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ABSTRACT 

A well-distributed air-void system inside a hardened concrete can help protect the 

concrete structure from being damaged by freeze-thaw cycles. The concrete air-void 

petrographic test, which is specified in ASTM C457, is the standard test procedure for 

characterizing the air-void system and evaluating the freeze-thaw performance of 

hardened concrete samples. Specifically, the linear-traverse method (Procedure A) and 

the modified point-count method (Procedure B) are two manual methods described in 

ASTM C457. These two methods are based on manually microscopical observation. In 

addition, considering the fact that air voids in hardened concrete surfaces are difficult to 

be observed with the naked eye due to the low contrast between air voids and hardened 

cement paste, the identification of air voids is difficult and subjective. Consequently, 

Procedures A and B are error-prone and labor-intensive. The contrast enhanced method 

(Procedure C) was introduced in ASTM C457 as a computer-aided air-void system 

measurement method. Procedure C requires the aid of contrast enhancement, in which the 

air voids are manually highlighted with color on the concrete surface by an experienced 

human rater. Then, the air-void system can be automatically measured with the assistance 

of computer-aided image processing techniques. However, during the contrast 

enhancement procedure, voids in aggregates and cracks can also be filled with white 

powders, which is not wanted and needs to be carefully checked and avoided. As a result, 

although Procedure C reduces human labor to some degree, it is still labor-intensive and 

time-intensive. Therefore, a more efficient air-void measurement method that can 
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automatically identify the air voids from hardened concrete surfaces needs to be 

developed. 

This dissertation aims to investigating the detection of the air-void system in 

hardened concrete surfaces using three-dimensional (3D) reconstruction and Artificial 

Intelligence (AI) techniques. The proposed method can be considered as an extension of 

Procedure C but is free from the manual contrast enhancement procedures. In this 

dissertation, a new air-void detection method was proposed to automatically segment the 

air-void system from the solid phase in an automated manner. The proposed method 

includes: 1) a 3D image reconstruction system based on two-dimensional (2D) image 

data collection, and a delicate and novel engineering design for hardware; 2) an 

automated air-void segmentation method without using contrast enhancement pre-

processing. According to our knowledge, the method is innovative and has not been 

attempted before. Unlike other existing methods that have been used in the research and 

industry, the method we proposed has the following potential advantages: less labor/time-

intensity, higher cost-effectiveness, and higher accuracy. The research results showed 

that the basic photometric stereo method is able to contrast the air voids in hardened 

concrete surfaces to some extent using the 3D nature of air voids. It took 10-15 seconds 

for the basic photometric stereo method to reconstruct the surface normal image for each 

concrete sample. However, the polished concrete surface cannot be considered as an ideal 

Lambertian surface, and some air-void like noises can be generated due to the bias of the 

basic photometric stereo method. The deep learning based image segmentation method 
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provided good robustness to differentiate most of the noises from true positive air voids. 

The experimental results showed that the deep learning based methods can accurately 

distinguish air voids from hardened concrete images with the detection accuracy of over 

0.9 in only less than a minute. The accuracy rates for air content, specific surface, and 

spacing factor were 0.92, 0.91, and 0.89, respectively. 

 In addition, considering the limitations of using 2D air-void segmentation for 

concrete petrographic analysis, the reliability of using the Saltykov method to restore the 

3D air-void radius was also evaluated. The recovered spatial air-void distribution can be 

used to simulate the actual air-void system inside hardened concrete and then provide 

insights into the percentage of the hardened concrete paste that is protected by the air-

void system. In this research, the unfolding results of both in-section air voids and out-

section air voids are evaluated using the Minkowski Distance metric. The research results 

showed that the up-to-date methods can accurately unfold the size distribution of in-

section air voids, while the methods failed to achieve an accurate estimation for out-

section air voids.  
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1. INTRODUCTION 

1.1 Statement of Problem 

Concrete is widely used in buildings, bridges, pavements, airports, and dams due to 

its high strength, long durability, and low maintenance needs. The concrete transportation 

infrastructures in cold regions are exposed to frost penetration and freezing conditions. 

Freezing water expands by 9% in volume and produces pressure in the pores of the 

concrete (Yeon and Kim 2018). The accumulative effects of successive freeze-thaw 

cycles and loads could eventually lead to cracking, scaling, and spalling on concrete 

pavements and then cause deterioration of pavement performance(Adkins and 

Christiansen 1989). The air-void system with uniformly dispersed small air bubbles 

shortens the distance between any point in cement paste and an air void and helps the 

concrete release the pressure build-up under freezing conditions(Walker et al. 2006).  

Characterization of the air-void system in hardened concrete and explaining the 

mechanism of the protection of air voids has been a difficult challenge for many years. 

Powers and his colleague first introduced the concept of spacing factor of air voids and 

tried using the hydraulic pressure theory to explain the freeze-thaw resistance of 

concrete(Powers and Willis 1950). Though Power’s theory is generally accepted, several 

refined theories have been suggested that better reconcile experimental observations with 

theory(Rashed and Williamson 1991, Chatterji 2003). Currently, linear-traverse method 

and modified point count method which are specified in the ASTM C457 ‘Standard Test 

Method for Microscopical Determination of Parameters of the Air-Void System in 

Hardened Concrete’ are common methods used for air-void parameter 

measurement(ASTM 2012). Both methods are human operator dependent, and the 
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measurement results are subjective. In addition, these methods can be considered as 

sampling surveys and the measurement is limited to one-dimension (1D), while the air 

voids are actually distributed in a three-dimensional (3D) space in hardened concrete. 

Snyder et al. (Snyder et al. 1991) conducted an analytical investigation of the effect of the 

number of air voids on the minimum expected error. The research results showed that no 

accuracy can be further achieved until more than 2,000 air voids are observed and thus 

the conventional air-void measurement method is time-consuming, labor-intensive, and 

error-prone.  

1.2 Objective of Research 

Conventional air-void measurement methods are tedious and hard on the eyes. A 

single determination of the air-void parameters of a concrete specimen by means of the 

linear traverse method can take up to 7h, depending on the size and quantity of the voids. 

A technician cannot spend more than 4h per day doing this sort of work on a day-to-day 

basis(Walker et al. 2006). Due to the heavy labor, air-void analysis using ASTM C457 

costs approximately $450 to $500 for each concrete sample(Anon). Many research 

studies have been done on replacing human operators with machine vision or automated 

image analysis (Peterson et al. 2001b, Pleau et al. 2001, Liu et al. 2017). In these studies, 

a concrete surface is commonly contrast-enhanced to make it easier for computers to 

distinguish air voids from the solid phase (aggregates and paste). The contrast 

enhancement method creates a contrast between the air voids and the solid phase by 

blackening the entire surface with black ink and filling the voids with white powder. 

Although the workload of the original ASTM C457 measurement has been significantly 

reduced by these innovations, the cost for contrast enhancement work is still 
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considerable. In addition, inappropriate selection of contrast enhancement materials will 

lead to a significantly biased result. Consequently, there is a need to develop a fully 

automated air-void analysis solution without contrast enhancement. 

In this dissertation research, considering the 3D nature of air voids in hardened 

concrete surfaces, the feasibility of utilizing 3D information (e.g. depth and gradient) to 

distinguish the air voids in hardened concrete surfaces was investigated. The photometric 

stereo method, one major component of vision-based 3D techniques, which has been 

effectively used in reverse engineering, industrial testing, and archaeology due to its 

advantages of simple operation, high resolution, and low cost was utilized to capture the 

3D information of the air voids. Consequently, an automated air-void segmentation 

method without using contrast enhanced pre-processing was proposed, which further 

reduces the labor cost and improves the measurement accuracy of the ASTM C457 

procedure. Finally, the Saltykov method, a stereological analysis method that infers the 

true spatial air-void distribution in the hardened paste will be evaluated.  

1.3 Dissertation Organization 

The remainder of this dissertation is organized as follows: 

Chapter 2 provided a comprehensive review of the state-of-the-art research on image 

segmentation methods, 3D reconstruction methods, and stereological methods. The 

limitation and applicability of current research studies were analyzed. 

Chapter 3 described the details of 3D reconstruction methods, image segmentation 

methods, and stereological analysis methods used in this research. 

Chapter 4 compared various 3D reconstruction methods for the restoration of the 3D 
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hardened concrete surfaces. A conventional image segmentation procedure was proposed 

for segmenting the air voids from the 3D concrete surface images based on the profile 

and depth information.  

Chapter 5 investigated the adoption of using deep learning based methods to 

furtherly refine the air-void segmentation using the 3D concrete surface images. An 

image dataset with original hardened concrete surface images, concrete surface normal 

images, and pixel-level air-void annotations was developed. The effect of different image 

augmentation techniques and hyperparameter settings were investigated. 

Chapter 6 investigated the reliability of the Saltykov method for restoring spatial air-

void distribution. A set of synthetic air-void models were developed as ground truth. 

Various influence factors such as the number of air-void observations and bin classes 

were analyzed. 

Chapter 7 presented the main conclusion drawn upon the entire dissertation research. 

The innovations of the research study were also highlighted. In addition, future works 

were demonstrated to refine and improve the current dissertation research study.  
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2. LITERATURE REVIEW 

2.1 Air-Void Segmentation Methods 

The spacing factor is an air-void parameter that is frequently used to measure the 

relative distance between air voids and the measurement value is equal to half of the 

average distance between air voids (ASTM 2012). Several segmentation methods have 

been developed to identify the air voids from the hardened concrete for measuring the air-

void distribution parameters. In the following subsections, the existing measurement 

methods, and associated standards and procedures are introduced and reviewed. 

2.1.1 Conventional Approaches  

In ASTM C457, linear-traverse and modified point count methods are commonly 

utilized for microscopical determinations of the spacing factor (ASTM 2012). Both 

methods are human operator-dependent, and the measurement results are subjective. In 

addition, these methods are considered as sampling surveys and the measurement results 

are sensitive to the number of air voids observed.  

According to ASTM C457, air-void parameters are manually determined and 

evaluated by human operators who are pre-trained to identify air voids, paste, and 

aggregates. The judgments which are made by pre-trained human operators are subjective 

and the results are operator-dependent, which makes the air-void measurement results 

error-prone. Linear-traverse method and modified point count method are two 

conventional methods that are commonly utilized for microscopical determinations of the 

spacing factor  (ASTM 2012). In a research study conducted by Saucier et al. (Saucier et 

al. 1996), 6 concrete specimens were examined by 18 experienced operators, and 
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significant variations were found from one operator to another. In addition, the manual 

examination is also time-consuming and requires huge heavy laboring hours. To 

overcome the low efficiency and the limitations of the subjective manual evaluation 

process, computer vision based automated air-void segmentation methods were proposed. 

2.1.2 Contrast Enhancement Based Approaches 

Many research studies have been done on replacing human operators with machine 

vision or automated image analysis (Peterson et al. 2001b, Pleau et al. 2001, Liu et al. 

2017). In these studies, the air voids and solid phase (aggregates and paste) in a concrete 

surface are commonly contrast-enhanced to make it easier for computers to distinguish. 

Pleau et al. (Pleau et al. 2001) compared the results from image analysis and visual 

examination. They found that for air voids in the size interval range of 0–80 μm, the 

number of air voids identified by the image analysis test system was 50–70% higher than 

the number of air voids identified by a human operator. 

The segmentation of air voids in hardened concrete surfaces is among the most 

essential and challenging steps for automated air-void measurement. Charge Coupled 

Device (CCD) camera and flatbed scanner are two main technologies utilized to capture 

two-dimensional (2D) concrete surface images. The analysis of the air-void system in 

hardened concrete using 2D digital images was first introduced by Chatterji et al. 

(Chatterji and Gudmundsson 1977). A contrast enhancement step that made the air voids 

appear white and the solid phase appear black was proposed in the research. In later 

studies, the contrast enhancement method was widely adopted for automated air-void 

system analysis with 2D digital images. The RapidAir 457 proposed by Pade et al. (Pade 

et al. 2002) was the most widely used contrast enhancement-based automated system. 
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However, this method was not fully automated, and an operator-determined threshold for 

segmentation was required. In addition, because additional scans for the same specimen 

with a CCD camera were required for separating the phase of cement paste, failure to 

achieve the calibration could make the analysis accuracy jeopardized. Comparing with 

CCD cameras, a flatbed scanner scans the whole of the specimen surface and fewer 

calibrations are required for the setting of specimens. Peterson et al. (Peterson et al. 

2001b) first introduced the flatbed scanner to collect the polished concrete surfaces. The 

process is shown in Figure 1.  

The air voids, cement paste, and aggregates were well distinguished by manually 

increasing the contrast between the three phases. Non-stained images, phenolphthalein-

stained images, and black & white treated images were the three kinds of images that 

were taken after each contrast enhancement process. The different Red, Green, and Blue 

(RGB) channels of these captured images were combined to generate a contrast-enhanced 

image for image analysis. However, the air voids, paste, and aggregates were still 

segmented by thresholds that were set manually. Even though the air voids and the solid 

phase were in enhanced contrast, the grey levels of air voids and solid phase in 2D 

images could still vary under various lighting conditions.  
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Figure 1. Contrast Enhancement Based Automated Air-Void Segmentation Method 

(Peterson et al. 2001b) 

Several other automated thresholding strategies were then proposed for the 

extraction of air voids. The multi-spectral analysis is one of the most widely used 

methods for air-void thresholding (Peterson et al. 2016). Three RGB histograms were 

utilized by Zalocha et al. (Zalocha and Kasperkiewicz 2005) to segment air voids and 

solid phase. Each histogram represented a different channel of an RGB image. The peaks 
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of the 3 RGB histograms were considered as binarization thresholds for air voids, paste, 

and aggregates. Fonseca et al. (Fonseca and Scherer 2015) applied an Otsu’s method to 

improve the automation of the air-void segmentation process. In another research study 

conducted by Song et al. (Song et al. 2017), 20 images were scanned from 6 contrast-

enhanced concrete specimens with a flatbed scanner. The spectral-spatial ECHO 

classifier algorithm which considered both spectral and spatial characteristics of air voids 

was utilized to automatically classify air voids and the solid phase in the concrete surface. 

The research results showed a good correlation between the measurement value and 

reference value.  

In 2016, the contrast enhancement based method was included in ASTM C457 as an 

official procedure. However, the deficiency also quickly revealed itself. The contrast 

enhancement methods ignore the interior surface of an air void which would be needed 

for judging whether an observed void is an air void, a hollow fly ash particle, a porosity 

in aggregates, or a pull-out accidentally made during specimen preparation (Schouenborg 

et al. 1995). In addition, the pigment which is used for contrast enhancement would fill 

up air voids, and then the filled air voids later become inaccessible to the white substance 

(Wolter et al. 2019). According to the description of the sample preparation procedure in 

ASTM C457, additional verification and rectification would be required for a trained 

petrographer or technician to either determine the applicability of the contrast 

enhancement based method to a specific concrete specimen before a contrast 

enhancement treatment or cover false positive air voids with a very thin tip black sharpie 

after the contrast enhance treatment (ASTM 2012). Many attempts were done for 

replacing the contrast-enhancement method by directly distinguishing air voids, paste, 
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and aggregates. The Missouri Department of Transportation (MoDOT) developed an 

Automated Concrete Evaluation (ACE) system for automated air-void measurement 

(Baumgart et al. 2006). The system used a neural network based fuzzy logic classifier 

method to separate air voids from other features in 2D images using the area and shape 

characteristics of air voids. Although the ACE system showed good potential for 

replacing the manual method with an automated image processing method, it was still 

based on 2D images. One of the advantages of using 3D images is that the uncolored 

concrete surface is captured and recorded, which gives human raters and the associated 

computer hardware/software systems the opportunities to review and validate the 

automated segmentation results. The aforementioned problems could be fundamentally 

avoided if the air-void segmentation can be done directly on uncolored samples. Song et 

al. (Song et al. 2020b) first introduced the deep learning techniques for concrete 

petrographic analysis. The research made a great contribution in segmenting the paste 

and aggregates without contrast enhancement. The segmentation result was robust to 

concrete samples with different types of aggregates and paste, and also outperformed the 

contrast enhancement based method. However, the air voids still need to be contrast-

enhanced. In the research conducted by Wolter et al. (Wolter et al. 2019), a 

photogrammetry method was utilized for the 3D reconstruction of concrete surfaces. The 

method showed the potential of utilizing 3D reconstruction for air-void segmentation, but 

large differences were observed between the experiment result and the ground truth. 

Furthermore, the photogrammetry method was borrowed from commercial software 

which seems like a black box to other researchers. 
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2.1.3 X-ray CT Based Approaches 

Considering the three-dimensional (3D) nature of air voids, it is reasonable to use 

3D technologies to segment the air voids in the polished concrete surface. X-ray 

Computed Tomography (CT) is a typical non-destructive 3D method that has been widely 

adopted for the microstructural characterization of materials (Stock 2008). However, the 

high price of X-ray CT equipment makes it unlikely for practical use for air-void 

measurement. 

Air voids are distributed in the 3D space of hardened concrete and the 3D 

characteristics of air voids are useful information for distinguishing air voids from other 

features in a concrete surface image. Consequently, 3D technology could be a useful 

method to segment air voids in concrete specimens without contrast enhancement. 

Computed Tomography (CT) has therefore been employed for reliable measurement of 

air voids. The method not only provides alternative means of measurement, but also 

presents a unique advantage with its capacity to capture the exact 3D location of all 

objects of interest and the air-void size distribution, and the derived air-void parameters 

that are not available to traditional 2D test methods (Lu et al. 2017, Boshoff 2019). 

However, the air-void analysis of X-ray CT scanned images is also dependent on the 

thresholding strategies for the segmentation of air voids and solid phase in hardened 

concrete. Plessis et al. (Du Plessis et al. 2016) introduced a simplified image analysis 

procedure for air-void segmentation. A global threshold value was first calculated based 

on the grey value histogram of CT scanned concrete images and the central value 

between the peaks of material and air voids was selected. Lu et al. (Lu et al. 2018) 

extracted air voids from Portland cement concrete images using a micro X-ray CT. Both 
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greyscale value and possible morphologies of air voids were considered in the region-

growth based algorithm as an energy function for segmenting air voids from the solid 

phase. The calculated threshold succeeded in segmenting air voids in hardened cement 

concrete, while this method was not fully automated because the specific threshold 

calculated in this research was solely dependent on the specific investigated concrete 

material. Yun et al. (Yun et al. 2012) quantified and evaluated the paste-void spacing 

factor in concrete using a CT scanner. In the study, 10,000 random points were selected 

within an area outside the air voids and the distance from each point to its nearest air-void 

boundary was measured. The 95th percentile of the cumulative distribution function of 

the measured data correlated well with the actual spacing factors. Actually, the research 

revealed one of the resolution defects of the CT method. To achieve a high-resolution CT 

result for capturing the smallest air voids in hardened concrete, only a small concrete 

specimen size with 12 mm diameter and 10 mm height was drilled. Therefore, it might be 

quite challenging to use the CT-based detection method to characterize air voids in large-

size specimens or specimens with coarse aggregates. In the research conducted by Lu et 

al. (Lu et al. 2017), a solution was provided for capturing the air voids in large-size 

specimens or coarse aggregates in specimens. Two scans were performed on 50 mm and 

6 mm cylindrical samples, respectively. The scan on the 50 mm cylindrical sample 

achieved a resolution of 55 μm/pixel and could capture the large (entrapped) air voids in 

hardened concrete. The scan on the 6 mm cylindrical sample achieved a resolution of 9 

μm/pixel and could capture the small (entrained) air voids in hardened concrete. A power 

law curve was then drawn to generate the distribution of different sizes of air voids. 

Bernardes et al. (Bernardes et al. 2015) investigated the influence of the selection of 
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sample regions on air-void structural parameters. Several cement concrete specimens 

from different regions of interest were considered in this research. A μ-CT was utilized to 

scan the porosity of concrete specimens on the 7th and the 28th days, respectively. A 

reduced porosity was found in the interior of the concrete specimen within 28 days of 

testing age, but no pronounced reduction near the surface of the samples was found. This 

highlighted the importance of a good sampling selection for accurate bulk air content 

estimation and the small specimen size would harm the final measurement results. In 

addition, the expense of using CT equipment is another issue in practical applications 

because of the high costs for acquiring and using the equipment (Aboufoul et al. 2019), 

and the fact that CT equipment is generally inaccessible in the field or near a field testing 

environment. 

2.1.4 Deep Learning Based Approaches 

Recent developments in artificial intelligence and computer vision play an important 

role in guiding scientific research. Deep learning based semantic segmentation, which is a 

subset of machine learning and aims to classifying an image at the pixel level, has 

achieved significant success in many image segmentation related fields, including 

autonomous driving (Cordts et al. 2016), pavement condition survey (Zhang et al. 2018), 

face recognition (Liu et al. 2017), and image search engines (Wan et al. 2014). The key 

advantage of deep learning based semantic segmentation techniques is the ability to learn 

appropriate feature representation of pixels in each category in an end-to-end manner. 

The deep learning techniques substantially improved the accuracy and efficiency of 

semantic segmentation tasks. However, despite the deep learning based semantic 

segmentation technique is highly relevant to the objective of concrete petrographic 
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analysis, the potential of this technique has not been widely studied. 

R. Girshick et al. (Girshick et al. 2014) proposed a region-based convolutional 

neural network (RCNN). The method first utilized selective search (Uijlings et al. 2013) 

to extract numerous object regions, and then a set of features were extracted from each of 

the extracted regions. Finally, a classifier was utilized to classify regions into each 

category. Compared with conventional hand-crafted methods, the RCNN was able to 

address more complicated tasks and achieved a higher accuracy. A 30% improvement 

was found compared with the previous best model. However, the RCNN also suffers 

from many drawbacks for image segmentation tasks. Hariharan et al. (Hariharan et al. 

2014) argued that the network RCNN was actually fine-tuned to classify bounding boxes, 

making it suboptimal to extract foreground features.  Guo et al. (Guo et al. 2018) stated 

that the features extracted by RCNN did not contain sufficient spatial information, which 

leads to fuzzy boundaries in segmented images. Many improvements have been made to 

address these issues (Hariharan et al. 2014, Dai et al. 2015, He et al. 2015). Built over the 

successes of classification neural networks, Long et al. (Long et al. 2015) proposed the 

Fully Convolutional Network (FCN) which was the basis of many state-of-the-art deep 

learning based semantic segmentation methods. They replaced the fully connected layers 

of various CNNs like AlexNet (Krizhevsky et al. 2012), VGG (Simonyan and Zisserman 

2014), GoogLeNet (Szegedy et al. 2015), and ResNet (He et al. 2016) with fully 

convolutional layers. The structure first realized end-to-end image semantic segmentation 

at the pixel level. While, the conventional FCN model did not consider the global context 

information, which inherently limited the spatial precision for semantic segmentation. 

Mostajabi et al. (Mostajabi et al. 2015) and Szegedy et al. (Szegedy et al. 2014) 
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illustrated the importance of adopting global context information for accurate image 

segmentation. As for semantic segmentation, per-pixel classification was often 

ambiguous in the presence of only local information. However, the task became much 

simpler if contextual information, from the whole image, was available. Chen et al. (Chen 

et al. 2014) introduced the idea of conditional random field (CRF) into FCN and 

proposed DeepLab. The CRF significantly refined object boundaries in the segmented 

image with an improved efficiency. Dilated convolutions (Zhou et al. 2015) expanded the 

receptive field of CNN by enlarge convolution filters without increasing parameters. The 

key advantage of dilated convolutions was improving the ability of global information 

integration without additional computation cost. The multi-scale context aggregation 

module (Yu and Koltun 2015), improved DeepLab (Chen et al. 2017), and the ENet 

(Paszke et al. 2016) all adopted dilated convolutions as a method to integrate global 

information. Feature fusion is another way to enlarge the receptive field of CNN. Liu et 

al. (Liu et al. 2015) proposed the ParseNet which concatenated global features with local 

features to form combined features. The combined features were then convoluted for 

classification. Chen et al (Chen et al. 2017) utilized Atrous Spatial Pyramid Pooling to 

combine the output of dilated convolutions with various dilation rates together to enlarge 

the field of view without increasing the number of parameters. U-Net, which is a variant 

of FCN, improved with skipped connections was proposed by Ronneberger et al. 

(Ronneberger et al. 2015). The U-Net consisted of an encoder and decoder. The skip 

connections combined low-level features with higher-level features, which improved 

pixel-level localization. The U-Net architecture has been validated to be powerful for 

binary image segmentation. It is currently one of the most used algorithms in biomedical 
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image segmentation (Chang and Liao 2019) and has been gradually extended to the other 

semantic segmentation tasks in many other fields (Lau et al. 2020, Shi et al. 2021). To 

make the U-Net architecture more suitable for the other tasks, Ternausnet and 

Ternausnetv2 networks first proposed a VGG combination of a pre-trained VGG network 

as the encoder of the U-Net. The proposed networks were powerful in satellite image 

segmentation (Iglovikov et al. 2018, Iglovikov and Shvets 2018). Wen et al. (Chang and 

Liao 2019) compared the encoder of U-Net with variants of VGG, ResNet18, 

DenseNet121, and variants of Inception for the segmentation of biomedical images. The 

VGG13 encoder U-Net outperformed the other architectures and deeper encoder 

architectures were not guaranteed to obtain better segmentation results. Buslaev et al. 

(Buslaev et al. 2018) utilized ResNet-34 as an encoder of conventional U-Net for satellite 

image segmentation and showed a good result. Tasar et al. (Tasar et al. 2019) considered 

the compromise between complexity and performance, and then adopted VGG16 as the 

encoder of the U-Net for segmenting large-scale remote sensing data. Even though the 

variants of U-Net with different encoder architectures were adopted in many research 

studies for various segmentation tasks. There were no generalized principles that could 

provide guidelines on architecture selection. Whether a modified architecture would 

improve segmentation results depends on the dataset size, image type (RGB, Depth, or 

greyscale), and segmentation objects. 

2.2 Three-Dimension Reconstruction Methods - Photometric Stereo Method 

As discussed previously, the air voids in the hardened concrete surface have similar 

greyscale values as the paste on concrete surfaces. A contrast-enhancement process is 

needed to make the air voids distinguishable from the solid phase. However, unlike the 
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solid phase which provides only color information, the air voids are hollows that embed 

in the hardened concrete surface. The 3D information (e.g. depth and gradient) is a 

valuable feature for air voids extraction and helps to distinguish the air voids from the 

solid phase. The utilization of 3D reconstruction methods is an effective way to obtain 

depth information within the air-void region. Generally, the state-of-the-art 3D 

reconstruction approaches can be classified as passive and active methods. 

Passive 3D imaging approaches reconstruct the 3D surface of an object without 

introducing new energy (e.g. light) into the environment (Bianco et al. 2013). Numerous 

technologies and methods are employing this approach, including multi-view stereo 

(Pound et al. 2014, Pound et al. 2016), structure from motion (Jay et al. 2015), light-field 

(plenoptic) cameras (Bernotas et al. 2019), and space-carving techniques (Gibbs et al. 

2018). Binocular stereo is the most common multiview stereo approach (Biskup et al. 

2007, Burgess et al. 2017). Two cameras are utilized to capture pictures from slightly 

different two viewpoints. By analyzing the disparity between the objects in the two 

pictures, the relative depth can be calculated. However, calculating the disparity is not so 

straightforward for a computer. The correspondence problem is well known in the 

machine vision literature and refers to the difficulty in locating matching points in the 

two images. Wolter et al. (Wolter et al. 2019) made the first study on 3D air-void 

segmentation by using a photogrammetry method. The working principle of 

photogrammetry is similar to binocular stereo. The research investigated the potential of 

utilizing 3D reconstruction for air-void segmentation, but large differences were observed 

between the experiment results and the ground truth. An explanation could be the 

concrete surfaces were texture-less, which increased the difficulty of solving the 
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correspondence problem. Space-carving and light-field systems overcome the 

correspondence problem. However, space-carving systems require many different views 

and may fail to reconstruct the crowded areas (Bernotas et al. 2019). Light-field systems 

rely on expensive camera technology to capture high resolution data and thus make the 

air-void analysis system not cost-effective. 

Active 3D imaging approaches introduce outside energy sources to help 3D 

reconstruction and overcome many problems of the passive approaches. The time-of-

flight 3D laser scanner is an active scanner that uses laser light to probe the subject 

(Herrero-Huerta et al. 2018, Thapa et al. 2018). At the heart of this type of scanner is a 

time-of-flight laser rangefinder. The laser rangefinder finds the distance of a surface by 

timing the round-trip time of a pulse of light. The laser rangefinder only detects the 

distance of one point in its direction of view. Thus, the scanner scans its entire field of 

view one point at a time by changing the range finder's direction of view to scan different 

points. The advantage of time-of-flight range finders is that they are capable of operating 

over very long distances, about kilometers (Besl and McKay 1992). These scanners are 

thus suitable for scanning large structures like buildings or geographic features. The 

disadvantage of time-of-flight range finders is accuracy. Due to the high speed of light, 

timing the round-trip time is difficult and the accuracy of the distance measurement is 

relatively low, about millimeters. Triangulation is another active 3D imaging approach 

(Paulus et al. 2014). The triangulation laser shines a laser on the subject and exploits a 

camera to look for the location of the laser dots. Depending on how far away the laser 

strikes a surface, the laser dot appears at different places in the camera's field of view. 

The laser dot, the camera, and the laser emitter form a triangle, which makes the depth 
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measurement possible. Triangulation laser scanners are slow and susceptible to 

occlusions. Air-void regions may be obscured by air-void edges. 

 

Figure 2. Schematic Diagram of Photometric Stereo (Sun and Wang 2017) 

Photometric stereo is an active imaging technique that is low-cost and can achieve 

high image resolutions and fast capture speeds (Woodham 1980). The photometric stereo 

method, as shown in Figure 2, estimates the 3D surface of objects based on the 

relationship between image intensity and the surface normal under various lighting 

conditions. The photometric stereo method has the key advantage of achieving 

automation while reducing test time, which is a cost-effective and real access to high-

resolution 3D images, easy to be implemented, and robust to be reconstructed on textured 

or texture-less surfaces. 
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2.3 Air-Void System Measurement Approaches 

2.3.1 Conventional Approaches 

The air-void system restores the ice formed under low temperatures and releases the 

pressure build-up induced by the freezing effect. Good freeze-thawing durability can be 

achieved through the presence of many small air voids distributed throughout the cement 

paste phase of the concrete (Snyder 1998). The spacing of air voids is of high importance 

to characterize the air-void system with the presumption that the concretes with different 

air-void spacings present different freeze-thawing performances.  

Powers et al. (Powers and Willis 1950) characterized the air-void spacings. They 

hypothesized that freeze-thawing damages were caused by hydraulic pressure generated 

in the capillary pores during freezing which exceeded the tensile strength of the cement 

paste. The well-distributed air-void system provided extra spaces for the capillary pores 

to release hydraulic pressure and avoid damage. Power’s theory is the most widely used 

and accepted method for measuring air-void spacing. However, Power’s theory fails to 

provide a precise estimation of the actual spacing of air voids in concrete. It has been 

found that even the same sample processed following the ASTM C457 procedures gave 

out test results calculated by Power’s spacing equation with considerable deviations 

(Simon 2005). Philleo et al. (Philleo 1983) refined Power’s theory by quantifying the 

volume fraction of paste within the shell of an air void system. A Hertz distribution was 

adopted to approximate the paste-void proximity distribution for zero-radius points, and 

then this distribution was modified to account for finite-sized spheres by renormalizing 

the cumulative distribution to account for the air content. Attiogbe et al. (Attiogbe 1993) 

proposed a new spacing factor equation to calculate the mean air-void spacing voids by 
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taking geometric probability and stereological principles into consideration. The effects 

of large air voids for releasing the pressure build-up during the freeze-thawing circles 

were considered in Attiogbe’s equation. However, in the research conducted by Snyder 

(Snyder 1998), Attiogbe’s equation did not accurately estimate the parameters of a 

simulated air void system. A possible explanation could be the indirectly measured air-

void size distribution induced biases in the air-void parameter calculation. The actual air 

voids are spatially distributed in hardened concrete, while the aforementioned methods 

estimated the actual air-void size distribution from the information retrieved on a 1D 

level.  

 

Figure 3. The Cross Profile of Air Voids in Polished Concrete Surface (Song et al. 2021) 

As shown in Figure 3, the circles presented on the three-phase image cannot be 

treated as spheres in the paste and the 2D distribution is not proportional to that on a 3D 

level, since the sizes of circles in 2D do not follow the one-to-one correspondence with 

the sizes of spheres in 3D (Song et al. 2020a). And also, the effects of many out-section 
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air voids are neglected by a 2D air-void analysis. As the distance between the centroid 

and cross-section becomes even longer, the paste adjacent to the air void can be still 

protected by it, but there is no evidence indicating this kind of protection on a 2D surface. 

Therefore, knowing the information on 3D air-void distribution is critical to improving 

the reliability of the measurement results. 

2.3.2 Stereological Approaches 

Even though the techniques like CT scans can obtain the inner structure of hardened 

concrete precisely on a 3D level. The cost and availability of CT equipment can be a big 

hinder in practicals. The ASTM C457, which uses visual inspection to analyze the three 

phases of a hardened concrete surface, is still the most widely used and accepted method. 

However, linear-traverse method and modified point count method measure the air-void 

system in hardened concrete on a 1D level (linear-traverse method) or a 0D level 

(modified point count method). Considering the 2D nature of the hardened concrete 

surface, both linear-traverse method and modified point count method can be considered 

as sampling surveys and partial concrete surfaces are selected during the air-void 

measurement process. The utilization of ASTM C457 methods for air-void measurement 

is a trade-off between accuracy and cost.  

Numerous studies have been done to characterize stereological air-void properties 

based on segmented 2D concrete images. The stereological analysis technic, which is a 

probabilistic approach to restore the 3D sizes of objects based on the statistical 

distribution of their 2D slices that appeared in an image, is the most commonly used 

approach for the analysis of air-void spatial distribution in hardened concrete. Murotani 

et al. (Murotani et al. 2019) proposed a simple method to estimate the air-void spacing 
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factor. The method assumed the air-void system as a mono-sized sphere system. The 

median distance and the characteristic distance, which were separately defined using the 

distance between the air-void centroids and the mean diameter of air voids, were 

proposed to measure the air-void system. The research found that the proposed 

parameters correlated well with the Power’s spacing factor. However, during the freeze-

thawing process, water was thought to move through the pore space in the cement paste 

to the surface of an air void, not to its centroid (Scherer and Valenza 2005). The distance 

between the air-void surfaces could better represent the capability of hardened concrete 

that releases the pressure during the freeze-thawing process whereby water escapes into 

empty air voids. To measure the distance between the air-void surfaces, the actual 3D 

size distribution of air voids should be estimated in advance. 

Fonseca et al. (Fonseca and Scherer 2015) segmented the air voids in the contrast 

enhanced concrete surface by using Otsu’s method which classified the grey value pixels 

by maximizing the intra-class grey value variance and minimized the inter-class grey 

value variance. An unfolding method – the Saltykov method, which estimated the 3D size 

distribution of air voids by using the size distribution of 2D profiles on a plane, was first 

applied for calculating the bulk volume of air voids inside the hardened concrete. The 

Saltykov method assumes that the center of 3D spheres is randomly distributed, and the 

3D spheres are non-overlapping (Saltykov 1958). For a 3D sphere of radius R, the 

probability of its 2D intersections P(r) with a radius of r follows Equation (1).  

 𝑃𝑃(𝑟𝑟) =
𝑟𝑟

𝑅𝑅√𝑅𝑅2 − 𝑟𝑟2
 (1) 

The 2D air-void size was first classified into several classes with a fixed class width. 
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And then, the radius of the largest 2D intersection was used as the radius of the largest 

3D air void. The number of 3D air voids from each 2D air-void class was inversely 

calculated according to Equation (1). Mostly, concrete void size distribution follows a 

lognormal trend (Yun et al. 2012, Fonseca and Scherer 2015). The fixed class width 

could lead to the number of observations of profiles in some classes being lower than the 

expected value, and furtherly caused a negative number of spheres to be estimated from 

those classes. A large class width was utilized to solve this problem, which reduced the 

accuracy of the 2D-to-3D unfolding process. Mayerisk et al. (Mayercsik et al. 2014) 

introduced a two-step approach to measure the air-void parameters based on the 

estimated 3D air-void distribution. The first step estimated the 3D air voids distribution 

by extracting the line segment length probability and the chord length probability from 

the 2D air-void intersections. By deriving these two distribution functions, the volume 

fraction of air voids, the number density of air voids, and the first three moments of the 

size distribution were obtained and utilized to evaluate the 3D air-void system inside 

hardened concrete. And then, in the second step, a nearest-surface distribution function, 

which was first derived by Lu and Torquato (Lu and Torquato 1992), was utilized to 

estimate the spatial arrangement between any point in the cement paste and its proximity 

to the surface of a nearby air void. The reciprocal value of the 95% percentile of the 

nearest-surface distribution function was used to approximate the spacing factor. The 

Protected Paste Volume (PPV) method which was originally proposed by Larson et al. 

(Larson et al. 1967) has been utilized for estimating free-thaw performance using 2D 

concrete images (Peterson et al. 2001a, Wawrzeńczyk and Kozak 2016). The PPV 

method assumed that the paste within a certain distance from the air-void surface was 
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protected from freeze-thawing damages. Song et al. stated that the PPV method is more 

reliable and understandable than Power’s approach (Song et al. 2020a). In the research by 

Song et al., the PPV method was introduced for air-void analysis from a 3D perspective. 

The Saltykov method, which has been adopted in Fonseca et al.’s (Fonseca and Scherer 

2015) research, was utilized for back-calculation of 3D air-void distribution. The 

unfolding results were evaluated by the protect region which was approximated using the 

Powers’ spacing factor. The Powers’ spacing factor measures the maximum distance 

from a point in the paste to the adjacent air void. The research report that around 98% of 

the pastes were protected by the estimated 3D air-void system. The result was aligned 

with the research findings in Yun et al.’s research (Yun et al. 2012). In another research 

conducted by Song et al. (Song et al. 2021), the factors that influence the 3D unfolding 

method were investigated. The research results showed that the unfolding accuracy was 

significantly affected by air-void class numbers. Increasing the number of air-void classes 

increased the unfolding accuracy, while reducing the number of air voids in each class. 

The logarithmic binning strategy, which optimizes the class count and the class size, was 

introduced to classify the air voids into different classes. The logarithmic binning strategy 

maximized the class number for the small air voids and increased the number of air voids 

in large air-void classes. The unfolding method which adopted the logarithmic binning 

strategy back-calculated the 3D air-void distribution with less bias and improved 

smoothness. The logarithmic binning strategy effectively improves the unfolding method 

used by Fonseca et al. (Fonseca and Scherer 2015). However, no study has precisely 

analyzed the reliability of using the Saltykov method to estimate the 3D air-void 

distribution. Most of the studies acknowledged the reliability of Power’s method due to 



 

26 

its aggressive assumptions and unreliable measurement results, nevertheless, they still use 

air-void parameters measured by Power’s method as ground truth to evaluate the 3D air-

void distribution estimated using the Saltykov method. Consequently, the reliability of 

the Saltykov method need to be evaluated in a more intuitive way. 

2.4 Summary 

In this chapter, the related research studies for 3D reconstruction methods, image 

segmentation methods, and stereological analysis methods were discussed. Based on the 

literature review, the findings can be summarized below: 

(1). The low contrast between the air voids and cement paste makes the 

distinguishment of air voids in hardened concrete surfaces using computer-aided image 

processing methods a challenging work. The air voids in the hardened concrete surface 

have similar pixel intensities to the cement paste. The contrast enhancement-based 

method normally takes 3~4 hours for one concrete sample to be contrasted. The profile 

and depth information of air voids can be effectively used as a feature to distinguish the 

air voids from the background. Consequently, a 3D reconstruction method is required to 

capture those features. Compared with various conventional 3D reconstruction methods, 

the photometric stereo method can be considered a qualified 3D reconstruction method 

for 3D concrete surface reconstruction. 

(2). According to ASTM C457 standard, the automated measurement of the air-void 

parameters needs to be conducted on a segmented concrete surface image in which the air 

voids and hardened concrete surfaces need to be differentiated. The image segmentation 

method classifies each image pixel into different classes. Many conventional image 
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processing methods have been conducted on contrast-enhanced concrete surface images 

to segment the air voids. The color and shape variances of the air voids are important 

features that can be utilized to segment the air voids. The advantages of the conventional 

image processing methods are simple and easy to apply. The disadvantages of the 

conventional image processing methods are objective and inaccurate. 

(3). Deep convolution neural networks (DCNN), which are subareas of deep 

learning, present significantly higher robustness and generalizability compared with 

conventional image processing methods. However, very limited research adopted DCNN 

for air-void segmentation, and there is a lack of experience with air-void segmentation 

using DCNN. Considering the advance of DCNN, it is necessary to investigate the 

feasibility of using DCNN to segment the air voids in hardened concrete surfaces. 

(4). The reliability of the Power’s spacing factor has been debated in many research 

studies. A lot of attention has been paid to proposing a new evaluation index for the 

freeze-thawing performance of hardened concrete. The protected Paste Volume (PPV) 

method has been proved as a new way to characterize the freeze-thaw performance of 

hardened concrete. The necessity of 3D air-void distribution has been demonstrated for 

PPV methods. As a stereological method, the Saltykov method has been used to estimate 

the actual 3D air-void distribution. However, no study has precisely analyzed the 

reliability of using the Saltykov method to estimate the 3D air-void distribution. Most of 

the studies acknowledged the reliability of Power’s method due to its aggressive 

assumptions and unreliable measurement results, nevertheless, they still use air-void 

parameters measured by Power’s method as ground truth to evaluate the 3D air-void 

distribution estimated using the Saltykov method. The reliability of the Saltykov method 
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needs to be evaluated in a more intuitive way. 
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3. METHODOLOGY 

In this chapter, the details of 3D reconstruction methods, image segmentation 

methods, and stereological analysis methods used in this research are described. 

3.1 Concrete Surface Normal Reconstruction Methods 

As discussed in section ‘Literature Review’, the low contrast between the air voids 

and cement paste challenges the air-void measurement using computer-aided image 

processing methods. One of the explanations is that the low contrast makes edge 

detection using image processing methods become impossible. Considering the 3D nature 

of the air voids inside hardened concrete surfaces, it is worth to adopt the 3D information 

of air voids and make the air voids distinguishable from the cement paste. Therefore, in 

this research study, 3D reconstruction methods were utilized to obtain the 3D information 

of the air voids as well as the concrete surfaces. The captured 3D information would be 

useful for air-void segmentation. 

The photometric stereo method estimates the 3D surface of objects based on the 

relationship between image intensity and the surface normal under various lighting 

conditions. A diagram for the photometric stereo method is shown in Figure 2. Compared 

to conventional air-void detection methods, the photometric stereo method has the key 

advantage of achieving automation while reducing test time, which is a cost-effective and 

real access to high-resolution 3D images, easy to be implemented, and robust to be 

reconstructed on textured or texture-less surfaces. Shadow and specularity are two kinds 

of surface corruptions that can be observed on concrete surfaces under various lighting 

directions. It is important to properly address these surface corruptions during 
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photometric stereo procedures.  

3.1.1 Photometric Stereo 

The photometric stereo methods were originally designed for Lambertian surfaces. 

The Lambertian surfaces are idea smooth and diffusely reflecting surfaces. The apparent 

brightness of a Lambertian surface to an observer is the same regardless of the observer's 

angle of view. However, the polished hardened concrete surfaces cannot be considered as 

idea diffusely reflecting surfaces. Specularities can be observed under specific 

observation angles. Also, the air voids inside hardened concrete surfaces generate the 

unevenness, which cause the hardened concrete surfaces cannot be considered as idea 

smooth surfaces as well. Consequently, it is important to investigate different 

photometric stereo methods and to understand the impact of the corruptions to 3D 

reconstruction results. 

3.1.1.1 Lambertian Surfaces 

Woodham (Woodham 1980) first proposed the photometric stereo method by 

assuming an ideal Lambertian surface. The surface normal (vector or matrix) at each 

pixel can be calculated when the number of illuminations 𝑘𝑘 ∈ ℛ is over three. The 

photometric stereo method estimates the surface normal by calculating the relationship 

between incoming lighting direction 𝐿𝐿 ∈ ℛ𝑘𝑘×3, surface normal 𝑁𝑁 ∈ ℛ3×1, and observed 

intensity 𝐼𝐼 ∈ ℛ𝑘𝑘×1 through Equation (2). 
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For the 3D reconstruction of an ideal Lambertian surface, Equation (2) can be used 

to compute the surface normals as the Least Squares solution to a set of linear equations 

that relate the observations and known lighting directions. Such Least Squares solutions 

are accurate if only small magnitude of Guassian noise exists. However, Polished 

concrete surface cannot be considered as an ideal smooth Lambertian surface, because 

attached shadow and specularity are likely to be observed on the polished concrete 

surface. Both of the two corruption effects are considered non-Lambertian. Several 

studies were conducted to make the photometric stereo method more robust to the non-

Lambertian effects. Specular reflections and shadowing effects can both be commonly 

observed from polished hardened concrete surfaces, which can affect the accuracy of 

Least Squares solutions and result in incorrect estimates of surface normal. 

3.1.1.2 Non-Lambertian Surfaces 

(1) Low-rank Minimization Method 

Bidirectional Reflectance Distribution Function (BRDF) which encodes the diverse 

appearances of real-world objects is utilized to relate the observed intensity I to the 

associated surface normal N, the incoming lighting direction L, and viewing direction V. 

Shafer (Shafer 1985) stated that the observed intensity I at a given point from a smooth 

real-world object is a linear combination of diffuse and specular reflectance as shown in 

Equation (3). 

 𝐼𝐼 = 𝑓𝑓𝑑𝑑 (𝑁𝑁, 𝐿𝐿) + 𝑓𝑓𝑠𝑠(𝑁𝑁, 𝐿𝐿,𝑉𝑉) (3) 

Some of the photometric stereo methods consider the non-Lambertian effects as 

outliers. Tang et al. (Tang et al. 2005) introduced two coupled Markov Random Fields 
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(MRFs) to model the photometric stereo problem and a tensorial belief propagation 

method was utilized to approximate the solution of the Markov network. The research 

results of the study showed that the MRFs method tended to over-smoothen the surface 

normal map. Miyazaki et al. (Miyazaki et al. 2010) proposed a median-filter based 

method and the outliers were refined by the median estimate of neighboring pixels. Wu et 

al. (Wu et al. 2010) proposed a Low-rank minimization method which performed well in 

several research studies. The observations were first decomposed into a low-rank 

Lambertian structure 𝐼𝐼𝐴𝐴 ∈ ℛ𝑘𝑘 and sparse non-Lambertian outliers 𝐸𝐸 ∈ ℛ𝑘𝑘 as shown in 

Equation (4). 

 𝐼𝐼 = 𝐼𝐼𝐴𝐴 + 𝐸𝐸 (4) 

Consequently, the Low-rank minimization method which is shown in Equation (5) 

was utilized to solve the normal vector of the observed surface. 

 min
𝐼𝐼𝐴𝐴,𝐸𝐸

‖𝐸𝐸‖𝐹𝐹        𝑠𝑠. 𝑡𝑡.𝑅𝑅𝑅𝑅𝑛𝑛𝑘𝑘(𝐼𝐼𝐴𝐴) ≤ 𝑟𝑟, 𝐼𝐼 = 𝐼𝐼𝐴𝐴 + 𝐸𝐸 (5) 

where ‖𝐸𝐸‖𝐹𝐹 is Frobenius norm of matrix 𝐸𝐸. 

Several algorithms have been developed to solve the low-rank matrix approximation 

problem, for example, iteration threshold algorithm, accelerated proximal gradient 

algorithm, dual algorithm, and augmented Lagrange multiplier (ALM) algorithm are 

commonly used algorithms for solving the low-rank matrix approximation problem. In a 

comparison study by Shi et al. (Shi et al. 2013), the ALM algorithm outperforms the 

other algorithms with faster computation speed and lower computation cost. 

Consequently, the ALM algorithm was selected in this study to solve the low-rank matrix 

approximation problem. 
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(2) Sparse Bayesian Regression method 

Even though the Low-rank minimization method that considers non-Lambertian 

observations as outliers could improve the result to some extent, it may also discard 

useful information in the non-Lambertian region. In order to retain the information, some 

methods incorporate the non-Lambertian effects 𝐸𝐸 like shadows, specularity and inter-

reflections into the BRDF model. 

 𝐼𝐼 = 𝑓𝑓𝑑𝑑 (𝑁𝑁, 𝐿𝐿) + 𝑓𝑓𝑠𝑠(𝑁𝑁, 𝐿𝐿,𝑉𝑉) + 𝐸𝐸 (6) 

The Sparse Bayesian Regression method (SBL) is one of the robust photometric 

stereo models that is commonly utilized to solve the surface normal in Equation (6) 

(Ikehata et al. 2012). In this method, a piecewise linear function was first introduced to 

approximate the BRDF model which is shown in Equation (7). 

 
𝑁𝑁𝑇𝑇𝑙𝑙𝑗𝑗 = �𝑅𝑅ℎ𝑔𝑔ℎ�𝑖𝑖𝑗𝑗� + 𝑒𝑒𝑗𝑗

𝑝𝑝

ℎ=1

 (7) 

where 𝑅𝑅ℎ are unknown parameters; p is the number of inverse functions used; 𝑔𝑔ℎ�𝑖𝑖𝑗𝑗� is 

an inverse function 𝑁𝑁𝑇𝑇𝑙𝑙𝑗𝑗 = 𝑔𝑔ℎ�𝑖𝑖𝑗𝑗� which is represented by a piecewise linear function 

which is shown in Equation (8). 

 
𝑔𝑔ℎ�𝑖𝑖𝑗𝑗� = � 

0, (0 < 𝑖𝑖𝑗𝑗 < 𝑏𝑏ℎ−1)
𝑖𝑖𝑗𝑗 − 𝑏𝑏ℎ−1, (𝑏𝑏ℎ−1 ≤ 𝑖𝑖𝑗𝑗 < 𝑏𝑏ℎ)
𝑏𝑏ℎ − 𝑏𝑏ℎ−1, (𝑖𝑖𝑗𝑗 ≥ 𝑏𝑏ℎ)

 (8) 

where 𝑏𝑏ℎ is the point where the hth linear segment ends and the (h+1)th segment begins. 

The illustration of the piecewise linear function is showed in Figure 4. As shown in 

Figure 4, each basis function can be defined as a polylinear function which has a breaking 
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point, and the piecewise linear function is defined as the summation of these basis 

functions. 

 

Figure 4. The illustration of the piecewise linear function (Ikehata et al. 2012) 

Assuming k illumination directions are observed for one object, then Equation (6) 

can be represented by matrix manipulation and transferred into a linear problem. 

 𝐴𝐴𝐴𝐴 + 𝐸𝐸 = 0 (9) 

where D is an unknown parameter vector and 𝐴𝐴 = [𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧,𝑅𝑅1, … ,𝑅𝑅𝑝𝑝−1,𝑅𝑅𝑝𝑝]𝑇𝑇; A is a 

matrix with known experiment parameters 𝐴𝐴 = [𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑗𝑗 , … ,𝐴𝐴𝑘𝑘] where 𝐴𝐴𝑗𝑗 =

[−𝑙𝑙𝑥𝑥
𝑗𝑗 ,−𝑙𝑙𝑦𝑦

𝑗𝑗 ,−𝑙𝑙𝑧𝑧
𝑗𝑗 , 𝑏𝑏1 − 𝑏𝑏0, … , 𝑏𝑏ℎ−1 − 𝑏𝑏ℎ−2, 𝑖𝑖𝑗𝑗 − 𝑏𝑏ℎ−1, 0, … ,0]; E is an unknown non-

Lambertian vector and 𝐸𝐸 = [𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑘𝑘]𝑇𝑇. 

Equation (8) is not a constrained problem because the number of independent 

functions k is always smaller than the number of unknowns (3+p+k) (vectors D and E). 

Finally, the SBL is utilized to estimate the unknown parameter vectors D and E of 

Equation (9) by applying an independent, zero-mean Gaussian prior distributions on both 
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D and E (Tipping 2001). 

The computation of surface normal is the fundamental step to get accurate concrete 

surface profile information. Considering the polished concrete surface is not an ideal 

Lambertian surface, the performance of the basic photometric stereo method, the Low-

rank minimization method, and the SBL method should be evaluated before surface 

normal integration and air-void segmentation. 

3.2 Air-Void Segmentation Approaches 

In this research, both conventional image processing methods and deep learning 

based image processing methods were introduced for air-void segmentation. The 

segmented air-void images can be used for air-void parameter measurements. 

3.2.1 Conventional Segmentation Methods 

Two different air-void segmentation approaches were proposed in this study to 

extract air voids from the 3D concrete surface profile. One approach directly extracted air 

voids from the normal map. A threshold of the slant angle of surface normal was 

calculated to distinguish the air voids region from the concrete surface. The other 

approach first reconstructed the 3D surface of the concrete specimens using surface 

integration which is the sequential step after the surface normal reconstruction step as 

shown in Figure 5. Then, the air voids were segmented using a regressed surface plane 

from the reconstructed 3D surface. The details of these two approaches are described in 

3.2.1.1 ‘Normal Map Method’ and 3.2.1.2 ‘Surface Plane Method’ sub-sections. A flow 

chart is shown in Figure 5 to give an overview of the computation process. 
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Figure 5. Flow chart of 3D air voids segmentation 

3.2.1.1 Normal Map Approach 

The normal map approach uses the generated concrete surface normal map to 

segment the air voids. For each pixel in the normal map, the surface gradient is 

represented by a surface normal vector, Nt. The normal vector of concrete surface plane is 

denoted as Nxoy, or the Z axis. 

 𝑁𝑁𝑥𝑥𝑥𝑥𝑦𝑦 = [0, 0, 1] (10) 

Then, the surface angle 𝜃𝜃 can be calculated by Equation (11). 
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𝜃𝜃 = arccos �

𝑁𝑁𝑡𝑡 ∙ 𝑁𝑁𝑥𝑥𝑥𝑥𝑦𝑦
|𝑁𝑁𝑡𝑡|�𝑁𝑁𝑥𝑥𝑥𝑥𝑦𝑦�

� (11) 

The normal map method assumes that the air voids have a sharper surface gradient 

and the concrete surface has a flatter surface gradient. Therefore, the pixels in the normal 

map that have a small 𝜃𝜃 could be concrete surface and the pixels in the normal map that 

have a large 𝜃𝜃 could be air voids. The relationship between Nt, Nxoy and 𝜃𝜃 is shown in 

Figure 6. 

 

Figure 6. Nt, Nxoy and 𝜃𝜃 on concrete surface 

3.2.1.2 Surface Plane Approach 

The surface plane method uses the generated concrete surface depth map to estimate 

the structure of air voids. A surface plane equation which is shown in Equation (12) is 

regressed using the least square method where a, b, c, and d are regression coefficients. 

 𝑅𝑅𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 (12) 

The surface plane method assumes the integrated concrete surface as a flat plane. A 

bent/slant concrete surface can lead to inaccurate segmentation results by using the 
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surface plane method. A 2D Gaussian filter can rectify the surface profile. The generic 

1D Gaussian filter can be expressed as: 

 Gaussian (𝜓𝜓) =
1

√2𝜋𝜋𝜎𝜎
𝑒𝑒−�𝜓𝜓−𝜇𝜇)2/2𝜎𝜎2� (13) 

where ψ is an independent random variable; σ2 and µ are the variance and mean of the 

distribution; π and e are constant values. 

3.2.1.3 Segmentation Refinement 

A set of image processing procedures were designed and utilized to remove the 

errors in air-void segmentation results. 1) A FillHole method was introduced to eliminate 

the false negatives at the bottom of air voids. The FillHole method identified and filled up 

the internal contour of each segmented shape. 2) An AreaRatio method was furtherly 

introduced to eliminate the false positives caused by dark or transparent aggregates based 

on the segmentation results refined by the FillHole method. The AreaRatio method can 

be considered as a kind of active contour line based method. Different from most of the 

segmentation methods such as global thresholding, spectral analysis, and random fields, 

the active contour line based method could segment the region of interest based on shape 

information. In a research conducted by Lu et al. (Lu et al. 2017), the concrete specimen 

was scanned by X-ray CT and the active contour line based method was used to 

differentiate the voids in cement paste and aggregates. In another study, the active 

contour line based method was used to differentiate the void space and solid phase in X-

ray CT scanned concrete images (Lu et al. 2018). Few applications of the active contour 

line based method were reported for concrete air-void segmentation, but its effectiveness 

of differentiating the objects with various shapes was revealed. In this research, the 
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AreaRatio method assumed that most of the aggregates have an irregular shape and most 

of the air voids have a round shape. The AreaRatio method first identified the external 

contour of each segmented shape and an enclosing circle was generated for each external 

contour. The area ratio for each segmented contour was calculated by Equation (14). In 

this way, a perfectly round shape could have an area ratio approximate to 1, while an 

extremely irregular shape could have an area ratio much less than 1. 

 
𝑅𝑅𝑟𝑟𝑒𝑒𝑅𝑅 𝑟𝑟𝑅𝑅𝑡𝑡𝑖𝑖𝑟𝑟 =

𝑡𝑡ℎ𝑒𝑒 𝑅𝑅𝑟𝑟𝑒𝑒𝑅𝑅 𝑟𝑟𝑓𝑓 𝑠𝑠𝑒𝑒𝑔𝑔𝑠𝑠𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑 𝑠𝑠ℎ𝑅𝑅𝑝𝑝𝑒𝑒
𝑡𝑡ℎ𝑒𝑒 𝑅𝑅𝑟𝑟𝑒𝑒𝑅𝑅 𝑟𝑟𝑓𝑓 𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑠𝑠𝑝𝑝𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑔𝑔 𝑒𝑒𝑛𝑛𝑐𝑐𝑙𝑙𝑟𝑟𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑙𝑙𝑒𝑒

 (14) 

3.2.3 Convolution Neural Networks 

As a subarea in artificial intelligence (AI), deep learning (DL) has achieved great 

success in semantic segmentation. During the semantic segmentation process, a 

classification label is predicted on each pixel, which may greatly fulfill the objectives of 

air-void segmentation. The deep convolutional neural networks (DCNN), which is an 

important branch in DL, show good potential in detecting target objects in noisy images 

at pixel resolution. 

U-Net, which is a variant of Fully Connected Networks (FCN) and improved with 

skipped connections, was adopted for air-void segmentation in this study (Ronneberger et 

al. 2015). As shown in Figure 7, the U-Net consists of an encoder structure and a decoder 

structure. Skip connections between the encoder and decoder combine lower-level 

features with higher-level features. The combined features can improve pixel-level 

localization. The U-Net architecture has been validated to be powerful for image 

segmentation. It is currently one of the most used algorithms in biomedical image 
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segmentation (Chang and Liao 2019) and has been successfully extended to the other 

semantic segmentation tasks in many other fields (Lau et al. 2020). In addition, the U-Net 

model can generate a comparable result using a small dataset. In the study, the algorithm 

was coded and implemented with TensorFlow, an open-source deep learning library in 

Python. The training processes were conducted on the Google Colab Pro which provides 

Graphics Processing Units (GPUs) for deep learning purposes and one NVIDIA® Tesla® 

V100 GPU with 16GB of RAM. A flow chart that includes the major works of training 

the U-Net model is shown in Figure 8. 

 

 

Figure 7. U-Net for image with resolution of 256 pixels × 256 pixels 
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Figure 8. Steps of U-Net model training. The concrete surface normal images and air-

void annotations were utilized for the training process. 

There are 1,941,105 trainable parameters incorporated in the U-Net model. During 

the training process, cross-entropy was selected as the loss factor to evaluate the 

discrepancy between the training results and labels after each epoch. The Adam optimizer 

was adopted for updating the weights in U-Net.  

3.3 Stereological Analysis – the Saltykov Method 

The air-void sgementations generated using the method described above provide a 

feasible way for the measurement of air-void parameters based on the ASTM C457 

standard. As a potential successors for Power’s method, the protected Paste Volume 

(PPV) method has been proved as a new way to characterize the freeze-thaw performance 

of hardened concrete. One limitation of the up-to-date PPV analysis is that it only 
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experiment with a single 2D surface plane of a polished concrete specimen, which can be 

restricted by the limited information that can be provided by 2D analysis. 3D air-void 

distribution is necessary for improving the reliability of the PPV analysis. 

3.3.1 Estimation of In-Section Air Voids 

The Saltykov method provides a feasible way to estimate the 3D air-void radius 

distribution using the information of 2D air-void intersections. For an IUR (isotropic, 

uniform, and random) mono-sized sphere system with sphere radii equal to R, the radius r 

of the sphere sections intersected by any cutting plane should follow a distribution. Russ 

et al. inferred the mathematical relationship between the sphere and its 2D intersections 

(Russ and Dehoff 2012). For a 3D sphere with radius R, the probability of its 2D 

intersections P(r) with a radius of r follows Equation (15).  

 P(𝑟𝑟) =
𝑟𝑟

𝑅𝑅√𝑅𝑅2 − 𝑟𝑟2
 (15) 

For a given 3D sphere with radius R, the probability of its 2D intersection with a 

radius between 0 and r can be calculated using Equation (15). In most cases, the 

characteristics of probability density functions are more meaningful and identifiable than 

cumulative density functions. Consequently, the probability density function of Equation 

(15) is presented in Equation (16). By using Equation (16), the probability of the air-void 

intersections within a specific radius range can be integrated.  

 

P(𝑟𝑟𝑖𝑖 < 𝑟𝑟 < 𝑟𝑟𝑖𝑖+1) =
𝑁𝑁𝑅𝑅𝑖𝑖
𝑁𝑁𝑅𝑅

=
�𝑅𝑅2 − 𝑟𝑟𝑖𝑖2 − �𝑅𝑅2 − 𝑟𝑟𝑖𝑖+12

𝑅𝑅
 (16) 

where ri and ri+1 are the radius range of the intersected sphere sections, i indicates the 
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class sequence number of the prescribed radius range 𝑖𝑖 ∈ (1,2, … , 𝑗𝑗), j is the number of 

total bin classes, 𝑁𝑁𝑅𝑅𝑖𝑖 is the number of 3D voids with radius R involved with the 

intersected voids with radius between ri and ri+1, 𝑁𝑁𝑅𝑅 is the total number of 3D voids with 

radius R, and P is the probability of the radius of a random intersection from a sphere 

with radius R in the interval from ri to ri+1. 

For a set of void intersections generated from an idealized system with mono-sized 

air voids, the distribution of the radius of the void intersections can be obtained. By using 

the distribution of the void intersection radius and Equation (16), the 3D actual void size 

can be unfolded. As mentioned before, the actual air-void system in hardened concrete is 

a multi-sized void system. A basic concept for unfolding a multi-sized void system is 

assuming that the multi-sized void system is a superposition of multiple mono-sized 

distributions. Consequently, the following procedures were designed and programmed to 

unfold the actual 3D void distribution based on the distribution of the 2D void 

intersection radius.  

(1). The consecutive distribution of the 2D void intersection radius is transferred 

into a discrete distribution using a histogram transformation. The total number of bin 

classes j needs to be predefined before the transformation. In the transferred discrete 

distribution, the boundary (ri and ri+1) and the number of 2D void intersections nri of each 

bin class are recorded for continuous analysis purposes. 

(2). The upper boundary of each bin class is considered as the approximated 3D void 

radius. The upper boundary of the largest 2D void intersection bin class is considered as 

the approximated radius for the largest 3D void bin class Rj. All the 2D void intersections 

in the largest 2D void intersection bin are assumed to be yielded from the largest-sized 
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3D voids near their centroids. 

(3). The unfolding process is started with the bin class with the largest 2D void 

intersection radius. With approximated radius and count of the largest 3D void bin 

known, Equation (16) can be used to determine the total number of voids in the largest 

3D void bin class.  

(4). According to the calculated number of voids in the largest 3D void bin, the 

number of the 2D void intersections generated by the largest 3D voids in each smaller bin 

can be calculated (NRjj-1, NRjj-2, NRjj-3, …, NRj1). 

(5). By subtracting the count of observed 2D void intersections (nrj-1, nrj-2, nrj-3, …, 

nr1) with the count of unfolded 2D void intersections cut from the largest 3D voids (NRjj-1, 

NRjj-2, NRjj-3, …, NRj1), a new distribution of the 2D void intersections is generated. The 

second-largest bin now becomes the largest in the resultant histogram and its actual count 

can be analyzed using the above-stated steps (steps 2-4). 

(6). Iterating steps 2-4 down to the smallest bin class, until a final determination of 

actual void size distribution is achieved. 

As mentioned in many previous studies, one known problem of using the Saltykov 

method for 3D air void unfolding is the negative value calculated from smaller bins 

(Fonseca and Scherer 2015, Lopez-Sanchez and Llana-Fúnez 2016). In this study, if 

negative values appear, they will be replaced with zero. To simulate the air-void 

intersections in hardened concrete surface, the synthetic air-void model will be sliced by 

a virtual plane. The information of any 3D air voids in the synthetic model that 

intersected with the plane will be recorded. Same as the radius and coordinate of the 2D 
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air-void intersections. 

3.3.2 Estimation of Out-Section Air Voids 

The out-section air voids cannot be observed through the 2D air-void intersections in 

concrete surfaces, but it has a significant protective effect on the concrete paste. In the 

research by Song et al., the relationship between the number of in-section air voids and 

the number of out-section air voids was inferred using Equation (16) (Song et al. 2020a). 

For a given protection range p, the larger radius associated with the out-section void (R + 

p) should be considered in the calculation. Consequently, when a section cuts right on the 

air void boundary, the radius of the out-section protection t is maximized: 

 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 = �(𝑅𝑅 + 𝑝𝑝)2 − 𝑅𝑅2 (17) 

Therefore, the probability of getting an intersection with the radius between 0 and 

tmax from an out-section air void with the radius of R + p can be presented as: 

 
𝑃𝑃𝑥𝑥𝑜𝑜𝑡𝑡(0 < 𝑟𝑟 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥) =  

�(𝑅𝑅 + 𝑝𝑝)2 − 0 −�(𝑅𝑅 + 𝑝𝑝)2 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥
2

𝑅𝑅 + 𝑝𝑝
=

𝑝𝑝
𝑅𝑅 + 𝑝𝑝

 (18) 

while the probability for an in-section air void is: 

 
𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 < 𝑟𝑟 < 𝑅𝑅 + 𝑝𝑝) =  

�(𝑅𝑅 + 𝑝𝑝)2 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥
2 − �(𝑅𝑅 + 𝑝𝑝)2 − (𝑅𝑅 + 𝑝𝑝)2

𝑅𝑅 + 𝑝𝑝

=
𝑅𝑅

𝑅𝑅 + 𝑝𝑝
 

(19) 

The ratio of in-section and out-section air voids can be estimated using Equation 

(20). 
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 𝛼𝛼𝑖𝑖𝑖𝑖/𝑥𝑥𝑜𝑜𝑡𝑡 =
𝑅𝑅
𝑝𝑝

 (20) 

Consequently, the out-section air voids can be calculated according to the count of 

in-section air voids in each bin using Equation (20).  
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4. AUTOMATED IMAGE SEGMENTATION OF AIR VOIDS IN HARDENED 

CONCRETE USING PHOTOMETRIC STEREO THREE-DIMENSIONAL 

RECONSTRUCTION METHOD 

One of the biggest hinders to segment the air voids in hardened concrete surfaces is 

the low contrast between the air voids and cement paste. Considering the three-

dimensional (3D) nature of the air voids, it is reasonable to adopt the profile information 

of air voids for air-void segmentation. The photometric stereo method, one major 

component of vision-based 3D techniques, which has been effectively used in reverse 

engineering, industrial testing, and archaeology due to its advantages of simple operation, 

high resolution, and low cost could be utilized to capture the 3D information of air voids 

in a hardened concrete surface. The objective of this chapter is twofold. One is to 

investigate the feasibility of using the photometric stereo method to contrast the air voids 

in hardened concrete surfaces. The other one is to propose a method to segment the air 

voids using the captured 3D information without the use of contrast enhancement. The 

segmentation of paste and aggregates is not included in the scope of this research.  

In this chapter, a photometric stereo system with one Charge-coupled Device (CCD) 

camera and six light-emitting diodes (LED) lights was first set up and used to capture 

concrete surface images under different lighting conditions. Then, the performance of one 

basic photometric stereo model and two robust photometric stereo models was evaluated. 

Consequently, two air-void interpretation approaches were introduced for the air-void 

segmentation. Finally, a set of post-processing procedures were conducted to refine the 

air-void segmentation results. 
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4.1 Data Acquisition and Description 

4.1.1 Instrument Setup 

Conventional photometric stereo systems use three LED lights to reconstruct 3D 

information of an object. A recent study reported that the photometric stereo system with 

more LED lights could improve the reconstruction accuracy (Quéau et al. 2017). In our 

study, a photometric stereo system with six LED lights (as shown in Figure 9) was 

assembled to capture concrete surface images under different lighting conditions.  

  
(a) Overall photometric stereo system (b) LED lights setup 

Figure 9. Six LED light photometric stereo system 

The Sony α 7R II camera with a fixed-focus lens was used to capture the images of 

concrete specimens. The camera was located above the specimen and fixed by a tripod. 

The pixel resolution which is the actual distance on a sample surface mapped by one 

pixel is a key parameter for the camera system. The maximum magnification ratio 

represents the maximum ratio of the Complementary Metal Oxide Semiconductor 

(CMOS) sensor size and the captured object size. Both CMOS sensor size and the 

maximum magnification ratio decide the size of the smallest air voids that can be 

captured by the camera. In this research, if the maximum magnification ratio is 1, the 
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minimum focus distance would be 16 cm, and the size of the CMOS sensor would be 

3.58 cm × 2.38 cm. When the distance between the camera and the specimen surface is 

set to 16 cm, the smallest concrete surface area of size 3.58 cm × 2.38 cm exposed to the 

CMOS sensor would be captured. Under this situation, the pixel resolution could achieve 

4.5 μm/pixel. The specifications for both the camera and the lenses are listed in Table 1.  

The six LED lights are from Smart Vision Lights Inc. and the model used was 

LM75. For the LED lights, both the uniformity of illumination and the size of the 

illumination region are two important parameters. The LED light equipped with an 80° 

wide angle lens which could generate an approximately 16 cm × 16 cm uniform 

illumination at a working distance of 16 cm could provide a wide-angle uniform light 

projection, and could simulate the parallel light emitted from a point light source at an 

infinite distance. The six LED lights were fixed in a 16 cm diameter circle with equal 

spacing from each other and the tilt angle of each LED light was 45° which is shown in 

Figure 9(b). The LED light manager was used to control the six LED lights in turn and a 

total of six concrete surface images were captured for each concrete sub-specimen. The 

power supply which could provide a maximum of 24 V and 17 A output was selected as 

power input for the photometric stereo system. The size of the experiment bracket was 40 

cm × 40 cm ×20 cm. To minimize the uncertain disturbance caused by ambient light, the 

whole system was covered by shade cloth when in use. 
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Table 1. Technical Specifications of Sony α 7R II CCD Camera and Sony FE 50 mm 

F2.8 Macro Lenses 

 Technical specifications Value 

Camera 
Resolution 42.2 megapixel 
CMOS sensor 35.9 mm * 24.0 mm 
Pixel size 5.66 μm 

Lenses 

Focal length 20 cm 
Smallest focus distance 16 cm 
Maximum magnification ratio 1 
Aperture f/2.8 
Shutter time 1/16 
ISO 100 

4.1.2 Hardened Concrete Samples 

Three polished concrete specimens used in this study were provided by a concrete 

laboratory of the Texas Department of Transportation (TxDOT). All these three concrete 

specimens were drilled and sampled from an in-service concrete pavement. The size of 

the concrete specimens is approximately 15 cm × 8 cm. The concrete specimens were 

carefully polished according to the guidance in ASTM C457 (ASTM 2012). In order to 

capture the smallest air voids in the concrete specimens, the projected area of the camera 

should be as small as possible. However, a shadow would be generated by the camera 

lens if the camera is set in a very low position. In this research, the camera height was set 

to 18cm which was slightly larger than the smallest focus distance of the lens. A concrete 

surface area of the size of 4.5 cm × 3.1 cm was captured. In this way, the camera could 

take a high-resolution image of 5.66 μm/pixel which could capture air voids with a 

minimum diameter of 10μm and avoid shadow caused by the camera lens (Kosmatka et 

al. 2002). Each concrete specimen was divided into 5 sub-specimens and a total of 15 

concrete sub-specimens were collected. In this research, the total area for each concrete 

specimen was approximately 120 cm2 and the total area surveyed for each concrete 
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specimen was 69.75 cm2. The description of the concrete samples used in this research is 

shown in Table 2 and the concrete surface images are shown in Figure 10. The types of 

aggregates and pastes were observed and determined by an experienced petrographic 

technician using a microscope. 

It should be mentioned that a minimum concrete surface survey area is required by 

ASTM C 457 for reliable air-void measurements based on the maximum size of 

aggregate in concrete  (ASTM 2012). A larger survey area may reduce the uncertainty for 

the determination of air-void parameters in practice. However, the area of concrete 

surface surveyed should have very limited influence on the experiment result for testing 

the proposed automated segmentation method. 

Table 2. Description of Concrete Samples 

Specimen 
No. 

Total 
scan 

Description on Material constituent Air 
content 

Air void 
size Coarse aggregate Fine 

aggregate 
Cement 

1 5 Crushed siliceous 
gravel consisting of 
igneous, quartzite 
and minor amounts 
of other metamorphic 
rocks 

Quartz, and 
siliceous 
sand 

Type I 4.43% Mostly in 
small size 

2 5 Limestone Quartz, 
limestone, 
feldspar and 
chert 

Type I 7.26% Mostly in 
small size 
with few in 
medium size 

3 5 Limestone Quartz, 
limestone, 
feldspar and 
chert 

Type I 8.44% Large air-
void size 
variation 
with some 
big air voids 
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(a) Concrete specimen 1 (b) Concrete specimen 2 

 
(c) Concrete specimen 3 

Figure 10. Concrete specimen images 

4.2 Accuracy Assessment 

The accuracy of the segmented results was assessed manually by manual rating and 

the accuracy assessment procedure developed by Song et al. (Song et al. 2020b) was 

followed in this research. The purpose of the accuracy assessment procedure was to 

provide a quantitative evaluation of the accuracy performance of the proposed 3D air-

void segmentation method. The manual measurement procedure should not be required in 

the practical use of the proposed automated method. A 100 × 100 dot matrix was selected 

from each raw image with its corresponding segmentation result. Each dot in the dot 

matrix was manually annotated as air void or non-air-void by two human raters. In order 

to maximize the reliability and accuracy of the manually annotated ground truth data, the 

annotated results generated by different raters were carefully double-checked. If a 
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significant discrepancy was found between the annotated results generated by the two 

raters, the annotation process would be redone until the discrepancy was resolved. Then, 

pixelwise comparisons were conducted to measure the difference between the manually 

annotated results and segmentation results. An accuracy measurement MIoU (Mean of 

Intersection over Union) which is calculated by Equation (21) was utilized to evaluate the 

accuracy of the segmentation results. 

 𝑀𝑀𝐼𝐼𝑟𝑟𝑀𝑀 =
𝐼𝐼𝑟𝑟𝑀𝑀𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠  +  𝐼𝐼𝑟𝑟𝑀𝑀𝑖𝑖𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑎𝑎−𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠

2
 (21) 

where 𝐼𝐼𝑟𝑟𝑀𝑀𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠 is the accuracy measurement of air voids which equals  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

; 

𝐼𝐼𝑟𝑟𝑀𝑀𝑖𝑖𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑎𝑎−𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠 is the accuracy measurement of non-air-voids which equals 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇

; 

𝑇𝑇𝑃𝑃 is the number of dots that are correctly segmented as air voids; 𝑇𝑇𝑁𝑁 is the number of 

dots that are correctly segmented as non-air-void; 𝐹𝐹𝑃𝑃 is the number of dots that are 

incorrectly segmented as air voids; 𝐹𝐹𝑁𝑁 is the number of dots that are incorrectly 

segmented as non-air-void. 

4.3 Results and Analysis 

4.3.1 Surface Normal Reconstruction 

The performance of three photometric stereo models (i.e., the basic photometric 

stereo method, the Low-rank minimization method, and the SBL) were evaluated in this 

study. Computation cost and accuracy were two evaluation metrics that were utilized to 

evaluate the performance of the photometric stereo method. Among the three photometric 

stereo models, the basic photometric stereo method had the simplest computation 

structure assuming the concrete surface is an ideal Lambertian surface. The SBL was 
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theoretically the most ideal method because it considered the corruptions like attached 

shadow and specularity into BRDF. However, the Sparse Bayesian Learning required 

iterative optimization to calculate the best-fit parameters in BRDF, which may cause a 

higher computation cost. The performance of the Low-rank minimization method was 

theoretically between the basic photometric stereo method and the SBL method. Some 

useful depth information may be smoothed out because the method discarded corruption 

as outliers. A concrete specimen surface captured by the photometric stereo system is 

shown in Figure 11. All three photometric stereo methods were programed using Python.  

 

Figure 11. Concrete specimen surface 
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a) Basic photometric stereo method b) Low-rank minimization method 

Figure 12. Reconstructed 3D surfaces 

Figure 12 presents both the depth maps of the basic photometric stereo method and 

the Low-rank minimization method. The depth map of the SBL is not shown in Figure 

12. In this experiment, the SBL took 2 hours to calculate the normal vector of only 8,000 

pixels. One possible reason could be that the six LED lighting directions were not 

sufficient for the SBL to construct a suitable piecewise linear function (Equation (8)) to 

approximate the BRDF model. Consequently, a great number of iterations were required 

for the SBL method to approximate the best-fit parameters in each pixel. Therefore, the 

SBL was not chosen for further analysis. In Figure 12, both the reconstructed concrete 

surfaces using the Basic photometric stereo method and the Low-rank minimization 

method show a slight slant. It can be clearly seen from Figure 12 that the Basic 

photometric stereo method presents more depth information than the Low-rank 

minimization method. Even though the normal vector information of some aggregates has 

some bias, the air voids can be clearly seen in the result of the Basic photometric stereo 

method. The Low-rank minimization method reduces the normal vector bias in aggregate 

regions, but the normal vectors in air voids regions are also over smoothed. Some air 
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voids cannot be clearly distinguished in the result of the Low-rank minimization method. 

A possible explanation is that the Low-rank minimization method discarded the attached 

shadows caused by air voids as outliers, and the normal vectors of most of the air-void 

regions were smoothed out. In addition, the Low-rank minimization method took 435 

seconds to calculate the normal map of a concrete surface sample, while the Basic 

photometric stereo method took only 10 seconds. Based on the above comparisons and 

considerations, the Basic photometric stereo method was selected for the concrete surface 

normal calculation in the research work that followed. 

4.3.2 Air-Void Segmentation 

4.3.2.1 Surface Plane Approach 

The surface plane approach requires the depth information of a concrete surface to 

distinguish air voids from the solid phase. The result of surface normal integration that is 

shown in Figure 12(a) is not a flat plane but a skewed plane. The slight skewness could 

be caused by error accumulation during the surface normal integration process. A 

Gaussian filter with a large 𝜎𝜎2 of 50 was utilized in this study to remove low-frequency 

outliers. The concrete surface profile processed with a Gaussian filter is shown in Figure 

13. The biased concrete surface profile is flattened, and the air voids are well retained. 
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Figure 13 . Gaussian filter processed concrete surface profile 

 

The air-void segmentation result with a rectified surface profile is shown in Figure 

14. The edge of the rectified concrete surface was incorrectly identified as air voids. The 

reason might be that the edges of the concrete profile were not well rectified by the 

Gaussian filter. The Surface Plane Approach assumes that the concrete surface is a flat 

plane, and the air voids are the hollows in the concrete surface. The regression equation 

as shown in Equation (12) was used to estimate the concrete surface plane. The points 

below the regressed concrete surface plane were classified as air voids. The regressed 

concrete surface was bent and distorted due to imperfect illumination and error 

accumulation during the surface normal integration process and the Gaussian filter could 

not completely rectify the edges of the integrated concrete surface. Consequently, those 

points in the edge region of the concrete surface were incorrectly segmented as air voids. 

A portion of dark aggregates and transparent aggregates were incorrectly identified as air 

voids. In our study, the surface plane method did not retain the shape of air voids well. 

The morphology difference between the segmented air voids and aggregates was not 

significant enough, which discouraged further refinement. Therefore, the surface plane 

based approach was not chosen for further analysis. 
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Figure 14. Air voids segmentation result with rectified concrete surface 

4.3.2.2 Normal Map Approach 

The surface normal approach measured the surface normal angle 𝜃𝜃 with the Z axis 

(calculated by Equation (11)) of each pixel based on the calculated normal map. The 

measurement result is presented in Figure 15. Nearly 90% of pixels in the observed 

concrete surface region have a slant angle under 15°. This result is consistent with the 

expectation on the concrete surface in which most regions have no air voids and the air 

voids only are distributed in a small portion of the concrete surface. Typically, the air 

voids in the concrete surface are regions with large slant angles. In our research, only 

10% of the pixels in the observed concrete surface region had a slant angle larger than 

15°. The maximum surface angle 𝜃𝜃 is around 43° because the illumination angle of the 

LED lights in this study was set at 45°. The actual concrete air voids have a sharper 

surface slant angle than the measurement result. It was because the concrete surface point 

with a slant angle larger than 45° would be blocked and could not be illuminated. 

Therefore, the maximum surface angle 𝜃𝜃 depends on the set-up slant angle of the LED 
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lights of the photometric stereo system.  

Figure 16 presents the air-void segmentation results with surface angles 15°, 27° and 

35°. The white pixels are air voids, and the black pixels represent the concrete surface. 

Many false positives are observed in Figure 16(a). Compared with the concrete specimen 

surface, it is obvious that some dark aggregates and transparent aggregates are identified 

as air voids. For dark aggregates, a reasonable explanation is that the basic photometric 

stereo method assumes the observed surface to be a Lambertian surface, while the 

polished concrete surface is actually not an ideal Lambertian surface. Both diffuse and 

specular reflectance occur on the specimen surface, especially on the polished aggregates. 

The transparent aggregates are another main reason causing false positives. The light 

passing through transparent aggregates were reflected by the cement under the 

aggregates. The slant angle of the cement under transparent aggregates was captured and 

a slant surface normal vector was calculated in the region of transparent aggregates. The 

bottoms of the air voids are also not correctly segmented, and the reasons are twofold. 

For most of the shallow air voids, the normal vectors at the bottom of air voids have 

relatively small surface angles. By selecting a threshold of surface angle larger than 15°, 

those air-void pixels that had small surface angles would always be neglected as non-air-

voids. For most of the deep air voids, the bottom of the air voids is not well illuminated. 

The photometric stereo method assumes that the slant surface shows different 

illumination intensities under various illumination conditions. The 45° incident light 

could be blocked by the edge of deep air voids, which made the bottom of the air voids 

show the same dark color under various illumination conditions. Consequently, the 

photometric stereo method may have recognized the bottom of the air voids as a ‘surface 
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plane’ which had surface angles approximately to 0°.  

As shown in Figure 16(b) and 15(c), by choosing a larger surface angle threshold, 

the false positives caused by aggregates are eliminated to some extent, but the number of 

missing air voids is increasing. Increasing the surface angle threshold of air voids can 

significantly reduce false positive air voids, but some shallow and small air voids could 

be omitted causing more false negatives. In order to capture most of air voids in concrete 

specimen surfaces, 15° was selected as the threshold of surface angle. The surface pixels 

with a slant angle larger than 15° were segmented as air voids. It should be noted that the 

15 degree threshold was used to separate air voids and concrete surface/solid phase based 

on the experiment data from this research. It should also be mentioned that some small air 

voids were missed in the segmentation result of the normal map method, even though the 

high-resolution camera could capture the smallest air voids of 10 μm in diameter. 

Actually, different types of voids including entrained air voids, voids in aggregates, and 

entrapped air voids could be segmented as air voids using this method. 

  
a) Probability density distribution b) Cumulative probability distribution 

Figure 15. Measurement results of surface angle 𝜃𝜃 
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a) Surface angle threshold at 15° b) Surface angle threshold at 27° 

 
c) Surface angle threshold at 35° 

Figure 16. Air voids segmentation results with surface angle thresholds 15°, 27° and 35° 

4.3.2.3 Segmentation Refinement 

Figure 17 shows the segmentation results refined by the FillHole method. It can be 

clearly seen that the holes of the segmented shapes are filled up. It should be mentioned 

that not only the ‘holes’ in air voids, but also the ‘holes’ in aggregates were filled up. 

After numerous tests, 0.4 was selected as the threshold for distinguishing air voids and 

aggregates. The segmentation result is presented in Figure 18. The accuracy variations of 

some concrete specimens under different area ratios are shown in Figure 19. By 

investigating Figure 19, both sample 1 and sample 2 achieve the highest MIoU with an 

area ratio at 0.4. However, due to the diversity of aggregates, 0.4 may not be always the 

best threshold for every concrete specimen to separate air voids and aggregates. Some 

correctly segmented air voids could have an aggregate appearance and some incorrectly 
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segmented air voids could have an air-void appearance. The most significant difference 

between the segmented shape with a large area ratio and the segmented shape with a 

small area ratio would be in the probabilities for which the segmented shape is an air void 

or an aggregate. The segmented area with a small area ratio is more likely to be an 

aggregate, and the segmented area with a large area ratio is more likely to be an air void. 

It is worth noting that the dark or transparent aggregates with round shapes may not be 

ideally removed by using the AreaRatio method. Most of the voids in aggregates are well 

removed by the AreaRatio method due to the irregular shape. However, the AreaRatio 

method may not work well for rounded or well-rounded voids in aggregates. As shown in 

Figure 18(c), there are many tiny white dots on the left of the image. The white dots are 

rounded voids in coarse aggregates. Both issues could be alleviated by further improving 

3D reconstruction technologies, combining depth/normal information with color 

information, and using Artificial Intelligent methods. Given the limited space of this 

article, this issue will not be furtherly discussed. As shown in Figure 19(c), sample 3 

achieves the highest MIoU with an area ratio less than 0.4 but 0.4 is still selected as the 

threshold value to eliminate false positive air voids. One of the reasons was that those 

large aggregates could be effectively removed when the area ratio was larger than 0.4. 

And the concrete specimens with a best-fit area ratio less than 0.4 always showed a 

comparable MIoU when the area ratio was set to 0.4. 



 

63 

  
i) Before ii) After 
(a) Sample in specimen 1 

  
i) Before ii) After 
(b) Sample in specimen 2 

  
i) Before ii) After 
(c) Sample in specimen 3 

Figure 17. Segmentation result using FillHole 
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(a) Sample in specimen 1 (b) Sample in specimen 2 

 
(c) Sample in specimen 3 

Figure 18. Segmentation result using AreaRatio 

 

  
a) Sample in specimen 1 b) Sample in specimen 2 
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c) Sample in specimen 3 

Figure 19. Segmentation accuracy under various of area ratios 

 

The accuracy statistics of the segmented concrete specimen are shown in Table 3. In 

Table 3, both the MIoU measurements calculated with an area ratio of 0.4 and best-fit 

area ratio are presented. The best-fit area ratio is the area ratio that corresponds to the 

highest segmentation accuracy. No significant difference was found between the 

segmentation accuracy of various concrete specimens. The MIoU of the segmentation 

result with an area ratio of 0.4 is 0.725 and the MIoU of the segmentation result with 

best-fit area ratio is 0.797, which indicates that the proposed method can distinguish the 

air voids from the concrete surface and possesses a comparable accuracy with the manual 

method. The best-fit MIoU is a little higher than the MIoU with an area ratio of 0.4 and 

most of the concrete samples reach the highest segmentation accuracy with area ratios 

around 0.2. Although some concrete samples could achieve a more accurate segmentation 

result by choosing an area ratio of 0.2, 0.4 is more robust for removing large false 

positives caused by large dark aggregates. The total computation time for the proposed 

air-void segmentation method was around 20s by using a desktop equipped with an ‘Intel 

i7 8th gen’ CPU and 32GB RAM. 
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Table 3. Segmentation Accuracy for Concrete Specimens 

Specimen 
No. 

Sub-
specimen 
No. 

IoU with area ratio 0.4 Best-fit IoU 
Air 
voids 

Non-air 
voids MIoU Air 

voids 
Non-air 
voids MIoU Area 

ratio 

1 

1 0.623 0.822 0.722 0.652 0.821 0.737 0.24 
2 0.754 0.797 0.775 0.754 0.797 0.775 0.4 
3 0.560 0.742 0.651 0.645 0.761 0.703 0.15 
4 0.664 0.744 0.704 0.843 0.857 0.850 0.26 
5 0.725 0.773 0.749 0.779 0.801 0.790 0.2 

2 

1 0.846 0.865 0.856 0.846 0.865 0.856 0.4 
2 0.627 0.704 0.665 0.716 0.743 0.730 0.23 
3 0.607 0.712 0.659 0.746 0.788 0.767 0.22 
4 0.718 0.766 0.742 0.819 0.825 0.822 0.25 
5 0.737 0.785 0.761 0.844 0.854 0.849 0.2 

3 

1 0.637 0.716 0.676 0.725 0.755 0.740 0.27 
2 0.666 0.740 0.703 0.853 0.857 0.855 0.18 
3 0.780 0.813 0.797 0.875 0.879 0.877 0.21 
4 0.645 0.721 0.683 0.833 0.828 0.830 0.08 
5 0.709 0.753 0.731 0.764 0.773 0.769 0.21 

Average  0.725  0.797  
 

4.4 Summary 

In this chapter, a photometric stereo based automated air-void segmentation method 

was proposed. The new method can be applied directly to the concrete specimen without 

contrast enhancement and could distinguish air voids from the concrete surface time-

efficiently. The research results have shown that:  

(1). Compared with the SBL and the Low-rank minimization method, the Basic 

photometric stereo method shows a good performance both in 3D reconstruction 

accuracy and computation cost. However, the Basic photometric stereo method is 

designed for Lambertian surfaces and the polished concrete surface cannot be considered 

as an ideal Lambertian surface. Specularity which is a kind of non-Lambertian effect can 

be found in concrete surface images and lead to errors. According to the size of the 

specularity, the specularity observed in the concrete image can be classified into two 
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categories. The specularity with a small size can always be found in transparent 

aggregates and has a limited influence on air voids segmentation, whereas the specularity 

with a large size which can be found in dark aggregates has a significant influence on air-

void segmentation. A photometric stereo method that incorporates the image corruption 

into the surface normal calculation with an acceptable computation cost could improve 

the accuracy of air-void segmentation;  

(2). The shadow caused by air voids should be reserved for the photometric stereo 

method to correctly extract the normal vector of air voids. The photometric stereo method 

which considers the image corruptions as outliers could over smooth the concrete surface 

normal map and neglect air voids;  

(3). Compared with the surface plane approach, the normal map approach is more 

effective. On one hand, more computation procedures are required by the surface plane 

approach. The Gaussian filter-refined surface normal integration method which takes 

more than 5 mins to be finished is required by the surface plane approach. On the other 

hand, the surface normal approach tends to retain more boundary and shape information 

of air voids than the surface plane approach;  

(4). The FillHole method can fill up the ‘holes’ in the bottom of most air voids. 

However, the FillHole method does not work well when the segmented air void does not 

show in the shape of a closed circle. Those unfilled air voids generally have irregular 

shapes and are prone to be removed by the AreaRatio method which causes false 

negatives. A photometric stereo system with more lighting directions may reduce such 

false negatives; 
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(5). The AreaRatio method could be designed and used to eliminate the false 

positives caused by dark aggregates and transparent aggregates like chert and quartz. For 

dark aggregates, the specular reflectance on the specimen surface leads to biases in 3D 

reconstruction results. For transparent aggregates, the light passing through transparent 

aggregates is reflected by the cement paste under the aggregates instead of the aggregate 

surface. The photometric stereo method fails to reconstruct an accurate 3D surface of 

neither the dark aggregates nor the transparent aggregates, which therefore leads to 

confusion between air voids and the dark or transparent aggregates during the 

segmentation process. The false positives caused by the coarse aggregates are much 

easier to be eliminated than the false positives caused by the fine aggregates such as 

natural sand. The false positives caused by fine aggregates always have similar 

morphology characteristics as air voids. The fine dark aggregates and fine transparent 

aggregates are the two main error sources of false positives in this study. 
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5. REFINEMENT OF THE AUTOMATED AIR-VOID SEGMENTATION 

RESULTS USING DEEP LEARNING METHODS 

According to the research results in chapter 4, the photometric stereo method does 

contrast the air voids from the hardened concrete surface to some extent, while the air 

voids cannot be accurately segmented from the contrasted concrete surface using 

conventional image processing methods. As a subarea in artificial intelligence (AI), deep 

learning (DL) has achieved great success in semantic segmentation. During the semantic 

segmentation process, a classification label is predicted on each pixel, which may greatly 

fulfill the objectives of air-void segmentation. The deep convolutional neural networks 

(DCNN), which is an important branch in DL, show good potential in detecting target 

objects in noisy images at pixel resolution. Another advantage of DCNN is the end-to-

end segmentation manner. Significant fewer human interventions are required to be 

involved in the segmentation work. Song et al. (Song et al. 2020b) made an innovative 

attempt at using DCNN methods to segment the phases in hardened concrete surfaces. 

The proposed air-void segmentation method outperformed the contrast-enhancement 

method and achieved much higher accuracy in the boundary area between each phase. 

However, the air voids still need to be highlighted using orange chalk powders, which 

made the method not fully automatic. 

The objective of this chapter is to propose an end-to-end automated segmentation 

method that could detect air voids in concrete surfaces without contrast enhancement. In 

the chapter, an air-void image dataset including a set of surface normal images and air-

void annotations was first developed. The surface normal images were generated from 

the surface normal vectors of concrete surfaces which were estimated using the 
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photometric stereo method. The annotations were first obtained using the contrast-

enhancement method and then refined by human raters. Consequently, as a DCNN 

model, U-Net was trained using the air-void dataset for detecting air voids in hardened 

concrete images. Finally, the segmentation results were manually evaluated using a set of 

accuracy measurement indexes. 

5.1 Data Acquisition and Description 

5.1.1 Hardened Concrete Samples 

Deep learning methods require a large-scale image dataset for training purposes. 

Therefore, additional hardened concrete specimens were requested and provided by the 

concrete laboratory of the Texas Department of Transportation (TxDOT). Considering 

the fact that the appearance of the concrete specimens could affect the semantic 

segmentation results, the concrete specimens with various aggregate types and cement 

types were selected as experimental specimens. All the selected concrete specimens were 

drilled and sampled from an in-service concrete pavement structure. The details of the 

experimental specimens are described in Table 4. The specimen surfaces were polished 

according to the specifications in ASTM C457. To fit the field-of-view of the 

photometric stereo system, the original samples were sub-sliced into 4cm × 5cm small 

pieces, and a region of 3cm × 4.5cm was captured as the field-of-view. Consequently, A 

total of 12 pieces of sliced concrete samples were utilized for the training purpose. For 

each category of the hardened concrete samples, one slice was utilized for testing 

purposes. There were a total of 5 pieces of sliced concrete samples utilized for the testing 

purpose. 
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Table 4. Description of experimental specimens 

Specimen 
No. 

Total 
scan 

Description of material constituents 
Coarse aggregate Fine aggregate 

1 3 Limestone Quartz, limestone, chert, granite 
and feldspar 1(test) 

2 
2 

Limestone Manufactured sand, quartz, 
feldspar and chert 1(test) 

3 
1 

Limestone, quartz and chert Quartz, limestone, sandstone, 
igneous and siliceous 1(test) 

4 
3 Limestone, siliceous, igneous 

chert and quartzite 
Limestone, siliceous, igneous 
chert and quartzite 1(test) 

5 
3 Sandstone, limestone and 

igneous 
Quartz, limestone, sandstone, 
igneous and siliceous 1(test) 

 

5.1.2 Data Annotation and Registration 

The labels of training data were first annotated using a contrast-enhancement 

method, and then manually refined. Acrylic ink and a rubber brayer were adopted to 

blacken the polished concrete surfaces (Fonseca and Scherer 2015). The applied acrylic 

ink could generate a thin dark layer without filling out air voids.  In case some aggregates 

cannot be ideally painted, the missed regions were carefully re-painted with a marker 

pen. The specimens were then left to air dry at room temperature for 30 minutes. After 

the ink was dried thoroughly, a barium sulfate powder with an average particle size of 

3μm was used to highlight the air voids into white color. The barium sulfate powders 

were scattered on the hardened concrete surface and then pressed into air voids using 

hand fingers. The excess powders were removed with the edge of a silicone spatula. The 

images of the contrast enhanced concrete surfaces were captured using the photometric 

stereo system that is shown in Figure 9. The system consisted of six LED lights and was 

designed for illuminating the concrete samples in different directions. The details of the 

setup and utilization of the photometric stereo system are described in section 4.1.1 

‘Instrument Setup’ section. All six LED lights were lighted to generate a uniform 
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illumination on the concrete surfaces. Finally, an image-processing software (ImageJ) 

was used to segment the air voids from the enhanced concrete images by setting a gray 

value threshold. The Otsu method was utilized to provide an optimal threshold. In the 

case when the Otsu method did not generate an ideal threshold, the generated threshold 

may be manually adjusted. The non-air-void regions in the concrete images such as 

cracks, voids in aggregates and the region with residual barium sulfate powder were 

double-checked and removed by the rater using Adobe Photoshop. It is worth mentioning 

that the contrast enhancement process is only used for data preparation. During the 3D 

reconstruction and image segmentation process, no contrast enhancement is required for 

concrete samples. 

The raw concrete images and the enhanced concrete images were captured in two 

different scans in sequence. The hardened concrete surface was first scanned using the 

photometric stereo system to obtain the 3D surface normal image of the hardened 

concrete surface. The concrete specimen was then taken away from the testbed of the 

photometric stereo system for contrast-enhancement procedure. After the enhancement 

procedure, the concrete sample was relocated to the testbed and scanned to capture the 

contrast-enhanced image. Even though careful locating was exercised to ensure the 

hardened concrete was aligned to the same position as the first scan, slight displacements 

were still observed between the two scans. The DCNNs require accurate annotations, and 

the labels and image features are expected to correspond at the pixel level. Therefore, the 

images of the two scans were manually adjusted using Adobe Photoshop to match up at 

each pixel in the two scans. An example of a hardened concrete image and its annotated 

air-void image is shown in Figure 20. 
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(a) Hardened concrete surface (b) Annotated air voids 

Figure 20. An example of the manually annotated air-void image. 

5.1.3 Surface Normal Image Capturing 

As discussed in Chapter 3, various photometric stereo methods were compared for 

the extraction of 3D air-void information. The conventional photometric stereo method 

that was proposed by Woodham outperformed the other photometric stereo methods and 

could extract the gradient of air voids. The Woodham’s photometric stereo method, 

which is shown in Equation (2), utilizes the relationship between incoming lighting 

direction 𝐿𝐿 ∈ ℛ𝑘𝑘×3, surface normal 𝑁𝑁 ∈ ℛ3×1, and observed intensity 𝐼𝐼 ∈ ℛ𝑘𝑘×1 to 

compute the surface normal of each pixel (Woodham 1980).  

A diagram of an estimated surface normal vector on a hardened concrete surface is 

shown in Figure 21. nx, ny, and nz are the components of surface normal vector in x, y and 

z directions at the point (x,y,z). The components nx, ny, and nz in the computed surface 

normal vector were then normalized to the (-1, 1) scale. Whereas the DCNNs are 

designed for RGB images and the intensity of pixels in each channel is between 0 to 255. 

To ensure the surface normals compatible with the DCNNs, the nx, ny, and nz of each 

pixel were mapped from (-1, 1) to (0, 255). An example of the mapping process with a 4 
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pixels × 4 pixels image is shown in Figure 22. Nx, Ny, and Nz are surface normal matrices 

that contain the components that are involved in x, y, and z directions. The r, g, and b are 

pixel intensities in red, blue, and green channels. For example, nx11, ny11, and nz11 are the 

components of the surface normal at pixel (1,1) in x, y, and z directions. The r11, g11, and 

b11, which are mapped by nx11, ny11, and nz11, are the pixel intensity of the pixel (1,1) in 

red, blue, and green channels, respectively. 

 

Figure 21. Illustration of surface normal vector on a concrete surface.  

 

 

Figure 22. Mapping surface normal to RGB space.  
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5.2 Image Augmentation 

To make the training process more efficient, a set of data augmentation procedures 

were conducted on the training data. Considering the shapes of the air voids can be a 

critical differentiation factor for distinguishing the air voids, the ineffective modifications 

can lead to a decreased segmentation accuracy. For example, the compressing and 

stretching modifications, which change the height and width ratio of the air-void image, 

change the shape of the air voids and thus make the air voids confused with the air-void 

like noises. In this research, the effectiveness of using various image augmentation 

procedures was evaluated. Random combinations of flipping, rotating, and scaling 

modification were applied. Scaling and rotating operations significantly increased the 

number of images for the training. However, both scaling and rotating operations 

generated a margin between the augmented images and the edges of the pictures. 

Consequently, two fill modes were introduced to fill the margins. Three image 

augmentation strategies, as shown in Table 5, were developed to investigate the best 

augmentation strategy for the segmentation of air-void images. An example of the 

augmented image using different augmentation strategies is shown in Figure 23. During 

the training process, the images were randomly cropped into 256 pixels × 256 pixels 

small pieces and 10,200 cropped images were generated. 80% of the crops were adopted 

as training data and 20% of the crops were adopted as validation data. 

Table 5. Augmentation strategies 

Augmentation 
Strategy Flipping Rotating Scaling FillMode Images for 

Training 
Augmentation 1 √ √ √ wrap 27,000 
Augmentation 2 √ √ √ constant 27,000 
Augmentation 3 √ × × × 18,000 
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(a) Original image (b) Augmentation 1 (c) Augmentation 2 (d) Augmentation 3 

Figure 23. Augmented images using different augmentation strategies 

5.3 Accuracy Assessment 

The accuracy assessment procedure in this section is similar wot the accuracy 

assessment procedure in 3.3 ‘Accuracy Assessment’. An accuracy measurement 

procedure that is similar to the Modified Point Count method (ASTM 2012) was utilized 

for evaluating the accuracy of the proposed method. Song et al. also adopted a similar 

accuracy measurement procedure in one of their previous research studies (Song et al. 

2020b). A 100 × 100 dot matrix was generated and appended to both the segmented 

images and the raw concrete images. The pixels in the raw concrete images that are 

corresponding to the appended dot-matrix were manually observed by an experienced 

petrographer. According to the observation, the dots in the dot matrix were labeled as air 

voids and non-air voids. The dots in the dot matrixes that were appended to the 

segmented images were also labeled by identifying the color of the corresponding pixel 

in the segmented images. The dot that was appended to a white pixel was labeled as air 

voids. The dot that was appended to a black pixel was labeled as non-air voids. The 

labeling process for the segmented images was done automatically using a program 

coded in Python. Consequently, accuracy measurements including MIoU (Mean of 

Intersection over Union), P (precision), R (Recall), and F1, which can be calculated by 

Equations (22)-(27), were utilized to evaluate the accuracy of the segmentation results. 
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𝐼𝐼𝑟𝑟𝑀𝑀𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃 +  𝐹𝐹𝑁𝑁
 (22) 

𝐼𝐼𝑟𝑟𝑀𝑀𝑖𝑖𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑎𝑎−𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠 =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 +  𝐹𝐹𝑁𝑁 +  𝐹𝐹𝑃𝑃
 (23) 

𝑀𝑀𝐼𝐼𝑟𝑟𝑀𝑀 =
𝐼𝐼𝑟𝑟𝑀𝑀𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠  +  𝐼𝐼𝑟𝑟𝑀𝑀𝑖𝑖𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑥𝑥𝑖𝑖𝑑𝑑𝑠𝑠

2
 (24) 

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (25) 

𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (26) 

𝐹𝐹1 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (27) 

 

𝑇𝑇𝑃𝑃 is the percentage of dots that are correctly segmented as air voids; 𝑇𝑇𝑁𝑁 is the 

percentage of dots that are correctly segmented as non-air-void; 𝐹𝐹𝑃𝑃 is the percentage of 

dots that are incorrectly segmented as air voids; 𝐹𝐹𝑁𝑁 is the percentage of dots that are 

incorrectly segmented as non-air-void. 

5.4 Results and Analysis 

5.4.1 Surface Normal Image Generated Using Photometric Stereo Method 

An example of the raw concrete surface and the mapped surface normal image is 

shown in Figure 24. Compared with the original concrete surface image, the surface 

normal image increased the contrast in uneven areas. The areas with a slant surface 

normal can be distinguished by identifying the color changes on the surface normal map. 

The areas with uniform pale green are the solid phase (aggregates and paste). The round 
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areas with large color variations in a circle are the air voids.  

 

  

(a) Original concrete surface image (b) Mapped surface normal image 

Figure 24. The air voids in original concrete surface image and surface normal 

image. 

As shown in Figure 24, the air voids in the mapped surface normal image present a 

clear pattern and can be easily identified by naked eyes. Figure 25 presents various 

appearances of air voids and air-void like noises on concrete surface normal images. As 

shown in Figure 25, the regions of some dark or transparent aggregates also present a 

color variation. The photometric stereo method estimates the surface normal of a target 

object by the intensity of reflected light. Under various lighting directions, a slant surface 

presents a great intensity variation, while a flat surface generates an identical surface 

intensity. The dark aggregates were apt to produce specularities under a specific lighting 

angle and thus lead to a biased slant surface normal estimation. For the transparent 

aggregates, the lights are transmitted down to the bottom of the aggregates and reflected 

by the paste. Biased slant surface normal estimations were produced by the transparent 

aggregates. Consequently, the photometric stereo method inaccurately estimates the 

normal information in the region within some transparent aggregates and dark aggregates. 
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The biased estimation generated air-void like appearances in the surface normal map. The 

similarity made the automated identification of air voids in hardened concrete a 

challenge. In addition, the air voids are not the only ‘hollows’ in concrete surfaces. The 

voids and cracks in aggregates are another kind of ‘hollows’ in concrete surfaces that can 

be mistaken as air voids. 

 

    
(a) Air void 1 (d) Transparent aggregate 

    
(b) Air void 2 (e) Cracks in aggregate 

    
(c) Air void 3 (f) Void in aggregate 

  

 

(g) Drak aggregate  

Figure 25. Air-void appearances and air-void like noises generated by components on 

concrete surfaces. 

The air voids with different sizes and depths presented different appearances. Inside 
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some deep air voids, a ‘flat region’ can be observed. The ‘flat regions’ were caused by 

occlusions. The lights were blocked by the edge of air voids and did not reach the bottom 

of the air voids. Thus, the photometric stereo system failed to capture the information at 

the bottom of the air voids. The system assumed those regions as a flat plane because 

there was no intensity variation captured in the blocked regions. On the other hand, in 

shallow air voids, the color variation was too little and sometimes can be mistaken as 

non-air-void regions. Therefore, even though the air voids were highlighted in the surface 

normal image, the diversity of air-void appearances and various air-void like noises made 

the air-void detection a tough work.  

5.4.2. Evaluation of Different Augmentation Strategies  

Table 6 presents the evaluation results of the U-Net model trained with different 

image augmentation strategies. All 3 models were trained for 780 epochs to ensure 

convergence. As shown in Table 6, the training result of Augmentation 1 is almost the 

same as the evaluation result of Augmentation 2. Whereas a 3.7% difference is observed 

between the evaluation results of validation data. The comparison between Augmentation 

1 and Augmentation 2 indicates that the ‘constant’ fill mode helps the U-Net model 

improve robustness. By comparing Augmentations 1 and 2 to Augmentation 3, the U-Net 

model which was trained with the images augmented with the strategy of Augmentation 

3, is significantly better than the other two U-Net models. It is worth noting that the 

number of images generated by Augmentation 3 is 2/3 of the total images generated by 

Augmentation 1 or Augmentation 2. A reasonable explanation for the observation is that 

the shape information, which is important for distinguishing air voids, is well retained in 

the training data using the strategy of Augmentation 3. Consequently, the strategy of 
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Augmentation 3 was used in the research. 

Table 6. Training results of U-Net model using different augmentation strategies 

Augmentation Strategy Epochs Learning Rate Best Train MIoU Best Val MIoU 
Augmentation 1 780 0.001 0.681 0.610 
Augmentation 2 780 0.001 0.691 0.647 
Augmentation 3 780 0.001 0.814 0.706 

 

5.4.3 Air-Void Segmentation Results of U-Net model 

The U-Net was trained using surface normal images and annotated air-void masks. 

The model was trained for 780 epochs and the training work took about 15 hours to 

accomplish. The variations of MIoU and loss during the training process were recorded in 

each epoch and presented in Figure 26. 

 

  

Figure 26. The loss and MIoU curves of the U-Net model training. 

 

The loss estimates the discrepancy of predicted results and labels, and a lower loss 

indicates a better segmentation performance. The loss curve presents some fluctuations 

and shows a decreasing trend. The variation trend of the loss curves slows down with the 
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increase of the number of epochs and becomes stabilized when the loss value approaches 

0.005. The train_MIoU and val_MIoU measure the similarity of predicted results and 

labels for the training set and validation set, respectively, and a higher MIoU indicates a 

better segmentation performance. The MIoUs of the training dataset and validation 

dataset are combining, and an increasing trend is found for both curves. The loss curve 

reversely correlates with the MIoU curves. As shown in Figure 26, the decreasing trend 

of the loss curve stabilizes after 650 epochs, which indicates that the model is converged. 

The size of the input of the U-Net model was 256 pixels × 256 pixels which was 

much smaller than the size of the raw concrete surface images. Consequently, the raw 

concrete surface images were cropped into 256 pixels × 256 pixels small pieces and fed 

into the trained U-Net, one cropped image at a time to generate an output. After all the 

cropped images were processed, the processed images were then stuck together as the 

segmentation result of the raw concrete surface image. The U-Net model computed on 

each pixel and output a 256×256 matrix. Each value in the matrix was from 0 to 1, where 

0 means the pixel was most likely from the background (non-air-void) and 1 means the 

pixel was most likely from the target object (air voids). Some raw output values that are 

close to 0 are found inside some air-void regions. To make a binary air-void 

segmentation, the selection of a threshold between 0 to 1 is needed to classify a pixel as 

air void or non-air void. The accuracy measurements of the test samples with different 

thresholds are presented in Figure 27. As the threshold increases, the IoUs show slight 

downward trends. Consequently, 0.1 was chosen as the threshold for achieving the best 

MIoU.  To evaluate the influence of the threshold to air-void parameters, the estimated 

air-void parameters of each threshold were also calculated. As the concrete samples did 
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not come with the measured paste content, 27%, which is recommended as a good 

estimation in FHWA petrographic manual, was used as the estimated paste content 

(Walker et al. 2006). The air-void parameters were measured using the Procedure B 

Modified Point-Count Method. As shown in Figure 27(d) and 26(e), it can be observed 

that the best-fit threshold for air content is 0.5 and the best-fit threshold for spacing factor 

is 0.6. The results indicate that the importance of the segmentation error in different 

locations is not the same. By observing the segmentation results, it can be found that a 

lower threshold helps to reduce the FN segmentation error inside large air voids, while a 

lower threshold increases the FP segmentation errors which are mainly FP fine air voids. 

Most of the FP fine air voids are caused by the misidentified fine aggregates. The 

discretely distributed fine FP air voids have a significant impact on the measurement of 

air content and spacing factor. It is worth mentioning that even though a lower threshold 

has a significant influence on FP fine air voids, but it barely impacts the segmentation 

result of TP fine air voids. Consequently, the correct segmentation of fine air-voids and 

aggregates is highly important for the accurate measurement of air-void system. 

 

  
(a) IoUair voids (b) IoUnon-air voids 
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(c) MIoU (d) Air content

(e) Spacing factor

Figure 27. Accuracy measurement of test samples with different thresholds. 

(a) Sample 1

(b) Sample 2
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(c) Sample 3 

   
(d) Sample 4 

   
(e) Sample 5 

Figure 28. Air-void segmentation results of test concrete samples. The sequence of 

each image in the subplot is raw hardened concrete image, raw segmentation result 

(raw output by the U-Net model), and binary segmentation result (segmented air-void 

image using 0.1 as threshold). 

 

The segmented concrete images with the threshold of 0.1 are presented in the binary 

segmentation results of Figure 28. The air voids are labeled as white, and the non-air 

voids regions are labeled as black. As discussed previously, many air-void like noises can 

be generated in surface normal images using photometric stereo methods. The trained 

model correctly identified most of the biased regions and only a small percent of the 

biased regions was incorrectly identified as air voids. Some well-rounded fine aggregates 

can be false positively segmented as air voids, while the percentage of those FP 
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segmentations is not significant. In addition, most of the voids and cracks in aggregates 

were well identified as non-air voids. However, some well-rounded voids in aggregates 

were still incorrectly segmented as air voids. Also, some missing air voids were observed 

in the segmentation result. Most of the missing air voids were deep air voids. Those air 

voids generally could be easily identified using naked eyes, but these kinds of air voids 

presented a significantly different appearance in the surface normal map, which caused 

interference to the correct air-void image segmentation. One of the reasons that led to the 

missing segmentation could be the quantity of training data was not sufficient for the U-

Net to learn the pattern of tiny or shallow air voids. Another explanation could be the 256 

pixels × 256 pixels sliced training images were not big enough to entirely contain some 

large-size air voids. Consequently, the U-Net model failed to capture valid features to 

represent the large size air voids. As shown in Figure 29, 3 image sizes were selected to 

make a random cropping from an image with a large air void and an image with a large 

aggregate. It can be clearly observed that the air void and the aggregate can barely be 

differentiated from the 256 pixels × 256 pixels cropped images. As the image size 

becomes larger, the patterns of air voids and aggregates can be identified more easily. 

 

 

 



 

87 

   
(a) Air voids (b) Aggregates 

Figure 29. Random cropping using different cut sizes 

 

To furtherly quantify the observations of the segmentation results. The accuracy 

measurements for the testing samples are presented in Table 7. The testing samples were 

first scanned using the photometric stereo system and the surface normal images were 

then mapped from the estimated surface normal vectors. All the air-void segmentation 

results were output by the trained U-Net512 model based on the surface normal images. 

Equations 19-24 were adopted for calculating the accuracy indices. As shown in Table 7, 

the average of the MIoU of five testing samples is 0.884, which indicates that the 

proposed method could detect the air voids in hardened concrete surface with a relative 

good accuracy. The average FP is 0.009 and the average P is 0.990, which indicate that 

the proposed method could differentiate the air voids from most of the air-void like 

noises and only a small portion of air-void like noises was incorrectly identified as air 

voids. The average FN is 0.115 and is almost 10 times as great as FP. In addition, R is 

0.885 which is nearly 0.1 less than P. Both FN and R indicate that the misidentification 

was the major source of segmentation errors. 
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Table 7. Accuracy measurement for testing samples 

Specimen 
No. FP FN TP TN P R F1 

IoUair 

void 
IoUnon 

air-void 
MIoU 

1 0.007 0.121 0.879 0.993 0.992 0.879 0.932 0.873 0.886 0.880 
2 0.004 0.027 0.973 0.996 0.996 0.973 0.984 0.969 0.970 0.969 
3 0.019 0.113 0.887 0.981 0.979 0.887 0.931 0.871 0.882 0.876 
4 0.006 0.159 0.841 0.994 0.993 0.841 0.911 0.836 0.858 0.847 
5 0.007 0.154 0.846 0.993 0.991 0.846 0.913 0.840 0.860 0.850 
Average 0.009 0.115 0.885 0.991 0.990 0.885 0.934 0.878 0.891 0.884 

 

Consequently, the segmentation results of the concrete surface images using the U-

Net model trained with different cropped image sizes (256×256, 512×512, and 

1024×1024) are presented in Table 8. After various experiments, it can be observed that 

the image size has an impact on the air-void segmentation performance. The U-Net512, 

which was trained using 512 pixels × 512 pixels images, showed a slightly better 

performance in generalization than the other two models. Even though a higher train 

accuracy is observed for U-Net256, the U-Net512 performs better in validation data.  

Table 8. U-Net models trained with different image sizes 

Model Image 
Size 

Augmentation 
Strategy 

Images for 
Training 

Batch 
Size 

Best Train 
MIoU 

Best Val 
MIoU 

U-
Net256 

256×
256 

Augmentation 3 18,000 32 0.814 0.706 

U-
Net512 

512×
512 

Augmentation 3 10,187 16 0.794 0.724 

U-
Net1024 

1024×
1024 

Augmentation 3 1,906 4 0.825 0.707 

 

Figure 30 shows the air-void segmentation results using U-Net512. In the raw 

segmentation results, the output value of a purple pixel is close to 0 and the output value 

of a yellow pixel is close to 1. TP pixels are marked in white color, TN pixels are marked 

in black color, FN pixels are marked in blue color, and FP pixels are marked in red color. 

Compared with the segmentation results using U-Net256, the large air voids can be 
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identified more completely. Also, some air-void like noises can be better differentiated 

using U-Net512. The detailed accuracy measurements of U-Net512 are estimated and 

presented in Table 9. As shown in Table 9, the average MIoU is 0.914 and indicates that 

U-Net512 model was quite capable of precisely distinguishing the air voids from the non-

air-void regions. Compared to the segmentation measurements of U-Net256, the average 

MIoU of U-Net512 is 0.03 higher than the average MIoU of U-Net256. Additionally, the 

U-Net512 significantly reduces the number of misidentified air voids. The FN is reduced 

by 0.03 and the R is increased by 0.03. While the U-Net512 does not show a significant 

impact on the FP and P. Both FP and P are slightly increased by 0.001. The size of the 

minimum air void that can be segmented by U-Net512 is around 22μm (4-pixel length). 

Table 10 presents the measurement of air-void parameters using U-Net512 results and 

ground truth. The air-void parameters are measured using the Procedure B Modified 

Point-Count Method. 27% is assumed as the measured paste content. As shown in Table 

10, the average measurement errors of air content, specific surface, and spacing factor for 

the three hardened concrete specimens are 7.87%, 9.36%, and 12.23%, respectively. 

   
(a) Sample 1 

   
(b) Sample 2 
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(c) Sample 3 

   
(d) Sample 4 

   
(e) Sample 5 

Figure 30. Air-void segmentation results of test concrete samples using U-Net512. The 

sequence of each image in the subplot is raw hardened concrete image, raw 

segmentation result (raw output by the U-Net model), and binary segmentation result. 

Table 9. Accuracy measurement for testing samples using U-Net512 

Specimen 
No. FP FN TP TN P R F1 

IoUair 

void 
IoUnon 

air-void 
MIoU 

1 0.008 0.115 0.885 0.992 0.991 0.885 0.935 0.878 0.890 0.884 
2 0.003 0.014 0.986 0.997 0.997 0.986 0.991 0.983 0.983 0.983 
3 0.019 0.092 0.908 0.981 0.980 0.908 0.943 0.892 0.899 0.895 
4 0.006 0.073 0.927 0.994 0.994 0.927 0.959 0.922 0.927 0.924 
5 0.006 0.115 0.885 0.994 0.993 0.885 0.936 0.879 0.891 0.885 
Average 0.008 0.082 0.918 0.992 0.991 0.918 0.953 0.911 0.918 0.914 

 

 



 

91 

Table 10. Air-void Parameters Measured on U-Net512 results and Ground Truth using 

Point Count Method 

  Air content (%) Specific surface (mm-
1) Spacing factor (mm) 

  Measurement 
value 

Error 
(%) 

Measurement 
value 

Error 
(%) 

Measurement 
value 

Error 
(%) 

1 

U-
Net512 1.64 

6.49 
13.152 

25.75 
0.288 

25.32 Ground 
truth 1.54 10.459 0.386 

2 

U-
Net512 1.63 

11.64 
10.397 

1.29 
0.367 

11.57 Ground 
truth 1.46 10.264 0.415 

3 

U-
Net512 4.08 

2.77 
17.644 

10.16 
0.086 

11.67 Ground 
truth 3.97 16.016 0.098 

4 

U-
Net512 1.6 

11.11 
16.194 

2.15 
0.24 

11.89 Ground 
truth 1.44 15.854 0.272 

5 

U-
Net512 1.32 

7.32 
15.491 

7.45 
0.304 

0.68 Ground 
truth 1.23 16.738 0.302 

Average 
error (%)  7.87  9.36  12.23 

 

Compared with contrast enhancement based method, the proposed method also 

achieved a significant improvement in efficiency and comparable accuracy. For a 

concrete surface image with a resolution of 7953*5304 pixels, the construction of the 

surface normal image of concrete surface took 10 to 15 seconds to accomplish, and the 

segmentation of a concrete surface normal image took 15 to 20 seconds to accomplish. 

The segmentation time for air voids in hardened concrete is significantly reduced to 

around half a minute.  
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5.5 Summary 

This chapter investigated the potential of combining deep learning and 3D 

reconstruction techniques to detect air voids in hardened concrete surfaces, extracted and 

processed from concrete pavement structures. The proposed method can automatically 

detect the air voids in hardened concrete surfaces without the use of contrast 

enhancement, which reduces labor intensiveness and improves time efficiency. The 

research has achieved the following: 1) An air-void dataset, which consists of a group of 

surface normal images and air-void annotations, was developed for DCNN training. 2) 

The surface normal images of concrete surfaces were captured using a 3D reconstruction 

method. In the surface normal images, the air voids were automatically highlighted by 

color variations without the use of contrast enhancement method. 3) A DCNN model was 

trained using the developed air-void dataset for air-void detection. 4) A rigorous manual 

verification was conducted to obtain a reliable reference for evaluating the segmentation 

accuracy pixel-to-pixel. The research results have shown that: 

(1) The 3D reconstruction method can capture depth variations and automatically 

highlight the air voids in the hardened concrete surface, while some transparent 

aggregates, dark aggregates, and voids in aggregates are highlighted as well. Most of the 

air-void like noises can be effectively identified using the proposed method. 

(2) The appearance of air voids in surface normal images can vary. Some deep air 

voids can generate a significantly different appearance in the surface normal images, 

which could greatly harm the segmentation results. Increasing the number of training data 

that contains deep air voids or refining the illumination angle of the photometric stereo 

system can help improve the segmentation results of deep air voids. 
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(3) Shapes and gradient variations of air voids are two important characteristics of 

air-void segmentation. Inappropriate augmentation methods can change the appearances 

of air voids in training data set and then cause a poor generalization. The selection of 

image augmentation methods has a significant impact on the air-void segmentation 

results.  

(4) The over 0.9 average MIoU of the DCNN segmentation indicates that the DCNN 

has a good potential in extracting the features from the surface normal images and 

making predictions at the pixel level. The U-Net model can correctly segment most of the 

air-void regions. The mis-identified air voids are the key error resources. The FP 

segmentation of some fine aggregates has the most significant impact on the 

measurement of air-void system. 
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6. EVALUATION OF THE SALTYKOV METHOD FOR RESTORING SPATIAL 

AIR-VOID DISTRIBUTION 

The air-void segmentation methods proposed in previous chapters provide a feasible 

way for the measurement of air-void parameters based on the ASTM C457 standard. 

However, the Power’s spacing factor, which is generally accepted as an air-void 

parameter for the evaluation of concrete freeze-thaw performance, is calculated based on 

the assumption that the air voids in hardened concrete form a mono-sized sphere system. 

The major difference between the concrete void system and the mono-sized sphere 

system is that the population of air voids varies significantly with the void size. As a 

result, the reliability of the Power’s spacing factor has been debated in many research 

studies. A lot of attention has been paid to proposing a new evaluation index for the 

freeze-thawing performance of hardened concrete.  

Recently, Larson et al. proposed a Protected Paste Volume (PPV) method as a new 

way to characterize the freeze-thaw performance of hardened concrete (Larson et al. 

1967). The PPV method assumes that each air void can protect the concrete paste within 

a certain range. By measuring the percentage of concrete paste protected, the freeze-

thawing performance can be estimated. According to Song et al. (Song et al. 2021), the 

spatial air-void distribution is important for reliable PPV analysis, while the state-of-the-

art PPV analysis is conducted solely based on the information from 2D air-void 

intersections, which can result in many uncertainties. The Saltykov method, which was 

originally proposed by Russ et al. (Russ and Dehoff 2012), has been used to estimate the 

actual 3D air-void distribution. However, no study has precisely analyzed the reliability 

of using the Saltykov method to estimate the 3D air-void distribution. Most of the studies 
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acknowledged the reliability of Power’s method due to its aggressive assumptions and 

unreliable measurement results, nevertheless, they still use air-void parameters measured 

by Power’s method as ground truth to evaluate the 3D air-void distribution estimated 

using the Saltykov method. In this chapter, the reliability of the Saltykov method will be 

evaluated in a more intuitive way. 

6.1. Synthetic Spatial Air-void Model 

6.1.1 Construction of Spatial Air-Void Model 

One of the biggest obstacles to evaluate the unfolded 3D air-void distribution is the 

lack of accurate and feasible physical measurement methods for measuring the actual 3D 

air-void distribution in hardened concrete. Some research studies tried to overcome this 

problem by using CT scanners or ultrasonic equipment to characterize the actual 

distribution of air voids in hardened concrete, however, both methods have their technical 

limitations in practical use (Guo et al. 2016, Lu et al. 2017). In this research, a set of 

synthetic spatial air-void models were developed to simulate the actual air-void 

distribution. The synthetic air-void models will be used for the evaluation of unfolded 3D 

air-void radius distribution. 

Specifically, entrained air voids and entrapped air voids are two major void 

components that need to be measured in a hardened concrete sample. Generally, the 

entrained air voids are spherical voids that are larger than the capillaries with a radius less 

than 0.5 mm. The entrapped air voids are spherical voids with a radius larger than 0.5 

mm and can range up to several millimeters. Many scholars believe that the freeze-

thawing performance is mainly affected by the entrained air voids and slightly affected 
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by entrapped air voids (Fonseca and Scherer 2015) and therefore they only include 

entrained air voids in concrete freeze-thaw analysis. While other scholars believe it is not 

the case since there is no provision made for distinguishing between entrained air voids 

and entrapped air voids in the ASTM C457. Hence, they consider both entrained air voids 

and entrapped air voids in the analysis. In this research, both situations were considered 

for the construction of the spatial air-void models.  

In addition, the air-void size distribution is another key evaluation parameter for the 

measurement of the air-void system in hardened concrete. For the air-void size 

distribution measurement, there is no widely accepted theory that can be used as a 

reference. Fonseca et al. observed bubble profiles from images of typical air-entrained 

mortar and the distribution of air-void radius showed a lognormal-like distribution 

(Fonseca and Scherer 2015). Yun et al. investigated the distribution of void size 

distribution using CT scan techniques. Both probability density functions and 

corresponding cumulative distribution functions were visualized and affirmed the air-

void diameter follows a lognormal trend (Yun et al. 2012). Guo et al. studied the air-void 

distribution in hardened concrete using a non-destructive ultrasonic scattering technique. 

Both lognormal distribution and normal distribution were adopted to fit the distribution of 

entrained air voids. Based on the research results, the normal distribution fits the 

measured air-void distribution better than the lognormal distribution (Guo et al. 2016). 

Consequently, in order to simulate the air-void system in hardened concrete with more 

generalizability, both lognormal distribution and normal distribution were considered as 

possible air-void distributions. 

Based on the above analysis, the following assumptions were made to simulate the 
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spatial air-void model: 

(1). The air-void system in hardened concrete consists of only entrained air voids or 

a mixture of entrained and entrapped air voids; 

(2). The radius of entrained air voids should not exceed 0.5 mm; 

(3). The radius of entrapped air voids should not exceed 1 mm; 

(4). Both entrained air voids and entrapped air voids in the simulated system are 

spherical; 

(5). Air voids are randomly distributed throughout the specimen without any regular 

packing. 

The flow chart of the construction of the spatial air-void model is shown in Figure 

31. A set of parameters for constructing 3D air-void models were designed first, 

including distribution parameters, air content, specimen boundary, void size range, and 

void counts. The distribution parameters and void count are then used for the generation 

of random radius. After that, a radius scale is calculated to rescale the generated radius. 

The objective of this step is to rescale the generated air voids and to make the rescaled 

air-void system fit the pre-designed air content. Fourthly, the range of the rescaled radius 

is verified with the pre-designed void size range based on the given maximum and 

minimum value. If the rescaled radius did not fit with the pre-designed void size range, a 

new set of pre-designed parameters for radius distribution will be attempted until the 

rescaled radius fit with the pre-designed void size range. Consequently, the coordinate of 

each air void was generated randomly within a restricted boundary (35.8 mm × 23.5 mm 

× 15 mm) and each air void was recorded using a four-dimensional vector (xi, yi, zi, ri), 
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where xi, yi, and zi represents the coordinate of a generated void i, ri is the radius of a 

generated void i. It is worth mentioning that the randomly generated void coordinate can 

be overlapped with each other. Hence, a program was developed to detect and re-allocate 

the overlapped air voids. More specifically, the overlap is first detected by calculating the 

distance between the center of any two voids. If the distance is smaller than the sum of 

the radius of the two voids, the two voids are then marked as ‘overlap’. The void with a 

smaller radius is then re-allocated with a new coordinate randomly. The re-allocation 

process will not stop until the re-allocated void does not overlap with any other voids in 

the synthetic void system. Once all the voids in the synthetic void system are checked and 

no overlapped void pair is detected, the synthetic void system is finalized for further 

analysis.  
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Figure 31. Flow chart for constructing the synthetic air-void model 

Table 11 shows the parameters used for the construction of six synthetic spatial air-

void models. 32,000 air voids are simulated within a synthetic boundary with length, 

width, and height equal to 3.58 cm, 2.38 cm, and 1.5 cm, separately. Mu and Sig are 

distribution parameters for both lognormal and normal distributions, while the meanings 
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of Mu and Sig in different distributions are different. For the lognormal distribution, Mu 

and Sig are the mean and the standard deviation of the distribution of log(void radius), 

respectively. For the normal distribution, Mu and Sig are the mean and the standard 

deviation of the distribution of void radius, respectively.  

Table 11. Parameters used for the construction of synthetic air-void model 

Sample No. Mu Sig Distribution Air content Count 
1 -0.7 0.5 Lognormal 0.1 32000 
2 -0.7 0.5 Lognormal 0.07 32000 
3 -0.7 0.5 Lognormal 0.05 32000 
4 0.2 0.06 Normal 0.1 32000 
5 0.2 0.06 Normal 0.07 32000 
6 0.2 0.06 Normal 0.05 32000 

6.1.2 Visualization of Spatial Air-Void Model 

The synthetic air-void models are shown in Figure 32. The air voids with different 

radii are marked with different colors. It can be observed that most of the air voids in 

samples 1, 2, and 3 are purple, and few air voids are green and yellow. In samples 4, 5, 

and 6, most of the air voids are green, and a few air voids are green and yellow. The 

preliminary observation indicates that the distribution of the air voids in the constructed 

air-void models is consistent with the pre-designed distribution. Samples 1, 2, and 3 

simulated the scenarios where both entrained and entrapped air voids are in the hardened 

concrete. Samples 4, 5, and 6 simulated the scenarios where only entrained air voids are 

in the hardened concrete.  
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(a) Sample 1 (b) Sample 2  

  

(c) Sample 3 (d) Sample 4 

  

(e) Sample 5 (f) Sample 6 

Figure 32. Visualization of the synthetic air-void model 

The detailed distributions of void radius are extracted from the obtained synthetic 

air-void models. The probability density plot and probability plot of the air-void radius in 

different models are shown in Figure 33. The probability density plots present the density 

distribution of the air-void radius. The probability plots assess whether or not a data set 
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follows a given distribution. Theoretically, after the radius rescale operation (as shown in 

Figure 31), the lognormal distribution can be slightly changed. As shown in Figures 

32(a), (b), and (c), most air voids in the air-void radius strictly follow a lognormal 

distribution, and only a few air voids at the tail of the distribution do not strictly follow a 

lognormal distribution. The radius of air voids in samples 1, 2, and 3 can be considered as 

a lognormal-like distribution. For the normal distribution, the radius rescaling operation 

does not change the distribution type. As shown in Figures 32(a), (b), and (c), the radius 

of air voids in samples 4, 5, and 6 can be considered as a normal-like distribution with a 

slight bias for some small air voids. The bias is caused during the random radius 

generation process (as shown in Figure 31). All the randomly generated air-void radii are 

changed into absolute values to avoid negative air-void radii. In conclusion, the generated 

air-void radius distribution in the synthetic air-void model satisfies the expectation. 

  

(a) Sample 1 
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(b) Sample 2 

  

(c) Sample 3 

  

(d) Sample 4 
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(e) Sample 5 

  

(f) Sample 6 

Figure 33. The distribution and probability plot of the air void count distribution in each 

synthetic air-void model 

6.2. Evaluation of Influence Factors for 2D and 3D PPV Analysis 

With advances in understanding the role of air voids in mitigating freeze-thawing 

damages, the reliability of spacing factor calculation using Powers' hypothesis has been 

debated in several research studies (Philleo 1983, Snyder 1998). Recently, a PPV method, 

originally proposed by Larson et al., was studied for the petrographic analysis of the air-

void system (Larson et al. 1967). The PPV analysis assumes that each air void protects a 

certain range of paste from being damaged by freeze-thawing effects. During the PPV 

analysis process, a certain protection range will be assigned to each air void to simulate 
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the protection effect generated by the air-void system. Then, the freeze-thawing 

performance of concrete specimens can be estimated using the percentage of paste 

protected by the air-void system. The PPV analysis better represents the actual air-void 

system compared with the Power’s method. And also, the evaluation parameter 

calculated using the PPV analysis better correlated with the concrete freeze-thaw 

performance (Larson et al. 1967, Song et al. 2021). However, one limitation of the up-to-

date PPV analysis is that it only experiments with a single 2D surface plane of a polished 

concrete specimen, which can be restricted by the limited information that can be 

provided by 2D analysis. 

To investigate the limitation of the 2D PPV analysis, a simulation analysis was 

conducted. As shown in Figure 34, a surface plane was randomly generated in the 

synthetic air-void model. All the involved air voids were marked with a protection range 

- shown in a transparent coat form, as visualized in Figure 34. The involved air voids 

include in-section and out-section two types of air voids. The air voids marked in red are 

in-section air voids that directly intersected with the generated surface plane. The air 

voids marked in blue are out-section air voids that do not intersect with the generated 

surface plane directly, instead, their protection range intersects with the generated surface 

plane. In the simulation, the protection range is set as 200 μm which is in accordance 

with the minimum spacing factor specified by American Concrete Institute (Hill et al. 

2008). Based on the observation of in-section and out-section air voids presented in 

Figure 34, a significant amount of concrete surfaces can be protected by out-section air 

voids which cannot be observed through the polished hardened concrete surface. 

Therefore, 2D PPV analysis will often lead to an underestimation of paste protection due 
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to the fact that it by nature overlooks the effects of out-section air voids. To accurately 

estimate the level of actual paste protection, the 3D distribution information of out-

section air voids is needed. 

 

Figure 34. Diagram for the in-section and out-section air voids intersected with a concrete 

plane 

To better understand the protective effect of both in-section and out-section air 

voids, the protection range and air voids were mapped from 3D space to a 2D concrete 

surface plane. As shown in Figure 35, the mapped air voids are shown in black color, the 

protection ranges generated by in-section air voids are shown in green color, and the 

protection ranges generated by out-section air voids are shown in yellow color. Figure 

35(a) presents the protection range estimated using the in-section air voids observed 

through the 2D air-void intersections. Due to the lack of spatial and size information that 

can be used to restore the actual air-void location in 3D space, the 200-μm protection 
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range was directly used as a protection range for each 2D air-void intersection. However, 

based on the observation of Figure 35(b), the 200-μm protection range from 3D air voids 

can also generate a protection range on a 2D concrete plane larger than 200 μm. This is 

caused by the 3D and 2D surface projection effects. Therefore, directly using the 

protection range to approximate the projected protective effect on 2D concrete surfaces 

can result in an underestimation of the overall paste protection. Figure 35(c) presents the 

projected protection range estimated using both in-section and out-section air voids from 

the synthetic 3D air-void space. It is obvious that the out-section air voids can provide a 

comparable amount of protection to the concrete specimen surface compared with the in-

section air voids. Hence, the spatial information of in-section and out-section air voids 

are critical for the accurate PPV analysis. 

 

(a) PPV analysis using in-section air voids observed in the 2D concrete section 
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(b) PPV analysis using in-section air voids observed in 3D space 

 

(c) PPV analysis using both in-section and out-section air voids observed in 3D space 

Figure 35. PPV analysis using the air-void information from 2D and 3D perspective 

 

6.3. Accuracy Assessment 

An appropriate assessment method is vital to evaluate the accuracy of the unfolding 

3D air-void distribution. As shown in Figure 36, the measurement of the difference 
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between two different continuous distributions can be accomplished by integrating the 

regions that do not coincide with each other. As mentioned earlier, the Saltykov method 

generates a discrete 3D air-void size distribution. The upper boundary of each bin is 

considered as the radius of all the restored air voids in the bin class. The number of the 

restored air voids in each bin class can be represented as a set 𝑋𝑋𝑅𝑅. 

 𝑋𝑋𝑅𝑅 = (𝑋𝑋𝑅𝑅1,𝑋𝑋𝑅𝑅2,𝑋𝑋𝑅𝑅3, … ,𝑋𝑋𝑅𝑅𝑗𝑗) (28) 

The number of the actual air voids in each bin class can be represented as a set 𝑌𝑌𝑅𝑅. 

 𝑌𝑌𝑅𝑅 = (𝑌𝑌𝑅𝑅1,𝑌𝑌𝑅𝑅2,𝑌𝑌𝑅𝑅3, … ,𝑌𝑌𝑅𝑅𝑗𝑗) (29) 

Consequently, the difference between the restored 3D air voids and the actual 3D air 

voids can be evaluated through a similarity measurement. In this research study, the 

Minkowski Distance d is adopted for similarity measurement. The Minkowski Distance 

of order p (where p is an integer) between 𝑋𝑋𝑅𝑅 and 𝑌𝑌𝑅𝑅 is defined as: 

 
𝑑𝑑(𝑋𝑋𝑅𝑅 ,𝑌𝑌𝑅𝑅) = (�|𝑋𝑋𝑅𝑅𝑖𝑖 − 𝑌𝑌𝑅𝑅𝑖𝑖|𝑝𝑝

𝑗𝑗

𝑖𝑖=1

)
1
𝑝𝑝 (30) 

Considering both 𝑋𝑋𝑅𝑅𝑖𝑖 and 𝑌𝑌𝑅𝑅𝑖𝑖 are one-dimensional variables, the Minkowski 

Distance used to measure the similarity of the probability density function of 𝑋𝑋𝑅𝑅𝑖𝑖 and 𝑌𝑌𝑅𝑅𝑖𝑖 

can be simplified as: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦(𝑋𝑋𝑅𝑅,𝑌𝑌𝑅𝑅) =

(∑ |𝑋𝑋𝑅𝑅𝑖𝑖 − 𝑌𝑌𝑅𝑅𝑖𝑖|
𝑗𝑗
𝑖𝑖=1 )
∑ 𝑌𝑌𝑅𝑅𝑖𝑖
𝑗𝑗
𝑖𝑖=1

× 100% (31) 

In this study, Equation (31) is utilized for the calculation of the accuracy of the 

unfolded in-section and out-section 3D air-void radius using Saltykov method. 
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Figure 36. Diagram of difference between two distributions 

 

6.4. Results and Analysis 

As a statistic method, the Saltykov method is sensitive to many factors such as the 

number of observed 2D air-void intersections and the number of bin classes. All these 

factors can impact the accuracy of unfolding accuracy using the Saltykov method. 

However, limited research efforts have been paid to analyze the effect of those factors on 

unfolding an air-void system. Currently, as reported in the research by Fonseca et al., the 

selection of related parameters for the Saltykov method is solely dependent on trial and 

error using 2D air-void analysis results (Fonseca and Scherer 2015). Hence, it is 

important to further explore the relationship between these influence factors and the 

unfolding accuracy and provide experiences for 2D to 3D air-void unfolding using the 

Saltykov method. 

To simulate the concrete surface plane that intersected with a various number of air 

voids, the most straightforward method is to construct as many synthetic concrete 
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samples with different sizes and void counts as possible. However, building the synthetic 

air-void system is time-consuming. Specifically, varies with the air content, void size, 

and void count, the construction process for one synthetic model can take up to 15 hours 

to be finished. The air void overlap detection and reallocation are the two major steps that 

account for most of the modeling time. By nature, the value of air content and void size 

of hardened concrete are relatively small. Hence, the air voids in hardened concrete can 

be considered as a loosely packed void system. As a result, it takes less time for an 

overlapped air void to be reallocated in a free area. That is to say, the void count is the 

most significant factor that affect the computation cost because the overlap detection 

process for each air void requires the traversal of all the other air voids. It makes the 

computation cost increase exponentially. To overcome this problem, an equally effective 

way to explore the relationship between the number of observed air-void intersections 

and unfolding error is to generate more random slices from the same synthetic air-void 

model. The air-void intersections observed from different slices can be appended together 

to simulate the situation in which different numbers of air voids are observed. A diagram 

as shown in Figure 37 illustrates this procedure. 

 

Figure 37. Diagram for appending air-void intersections from different slices 
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6.4.1 In-Section Air Voids   

The in-section air voids, which are directly intersected with the concrete surface, are 

analyzed first. Figure 38 presents the unfolding accuracy of each synthetic air-void model 

with the different number of bin classes and air-void observations. As the number of bin 

classes increases, a decreasing trend can be observed for the unfolding bias, and the 

decreasing rate slowed down gradually. It indicates that a larger number of bin classes 

helps the Saltykov method to achieve better unfolding accuracy. And also, as the number 

of bins exceeds a specific threshold, the benefit of increasing it weakened. The bias curve 

in Figure 38 presents the frequency differences between unfolded air voids and actual air 

voids which are intersected with the concrete surface plane. Generally, the up boundary 

of each bin class is used to approximate the unfolded air void radius in a specific range. 

The radius of the unfolded air voids can be more precisely presented in situations where a 

large number of bin classes is used. Therefore, the benefits of using a large bin number 

for the Saltykov method are twofold. One is for the improvement of the unfolding 

accuracy measured by frequency bias. The other one is for the improvement of radius 

approximation.  

For the error curve with limited air-void observations, fluctuations can be observed. 

The same phenomenon was also observed in the research by Song et al. and was 

explained by the periodicity of the round-off error (Song et al. 2021). The round-off error 

is caused by the negative void count unfolded by the Saltykov method from a smaller bin 

class when the number of observed air voids in a bin is lower than its expected value 

(Sahagian and Proussevitch 1998). This phenomenon indicates that the benefit of 

increasing bin number is tenable only when enough air voids are being observed.  
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Moreover, the type of distribution of air voids can also affect the unfolding 

accuracy. As shown in Figure 38, compared with the bias curve generated from the 

synthetic model with normal-like void distributions, the unfolding results of the synthetic 

model with lognormal-like distributions are more sensitive to the number of bin classes. 

And also, more fluctuations can be observed in the bias curve from the normal-like void 

model.  

In this research, the error rates for all the estimated air-void radius unfolded with 55 

bin classes and with over 10,000 void observations are lower than 0.5%. Even in the case 

where lower than 1,000 air voids were observed and 10 bin classes were adopted, most of 

the overall error rates for the unfolded air-void distribution are lower than 3.5%. Both 

0.5% and 3.5% can be considered as low error rates. The error rate as mentioned in the 

previous section was calculated by treating air voids with different radii the same, that is 

to say, all the air voids with different radii were simply added up to get the final error 

rate. However, in fact, the air voids with different radii have different influences on the 

protection of concrete paste. The air voids with small radii are more important for 

concrete freeze-thaw performance. Therefore, it is also important to investigate the 

unfolding results for the air voids with different radii. 
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(a) Sample 1 (b) Sample 2 

  

(c) Sample 3 (d) Sample 4 

  

(e) Sample 5 (f) Sample 6 

Figure 38. Unfolding error rate with different air-void observations and bin classes 

Figure 39 presents the unfolding results and corresponding error rate for each bin 

class. The unfolding results are generated using the ‘class 9’ void intersection data of 
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each synthetic void model with 55 bin classes. As shown in Figures 38(a), (b), and (c), it 

is obvious that the air voids with smaller radii have a higher error rate. For the large air 

voids, the error rate is close to 0. Therefore, the small air voids contribute to most of the 

unfolding error. As a result, the actual error rate between the actual freeze-thawing 

performance of hardened concrete and the freeze-thawing performance estimated using 

the unfolded air voids should be higher than the observed unfolding error. For the biased 

error rate distribution, one possible explanation is that not enough bin classes are used to 

represent a concentration of small radii air voids. This phenomenon further corroborated 

the conclusion drawn from Figure 38, that is, the number of bin classes used for the 

Saltykov method is critical to unfolding accuracy. In short, concentrated air voids 

represented by few bin classes are undesired. For example, in Figure 39(a), even 55 bin 

classes are utilized during the unfolding process, only 10 bin classes are located between 

0μm and 0.2μm radius to represent more than 50% air voids, and 45 bin classes are used 

to represent the rest of 50% air voids. The same phenomenon can also be observed in 

Figures 38(d), (e), and (f) where the distribution of air voids is more evenly, the variance 

of unfolding error between different bin classes becomes lower than the variance of 

unfolding error in Figures 38(a), (b), and (c).  
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(a) Sample 1 (b) Sample 2 

  

(c) Sample 3 (d) Sample 4 

  

(e) Sample 5 (f) Sample 6 

Figure 39. Comparison of actual void distribution and unfolding results 
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6.4.2 Out-Section Air Voids 

Given in-section air voids distribution, the out-section air voids can be calculated 

using Equation (20). In this study, out-section air-void radius distributions are calculated 

based on two different in-section air void distributions: the void radius distribution 

obtained directly from the cutting plane (served as the control group) and the unfolded air 

voids. In this way, the effect of the unfolding error of in-section air voids on the 

restoration of out-section air-void radius distribution can be evaluated. As shown in 

Figure 40, no significant difference can be observed between the out-section air voids 

calculated from the actual in-section air voids and the unfolded in-section air voids. It 

means the effects of unfolding error of in-section air voids on the out-section air avoids 

calculation is not significant. However, there is a significant difference between the 

actual out-section air voids and the unfolded out-section air voids. The number of 

unfolded out-section air voids is significantly higher than the number of actual out-

section air voids. Therefore, if Equation (20) is utilized to restore the actual air void 

distribution for PPV analysis, there is no doubt that the freeze-thawing performance of 

hardened concrete can be greatly overestimated.  

  

(a) Sample 1 (b) Sample 2 
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(c) Sample 3 (d) Sample 4 

  

(e) Sample 5 (f) Sample 6 

Figure 40. Unfolding results for out-section air voids 

 

Figure 41 presents the histograms of the unfolding results of out-section air. As 

shown in Figure 41, the distribution pattern of the error rate is very similar to the error 

rate of the unfolded in-section air voids. However, one significantly higher error rate is 

observed. It indicates that the unfolding error for in-section air voids can be enlarged 

when calculating the out-section air voids. While the overall error rate is still within an 

acceptable level, it is worth mentioning that the frequency of out-section air voids cannot 

be directly utilized for the restoration of spatial air-void distribution due to the lack of a 

reference system. Different from the in-section air voids which can be observed through 
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air-void intersections, there are no intersections that can be used as a reference for out-

section air voids. As a result, the number of out-section air voids cannot be inferred using 

the air-void intersections and restored using the frequency value. Therefore, according to 

the experiment results, even the difference between the frequency value of unfolded air 

voids and the frequency value of actual air voids is not big, the out-section air voids 

cannot be accurately unfolded. 

 

(a) Sample 1 

 

(b) Sample 2 
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(c) Sample 3 

 

(d) Sample 4 
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(e) Sample 5 

 

(f) Sample 6 

Figure 41. Unfolding results for out-section air voids with error rate 

Simply put, even the radius of in-section air voids can be estimated using the 

Saltykov method with a relatively satisfying result, the inaccurate unfolding results for 

out-section air voids can significantly affect the restored spatial air-void system.  
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6.5 Summary 

In this chapter, the feasibility of using the Saltykov method for restoring 3D air-void 

radius was investigated using a set of synthetic air-void models. The Saltykov method 

can be used for the accurate unfolding of in-section air voids. And the overall accuracy of 

the unfolded in-section void distribution can be quite reliable when a large number of air 

voids are observed from a hardened concrete surface. For the out-section air voids, even 

its probability density distribution can be estimated with acceptable accuracy, due to the 

lack of a reference for the number of intersected out-section air voids, the number of out-

section air voids for each radius bin class cannot be restored. Consequently, the Saltykov 

method can be used to estimate the actual air-void radius distribution using 2D void 

intersections, while significant refinements are still required by the Saltykov method to 

satisfy the requirements for PPV analysis. The other research findings are described 

below:  

(1). The PPV analysis that is solely based on the air-void information from 2D air-

void intersections can generate an underestimated protection estimation. The size 

information of both in-section and out-section air voids is important for accurate PPV 

analysis.  

(2). The insufficient number of 2D air-void intersections used for 3D air-void radius 

restoration can lead to a higher error rate and round-off errors. There is a minimum air-

void observation that is required by the Saltykov method to achieve a satisfactory 

unfolding result. The required minimum air-void observation can be changed according 

to the void radius distribution type. 
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(3). The number of bin classes utilized for the Saltykov method has a positive effect 

on the unfolding accuracy. However, due to the nonuniform distribution nature of the air-

void radius and the uniform binning strategy, a large percentage of air voids is 

represented by a small percentage of bin classes. The portion of the air voids, which is 

insufficiently represented by the limited number of bin classes, can result in a higher 

unfolding error rate. 

(4). The number of out-section air voids cannot be accurately estimated using the 

state-of-the-art method. Significant biases can be observed.   
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7. CONCLUSIONS 

7.1 Summary of Observations 

In this research, the feasibility of using three-dimensional (3D) reconstruction 

methods to automatically contrast the air voids in hardened concrete surfaces was 

investigated first. Then, a series of artificial intelligence-based image processing methods 

(conventional image processing methods and convolution neural networks) were 

introduced for the segmentation of air voids in 3D concrete surface images. Finally, the 

reliability of using the Saltykov method to restore the 3D air-void radius was evaluated. 

The key conclusions are as follows: 

(1). Compared with the Sparse Bayesian Regression method (SBL) and the Low-

rank minimization method, the Basic photometric stereo method shows a good 

performance with good 3D reconstruction accuracy and acceptable computation cost. A 

photometric stereo method that incorporates the image corruption into the surface normal 

calculation with an acceptable computation cost could improve the accuracy of air-void 

segmentation. 

(2). Transparent aggregates, dark aggregates, and voids in aggregates can be 

contrasted in the surface normal image and generate air-void like patterns. These air-void 

like patterns can be hardly differentiated using the conventional image processing 

technique methods. However, the convolution neural networks are able to generate highly 

abstract features to accurately distinguish the air voids from most of these air-void like 

patterns. The air-void like patterns that are generated by fine aggregates has the most 

significant impact on the segmentation results and measurement of air-void system. The 

experimental results showed that the deep convolutional neural networks (DCNN) could 
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accurately distinguish air voids from hardened concrete images with the detection 

accuracy of over 0.9 in only less than a minute. The accuracy rates for air content, 

specific surface, and spacing factor were 0.92, 0.91, and 0.89, respectively. 

(3). The photometric stereo method provides a feasible way to automatically contrast 

the air voids from the hardened concrete surface. Shapes and gradient variations of air 

voids in the surface normal images are two important features can be utilized for air-void 

segmentation. The appearance of air voids in surface normal images can vary. Some deep 

air voids can generate a significantly different appearance in the surface normal images, 

which could greatly harm the segmentation results. Increasing the number of training data 

that contains deep air voids or refining the illumination angle of the photometric stereo 

system can help improve the segmentation results of deep air voids. 

(4). The Mean of Intersection over Union (MIoU), which is the accuracy 

measurement metric utilized in this research for the training and evaluation of 

convolution neural networks, does not positively correlate with the accuracy of the air-

void parameters measurements. The MIoU measures the overall performance of the 

convolution neural networks to segment all the air voids in concrete surface normal 

image. The air voids with different radius share the same weight while calculating the 

MIoU. However, the air-void parameters like spacing factor and specific surface care 

more about the fine air voids. The adoption of MIoU as an accuracy measurement metric 

may not help the convolution neural networks to converge at the optimum point for air-

void parameters measurement. 

(5). The Saltykov method can be utilized to restore the 3D in-section air void radius 

using the air-void intersection information with a good accuracy. Both the number of air-
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void observations and bin classes can affect the accuracy of the Saltykov method. The 

larger the number of air-void observations and bin classes, the higher the accuracy. 

However, due to the nonuniformity of the air-void radius distribution, the small 

percentage of bin classes are utilized to represent the most air voids, which impact the 

unfolding accuracy for those densely distributed air voids. 

7.2 Innovations 

(1). Innovatively introduced 3D reconstruction techniques to automatically contrast 

the air voids in hardened concrete surfaces without contrast enhancement operation. A 

photometric stereo system was developed to automatically capture the concrete surface 

images under various illumination directions. The contrast process for a hardened 

concrete sample with a size of 3.58 cm × 2.38 cm takes only 10-15 seconds to 

accomplish. 

(2). Explored the reliability of segmenting the air voids in surface normal images 

using conventional image processing techniques. A predefined threshold is required for 

accurate air-void segmentation. The subjectively determined threshold can impact the 

generalizability of the air-void segmentation results using conventional image processing 

techniques. 

(3). Innovatively proposed an automated air-void segmentation method using deep 

learning method. In this research, U-Net was adopted for the segmentation of air voids in 

hardened concrete surfaces. The proposed air-void segmentation method takes 15-20 

seconds to segment all the air voids in a hardened concrete sample with a size of 3.58 cm 

× 2.38 cm with a detection accuracy of over 0.9. 
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(4). An image dataset with more than 10,000 original hardened concrete surface 

images, concrete surface normal images, and pixel-level air-void annotations was 

developed. The dataset provides a basis for exploring artificial intelligence methods in 

automated air-void segmentation. 

(5). A set of synthetic air-void models were constructed to validate the reliability of 

the Saltykov method for 3D air-void radius restoration. The experiment results also 

provide insight into the error pattern while the Saltykov method is used for 3D air-void 

radius restoration. 

7.3 Future Works 

Several useful directions for further research can be: 

(1). The basic photometric stereo, SBL, and Low-rank minimization methods were 

investigated in 3D concrete surface reconstruction. There are other advanced photometric 

stereo methods that can be utilized to reconstruct the non-Lambertian concrete surfaces. 

In the future, the feasibility of using other advanced photometric stereo methods to 

reduce the noises in surface normal images can be studied. 

(2).  In this research, only the air voids in hardened concrete surfaces were 

segmented. As specified in ASTM C457, aggregates and cement paste are also required 

for the calculation of air-void parameters. One useful direction for further research can be 

to segment all the components in hardened concrete surfaces using RGB-D (Red, Green, 

Blue, and Depth) images.  

(3). The research investigated the reliability and error patterns of the Saltykov 

method, which provides a basis for the improvement of the Saltykov method. In the 
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future, optimized binning strategies can be proposed to reduce the error rate. 

(4). The applicability of the proposed air-void segmentation method on hardened 

concrete samples with different mix designs should be further investigated. In this study, 

the proposed method was tested on limited types of mix-designed samples, but the 

selected samples may not represent the features of all hardened concrete samples, such as 

porous concrete and hardened concrete with silica fume. In the future, more diverse 

hardened concrete samples will be tested to analyze the applicability of the proposed air-

void segmentation method. 
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