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A global factorization theorem for the ZS-AKNS
system *

Derchyi Wu

Abstract

We prove a global Birkhoff factorization theorem for general loops with
finite poles in the ZS-AKNS hierarchy (Zakharov-Shabat-Ablowitz-Kaup-
Newell-Segur). We use the inverse scattering method.

1 Introduction

Factorization theory and Lie algebra decomposition play a key role in algebraic
geometry and representation theory associated with integrable systems; see for
example [12, 4, 16, 10, 14, 15, 5, 6, 8, 13, 3]. However, many algebraic or
geometric decomposition theorems are valid only locally and in general the
scattering data properties of their derived solution space can not, or can only,
be partially characterized.

Nevertheless, in the case of the ZS-AKNS system (Zakharov-Shabat- Ablowitz-
Kaup-Newell-Segur), as defined by su(2)- or su(n)-reality condition (i.e., the so-
lution space contained in su(2) or su(n)), Faddeev and Takhtajan [7], Uhlenbeck
and Terng [18, 19] derived a global decomposition theorem and characterize full
scattering data for solutions.

Using the inverse scattering theory [1, 2, 17], a completely different approach,
we obtain a global Birkhoff factorization theorem and find the global group loop
action in the su(2) (reprove the results of [18, 19]) and su(1,1) cases [20]. More
precisely, in the su(2) case, the scattering theory of [1, 2, 17] immediately implies
a global Birkhoff factorization theorem for each renormalized eigenfuction of the
ZS-AKNS system (see (2.1) below). We then show a global factorization theorem
for general loop in D_ and characterize D_. The D_ is actually characterized
by that each loop in D_ is a multiple of a certain renormalized eigenfuction.
Where the multiple factor is a diagonal matrix in D_.

Under this framework, we generalize the methods in [20] and obtain the
following generalized theorem.
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Theorem 1.1 For g(z) in a dense and open subset of D_, there exists an
unique global factorization

g(z)te*! = B(z,2)M(x,2)"",

forVx € R, ¥z € C\(RU P), with E(z,-) € G4+, M(z,-) € D_, and P poles of
g. Where G ={g:C — SL(2,C), holomorphic }, and D_ consist of those g
satisfying

1. g: C\R — SL(2,C), g is meromorphic
2. g has smooth boundary values g+
3. g tends to 1 at oo
4. g+g:1 — I €S and decays rapidly at co
5. Yo min{a, b} — Yoy min{é,d} =0
- - 1 L .
Z min{a,b} — Z min{¢é,d} =— / darg(A_Dy — B_CY)
2 R
zeCt zeC—

1 <. _
+— [ darg(AyD_ — B,C_),
2w R

with g = (g g) ,and @, b, ¢, d as exponents of the leading terms in the

power series expansion of A, B, C, and D.

Theorem 1.2 The scattering data for loop g in Theroem 1.1 can be explicitly
computed.

Note that D_ is not a group owing to condition 5). Therefore, the methods

of Terng and Uhlenbeck, loop group factorization theorem [9], are unable to
derive the factorization formula in this case.

2 Necessary Conditions for Factorization

The ZS-AKNS system has the form

%w(x, z) =(z,2)(2J +q(x)),

with z € R, z € C, ¢(x,z) € SL(n,C), and ¢ € Q. Where J = (8 OZ.),

Q = {q € SRy M2(C)) : g11 = g22 = 0}, the space of 2 x 2 off-diagonal
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matrices whose entries belong to the Schwarz class. The associated renormalized
eigenfunction m(x, z) satisfies

d
7m($7 Z) + Z[Ja m(xa Z)] = m(x, z)q(x),
dzx (2.1)
lim m(z,z) =1,
with m(-, z) absolutely continuous and bounded. Therefore, denote the scatter-
ing data [1, 2, 11] for generic ¢ € Q as {V, z;, U}, where

my(2,6) = eV (€)™ m_(a,€), (2.2)

{2;} are the totality of poles of m in C*, and U* are the upper (lower) triangular
factors of m(x,z) = e **/(1 + U (2))e"*/n*(x,2) in {z < 0} x C*. Here,
n*(z, 2) is a solution of (2.1), holomorphic in z and approaching 1 as z — co.
Moreover, for generic ¢, the scattering data {V, z;,U +1 satisfies:

a) Algebraic constraints: UT are strictly upper (lower) triangular, d;f (V) #
0, and d;, (V) = 1, with d; (d; (V)) as upper (lower) principal k-th minors
of V,

b) Analytic constraints: V — I € S(R; My(C)), U* is rational in z € Cy,
holomorphic for z € C4, and approaching zero as z — 00,

¢) Topological constraints (winding number constraints):

L o 1 [ v
Pf =P+ P —Ply=g | dagoz 1‘/(5)7 (2.3)

as j = 1,2, with Pj+ being the number of poles in the j-th column of U™,
and P the number of poles in the j-th column of U™.

Lemma 2.1 Suppose that m(x,z) is a normalized eigenfunction of the ZS-
AKNS system (2.1). Let P C C\R be the set of poles of m(x,-). Then, there
exists a global factorization

m(0, 2) " te®*! = E(x, 2)m(z, 2) 71,
forallz € R, all z € C\(RU P), and E(z,-) € G4.

One can prove this lemma by factorization formula m(x,z) = e 2*/(1 +
U*(2))e** nF(z,2) in {x <0} x C*, and (2.2).

In the su(2) case, to characterize each loop g = <g g) in D_, we first
simplify g by factoring out a diagonal factor such that all poles of A, B lie in C~,
and all of the zeros of A and B belong to ct (see [20, lemma 4.3]). Therefore,
it becomes easier to detect the zeros and poles of the diagonal multiple ¢ such
that og is some renormalized eigenfunction. Without the su(2) symmetry, we
generalize the factoring out process to the following.
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Definition We define a transformation 7 : SL(2,C) — SL(2,C), that maps

(B (§ D B e

=) ot G-
o) G- —a) . G—a) )
(=) (z=sT) . (2= s)
(=) (z—58) .. (z—5))

g PGP —a). (2 gg) )

(z=pf) . (z=pd)(z—q) ... (2 = G5)(z = 77)
(=) (z=5) . (2 —5))

=) (z—sT) . (z—sF)

and

{tf,...,t7} = { poles of Ain C* } U { poles of Bin C* },
{q1,...,qﬁ_}:{zerosofflin((:*}mgx{zerosoféin(Cf 1,
{rl_,...,r;}:{polesofCN'in(C*}mL_EJLX{polesofDinC* I3

{s7,...,5} ={ zeros of C'in CT } U { zeros of D in C* }.

In this paper we define U, U,and C to be

max  min’ mult

{z1...1. .2z U {znooozne oz ={ 210021 oo 2.2k )
—— e — MaX e — N — —_—— —_——

n1 Tk mi mp max(ny,my) max(ng,mg)
{z1...c1...zp...czkp U=z zieecczib={ 7210021 o0 2.2k )y
~—— W—’ min e — N — ~—— S——

ni ngk mi mg min(ni,m1) min(ng,myg)
{z1...21.. 2.2} C {z1...21. . 2k...2k}, ifn; <my, Vie{l,... k}.
M~ M~ mult Y——~ ——

ny Nk mi mp

Theorem 2.2 Suppose that g(z) € SL(2,C), and og = m(0, z), with o a di-
agonal matriz, and m(x,z) as a normalized eigenfunction of (2.1). Then, the
formula of o and scattering data {V, z;, U*} of m(x, 2), can be explicitly com-
puted.

The proof of Theorem 2.2 follows from the following lemmas. First, let

_ A B _ X 0 + 0 U112 - 0 0
T(g)—<c D),O’—<0 Y),U —(0 0),andU _(Uzl 0).Then

by (2.3), and the factorization property of scattering theory [1, 2, 11], we obtain
a) XY =1, AD — BC =1,
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b) X,Y+(A,D+ - B,C+) = 1, 4X+Y7(A+D, - B+Cf) 7é 0
c) %, and % are holomorphic in Ct, XA — ulg% is holomorphic in Ct,
X B — u122 is holomorphic in CF,

d) XA and X B are holomorphic in C—, % — u21 X A is holomorphic in C~
% — u21 X B is holomorphic in C™,

e)
—(number of poles of u12) + (number of poles of us1)

1 (2.4)
= — darg(X+Y,(A+D, - B+C,))
21 R

Lemma 2.3 Let {p],...,p}} be poles of X, and {z],.. ., 2, } zeros of X.
Then,

m =k,
{ poles of A} U { poles of B } < {z1,--,2 ),
max mult
{ poles of C' } U { poles of D } < N
max mult

Z_(z—zf)...(z—z,;)ex 1 [log(A-Dy —B_Cj)
X()_<z—p1+)...(z—pz) p{2m'/R t—z dt}.

Proof. Let {z},.. ,z,‘f} be zeros of X in C*, {p],... ,13:%} be poles of X in
T, {21,...,2,} be zeros of X in C , {py,---,p;} be poles of X in C~ By
the first formula of (2.4-c) and (2.4-d), we obtain

{poles of Ain C™} U { polesof Bin C™} < {1, .. .,z}?},
max mult

{ zeros of Ain C™ } N { zeros of B in C™} = {ry,---0n }
min mult

{zeros of C'in C*} N { zeros of D in C"} > {zF, . 2],
min mult

{poles of C in C*} mLix{ poles of D in C* } mglt {pr,....pL}.

Because of the definition of 7, we know that all zeros of A and B lie in @+,
and all zeros of C and D lie in C . Thus, {py,...,pp} = {21,....2 } = ¢,
{pf, ..oy ={pT,. ..ot and {z1,..., 2, } = {51, .. ,2}:} Applying (2.4~
b) and the Riemann Hilbert theorem, we obtain the formula for X,

ok Ea) (o) o L [ log(A-Dy — B_Cy4)
X(=) = (z—pf)...(z—ph) P 2m'/R t—=z dt}

Finally, since g has smooth boundary values on R, 7(g), g and m(0,-) to 1 as
z — 00, we derive m = k. O
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Lemma 2.4 We have
ol o}
C1 {poles of C} U {poles of D} U {zeros of A} U {zeros of B},
mult max max max
{21, 2}
< {poles of A} U {poles of B} U {zeros of C} U {zeros of D}.
mult max max max

Proof. First, we introduce a, b, ¢, d, &, B cf, and k& by
A(2) = Au(20)(2 — 20)* + Aat1(20)(z — 20)* T + ...,
B(z) = By(20)(2 — 20)" + Byy1(20)(z — 20)" T + . ..,
O(2) = Ce(20)(2 — 20)° + Cer1(20) (2 — 20) T + ... .,
D(z2) = Dg(20)(z — 20)% + Dgi1(20)(z — 20)H + ...
u12(2) = wrz,u(20) (2 = 20)" + wrz,u41(20) (2 — 20)" T+,
(z=p1) o (2= 1) = ful20)(z = 20)" + frg1(20) (2 — 20)" T + ..
for zo € C*. And

)

9

A(2) = Aa(wo)(z — wo)® + Aay1(wo)(z — wo) ™ + ...,
B(2) = By(wo)(z — w0)” + By (wo) (= —wo) ! + ..,
C(2) = Ca(wo) (2 —wo) + Capr(wo)(z —wo) ™ + ...,
D(2) = Dglwo)(z = wo)® + Dy (wo)(z —wo) ™ + ...,
u21(2) = 21 4(wo)(z — wo)® + upg a+1(wo)(z — wo)¥ ...,

(z—27) .- (2= 2;) = falwo)(z — wo)® + far1(wo)(z — wo)* ™ + ..
for wg € C~.
If 20 € {pf,...,p} \ ({ zerosof A} U { zeros of B }), then a — x < 0,

mult

and b — k < 0. Therefore, by (2.4-¢) we obtain

)

a—K=u+kK-+c,
b—k=u+k+d, A, Dg— B,C.=0.
Then with (2.4-a), we have
a+d=b+c<0.

Thus ¢ < 0, d < 0, and the first formula is proved. Additionally, the same
argument can be applied to demonstrate the second formula. O

Lemma 2.5 We have
{pf,....0}} = { poles of C' } U { poles of D },
{212, } :lt{poles of A} U { poles of B }.



EJDE-2002/77 Derchyi Wu 7

Proof. It is sufficient to show that
k= —min{c,d} and &= —min{a,b}.

We will prove the first formula of this lemma. The same argument can be
adapted for demonstrating the other formula. Without loss of generality, let
¢ = min{c,d}. Hence, £ > —c by Lemma 2.4. Since AD — BC' =1 ((2.4-a)),
either of the following cases i) a+d =b+¢ <0, i) a+d =0, b+ ¢ > 0, iii)
a+d>0,b+c=0.

In case i), we obtain kK = —c¢ by Lemma 2.4 directly. In case ii), we derive
a—kKk <a+4+c<a+d=0. Thus, either a = k or a < k. If a = Kk, then
k = —d < —c. Hence, kK = —c by Lemma 2.4. If a < k, thena —k =u+xk + c.
This implies u 4+ +d = —k — ¢ < 0. It suffices to examine the case u+x+d =
—k —c < 0. However, it impliesa —k =u+ Kk + ¢, and b — kK = u+ k + d. That
is a + d = b+ ¢, which is a contradiction.

Case iii) can be proved with the same argument as that of case ii). g

Lemma 2.6 The associated scattering data , denoted by {V, z;, U*}, in Theo-
rem 2.2 can be explicitly computed in terms of g.

Proof. It suffices to determine the scattering data in terms of 7(g), that is, in
terms of A, B, C, and D. First of all, by (2.2) and (2.3), we obtain

V(&) =047(9)+7(9)" 0!
B (X+Y_(A+D_ “B,C.) —X.X_(A.B_— A_B+))
“\v,v_(c.p_ —c_D,) 1 '

Let zg € C* be a pole of u1a. If z9 ¢ {pT,...,p; }, then we would have 0 < a—wu
and u+k-+c < 0. This contradicts with the second formula of (2.4-c). Therefore,
we conclude that ui2(2) = p(2)(z — py)™ ... (z — p{ )", with u; <0, and p(2)
is a polynomial of degree degp < —(uj + --- + ug). Moreover, under similar
argument with Lemma 2.5, we can prove that

u; = min{a, b} + min{c, d}. (2.5)

Since the degree of polynomial p is strictly less than —(uq+- - -+uy), to determine
polynomial p, it is equivalent to determine the u;+- - -+uy number of coefficients,
of negative terms of expansion

u12(2) = Ui, (2 = P )" + i1 (z —p )+ w1 (2 —pf )T+ hot.

at p;, for p € {p],... ,pi}. Here, h.o.t. denotes the higher order terms.
However, the u; number of coefficients can be successively computed by equating
the u; number of negative terms of either the second or third formula of (2.4-c),
uptoa—k<0orb—r<O0.

Similarly we can determine us; using the second formula of Lemmas 2.3-2.5
and adapting the above argument. Note that

@; = min{a, b} + min{é, d} (2.5")
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which completes the proof of this lemma. O

Now the proof of Theorem 2.2 follows from Lemmas 2.3-2.6. Next we use
condition (2.4-e) to characterize g in Theorem 2.2, through the the following
two lemmas.

Lemma 2.7 We have

1 1
— / darg(A_Dy — B_Cy)+ — / darg(AyD_ - B,C_)
2T R 27 R

=#({zeros of A} N {zeros of B}) — #({zeros of C} N {zeros of D}).
Proof. Since AD — BC' = 1, we have min{a, b} + min{c,d} < 0 in C*, and

min{a, b} +min{é,d} < 0 in C~. Therefore, by Lemma 2.6, (2.5) and (2.5’), we
obtain

#(pole of u19) = —(u1 + -+ + up) = — Z (min{a, b} + min{c, d}),
zeCt

#(pole of ug) = —(tiy + -+ -+ Ux) = — Z (min{a, b} + min{é, d}).
zeC—

Using conditions (2.4-b), (2.4-¢), and the above formula,

L / darg(A_D, —B_Cy)+ L / darg(AyD_ — ByC_)
2T R 27 R
=#({zeros of A} N {zeros of B}) + #({poles of A} U {poles of B})
— #({zeros of C} N {zeros of D}) — #({poles of C} U {poles ofD}).

The lemma is proved by noting that

# ({poles of A} U {poles of B}) = #({poles of C} U {poles of D}) = k.

cf. Lemmas 2.3 and 2.5. O

Lemma 2.8 The loop g in Theorem 2.2 satisfies condition 5) of Theorem 1.1.

Proof. By the definition of 7 and AD — BC = 1, we obtain

{zeros of A} N {zeros of B} = {zeros of XA in C*} N {zeros of XB in C*}

=a+B+y+6+ Y min{a,b},
Cc+
{zeros of C'} N {zeros of D} = {zeros of YC in C™} N {zeros of YD in C~}

=a+B+vy+0+ Y min{éd}.
. (2.6)
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Thus, we prove that g satisfies the second formula of 5) of Theorem 1.1. More-
over, note that
{poles of A} U {poles of B} = {poles of XA in C™} U {poles of XB in C™}
:a+ﬂ+7+5—2min{d,5},
o
{poles of C} U {poles of D} = {poles of YC in C*} U {poles of YD in C*}
= a+ﬁ+v+5—2min{é7d}.
c+

(2.6")
Thereby, the first formula of condition 5) is proved by Lemmas 2.3 or 2.5. [

3 Proof Theorems 1.1 and 1.2

Step 1. Extraction of Scattering Data For loop g(z) € D_, we denote
(g) = A B (X 0
"=\c p) 77 \o v)
0 u 0 0
+_ 12 - _
=0 ) = o)
Therefore (2.6”) and condition 5) of D_ implies the existence of a k, such that

{pf,....p{} = { poles of C } U { poles of D },
mu max
{z0,..,2,} = { poles of A} U { poles of B}.

Set
(z—21)... (2= %) 1 [log(A_D,—B_Cy)
X(z) = (z —pf). (z Zr) o {27ri/]R t—z dt},
_(=pl) =) 1 [log(A-Dy - B _Cy)
Y(z) = (z—27).. (z—z,;) exp{ '/R t—=z dt}.
Let

iy (XeYo(ALD_ ~B,CL) ~X,X_(AB_~A_B,)
©={y.,v (c.p_-c' D)) X Y. (AD,-BC.)

Vir Vi 1 -
— (1 VE) =ourlanrlo) o,

By the formula of X, and Y, and condition 3)-5) of D_, one can verify that
V-Ie S(R,SL(Q,C)), Vi1 7& 0, and Voo = 1.
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Now define

ui2(2) = p(2)(z —p)" ... (2 = p)"™,

uz(2) = p(2)(z = 2)™ .o (2 — 2™,

with 0 > u; = min{a, b} + min{c,d}, 0 > 4; = min{d,l;} + min{¢, d}, a, b, c,
d as exponents of the leading terms in the power series expansion of A, B, C,
D at points in C*, @, B, ¢, d as exponents of the leading terms in the power
series expansion of A, B, C, D at points in C~, and p(z), p(z) as polynomials
of degrees strictly less than —(uq +- - - +uyg), —(@y +- - - + G ) respectively. Note
that it implies either X A or X B has a pole at p;r if u; < 0. At these points, we
can determine the u; number of negative terms of

w12(2) = Wi, (2 = PF)" + i 41(z — P T+ w1 (2 = pf) Tt + hot.

at p;7, in order for both XA — u33C/X and XB — u;2D/X to be holomorphic
in CT. Thus, u;s is uniquely defined. Respectively, we can define p, and hence
uo1, by asserting the 4; number of negative terms of

U9y (2) = g0, (2 — 2;7) % + ya,41(2 — 2) 5+ 41 (2 — 27) " + heout.
in order for both C/X — u21 XA and D/X — us1 X B to be holomorphic in C~.
One can verify the topological constraint (2.3-c) of {V,U*} by:

—#(poles of uj2) + #(poles of uay)
=(up+---4ug)— (4 + -+ )

= Y (min{a,b} + min{c,d}) - > (min{a,b} + min{¢, d})

zeCt 2€C—
=# ({zeros of A} N {zeros of B}) + #({poles of A} U {poles of B})

— #({zeros of C} N {zeros of D}) — #({poles of C} U {poles of D})
By (2.6), (2.6”), condition 5) in D_, and Va3 = 1, result in

Z (min{a, b} + min{é, J}) - Z (min{a, b} + min{¢, J})
2€C*t zeC—

1 S, 1 oL
= —/darg(A,DJr—B,C;)—l-—/darg(AJrD,—BJrC’,)
2w R 27 R

1 &~ S 1 P S
= — / darg X Y, (A_Dy —B_Cy)+ —/ darg X4 Y_(AyD_—B.C_)
2w R 27 R
1 1
=— [ darg(A_D; —B_C.)+ — / darg(ALD_ — B, C_)
2w R 27 R
1

1
= — d arg X,Y+(A,D+ — B,C+> +
R 2

/ d arg X+Y, <A+D, — B+C,)

21 R
1

= —/d argVH.
2 R
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In summary, we have defined V, U*, and proved that {V, U*} satisfies (2.3), to
become a formal scattering data [1, 2]. Therefore, the inverse scattering theory
[1, 2] implies generically, the existence of a normalized eigenfunction, denoted
as m(z, z), such that its associated scattering data is {V,U*}.

Step 2. Proof of o7(9) = m(0,2) By the results of Step I, there exists
n*(z), holomorphic in C*, such that

U21

or(g) = (é uf) nTin CT, o7(g9) = ( 1 (1)> n~ in C™.
Thereby,
_ 1 —u 1 _ 1 0
nen-t = (O 112> o 7(9)47(9)"to? ( 1) . (3.1)

U21

On the other hand, by inverse scattering theory, there exists 7% (z), holomorphic
in C*, such that

1 T 1 0)._. _
m(0,z) = (0 u112> 7t in C*, m(0,2) = <u21 1> - in C™.

< o1 1 —ups 1 0 ’

Therefore defining 7(z) = n*(2), and 7j(z) = 7+ (z) when z € C*, and applying
(3.1), (3.1"), 7 — 1,7 — 1 as z — oo, and the holomorphicy of n*, 7+ in C*,
we obtain 7 = 7. Hence, o7(g) = m(0, ).

Hence,

Step 3. Proof of factorization of ¢ Applying the results of Step 2 and
Lemma 2.1, we derive

_ _ X 0
1 xzJd __ 1 _xzzJ b
s e =g e (T )

=m(0, z)*le“‘ja (‘E)( g)

(X 0
— T(g)(:zz,z)m(:r,z) lo (0 }7)
= T(g)(l‘,Z)Mg($,Z)_l,

for all z € R, all z € C\(RU P), with E(z,-) € G4, and P as poles of g. With
E;(4)(0,2) = 1, and the property that integer-valued continuous functions are
constant, it readily demonstrates that M(x,-) € D_. O
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