

2π5/2
. (2.9)

Let U∗k (µ) denote the decreasing radial rearrangement of Uk(µ). Then, there exists
a real valued absolutely continuous function %k : [0,∞)→ [0, |Ω|/(4π2)] such that

U∗k (µ) = %k(|µ|). (2.10)

Also, we define the distribution function Dk by

Dk(t) := |{µ : Uk(µ) > t}| = |{µ : U∗k (µ) > t}|.
Then, Dk(%k(t)) = πt2. Indeed, since U∗k (µ) is decreasing, we obtain

Dk(%k(t)) = |{µ : U∗k (µ) > %k(t)}| = |{µ : |µ| < t}| = |Bt(0)| = πt2.

Utilizing Federer’s coarea formula in view of (2.3), we have

Dk(s) =
∫ ∞
s

∫
{U−1
k (t)}

1
|∇Uk|

dP dt

=
∫ |Ω|/(4π2)

s

∫
{Uk=t}

1
|∇Uk|

dP dt,

where P is the 1-dimensional Hausdorff measure. The isoperimetric inequality,

P (∂Ω) ≥ 2π1/2|Ω̄|1/2, Ω ⊂ R2,

together with %′k(t) ≤ 0, t ≥ 0, yields the following inequalities

2πt = D′k(%k(t))%′k(t)

= −%′k(t)
∫
{Uk=%k(t)}

1
|∇Uk|

dP

≥ − 1
Λ
%′k(t)P ({Uk = %k(t)})

≥ − 1
Λ
%′k(t)2π1/2Dk(%k(t))1/2

= −2πt
Λ
%′k(t).

In conclusion, all these lead to the estimate

0 ≤ −%′k(t) ≤ Λ. (2.11)

The crux of the matter in this work is obtaining an elementary but new sharper
inequality rather than using a Taylor series expansion in its previous counterparts.
We give a short proof so that the exposition is clearly self-contained.

Lemma 2.1. For t ≥ 0, s > 0, and 0 < α < 1 we have the following inequality:

tα+2 ≥ α+ 2
2

t2sα − α

2
sα+2 +

α

2
sα(t− s)2 + αts1−α(tα − sα)2 (2.12)

Proof of Lemma 2.1. First, let us see that

h(z, α) := 2zα+2 − (α+ 2)z2 + α− α(z − 1)2 − 2αz(zα − 1)2 ≥ 0. (2.13)

h can be rewritten as

h(z, α) = 2z1+α
(
2α+ z − (1 + α)z1−α − αzα

)
.
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It is sufficient to show that

g(z) := 2α+ z − (1 + α)z1−α − αzα ≥ 0.

Observe that g(1) = 0,

g′(z) = 1− (1− α2)z−α − α2zα−1, g′(1) = 0,

g′′(z) = α(1− α2)z−α−1 + (1− α)α2zα−2 ≥ 0

for z ≥ 0 and 0 < α < 1. Thus, g is convex and hence using the convexity property

g(z) ≥ g(1) + g′(1)(z − 1),

we arrive at the conclusion that g(z) ≥ 0. Finally, we set z = t/s in (2.13) to
complete the proof. �

Figure 1. Graph of h(z, α) for 0 ≤ z ≤ 1 and 0 < α < 1.

Remark 2.2. Note that if 1 < α < 2 then g becomes concave and the inequality
in (2.12) is reversed.

3. Proof of the main result

Now, we are ready to prove Theorem 1.2 by using Lemma 2.1.

Proof of Theorem 1.2. Assume that (2.2)-(2.7) hold. Consider the decreasing, ab-
solutely continuous function %k : [0,∞)→ [0,∞) defined by (2.10). We know that
0 ≤ −%′k(t) ≤ Λ for t ≥ 0 where Λ > 0 is given by (2.9). Since %k(0) > 0 due to
(2.1) let us first define

Θk(t) :=
1

%k(0)
%k

(%k(0)
Λ

t
)
. (3.1)

Note that Θk is positive, Θk(0) = 1 and 0 ≤ −Θ′k(t) ≤ 1. To simplify the notation,
we also set θk(t) := −Θ′k(t) for t ≥ 0. Hence, 0 ≤ θk(t) ≤ 1 for t ≥ 0 and∫ ∞

0

θk(t) dt = Θk(0) = 1.

Now, set

ξk =
∫ ∞

0

tΘk(t) dt and δk =
∫ ∞

0

tα+1Θk(t) dt. (3.2)



EJDE-2018/165 EIGENVALUES OF THE DIRICHLET FRACTIONAL LAPLACIAN 9

Using (2.2) we obtain

k =
∫

R2
Uk(µ) dµ =

∫
R2
U∗k (µ) dµ = 2π

∫ ∞
0

t%k(t) dt. (3.3)

Moreover, since the map µ 7→ |µ|α is radial and increasing, by (2.4), we obtain
k∑
j=1

λ
(α)
j =

∫
R2
|µ|αUk(µ) dµ

≥
∫

R2
|µ|αU∗k (µ) dµ

= 2π
∫ ∞

0

tα+1%k(t) dt.

(3.4)

Substitution of (3.1) into (3.2) yields

ξk =
Λ2

%k(0)3

∫ ∞
0

t%k(t) dt =
Λ2k

2π%k(0)3
,

δk =
Λα+2

%k(0)α+3

∫ ∞
0

tα+1%k(t) dt ≤
Λα+2

∑k
j=1 λ

(α)
j

2π%k(0)α+3
.

(3.5)

Observe that Fubini’s theorem with

Θk(s) =
∫ ∞
s

θk(t) dt

leads to
1

x+ 2

∫ ∞
0

tx+2θk(t) dt =
∫ ∞

0

(∫ t

0

sx+1 ds
)
θk(t) dt

=
∫ ∞

0

sx+1
(∫ ∞

s

θk(t) dt
)
ds

=
∫ ∞

0

sx+1Θk(s) ds,

which together with x = 0 and x = α respectively yield∫ ∞
0

t2θk(t) dt = 2ξk and
∫ ∞

0

tα+2θk(t) dt = (α+ 2)δk. (3.6)

Notice that (
t2 − 1

)(
θk(t)− χ[0,1](t)

)
≥ 0, t ∈ [0,∞). (3.7)

Integrating (3.7) from 0 to ∞ gives∫ ∞
0

t2θk(t) dt ≥ 1
3

= ψ(0),

where ψ : [0,∞)→ (0,∞) is defined by

ψ(x) =
∫ x+1

x

t2 dt.

Since ψ is continuous and non-decreasing and ψ(x) → ∞ as x → ∞, the Interme-
diate Value Theorem provides us with the existence of ε ≥ 0 such that

ψ(ε) =
∫ ε+1

ε

t2 dt =
∫ ∞

0

t2θk(t) dt.
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which, by (3.6), implies that ∫ ε+1

ε

t2 dt = 2ξk. (3.8)

Now consider the polynomial

V (t) = tα+2 − ζ1t2 + ζ2 = t2(tα − ζ1) + ζ2

where

ζ1 =
(ε+ 1)α+2 − εα+2

2ε+ 1
> 0, ζ2 =

(ε+ 1)α+2 − εα+2

2ε+ 1
ε2 − εα+2 ≥ 0

are chosen so that V (ε) = 0 and V (ε+ 1) = 0 and V becomes negative on (ε, ε+ 1)
and positive on [0,∞)\[ε, ε+1]. Considering the intervals (ε, ε+1) and [0,∞)\[ε, ε+
1] separately, it is not difficult to infer that

V (t)
(
χ[ε,ε+1](t)− θk(t)

)
≤ 0 on [0,∞). (3.9)

Integration of (3.9) on [0,∞) leads to∫ ε+1

ε

tα+2 dt ≤
∫ ∞

0

tα+2θk(t) dt− ζ1
(∫ ∞

0

t2θk(t) dt−
∫ ε+1

ε

t2 dt
)
,

simplifying to ∫ ε+1

ε

tα+2 dt ≤
∫ ∞

0

tα+2θk(t) dt. (3.10)

Using (3.6), we derive that ∫ ε+1

ε

tα+2 dt ≤ (α+ 2)δk. (3.11)

Also, Jensen’s inequality leads to

2ξk =
∫ ε+1

ε

t2 dt ≥
(∫ ε+1

ε

t dt
)2

≥
(∫ 1

0

t dt
)2

=
1
4
. (3.12)

Notice that (2.12) gives the key inequality in the proof of this lemma. Indeed,
integrating (2.12) in t from ε to ε+ 1 we obtain∫ ε+1

ε

tα+2 dt ≥ α+ 2
2

sα
∫ ε+1

ε

t2 dt− α

2
sα+2 +

γα

2
sα
∫ ε+1

ε

(t− s)2 dt

+ γαs1−α
∫ ε+1

ε

t(tα − sα)2 dt,

(3.13)

which holds for 0 < γ ≤ 1. Observe that∫ ε+1

ε

(t− s)2 dt ≥ min
ε≥0

∫ ε+1

ε

(t− s)2 dt =
∫ s+ 1

2

s− 1
2

(t− s)2 dt =
1
12
. (3.14)

Moreover, in view of s ≥ 1/2, we also observe that∫ ε+1

ε

t (tα − sα)2
dt ≥ s2α min

ε≥0

∫ ε+1

ε

t dt+ min
ε≥0

∫ ε+1

ε

tα+1 (tα − 2sα) dt

≥ s2α

∫ 1

0

t dt+
∫ 1

0

(
t2α+1 − 2tα+1sα

)
dt,



EJDE-2018/165 EIGENVALUES OF THE DIRICHLET FRACTIONAL LAPLACIAN 11

yielding ∫ ε+1

ε

t(tα − sα)2 dt ≥ α2

2(α+ 1)(α+ 2)2
. (3.15)

Since 2ξk ≥ 1/4 by (3.12), setting s = (2ξk)1/2 ≥ 1/2 and using (3.8), (3.11),
(3.14) and (3.15), we deduce that (3.13) simplifies to

δk ≥
1

α+ 2
(2ξk)1+α

2 +
γα

24(α+ 2)
(2ξk)α/2 +

γα3

2(α+ 1)(α+ 2)3
(2ξk)

1−α
2 (3.16)

for any 0 < γ ≤ 1. Equations in (3.5) turn (3.16) into

k∑
j=1

λ
(α)
j ≥ 2

α+ 2
π−

α
2 %k(0)−

α
2 k1+α

2 +
γα

12(α+ 2)
Λ−2π1−α2 %k(0)3−α2 kα/2

+
γα3

(α+ 1)(α+ 2)3
Λ−1−2απ

α+1
2 %k(0)

5α+3
2 k

1−α
2 .

(3.17)

Inserting Λ = 1
2π2 |Ω|1/2I(Ω)1/2 leads to

k∑
j=1

λ
(α)
j ≥ 2

α+ 2
π−

α
2 %k(0)−

α
2 k1+α

2 +
γα

3(α+ 2)
π5−α2 %k(0)3−α2

|Ω|I(Ω)
kα/2

+
γα322α+1

(α+ 1)(α+ 2)3

π
9α+5

2 %k(0)
5α+3

2

|Ω| 2α+1
2 I(Ω)

2α+1
2

k
1−α

2

(3.18)

for any auxiliary parameter γ ∈ (0, 1]. Next we shall minimize the right-hand side
of (3.18) over %k(0). To do this, let us first set x = %k(0) > 0. By (2.3) we know
that 0 < x ≤ |Ω|/(4π2), then we define

ϕ1(x) =
π−

α
2

α+ 2
k1+α

2 x−
α
2 +

γα

3(α+ 2)
π5−α2 kα/2

|Ω|I(Ω)
x3−α2 ,

ϕ2(x) =
π−

α
2

α+ 2
k1+α

2 x−
α
2 +

γα322α+1

(α+ 1)(α+ 2)3

π
9α+5

2 k
1−α

2

|Ω| 2α+1
2 I(Ω)

2α+1
2

x
5α+3

2 .

Next, we shall prove that ϕ(x) = ϕ1(x) +ϕ2(x) is decreasing on (0, |Ω|/(4π2)] even
if γ = 1. To this end, it is enough to show both ϕ1, ϕ2 : (0, |Ω|/(4π2)]→ (0,∞) are
decreasing. Differentiating ϕ1 and ϕ2, we observe that ϕ1(x) is decreasing when

0 < x ≤
( 3k|Ω|I(Ω)
γ(6− α)π5

)1/3

,

while ϕ2(x) is decreasing when

0 < x ≤
( (α+ 1)(α+ 2)2

(
k|Ω|I(Ω)

) 2α+1
2

γα2(5α+ 3)π
10α+5

2 22α+1

) 2
6α+3

.

Therefore, we obtain that ϕ is decreasing on (0, |Ω|/(4π2)] when we have

|Ω|
4π2
≤ min

{( 3k|Ω|I(Ω)
γ(6− α)π5

)1/3

,
( (α+ 1)(α+ 2)2

(
k|Ω|I(Ω)

) 2α+1
2

γα2(5α+ 3)π
10α+5

2 22α+1

) 2
6α+3

}
(3.19)
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for any k ≥ 1. In other words, in view of 2πI(Ω) ≥ |Ω|2 we may take %k(0) =
|Ω|/(4π2) for

γ ≤ min
0≤α≤1

{ 96
6− α

,
(α+ 1)(α+ 2)22

6α+3
2

α2(5α+ 3)

}
= 16.

Note that this minimum is due to the first term as the the second term has the
minimum value 46.8907 at α = 0.7584. Since γ ∈ (0, 1], ϕ is decreasing on
(0, |Ω|/(4π2)] and so we conclude that ϕ(x) ≥ ϕ(|Ω|/(4π2)) even if γ = 1. Set-
ting %k(0) = |Ω|/(4π2) in (3.18) with γ = 1 leads to (1.14). This completes the
proof. �

Let us briefly explain how Corollary 1.4 falls out as a by-product of the above
discussion.

Proof of Corollary 1.4. Defining Uk as in (2.1), we obtain (2.2) immediately. Let
us re-write (2.4) as

k∑
j=1

λj =
k∑
j=1

〈uj , λjuj〉

=
k∑
j=1

〈uj ,−Efuj〉

=
k∑
j=1

∫
R2
Sα(µ)|ûj(µ)|2 dµ

≥ σ
∫

R2
|µ|αUk(µ) dµ.

(3.20)

where we used from [12, Proposition 3.3]) that

Sα(µ) =
∫

R2
(1− cos(y · µ))f(y) dy ≥ σAα

∫
R2

1− cos(y · µ)
|y|α+2

dy = σ|µ|α.

Having (3.20) in hand, we notice that (3.4) changes as follows
k∑
j=1

λj ≥ σ
∫

R2
|µ|αUk(µ)dµ ≥ σ

∫
R2
|µ|αU∗k (µ)dµ = 2πσ

∫ ∞
0

tα+1%k(t) dt. (3.21)

and proceeding exactly as before using (3.21) in place of (3.4), and taking into
account that λj ≤ λk for each j ≤ k, we readily obtain the estimates in Corollary
1.4. �

Acknowledgments. T. Yolcu would like to thank Bradley University and Cater-
pillar grant 25110555140 for the summer support while some part of this work
is performed. The authors are grateful to the anonymous referees for helping us
improve the content and the exposition of this article.

References

[1] M. Ashbaugh, R. Benguria; On Rayleigh’s conjecture for the clamped plate and its general-
ization to three dimensions, Duke Math. J,, 78 (1995), 1–17.

[2] M. Ashbaugh, R. Benguria, R. Laugesen; Inequalities for the first eigenvalues of the clamped

plate and buckling problems, General Inequalities 7, International Series of Numerical Math-
ematics, Vol. 123, C. Bandle, W. N. Everitt, L. Losonczi, and W. Walter, eds., (Birkhäuser
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[18] H. Kovař́ık, S. Vugalter, T. Weidl; Two-dimensional Berezin-Li-Yau inequalities with a cor-

rection term, Comm. Math. Phys., 287(3) (2009), 959–981.
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