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STRONG RESONANCE PROBLEMS FOR THE
ONE-DIMENSIONAL p-LAPLACIAN

JIŘÍ BOUCHALA

Abstract. We study the existence of the weak solution of the nonlinear

boundary-value problem

−(|u′|p−2u′)′ = λ|u|p−2u + g(u)− h(x) in (0, π),

u(0) = u(π) = 0 ,

where p and λ are real numbers, p > 1, h ∈ Lp′ (0, π) (p′ = p
p−1

) and the

nonlinearity g : R → R is a continuous function of the Landesman-Lazer type.
Our sufficiency conditions generalize the results published previously about
the solvability of this problem.

1. Introduction

We consider the boundary-value problem

−∆pu = λ|u|p−2u + g(u)− h(x) in (0, π),

u(0) = u(π) = 0,
(1.1)

where p > 1, g : R → R is a continuous function, h ∈ Lp′(0, π) (p′ = p
p−1 ), λ ∈ R,

and −∆p is the (one-dimensional) p-Laplacian, i.e. ∆pu := (|u′|p−2u′)′.
Problem (1.1) can be thought of as a perturbation of the homogeneous eigenvalue

problem

−∆pu = λ|u|p−2u in (0, π),

u(0) = u(π) = 0 .

We say that λ ∈ R is an eigenvalue of −∆p if there exists a function u ∈W 1,p
0 (0, π),

u 6≡ 0, such that∫ π

0

|u′|p−2u′v′ dx = λ

∫ π

0

|u|p−2uv dx ∀v ∈W 1,p
0 (0, π) .
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The function u is then called an eigenfunction of −∆p corresponding to the eigen-
value λ and we write

u ∈ ker(−∆p − λ) \ {0}.
Consider the functional

I : W 1,p
0 (0, π) \ {0} → R; I(u) :=

∫ π

0
|u′|p dx∫ π

0
|u|p dx

and the manifold
S := {u ∈W 1,p

0 (0, π) : ‖u‖Lp(0,π) = 1}.
For k ∈ N let

Fk := {A ⊂ S : there exists a continuous odd surjection h : Sk → A},

where Sk represents the unit sphere in Rk. Next define

λk := inf
A∈Fk

sup
u∈A

I(u). (1.2)

It is known that λk is an eigenvalue of −∆p (see [3]) and that (λk) represents
complete set of eigenvalues [4] (For any k ∈ N, λk =

(kπp

π

)p, where πp := 2(p −
1)

1
p

∫ 1

0
ds

(1−sp)
1
p
). Moreover, for any k ∈ N we have 0 < λk < λk+1 and any corre-

sponding eigenfunction has “the strong unique continuation property”, i.e.

∀v ∈ ker(−∆p − λk) \ {0}, ‖v‖ = 1 :

(∀δ > 0) (∃η(δ) > 0) : meas{x ∈ (0, π) : |v(x)| ≤ η(δ)} < δ.
(1.3)

The symbol ‖ · ‖ indicates the norm in the Sobolev space W 1,p
0 (0, π), i.e.

‖u‖ =
( ∫ π

0

|u′|p dx
)1/p

.

Our paper is motivated by the results in [2] and [3]. The following theorem
generalizes those results for the one-dimensional problem (1.1).

Theorem 1.1. Let us define

F (x) :=

{
p
x

∫ x

0
g(s) ds− g(x), x 6= 0,

(p− 1)g(0), x = 0,
(1.4)

and set

F (−∞) = lim sup
x→−∞

F (x), F (+∞) = lim inf
x→+∞

F (x),

F (+∞) = lim sup
x→+∞

F (x), F (−∞) = lim inf
x→−∞

F (x).

We suppose

lim
x→±∞

g(x)
|x|p−1

= 0 (1.5)

and
∀v ∈ ker(−∆p − λ) \ {0} :

(p− 1)
∫ π

0

h(x)v(x) dx < F (+∞)
∫ π

0

v+(x) dx + F (−∞)
∫ π

0

v−(x) dx,
(1.6)
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or
∀v ∈ ker(−∆p − λ) \ {0} :

(p− 1)
∫ π

0

h(x)v(x) dx > F (+∞)
∫ π

0

v+(x) dx + F (−∞)
∫ π

0

v−(x) dx,
(1.7)

where
v+ := max{0, v}, v− := min{0, v}.

Then there exists at least one weak solution of the boundary-value problem (1.1);
i.e. there exists u ∈W 1,p

0 (0, π) such that for all v ∈W 1,p
0 (0, π),∫ π

0

|u′|p−2u′v′ dx = λ

∫ π

0

|u|p−2uv dx +
∫ π

0

g(u)v dx−
∫ π

0

hv dx.

Note that if λ is not an eigenvalue of −∆p then the conditions (1.6) and (1.7)
are vacuously true.

2. Preliminaries

Let

Jλ(u) :=
1
p

∫ π

0

|u′|p dx− λ

p

∫ π

0

|u|p dx−
∫ π

0

G(u) dx +
∫ π

0

hu dx, (2.1)

where

G(t) :=
∫ t

0

g(s) ds.

It is well known that Jλ ∈ C1(W 1,p
0 (0, π), R), and that for all v ∈W 1,p

0 (0, π),

〈J ′λ(u), v〉 =
∫ π

0

|u′|p−2u′v′ dx− λ

∫ π

0

|u|p−2uv dx−
∫ π

0

g(u)v dx +
∫ π

0

hv dx.

It follows that weak solutions of (1.1) correspond to critical points of Jλ.
The next theorem plays a fundamental role in proving that Jλ has critical points

of saddle point type (see [3, 5]).

Lemma 2.1 (Deformation Lemma). Suppose that Jλ satisfies the Palais-Smale
condition, i.e. if (un) is a sequence of functions in W 1,p

0 (0, π) such that (Jλ(un))
is bounded in R and J ′λ(un) → 0 in (W 1,p

0 (0, π))
∗
, then (un) has a subsequence

that is strongly convergent in W 1,p
0 (0, π). Let c ∈ R be a regular value of Jλ and

let ε̄ > 0. Then there exists ε ∈ (0, ε̄) and a continuous one-parameter family of
homeomorphisms, φ : W 1,p

0 (0, π)× 〈0, 1〉 →W 1,p
0 (0, π), with the properties:

(i) if t = 0 or |Jλ(u)− c| ≥ ε̄, then φ(u, t) = u,
(ii) if Jλ(u) ≤ c + ε, then Jλ(φ(u, 1)) ≤ c− ε.

3. Proof of main Theorem

The proof is divided into four lemmas. First we prove that functional Jλ satisfies
the Palais-Smale condition, and in the next steps we prove our theorem separately
for situations: λ < λ1, λk < λ < λk+1 and λ = λk.

Lemma 3.1. Let us assume (1.5) and ( (1.6) or (1.7)). Then the functional Jλ

satisfies the Palais-Smale condition.
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Proof. We will start with the proof that any Palais-Smale sequence is bounded
in W 1,p

0 (0, π). Suppose, by contradiction, that (un) is a sequence of functions in
W 1,p

0 (0, π) such that

(Jλ(un)) is bounded in R, (3.1)

J ′λ(un)→ 0 in (W 1,p
0 (0, π))

∗
, (3.2)

‖un‖ → +∞. (3.3)

Due to the reflexivity of W 1,p
0 (0, π) and the compact embeding

W 1,p
0 (0, π) ↪→↪→ C0(< 0, π >),

there exists v ∈W 1,p
0 (0, π) such that (up to subsequences)

vn :=
un

‖un‖
⇀ v (i.e., weakly) in W 1,p

0 (0, π), (3.4)

vn → v (i.e., strongly) in C0
(
〈0, π〉

)
. (3.5)

From (3.2), (3.3) and (3.4), we have

〈J ′λ(un), vn − v〉
‖un‖p−1

=
∫ π

0

|v′n|p−2v′n(vn − v)′ dx− λ

∫ π

0

|vn|p−2vn(vn − v) dx

−
∫ π

0

g(un)
‖un‖p−1

(vn − v) dx +
∫ π

0

h

‖un‖p−1
(vn − v) dx→ 0,

(3.6)

and since the last three terms approach 0 (here we need the assumption (1.5)), we
have ∫ π

0

|v′n|p−2v′n(vn − v)′ dx→ 0.

It follows from here, (3.4) and from the Hölder inequality that

0←
∫ π

0

|v′n|p−2v′n(vn − v)′ dx−
∫ π

0

|v′|p−2v′(vn − v)′ dx

=
∫ π

0

|v′n|p dx−
∫ π

0

|v′n|p−2v′nv′ dx−
∫ π

0

|v′|p−2v′v′n dx +
∫ π

0

|v′|p dx

≥ ‖vn‖p − ‖vn‖p−1‖v‖ − ‖v‖p−1‖vn‖+ ‖v‖p

= (‖vn‖p−1 − ‖v‖p−1)(‖vn‖ − ‖v‖) ≥ 0

(3.7)

which implies
‖vn‖ → ‖v‖. (3.8)

The uniform convexity of W 1,p
0 (0, π) then yields

vn → v in W 1,p
0 (0, π), ‖v‖ = 1. (3.9)

It follows from (3.2) and (3.3) that, for any w ∈W 1,p
0 (0, π),

〈J ′λ(un), w〉
‖un‖p−1

=
∫ π

0

|v′n|p−2v′nw′ dx− λ

∫ π

0

|vn|p−2vnw dx

−
∫ π

0

g(un)
‖un‖p−1

w dx +
∫ π

0

h

‖un‖p−1
w dx→ 0.
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Now the last two terms approach zero. Hence for all w ∈W 1,p
0 (0, π):∫ π

0

|v′n|p−2v′nw′ dx− λ

∫ π

0

|vn|p−2vnw dx→ 0. (3.10)

It is known [3] that the maps A, B : W 1,p
0 (0, π)→

(
W 1,p

0 (0, π)
)∗;

〈Au, w〉 :=
∫ π

0

|u′|p−2u′w′ dx, 〈Bu, w〉 :=
∫ π

0

|u|p−2uw dx

are continuous, and therefore from (3.9) and (3.10) we have∫ π

0

|v′|p−2v′w′ dx = λ

∫ π

0

|v|p−2vw dx, ∀w ∈W 1,p
0 (0, π)

and

v ∈ ker(−∆p − λ) \ {0}, ‖v‖ = 1.

The boundedness of (Jλ(un)), J ′λ(un)→ 0, and ‖un‖ → ∞ imply

〈J ′λ(un), un〉 − pJλ(un)
‖un‖

=
∫ π

0

pG(un)− g(un)un

‖un‖
dx− (p− 1)

∫ π

0

h
un

‖un‖
dx

=
∫ π

0

F (un)
un

‖un‖
dx− (p− 1)

∫ π

0

h
un

‖un‖
dx→ 0.

Hence

lim
∫ π

0

F (un)
un

‖un‖
dx = (p− 1)

∫ π

0

hv dx. (3.11)

Now we assume (1.6) (the other case (1.7) is treated similarly). It follows

F (+∞) > −∞ and F (−∞) < +∞.

For arbitrary ε > 0 set

cε :=

{
F (+∞)− ε if F (+∞) ∈ R,
1
ε if F (+∞) = +∞;

dε :=

{
F (−∞) + ε if F (−∞) ∈ R,

− 1
ε if F (−∞) = −∞.

Then for any ε > 0 there exists K > 0 such that

F (t) ≥ cε for any t > K, F (t) ≤ dε for any t < −K. (3.12)

On the other hand, the continuity of F on R implies that for any K > 0 there exists
c(K) > 0 such that

|F (t)| ≤ c(K) for any t ∈ 〈−K, K〉. (3.13)

Let us choose ε > 0 and consider the corresponding K > 0 and c(K) > 0 given by
(3.12) and (3.13), respectively. Set∫ π

0

F (un)
un

‖un‖
dx = AK,n + BK,n + CK,n + DK,n + EK,n, (3.14)
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where

AK,n =
∫

{x∈(0,π):
|un(x)|≤K}

F (un)
un

‖un‖
dx, BK,n =

∫
{x∈(0,π):
un(x)>K,
v(x)>0}

F (un)
un

‖un‖
dx,

CK,n =
∫
{x∈(0,π):
un(x)>K,
v(x)≤0}

F (un)
un

‖un‖
dx, DK,n =

∫
{x∈(0,π):

un(x)<−K,
v(x)<0}

F (un)
un

‖un‖
dx,

EK,n =
∫

{x∈(0,π):
un(x)<−K,

v(x)≥0}

F (un)
un

‖un‖
dx .

Before estimating these integrals we claim that for any K > 0 the following asser-
tions are true:

lim
n→∞

meas{x ∈ (0, π) : un(x) > K and v(x) ≤ 0} = 0,

lim
n→∞

meas{x ∈ (0, π) : un(x) < −K and v(x) ≥ 0} = 0,

lim
n→∞

meas{x ∈ (0, π) : un(x) ≤ K and v(x) > 0} = 0,

lim
n→∞

meas{x ∈ (0, π) : un(x) ≥ −K and v(x) < 0} = 0

cf. (1.3) and (3.5). We are now ready to estimate the integrals from (3.14).

|AK,n| ≤
c(K)Kπ

‖un‖
→ 0,

BK,n ≥ cε( ∫
{x∈(0,π):

v(x)>0}

vn dx− ∫
{x∈(0,π):
un(x)≤K,
v(x)>0}

vn dx)→ cε ∫
{x∈(0,π):

v(x)>0}

v(x) dx,

CK,n ≥ cε ∫
{x∈(0,π):
un(x)>K,
v(x)≤0}

vn dx→ 0,

DK,n ≥ dε( ∫
{x∈(0,π):

v(x)<0}

vn dx− ∫
{x∈(0,π):

un(x)≥−K,
v(x)<0}

vn dx)→ dε ∫
{x∈(0,π):

v(x)<0}

v(x) dx,

EK,n ≥ dε ∫
{x∈(0,π):

un(x)<−K,
v(x)≥0}

vn dx→ 0.

Hence (see (3.14)), for any ε > 0,

lim inf
∫ π

0

F (un)
un

‖un‖
dx = lim inf (AK,n + BK,n + CK,n + DK,n + EK,n)

≥ cε

∫
{x∈(0,π):

v(x)>0}

v(x) dx + dε

∫
{x∈(0,π):

v(x)<0}

v(x) dx,

which together with (3.11) implies

(p− 1)
∫ π

0

h(x)v(x) dx ≥ F (+∞)
∫ π

0

v+(x) dx + F (−∞)
∫ π

0

v−(x) dx,

contradicting (1.6). This proves that (un) is bounded.
The rest of the proof is very easy. If the sequence (un), which is bounded in

W 1,p
0 (0, π), satisfies conditions (3.1) and (3.2), then there exists u ∈ W 1,p

0 (0, π)
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such that (passing to subsequences)

un ⇀ u in W 1,p
0 (0, π), un → u in C0(〈0, π〉).

It follows from here, (3.2) and (1.5) that

lim〈J ′λ(un), un − u〉 = lim
∫ π

0

|u′n|p−2u′n(un − u)′ dx− λ

∫ π

0

|un|p−2un(un − u) dx

−
∫ π

0

g(un)(un − u) dx +
∫ π

0

h(un − u) dx

= lim
∫ π

0

|u′n|p−2u′n(un − u)′ dx = 0

which implies ‖un‖ → ‖u‖ (cf. (3.7)). The uniform convexity of W 1,p
0 (0, π) then

yields un → u in W 1,p
0 (0, π). The proof is complete. �

Lemma 3.2. Let us assume (1.5) and let λ < λ1. Then there exists at least one
weak solution of (1.1).

Proof. Assumption (1.5) and the variational characterization of λ1 yield: For all
u ∈W 1,p

0 (0, π) and all ε > 0 there exists c > 0 such that

Jλ(u) =
1
p

∫ π

0

|u′|p dx− λ1

p

∫ π

0

|u|p dx +
λ1 − λ

p

∫ π

0

|u|p dx

−
∫ π

0

G(u) dx +
∫ π

0

hu dx

≥ λ1 − λ

p

∫ π

0

|u|p dx− c

∫ π

0

|u|dx− ε

p

∫ π

0

|u|p dx−
∫ π

0

|hu|dx

≥ λ1 − λ− ε

p
‖u‖pLp(0,π) − c‖u‖L1(0,π) − ‖h‖Lp′ (0,π)‖u‖Lp(0,π).

Hence the functional Jλ is bounded from bellow on W 1,p
0 (0, π). It follows from this

and from Lemma 3.1 that Jλ attains its global minimum on W 1,p
0 (0, π) [6, Corollary

2.5]. �

Lemma 3.3. Let us assume (1.5) and ( (1.6) or (1.7)). Let there exists k ∈ N such
that λk < λ < λk+1. Then there exists at least one weak solution of (1.1).

Proof. Let m ∈ (λk, λ) and let A ∈ Fk be such that

sup
u∈A

I(u) ≤ m

(see Section 1 for Fk). Then (we again need (1.5)): For all u ∈ A, all t > 0 and all
ε > 0, there exists c > 0 such that

Jλ(tu) =
1
p
tp

( ∫ π

0

|u′|p dx− λ

∫ π

0

|u|p dx
)
−

∫ π

0

G(tu) dx + t

∫ π

0

hu dx

≤ 1
p
tp(m− λ)‖u‖pLp(0,π) + ct‖u‖L1(0,π)

+
ε

p
tp‖u‖pLp(0,π) + t‖h‖Lp′ (0,π)‖u‖Lp(0,π)

=
1
p
tp(m− λ + ε)‖u‖pLp(0,π) + t

(
c‖u‖L1(0,π) + ‖h‖Lp′ (0,π)‖u‖Lp(0,π)

)
,
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and
lim

t→+∞
Jλ(tu) = −∞ ∀u ∈ A . (3.15)

Now we continue similarly as in [3]. Let

Ek+1 := {u ∈W 1,p
0 (0, π) :

∫ π

0

|u′|p dx ≥ λk+1

∫ π

0

|u|p dx},

and notice that for all u ∈ Ek+1, all ε > 0 there exists c > 0 such that

Jλ(u) ≥ 1
p

(λk+1 − λ− ε) ‖u‖pLp(0,π) − c‖u‖L1(0,π) − ‖h‖Lp′ (0,π)‖u‖Lp(0,π).

Hence
α := inf{Jλ(u) : u ∈ Ek+1} ∈ R. (3.16)

From (3.15) and (3.16) we see that there exists T > 0 such that

γ := max{Jλ(tu) : u ∈ A and t ∈ 〈T,+∞)} < α.

The rest of the proof can be copied from [3]. If we define

TA := {tu ∈W 1,p
0 (0, π) : u ∈ A and t ∈ 〈T,+∞)},

Γ := {h ∈ C0(Bk,W 1,p
0 (0, π)) : h|Sk is an odd map into TA},

where

Bk := {x = (x1, . . . , xk) ∈ Rk : ‖x‖Rk =
√

x2
1 + · · ·+ x2

k ≤ 1},

then we can prove that Γ is nonempty and if h ∈ Γ then h(Bk) ∩ Ek+1 6= ∅.
Moreover, from Deformation Lemma then follows that

c := inf
h∈Γ

sup
x∈Bk

Jλ(h(x))

is a critical value of Jλ. Indeed, assume by contradiction, that c is a regular value
of Jλ. It is clear that c ≥ α. Now we consider arbitrary ε̄ > 0 such that ε̄ < c− γ
and we apply Deformation Lemma. We get a deformation φ and a corresponding
ε > 0. By definition of c there is an h ∈ Γ such that

sup
x∈Bk

Jλ(h(x)) < c + ε.

Now when
h̃(x) := φ(h(x), 1),

we obtain
h̃ ∈ Γ, ∀x ∈ Bk : Jλ(h̃(x)) = Jλ(φ(h(x), 1)) ≤ c− ε,

it is a contradiction to the definition of c. �

Lemma 3.4. Let us assume (1.5) and ( (1.6) or (1.7)). Let there exists k ∈ N such
that λ = λk. Then there exists at least one weak solution of (1.1).

Proof. At first we assume (1.6). Let (µn) be a sequence in (λk, λk+1) such that
µn ↘ λk. Now thanks to Lemma 3.3, we have: For all n ∈ N there exists cn ∈ R
and un ∈W 1,p

0 (0, π) such that

J ′µn
(un) = 0 and Jµn

(un) = cn ≥ αn := inf{Jµn
(u) : u ∈ Ek+1}.
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It follows from (1.5) and from the monotonousness of (µn) that for all n ∈ N, all
u ∈ Ek+1 and all ε > 0, there exists c > 0 such that

Jµn
(u)

≥ 1
p
(λk+1 − µn)‖u‖pLp(0,π) − c‖u‖L1(0,π) −

ε

p
‖u‖pLp(0,π) − ‖h‖Lp′ (0,π)‖u‖Lp(0,π)

≥ 1
p
(λk+1 − µ1 − ε)‖u‖pLp(0,π) − c‖u‖L1(0,π) − ‖h‖Lp′ (0,π)‖u‖Lp(0,π),

and so the sequence (cn) is bounded below.
Now we prove that the corresponding sequence of critical points, (un), is bounded.

Suppose, by contradiction, that ‖un‖ → +∞. Then we can assume that there exists

v ∈ ker(−∆p − λk) \ {0} (3.17)

such that (up to subsequences)

un

‖un‖
→ v in W 1,p

0 (0, π). (3.18)

Because (cn) is bounded from below, it follows from (1.6), (3.17) and (3.18) that

0 ≤ lim inf
pcn

‖un‖

≤ lim sup
pcn

‖un‖

= lim sup
pJµn

(un)− 〈J ′µn
(un), un〉

‖un‖

= lim sup
(
−

p
∫ π

0
G(un) dx−

∫ π

0
g(un)un dx

‖un‖
+ (p− 1)

∫ π

0

h
un

‖un‖
dx

)
= − lim inf

(p
∫ π

0
G(un) dx−

∫ π

0
g(un)un dx

‖un‖

)
+ (p− 1)

∫ π

0

hv dx

= − lim inf
( ∫ π

0

F (un)
un

‖un‖
dx

)
+ (p− 1)

∫ π

0

hv dx < 0.

This is a contradiction, therefore (un) is bounded. Thus there will be a subsequence
of critical points that converges to the desired solution.

Now we assume (1.7). Because for λ = λ1 our assertion was proved in [2], we
focus on k > 1. Let (µn) be a sequence in (λk−1, λk) such that µn ↗ λk. We
can find (similarly as in [3]) a sequence (un) of critical points associated with the
functionals Jµn

such that the sequence cn := Jµn
(un) is decreasing, i.e.

J ′µn
(un) = 0, Jµn

(un) = cn ≥ cn+1.

Now we are going to prove that (un) is bounded. Suppose, by contradiction, ‖un‖ →
∞. Then there exists v ∈ ker(−∆p − λk) \ {0} such that (up to subsequence)



10 J. BOUCHALA EJDE-2005/08

un

‖un‖ → v and

0 ≥ lim sup
pcn

‖un‖
≥ lim inf

pcn

‖un‖

= lim inf
pJµn(un)− 〈J ′µn

(un), un〉
‖un‖

= lim inf
(
−

p
∫ π

0
G(un) dx−

∫ π

0
g(un)un dx

‖un‖
+ (p− 1)

∫ π

0

h
un

‖un‖
dx

)
= − lim sup

(p
∫ π

0
G(un) dx−

∫ π

0
g(un)un dx

‖un‖

)
+ (p− 1)

∫ π

0

hv dx

= − lim sup
( ∫ π

0

F (un)
un

‖un‖
dx

)
+ (p− 1)

∫ π

0

hv dx > 0,

which is a contradiction. Now it is a simple matter to show that, by passing to a
subsequence, we obtain a critical point of Jλk

in the limit. �
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