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STRONG RESONANCE PROBLEMS FOR THE
ONE-DIMENSIONAL p-LAPLACIAN

JIRf BOUCHALA

ABSTRACT. We study the existence of the weak solution of the nonlinear
boundary-value problem
—(lu'|P~%u")" = Nu[P~?u + g(u) = h(z) in (0,7),
u(0) = u(m) =0,

where p and X are real numbers, p > 1, h € LP (0,7) (p/ = p%) and the
nonlinearity g : R — R is a continuous function of the Landesman-Lazer type.
Our sufficiency conditions generalize the results published previously about
the solvability of this problem.

1. INTRODUCTION
We consider the boundary-value problem
—Apu = Mu[P~2u + g(u) — h(x) in (0,7), (L1)
u(0) = u(r) =0, .

where p > 1, g : R — R is a continuous function, h € L?’ 0,m) (p' = ﬁ), A eR,
and —A,, is the (one-dimensional) p-Laplacian, i.e. Ayu = (Ju’[P72u')".

Problem (|1.1) can be thought of as a perturbation of the homogeneous eigenvalue
problem

—Apu = NuP~2u in (0,7),

u(0) =u(r) =0.

We say that A € R is an eigenvalue of —A,, if there exists a function u € Wy*(0, 7),
u Z 0, such that

T s
/ W/ PP de = A [ ulPPuvde Yo € WP (0, 7).
0 0
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The function u is then called an eigenfunction of —A, corresponding to the eigen-
value A and we write

u € ker(—A, — ) \ {0}
Consider the functional
T
W0\ (0} — By I(u) = ff s
and the manifold
S = {ue Wy (0,m) : |[ull poony = 13-
For k € N let
Fi. := {A C S : there exists a continuous odd surjection h : S¥ — A},

where S* represents the unit sphere in R*. Next define

A = inf I(u). 1.2
o, s ) .

It is known that A, is an eigenvalue of —A, (see [3]) and that (\;) represents

(k:p)p, where m, := 2(p —

complete set of eigenvalues [4] (For any k € N, A

1)% fol —4ds ). Moreover, for any k € N we have 0 < Ay < Apy; and any corre-
(1-s?)?
sponding eigenfunction has “the strong unique continuation property”, i.e.
Vo € ker(—=A, — M) \ {0}, |lv|l=1:

(V6 > 0) (FIn(6) > 0) : meas{z € (0,7) : |o(z)| < n(6)} < 6. (13)

The symbol || - || indicates the norm in the Sobolev space W, *(0,7), i.e.

i 1/p
Jull = ([ pras) ™
0

Our paper is motivated by the results in [2] and [3]. The following theorem
generalizes those results for the one-dimensional problem ([1.1)).

Theorem 1.1. Let us define

p (¥ _
F(a) =4+ Jo 90) ds =gla),x £ 0 (14)
(p - l)g(0)7 x =0,
and set
F(—c0) =limsup F(z), F(4o00)= limlan(x)7
F(+00) =limsup F(z), F(—o0)=liminf F(x).
T—+00 T——00
We suppose
9@) _
i =0 (1.5)
and

Vo € ker(—A, — A) \ {0} :

(p—1) /OTr h(z)v(x) dr < F(400) /07r v¥(z) dr + F(—o0) /07r v () dz, (L6)
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Vo € ker(—A, — X) \ {0} :

(p—1) ! h(z)v(z) dv > F(+00) ' v (z) dr + F(—00) i v~ (x) dr, (L.7)
0 0 0

where

vt i=max{0,v}, v~ :=min{0,v}.

Then there exists at least one weak solution of the boundary-value problem (1.1));
i.e. there exists u € W, (0, ) such that for all v € W, (0,7),

/ |u’|p72u'v’dx:)\/ |u|p*2uvdx+/ g(u)v dx—/ hv dz.
0 0 0 0

Note that if A is not an eigenvalue of —A,, then the conditions (|1.6)) and (1.7)
are vacuously true.

2. PRELIMINARIES

Let
1 T , A ™ s s
In(u) = - |u'|P dz — = |u|P dox — G(u)dz + hudz, (2.1)
P Jo P Jo 0 0
where

G(t) :z/0 g(s)ds.

It is well known that Jy € C'(W,?(0,7),R), and that for all v € W, (0, 7),

J/ u),v) = 'U//p 2UI'UICLCL'—)\ ulP 2’U/de— gUUd$+ hvdzx.
A
0 0 0 0

It follows that weak solutions of (|1.1)) correspond to critical points of Jy.
The next theorem plays a fundamental role in proving that Jy has critical points
of saddle point type (see [3}, [5]).

Lemma 2.1 (Deformation Lemma). Suppose that Jy satisfies the Palais-Smale
condition, i.e. if (uy) is a sequence of functions in Wy (0,7) such that (Jx(uy))
is bounded in R and J}(un) — 0 in (Wol’p(O,w))*, then (un) has a subsequence
that is strongly convergent in Wol’p((),ﬂ'). Let ¢ € R be a regular value of Jy and
let € > 0. Then there exists € € (0,€) and a continuous one-parameter family of
homeomorphisms, ¢ : Wol’p(Oﬂr) x (0,1) — Wol’p((),ﬂ'), with the properties:

(i) ift =0 or|Jx(u) — c| > &, then ¢(u,t) = u,

(ii) if Ja(u) < c+eg, then Jy(p(u,1)) < c—e.

3. PROOF OF MAIN THEOREM

The proof is divided into four lemmas. First we prove that functional J) satisfies
the Palais-Smale condition, and in the next steps we prove our theorem separately
for situations: A < A1, A\p < A < Agy1 and A = Ag.

Lemma 3.1. Let us assume (L.5) and ((1.6) or (L.7)). Then the functional J

satisfies the Palais-Smale condition.
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Proof. We will start with the proof that any Palais-Smale sequence is bounded
in W, (0,7). Suppose, by contradiction, that (u,) is a sequence of functions in
WyP(0,7) such that
(Jx(uy)) is bounded in R, (3.1)
i (un) = 0 in (Wo?(0,m))", (3:2)
[t || — +o0.

Due to the reflexivity of WO1 "P(0,7) and the compact embeding

WyP(0,7) e CO(< 0,7 >),

there exists v € W, *(0, ) such that (up to subsequences)

Uy = ”u"” —w (i.e., weakly) in Wy*(0,7), (3.4)
Uy,
v, = v (ie., strongly) in C°((0,)). (3.5)

From (3:2), (3) and (B4), we have
<J$\(un)7 Un — ’U>

[[un [P~

= / [v] P20 (v, — v) da — )\/ [0 P20y, (v, — v) daz (3.6)
0 0
4 h

g(un) "
,/0 Iun”p_l(vnv)der/O 7||Un||p_1(vn*’0)dx—>0,

and since the last three terms approach 0 (here we need the assumption (|1.5))), we
have

s
/ [v]|P~20! (v, — v) da — 0.
0

It follows from here, (3.4) and from the Holder inequality that

s T
0« / vl P20 (v, — ) da — / [v' [P0 (v, — v) da
0 0

= [ s = [Cpiptieae— et e [Curas @)

> [vnll” = lloalP=Hvll = [lolP~ oall + [lo]|?
= (loallP=" = [P~ Ulonll = llvl) = 0

which implies

[[on]] = [o]l- (3-8)
The uniform convexity of Wy (0,7) then yields
v, — v in WyP(0,7), ||| =1. (3.9)

It follows from (3.2) and (3:3) that, for any w € W, (0,7),

J/ n), ™ ™
(A un), w) / [vl [P~ 20w’ do — )\/ |Un [P 20w dz
0 0

R [
_ ﬂdeer WLdeHO
o lualP=? o lunlP=? '
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Now the last two terms approach zero. Hence for all w € VVO1 P(0,7):
/ﬂ |v] P~ 20w’ da — /\/7T |0 [P~ 20w dz — 0. (3.10)
0 0
It is known [3] that the maps A, B : Wy*(0,7) — (Wol’p(O,ﬂ))*;
(Au,w) := /7T |/ [P~ 2u'w’ dz,  (Bu,w) = /Tr |ulP~uw dz
0 0
are continuous, and therefore from and we have
/Tr [v'|P~ 20w’ d = )\/Tr [P~ 2owdz, Yw e WyP(0,7)
0 0

and
v € ker(—A, —A)\ {0}, [v]=1
The boundedness of (Jx(u)), J4(un) — 0, and ||u,|| — oo imply
! _ T _ T
(JA(un), un) — pJx(un) _ / PG (un) — g(un)un de — (p — 1)/ ptn
0 0

dx
[l [[un| [[unl|

i U T oou
= F(up)—dz — (pfl)/ h—"=dz — 0.
A [[n | o llunll

Hence
lim/ F(un)u—ndx =(p-— 1)/ hvdz. (3.11)
0 [l | 0
Now we assume ([1.6]) (the other case (1.7 is treated similarly). It follows

F(+00) > —o0 and F(—o00) < +00.

For arbitrary € > 0 set

) F(400) —¢ if F(+00) €R,
) L if F(+00) = 4o

€

4 F(—0)+¢ if F(—)€R,
T —L1if F(—o00) = —o0.
Then for any € > 0 there exists K > 0 such that
F(t) > ¢ forany t> K, F(t)<d. forany t<—K. (3.12)

On the other hand, the continuity of F' on R implies that for any K > 0 there exists
¢(K) > 0 such that

|F(t)| < ¢(K) for any t € (—K, K). (3.13)

Let us choose € > 0 and consider the corresponding K > 0 and ¢(K) > 0 given by

(3.12)) and (3.13]), respectively. Set

/ F(un)ﬁdx:AK,n+BK,n+CK,n+DK,n+EK,n7 (314)
0 n
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where
- Un - HUn_

A= [ gy, PO Bin = fuci oy P27 8

lun (@) <K} S0y

u (2

Cre. :/ F(up)—"—dz, Dg, :/ C F(up)——dz
s U s o S 0

v(z)<0} v(z)<0}

Un,
Erxp = /{xe(o,ﬂ): F(Un)m dx.

up (z)<—K,
v(z)=>0}

Before estimating these integrals we claim that for any K > 0 the following asser-
tions are true:

lim meas{z € (0,7) : u,(x) > K and v(z) <0} =0,

lim meas{z € (0,7) : uy(z) < —K and v(z) >0} =0,

lim meas{z € (0,7) : up(z) < K and v(z) >0} =0,
n—oo

lim meas{z € (0,7) : u,(x) > —K and v(z) <0} =0

cf. (1.3) and (3.5). We are now ready to estimate the integrals from (3.14)).

c(K)K~
Al < TIET
[l
Bxn>c( [ vpdz— [ vpdz)—ec. [ o(z)dz,
{x€(0,m): {x€(0,m): {x€(0,m):
v(x)>0} un (z)<K, v(z)>0}
v(x)>0}
Crn > ce f v, dx — 0,
{ze(0,m):
un (2)>K,
v(x)<0}
Dgpn>d.( [ vpde— / vp dx) — de [ v(z)de,
{zxe(0,m): {z€(0,m): {z€(0,m):
v(x)<0} un (z)>—K, v(x)<0}
v(x)<0}
Egyn > d. f v, dr — 0.
{z€(0,m):
up (z)<—K,
v(x)>0}

Hence (see (3.14))), for any € > 0,

lim inf / F(un)—"— dz = liminf (Ax.p + Bin + Cicno + Dicn + Eic.n)
0

[[2n |
> c. /{zE(O,ﬂ'): v(x)dz + d. we(0.m): v(x) de,

v(z)>0} v(z)<0}

which together with (3.11)) implies

(p— 1)/; h(z)o(z) da ZF(-l—OO)/OﬂU“'(x) dac—&—F(—oo)/oﬂv_(x)dx,

contradicting ([1.6). This proves that (u,) is bounded.
The rest of the proof is very easy. If the sequence (u,), which is bounded in
Wy (0,7), satisfies conditions (3.1)) and (3.2), then there exists u € W, (0, )
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such that (passing to subsequences)
Up — win WyP(0,7), w, — uin CO((0, 7).
It follows from here, (3.2) and (1.5]) that

Hm (Y (un), up — u) = lim [ |, [P~ 20, (u, —u) do — )\/ |t [P~ 2 (1, — w) dv
0 0

- / g(un)(uy —u)de —|—/ h(u, —u)de
0 0
= lim/ [ul, [P~ 2, (wy, — u) dz =0
0

which implies |[u,| — [u] (cf. (37)). The uniform convexity of W,”(0,7) then
yields u,, — u in Wy"*(0,7). The proof is complete. O

Lemma 3.2. Let us assume (1.5) and let A < A\1. Then there exists at least one
weak solution of (1.1]).

Proof. Assumption (1.5) and the variational characterization of A\; yield: For all
u € WyP(0,7) and all € > 0 there exists ¢ > 0 such that

1 (/7 Ao [T A=A [T
Ja(u) = 7/ |u'|P do — —1/ ulP dz + 22 / |ul? dz
P Jo P Jo p 0

—/ G(u)dw—l—/ hudx
0 0
A 7)\ K T T s
> 2 / |u|pdx—c/ |u|dx—£/ |u|pdx—/ |hu| dx
p 0 0 P Jo 0

)\1 —A—¢
2 7}3 HUHI&(O,W) = cllullzro,m) — ||h||LP’(0,7r)HUHLP(O,W)-

Hence the functional .Jy is bounded from bellow on Wy?(0,7). It follows from this
and from Lemmathat J) attains its global minimum on I/VO1 (0, ) [6, Corollary
2.5, O

Lemma 3.3. Let us assume (1.5)) and ((1.6]) or (1.7))). Let there exists k € N such
that Ay < A < Agr1. Then there exists at least one weak solution of (L.1)).

Proof. Let m € (A, A) and let A € F, be such that

sup I(u) <m
ueA

(see Section 1 for Fy). Then (we again need (1.5)): For all u € A, all ¢ > 0 and all
€ > 0, there exists ¢ > 0 such that

1 ™ ™ s s
Ja(tu) = 7tp(/ |u/|pdx—)\/ |u|de) 7/ G(tu)dert/ hu dz
p 0 0 0 0
1
< Z;t”(m = Mull7po,0 + ctllullzro,m)
3
+ z;tpH“Hip(o,n) + t”hHLP'(O,ﬂ')HUHLP(O,W)

1
=t m = At el + t(ellullzr 0. + 12l o 0. 1ull o c0.m))
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and
lim Jy(tu) = —c0 Vu € A. (3.15)

t——+oo

Now we continue similarly as in [3]. Let

Enir = {u e WyP(0,7) : / |u'|P dx > /\k+1/ |ulP dx},
0 0

and notice that for all u € 41, all € > 0 there exists ¢ > 0 such that
In(u) = % A1 = A=) [l gy = cllullLrom = 1Al Lo (0. m Il o 0,m)-
Hence
a:=inf{Jy(u):u € &1} €R. (3.16)

From and we see that there exists 7' > 0 such that

v :=max{Jy(tu) :u € A and t € (T,+o0)} < a.
The rest of the proof can be copied from [3]. If we define

TA:= {tu e WyP(0,7):uec Aandt e (T, +00)},

T := {h € C°(By, W, ?(0,7)) : h|gr is an odd map into T'A},

where

Bii={z=(1,...,0) €R : el = \foF + - + 22 <1},

then we can prove that I' is nonempty and if h € T then h(By) N Exv1 # 0.
Moreover, from Deformation Lemma then follows that

c:= }111611; wseué)k Jx(h(x))

is a critical value of Jy. Indeed, assume by contradiction, that c is a regular value
of Jy. It is clear that ¢ > a. Now we consider arbitrary & > 0 such that £ < c¢—y
and we apply Deformation Lemma. We get a deformation ¢ and a corresponding
€ > 0. By definition of ¢ there is an h € I such that

sup Jy(h(z)) < c+e.
€ By

Now when

we obtain
hel, Yz e By : Ja(h(z)) = Ja(op(h(x),1)) < c—e¢,

it is a contradiction to the definition of c. O

Lemma 3.4. Let us assume (1.5)) and ((1.6]) or (1.7))). Let there exists k € N such
that A = A\p. Then there exists at least one weak solution of (1.1f).

Proof. At first we assume (1.6). Let (u,) be a sequence in (Ag, Ag41) such that
tn \, Ag- Now thanks to Lemma we have: For all n € N there exists ¢, € R
and u,, € Wy (0,7) such that

Jy, (un) =0 and J,, (un) = cp > = inf{J,, (u) :u € Epqr}
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It follows from (|1.5) and from the monotonousness of (u,) that for all n € N, all
u € Ey+1 and all € > 0, there exists ¢ > 0 such that

T, (u)
1
E(Ak+1 Nn)Hu”ip(o,ﬂ) - cllu”Ll(O,ﬂ') pHu”Lp 0,7) Hh”LP’(O,n)”uHLP(Oﬂr)
1
E(Akﬂ = E)lullfno ) = ellwllrom = 1l Lo o,m el Lro,m)

and so the sequence (¢;,) is bounded below.
Now we prove that the corresponding sequence of critical points, (uy,), is bounded.
Suppose, by contradiction, that ||u,| — +00. Then we can assume that there exists

v € ker(—A, — Ag) \ {0} (3.17)
such that (up to subsequences)

Un

[[un]|

— v in WyP(0,7). (3.18)

Because (¢,,) is bounded from below, it follows from (1.6)), (3.17) and (3.18)) that

0< hmlnf ” ”
< lim sup Pen
[[uan|
. pJun(un) - <J;Ln(un)aun>
= lim sup
:hmsup(— pfo (un) dz — fo (ttn) undx / h
Hun\l HunH
:—liminf(pf0 (u ||u ]{O 9(un)u x +(p—1)/ hv dz
n 0

:—liminf(/ F(up) dw)—i—(p—l)/ hvdx < 0.
0 0

Un
Taal
This is a contradiction, therefore (u,,) is bounded. Thus there will be a subsequence
of critical points that converges to the desired solution.

Now we assume (1.7)). Because for A\ = A\ our assertion was proved in [2], we
focus on k > 1. Let (up) be a sequence in (Ag—1,Ag) such that w, / Ap. We
can find (similarly as in [3]) a sequence (u,,) of critical points associated with the
functionals J,,, such that the sequence ¢, := J,,, (u,) is decreasing, i.e.

J/, (un> = 07 J,U«n (un) =Cn Z Cn+41-

Now we are going to prove that (u,,) is bounded. Suppose, by contradiction, ||u,| —
co. Then there exists v € ker(—A, — Ag) \ {0} such that (up to subsequence)
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Un - — ¢ and
0> hmbup— > lim inf Pen
[[n | [[n |
J, —{J! (un),u
() — (T ) )
||un||
7T
(up,) dx — Up ) Uy, AT
:liminf<—pf0 n) dz = Jy g(un)un - “n dx)
HunH HunH
™
G Up ) U dx
:—limsup(pfo () dz = Jy' g(un)n +(p—1)/ hv dz
||un||
= — lim sup / F(up) ” ” / hvdz > 0,
TL
which is a contradiction. Now it is a sunple matter to show that, by passing to a
subsequence, we obtain a critical point of Jy, in the limit. O
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