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LIMIT CYCLES BIFURCATING FROM THE PERIODIC ORBITS
OF THE WEIGHT-HOMOGENEOUS POLYNOMIAL CENTERS

OF WEIGHT-DEGREE 3

JAUME LLIBRE, BRUNO D. LOPES, JAIME R. DE MORAES

Abstract. In this article we obtain two explicit polynomials, whose simple
positive real roots provide the limit cycles which bifurcate from the periodic

orbits of a family of polynomial differential centers of order 5, when this family

is perturbed inside the class of all polynomial differential systems of order 5,
whose average function of first order is not zero. Then the maximum number

of limit cycles that bifurcate from these periodic orbits is 6 and it is reached.

This family of of centers completes the study of the limit cycles which can
bifurcate from periodic orbits of all centers of the weight-homogeneous poly-

nomial differential systems of weight-degree 3 when perturbed in the class of

all polynomial differential systems having the same degree and whose average
function of first order is not zero.

1. Introduction and statement of the main results

One of the main goals in the qualitative theory of real planar polynomial differ-
ential systems is the determination of their limit cycles. Studying the number of
limit cycles of a polynomial differential system is strongly motivated by Hilbert’s
16-th problem (1900). For more details see [8] and [14].

Many authors have studied the number of limit cycles which may bifurcate from
the periodic orbits of a center of a polynomial differential system when it is per-
turbed up to first order in the parameter of the perturbation. This problem is
known as the weak Hilbert’s problem. See for example [1, 3].

Among the many tools for studying the maximum number of limit cycles that
may bifurcate from the periodic annulus of a center we have the Poincaré return
map, the Poincaré-Melnikov integrals, the Abelian integrals, and the averaging
theory. The last three methods are equivalent at first order, see for instance [7].
For studies on the weak Hilbert’s problem see, for example, the second part of [6]
and the hundreds of references quoted therein.

Here we consider the polynomial differential systems

ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)
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where P and Q are polynomials with real coefficients. The degree of the system is
the maximum of the degrees of the polynomials P and Q .

We say that system (1.1) is weight-homogeneous if there exist (s1, s2) ∈ N2 and
d ∈ N such that for any λ ∈ R+ = {λ ∈ R : λ > 0} we have

P (λs1x, λs2y) = λs1−1+dP (x, y), Q(λs1x, λs2y) = λs2−1+dQ(x, y).

The vector (s1, s2) is called the weight-exponent of system (1.1) and d is called
weight-degree with respect to the weight-exponent (s1, s2).

Our main goal is to solve the weak Hilbert’s problem for the weight-homogeneous
polynomial differential systems of weight-degree 3.

The classification of all centers of a planar weight-homogeneous polynomial dif-
ferential systems up to weight-degree 4 is found in [11]. In [11] two families of
weight-homogeneous polynomial differential systems having centers with weight-
degree 3 are provided. The first family can be written as

ẋ = ax3 + (b− 3αµ)x2y − axy2 − αy3,

ẏ = αx3 + ax2y + (b+ 3αµ)xy2 − ay3,
(1.2)

with α ∈ {−1, 1}, a, b, µ ∈ R and µ > −1/3, after doing an affine change of variables
and a rescaling of the time. The weight-exponent of this family is (s1, s2) = (1, 1).

The second family is
ẋ = ax3 + by = P (x, y),

ẏ = cx5 + dx2y = Q(x, y),
(1.3)

with bc 6= 0, 3a+ d = 0 and 12(bc− ad) < 0. The weight-exponent of this family is
(s1, s2) = (1, 3).

In [10] we provide a polynomial whose real positive simple zeros give exactly
the number of limit cycles that bifurcate from the periodic orbits of (1.2) when
perturbed in the class of all polynomial differential systems of degree n and nonzero
first order average function is. In particular the maximum number of limit cycles
obtained is exactly [(n− 1)/2], where [x] denotes the integer part of x.

In this article we give two explicit polynomials whose real positive simple zeros
provide the number of limit cycles which bifurcate from the periodic orbits of the
center of the weight-homogeneous polynomial differential system (1.3), when the
first order average function is non-zero. The maximum number of limit cycles is
reached when the parameter d 6= 0.

More precisely here we consider the polynomial differential system

ẋ = −d
3
x3 + by + εp(x, y),

ẏ = cx5 + dx2y + εq(x, y),
(1.4)

where

p(x, y) =
5∑
k=0

pk(x, y), q(x, y) =
5∑
i=0

qk(x, y), (1.5)

pk(x, y) =
k∑
i=0

ck−i i x
k−iyi, qk(x, y) =

k∑
i=0

dk−i i x
k−iyi,

and ε is a small parameter.
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In [9] the authors found an upper bound for the maximum number of limit cycles
of system (1.4). Looking at statement (c) of Theorem A of [9] with n = 5, p = 3
and q = 1 an upper bound for the number of limit cycles of system (1.4) with ε
sufficiently small coming from the periodic orbits of the center (1.3) is 8. Here
we prove that the maximum number of limit cycles that system (1.4) can have is
exactly 6 and it is reached. See Corollary 1.3. See [12, Theorem 2] for another
study on the limit cycles that may bifurcate from the periodic orbits surrounding
a non-Hamiltonian center using averaging theory.

In what follows we state our main results where the functions fi(θ), for i =
0, 1, . . . , 9, W (θ), g1(θ) and k(θ) are given in Section 3 and the functions f∗i (θ), for
i = 0, 1, . . . , 9, W ∗(θ), g∗1(θ) and k∗(θ) are given in Section 4. We do not provide
these functions here due to their length.

Theorem 1.1. Suppose that d 6= 0. Let r0,s be a positive simple root of the poly-
nomial

r0F(r0) =
1

2π

7∑
k=1

r2k−2
0

∫ 2π

0

A2k+1(θ)dθ, (1.6)

where

Ai(θ) =
W (θ)fi(θ)k(θ)i−5

g1(θ)2
.

Then for |ε| > 0 sufficiently small parameter the perturbed systems (1.4) have a limit
cycle bifurcating from the periodic orbit r(θ, r0,s) = k(θ)r0,s of the period annulus
of the center (1.3) if the first order average function is non-zero. In particular, the
polynomial (1.6) has at most 6 positive simple real roots and they are reached.

Theorem 1.2. Suppose that d = 0. Let r0,s be a positive simple root of the poly-
nomial

r0F∗(r0) =
1

2π

( 5∑
k=1

r2k−2
0

∫ 2π

0

A∗2k+1(θ)dθ + r110

∫ 2π

0

A∗15(θ)dθ
)
, (1.7)

where

A∗i (θ) =
W ∗(θ)f∗i (θ)k∗(θ)i−5

g∗1(θ)2
.

Then for |ε| > 0 sufficiently small the perturbed systems (1.4) have a limit cycle
bifurcating from the periodic orbit r(θ, r0,s) = k∗(θ)r0,s of the period annulus of
the center (1.3) if the first order average function is non-zero. In particular, the
polynomial (1.7) has at most 5 positive simple real roots and they are reached.

Theorem 1.1 is proved in Section 3 and Theorem 1.2 is proved in Section 4. In
Section 5 we provide two examples that illustrate Theorems 1.1 and 1.2 with the
maximum number of limit cycles.

From Theorems 1.1 and 1.2 the next result follows.

Corollary 1.3. Applying the averaging theory of first order to the perturbed system
(1.4) when |ε| is sufficiently small we can obtain at most 6 limit cycles bifurcating
from the periodic orbits of the center (1.3), and we have systems where these 6 limit
cycles are reached.
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2. Preliminaries

In this section we give some well known results that we shall need for proving
Theorem 1.1. Consider the system

ẋ = F0(t, x) + εF1(t, x) +O(ε2), (2.1)

where ε 6= 0 is sufficiently small and the functions F0, F1 : R × Ω → Rn and
F2 : R×Ω× (−ε0, ε0)→ Rn are C2 functions, T−periodic in the first variable and
Ω is an open subset of Rn. We suppose that the unperturbed system

ẋ = F0(t, x) (2.2)

has a submanifold of periodic solutions of dimension n.
Let x(t, z, ε) be the solution of system (2.2) such that x(0, z, ε) = z. The lin-

earization of the unperturbed system along a periodic solution x(t, z, 0) is

ẏ = DxF0(t, x(t, z, 0))y. (2.3)

In what follows we denote by Mz(t) the fundamental matrix solution of the
linearized system (2.3) such that Mz(0) is the identity matrix.

We assume that there is an open set U with Cl(U) ⊂ Ω such that for each
z ∈ Cl(U), x(t, z, 0) is T−periodic, where x(t, z, 0) denotes the solution of the
unperturbed system (2.2), and Cl(U) the closure of U . The set Cl(U) is isochronous
for system (2.2), i.e. it is formed only by periodic orbits with period T .

The following result is the a version of averaging theorem for studying the bifur-
cation of T−periodic solutions of system (2.1) from the periodic solutions x(t, z, 0)
contained in Cl(U) of system (2.2) when |ε| > 0 is sufficiently small. See [4] for a
proof. For more details on the averaging theory see [5] and [13].

Theorem 2.1 (Perturbations of an isochronous set). We assume that there exists
an open and bounded set U with Cl(U) ⊂ Ω such that for each z ∈ Cl(U), the
solution x(r, z, 0) is T−periodic. Consider the function F : Cl(U)→ Rn

F(z) =
1
T

∫ T

0

M−1
z (t)F1(t, x(t, z, 0))dt. (2.4)

Then if there exists a ∈ U with F(a) = 0 and det((∂F/∂z)(a)) 6= 0 then there exists
a T−periodic solution x(t, ε) of system (2.1) such that x(0, ε)→ a when ε→ 0.

In fact, if x(t, z, ε) denotes the solution of the differential system (2.1) such that
x(0, z, ε) = z, then the average function satisfies that x(T, z, ε)− z = εF(z) +O(ε2),
see for more details [4, 7]. Then, by the Implicit Function Theorem it follows that
if F(z) 6= 0, then the simple zeros of the function F(z) provide limit cycles of the
differential system (2.1).

The following result is the generalized Descartes Theorem about the number of
zeros of a real polynomial. See [2] for a proof.

Theorem 2.2. Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · · + airx
ir

with 0 ≤ i1 < i2 < · · · < ir and aij 6= 0 real constants for j ∈ {1, 2, . . . , r}. When
aijaij+1 < 0, we say that aij and aij+1 have a variation of sign. If the number of
variations of signs is m, then p(x) has at most m positive real roots. Moreover,
it is always possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r − 1 positive real roots.
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3. Proof of Theorem 1.1

Suppose that d 6= 0. We apply the affine change of variables

x̃ = αx, ỹ =
α3b

d
y, t̃ =

d

α2
t,

with α 6= 0 and system (1.3) becomes

ẋ = P (x, y) = −1
3
x3 + y,

ẏ = Q(x, y) = a1x
5 + x2y,

where a1 = −(4 + b2)/12 and b 6= 0. In the case b = 0 working in a similar
way we also can reach the previous differential system. The perturbed system
corresponding to the previous system is

ẋ = −1
3
x3 + y + εp(x, y),

ẏ = a1x
5 + x2y + εq(x, y) .

(3.1)

We write system (3.1) in the generalized polar coordinates x = r cos θ, y = r3 sin θ,
and we obtain the differential equation

dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2), (3.2)

in the standard form for applying the averaging theory of first order described in
Section 2, where

F0(r, θ) =
h1(θ)
g1(θ)

r,

F1(r, θ) =
144(cos2 θ + 3 sin2 θ)

r7g1(θ)2
(
Q(r cos θ, r3 sin θ)p(r cos θ, r3 sin θ)

− P (r cos θ, r3 sin θ)q(r cos θ, r3 sin θ)
)
,

h1(θ) = cos θ
((
b2 + 4

)
sin θ cos4 θ − 6 sin θ(sin(2θ) + 2) + 4 cos3 θ

)
,

g1(θ) = (4 + b2) cos6 θ − 24 cos3 θ sin θ + 36 sin2 θ.

Note that the differential equation (3.2) satisfies the assumptions of Theorem
2.1. Consider r(θ, r0) the periodic solution of the differential equation

dr

dθ
= r

h1(θ)
g1(θ)

,

such that r(0, r0) = r0. By solving the previous differential equation we get

r(θ, r0) = k(θ)r0,

where

k(θ) =
25/6(4 + b2)1/6

B(θ)
,

with

B(θ) =
(
3
(
5b2 − 172

)
cos(2θ) + 6

(
b2 + 4

)
cos(4θ) +

(
b2 + 4

)
cos(6θ) + 10b2

− 192 sin(2θ)− 96 sin(4θ) + 616
)1/6

.
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Solving the variational equation (2.3) for the differential equation (3.2) we see
that the fundamental matrix solution M(θ) is k(θ). Using the polynomials p and q
given in (1.5) and system (1.3) we have that the integrant of the integral (2.4) for
the differential equation (3.2) is

M−1(θ)F1(θ, r(θ, r0)) =
17∑
i=0

W (θ)fi(θ)
g1(θ)2M(θ)

r(θ, r0)i−4

=
17∑
i=0

ri−4
0

W (θ)fi(θ)k(θ)i−5

g1(θ)2

=
17∑
i=0

ri−4
0 Ai(θ),

where

f0(θ) = 4d00 cos3 θ − 12d00 sin θ,

f1(θ) = 4d10 cos4 θ − 12d10 sin θ cos θ,

f2(θ) = cos5 θ
(
−b2c00 − 4c00 + 4d20

)
+ 12(c00 − d20) sin θ cos2 θ,

f3(θ) = cos6 θ
(
−b2c10 − 4c10 + 4d30

)
+ 4 sin θ cos3 θ(3c10 + d01 − 3d30)

− 12d01 sin2 θ,

f4(θ) = cos7 θ
(
−b2c20 − 4c20 + 4d40

)
+ 4 sin θ cos4 θ(3c20 + d11 − 3d40)

− 12d11 sin2 θ cos θ,

f5(θ) = sin θ cos5 θ
(
−b2c01 − 4c01 + 12c30 + 4d21 − 12d50

)
+ cos8 θ

(
−b2c30 − 4c30 + 4d50

)
+ 12(c01 − d21) sin2 θ cos2 θ,

f6(θ) = sin θ cos6 θ
(
−b2c11 − 4c11 + 12c40 + 4d31

)
−
(
b2 + 4

)
c40 cos9 θ

+ 4 sin2 θ cos3 θ(3c11 + d02 − 3d31)− 12d02 sin3 θ,

f7(θ) = sin θ cos7 θ
(
−b2c21 − 4c21 + 12c50 + 4d41

)
−
(
b2 + 4

)
c50 cos10 θ

+ 4 sin2 θ cos4 θ(3c21 + d12 − 3d41)− 12d12 sin3 θ cos θ,

f8(θ) = sin2 θ cos5 θ
(
−b2c02 − 4c02 + 12c31 + 4d22

)
−
(
b2 + 4

)
c31 sin θ cos8 θ + 12(c02 − d22) sin3 θ cos2 θ,

f9(θ) = sin2 θ cos6 θ
(
−b2c12 − 4c12 + 12c41 + 4d32

)
−
(
b2 + 4

)
c41 sin θ cos9 θ + 4 sin3 θ cos3 θ(3c12 + d03 − 3d32)

− 12d03 sin4 θ,

f10(θ) = −
(
b2 + 4

)
c22 sin2 θ cos7 θ + 4(3c22 + d13) sin3 θ cos4 θ

− 12d13 sin4 θ cos θ,

f11(θ) = sin3 θ cos5 θ
(
−b2c03 − 4c03 + 12c32 + 4d23

)
−
(
b2 + 4

)
c32 sin2 θ cos8 θ + 12(c03 − d23) sin4 θ cos2 θ,

f12(θ) = −
(
b2 + 4

)
c13 sin3 θ cos6 θ + 4(3c13 + d04) sin4 θ cos3 θ

− 12d04 sin5 θ,
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f13(θ) = −
(
b2 + 4

)
c23 sin3 θ cos7 θ + 4(3c23 + d14) sin4 θ cos4 θ

− 12d14 sin5 θ cos θ,

f14(θ) = 12c04 sin5 θ cos2 θ −
(
b2 + 4

)
c04 sin4 θ cos5 θ,

f15(θ) = −
(
b2 + 4

)
c14 sin4 θ cos6 θ + 4(3c14 + d05) sin5 θ cos3 θ

− 12d05 sin6 θ,

f16(θ) = 0,

f17(θ) = 12c05 sin6 θ cos2 θ −
(
b2 + 4

)
c05 sin5 θ cos5 θ,

W (θ) = 12
(
3 sin2 θ + cos2 θ

)
.

Computing integral (2.4) we obtain

F(r0) =
1

2π

∫ 2π

0

M−1(θ)F1(θ, r(θ, r0))dθ =
1

2π

17∑
i=0

ri−4
0

∫ 2π

0

Ai(θ)dθ,

where the function Ai(θ) is defined in the statement of Theorem 1.1.
If i is even then it is easy to check that fi(θ) = −fi(θ + π), for i = 0, . . . , 17,

and θ ∈ [π, 3π/2] ∪ [3π/2, π]. Since that k(θ) = k(θ + π), g1(θ) = g1(θ + π) and
W (θ) = W (θ + π), for θ ∈ [π, 3π/2] ∪ [3π/2, π] we can easily show that∫ 3π

2

π

Ai(θ)dθ =
∫ 3π

2

π

fi(θ)W (θ)k(θ)i−5

g1(θ)2
dθ

=
∫ π

2

0

fi(θ + π)W (θ + π)k(θ + π)i−5

g1(θ + π)2
dθ

=
∫ π

2

0

−fi(θ)W (θ)k(θ)i−5

g1(θ)2
dθ

= −
∫ π

2

0

Ai(θ)dθ,

∫ 2π

3π
2

Ai(θ)dθ =
∫ 2π

3π
2

fi(θ)W (θ)k(θ)i−4

g1(θ)2M(θ)
dθ

=
∫ π

π
2

fi(θ + π)W (θ + π)k(θ + π)i−4

g1(θ + π)2M(θ + π)
dθ

=
∫ π

π
2

−fi(θ)W (θ)k(θ)i−4

g1(θ)2M(θ)
dθ

= −
∫ π

π
2

Ai(θ)dθ.

Thus if i is even we conclude that∫ 2π

0

Ai(θ)dθ = 0.

The coefficients A1 and A17 are

A1 = [768 22/3d10 cos θ(cos(2θ)− 2)(−12 sin θ + 3 cos θ + cos(3θ))]/L,
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A17 = [3× 222
(
b2 + 4

)2
c05 sin5 θ cos2 θ(cos(2θ)− 2)M ]/N,

where

L =
(
b2 + 4

)2/3 (
3
(
5b2 − 172

)
cos(2θ) + 6

(
b2 + 4

)
cos(4θ)

+
(
b2 + 4

)
cos(6θ) + 10b2 − 192 sin(2θ)− 96 sin(4θ) + 616

)4/3

,

M =
(
b2 + 4

)
cos3 θ − 12 sin θ,

N =
(

3
(
5b2 − 172

)
cos(2θ) + 6

(
b2 + 4

)
cos(4θ) +

(
b2 + 4

)
cos(6θ)

+ 10b2 − 192 sin(2θ)− 96 sin(4θ) + 616
)4

.

Computing the integrals of the coefficients A1 and A17 in the variable θ, in the
interval [0, 2π] we obtain that both are zero.
Claim: For i = 3, 5, 7, 9, 11, 13 or 15 we can choose the parameters that appear in
Ai such that

∫ 2π

0
Ai(θ)dθ 6= 0.

The proof of this claim follows from Example 5.1. In summary the function F
defined in (2.4) can be written as

F(r0) =
1

2π

7∑
k=1

r2k−3
0

∫ 2π

0

A2k+1(θ)dθ. (3.3)

Note that the coefficients A2k+1(θ) in (3.3) are linearly independent for k =
1, .., 7. Thus by the generalized Descartes Theorem, the average function F has at
most 6 positive simple zeros which provide limit cycles of system (1.4), when the
average function is non-zero.

4. Proof of Theorem 1.2

Suppose that d = 0. We take the affine change of coordinates

x̃ = x, ỹ = y
√
−b/c, t̃ = t

√
−bc,

and system (1.3) becomes ẋ = −y, ẏ = x5. We write system (1.4) in the generalized
polar coordinates x = r cos θ, y = r3 sin θ, and we obtain the differential equation

dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2), (4.1)

in the standard form for applying the averaging theory of first order described in
Section 2, where

F0(r, θ) =
r
(
sin θ cos5 θ − sin θ cos θ

)
cos6 θ − 3 cos2 θ + 3

,

F1(r, θ) = − cos(2θ)− 2

r4
(
3 sin2 θ + cos6 θ

)2(r2 cos5 θ p
(
r cos θ, r3 sin θ

)
+ sin θ q

(
r cos θ, r3 sin θ

) )
.

Denote by g∗1(θ) = cos6 θ − 3 cos2 θ + 3. Note that the differential equation (4.1)
satisfies the assumptions of Theorem 2.1. Consider r(θ, r0) the periodic solution
of the differential equation ṙ = F0(r, θ) such that r(0, r0) = r0. For solving this
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differential equation we take z = cos2 θ in g∗1(θ), and we obtain a polynomial of
degree 3 in z which can be factorized in the form

g∗1(z) = (z − z1)(z − z2)(z − z3),

where the coefficients of g∗2(z) = (z− z1) and g∗3(z) = (z− z2)(z− z3) are reals, and
zi are the roots of g∗1 , for i = 1, . . . , 3 given by

z1 = −
2 + 3
√

2
(
3−
√

5
)2/3

22/3 3
√

3−
√

5
,

z2,3 =
2 3
√

2
(
1∓ i

√
3
)

+
(
1± i

√
3
) (

6− 2
√

5
)2/3

4 3
√

3−
√

5
.

Thus the differential equation (4.1) with ε = 0 can be rewritten in the form
dr

dθ
= r
(
C1

cos θ sin θ
−z3 + cos2 θ

+ C2
cos θ sin θ
−z1 + cos2 θ

+ C3
cos θ sin θ
−z2 + cos2 θ

)
, (4.2)

where

C1 =
z2
3 − 1

(z3 − z1)(z3 − z2)
, C2 =

z2
1 − 1

(z1 − z2)(z1 − z3)
, C3 =

z2
2 − 1

(z2 − z1)(z2 − z3)
.

The solution of differential equation (4.2) with initial condition r(0, r0) = r0 is

r(θ, r0) = r0k
∗(θ),

where

k∗(θ) = r0(1− z3)C1/2(1− z1)C2/2(1− z2)C3/2
(
cos2 θ − z3

)−C1/2

×
(
cos2 θ − z1

)−C2/2 (cos2 θ − z2
)−C3/2

.

Solving the variational equation (2.3) for our differential equation (4.1) we get
that the fundamental matrix is the function M∗(θ) = k∗(θ). Note that M∗(θ) does
not depend on r0. Using the polynomials p and q given in (1.5) and system (1.3)
we have that the integrant of the integral (2.4) for the differential equation (4.1) is

M∗−1(θ)F1(θ, r(θ, r0)) =
17∑
i=0

W ∗(θ)f∗i (θ)
g∗1(θ)2M∗(θ)

r(θ, r0)i−4

=
17∑
i=0

ri−4
0

W ∗(θ)f∗i (θ)k∗(θ)i−5

g∗1(θ)2

=
17∑
i=0

ri−4
0 A∗i (θ),

where

f∗0 (θ) = d00 sin θ,

f∗1 (θ) = d10 sin θ cos θ,

f∗2 (θ) = c00 cos5 θ + d20 sin θ cos2 θ,

f∗3 (θ) = c10 cos6 θ + d01 sin2 θ + d30 sin θ cos3 θ,

f∗4 (θ) = c20 cos7 θ + d11 sin2 θ cos θ + d40 sin θ cos4 θ,

f∗5 (θ) = (c01 + d50) sin θ cos5 θ + c30 cos8 θ + d21 sin2 θ cos2 θ,
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f∗6 (θ) = c11 sin θ cos6 θ + c40 cos9 θ + d02 sin3 θ + d31 sin2 θ cos3 θ,

f∗7 (θ) = c21 sin θ cos7 θ + c50 cos10 θ + d12 sin3 θ cos θ + d41 sin2 θ cos4 θ,

f∗8 (θ) = c02 sin2 θ cos5 θ + c31 sin θ cos8 θ + d22 sin3 θ cos2 θ,

f∗9 (θ) = c12 sin2 θ cos6 θ + c41 sin θ cos9 θ + d03 sin4 θ + d32 sin3 θ cos3 θ,

f∗10(θ) = c22 sin2 θ cos7 θ + d13 sin4 θ cos θ,

f∗11(θ) = c03 sin3 θ cos5 θ + c32 sin2 θ cos8 θ + d23 sin4 θ cos2 θ,

f∗12(θ) = c13 sin3 θ cos6 θ + d04 sin5 θ,

f∗13(θ) = c23 sin3 θ cos7 θ + d14 sin5 θ cos θ,

f∗14(θ) = c04 sin4 θ cos5 θ,

f∗15(θ) = c14 sin4 θ cos6 θ + d05 sin6 θ,

f∗16(θ) = 0,

f∗17(θ) = c05 sin5 θ cos5 θ,

W ∗(θ) = 3 sin2 θ + cos2 θ.

Computing the integral (2.4) we obtain

F∗(r0) =
1

2π

∫ 2π

0

(M∗)−1(θ)F1(θ, r(θ, r0))dθ =
1

2π

17∑
i=0

ri−4
0

∫ 2π

0

A∗i (θ)dθ,

where the function A∗i (θ) is defined in the statement of Theorem 2.1.
Analogously as in the proof of Theorem 1.1 we can show that if i is even then∫ 2π

0

A∗i (θ)dθ = 0.

The coefficients A∗1, A∗13 and A∗17 are given by

A∗1 = −d10

2
55
9
(
7− 3

√
5
)4/9

sin(2θ)(cos(2θ)− 2)(
3−
√

5
)8/9

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)4/3
,

A∗13 = −
2

4
3
(
2 +
√

5
)4/9

sin3 θ cos θ(cos(2θ)− 2)
(
c23 cos6 θ + d14 sin2 θ

)(
1 +
√

5
)4/3

(cos6 θ − 3 cos2 θ + 3)4/3
(
3 sin2 θ + cos6 θ

)2 ,

A∗17 = −c05
32 sin5 θ cos5 θ(cos(2θ)− 2)

R(θ)
,

where

R(θ) =
3
√

47 + 21
√

5
(

2 3
√

2 cos4 θ + 4
3

√
3
(

2 + 22/3
3
√

3−
√

5 + 22/3
3
√

3 +
√

5
)

× cos2 θ +
(

2(3 +
√

5)
)2/3

+ (6− 2
√

5)2/3 + 4 3
√

2
)(
− 2(3−

√
5)2/3

× cos4 θ +
(

2
3
√

6− 2
√

5− 22/3(
√

5− 3)
)

cos2 θ +
3
√

30
√

5− 50

+ 2(3−
√

5)2/3 − 3
3
√

6− 2
√

5− 2 22/3
)2 (

3 sin2 θ + cos6 θ
)2
.
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The integrals of the coefficients A∗1, A∗13 and A∗17 in the variable θ, in the interval
[0, 2π] are zero because A∗1, A∗13 and A∗17 are odd functions.
Claim: For i = 3, 5, 7, 9, 11 or 15 we can choose the parameters that appear in A∗i
such that

∫ 2π

0
A∗i (θ)dθ 6= 0.

The proof of this claim follows from Example 5.2.
In short the function F defined in (2.4) can be written as

F∗(r0) =
1

2π

( 5∑
k=1

r2k−3
0

∫ 2π

0

A∗2k+1(θ)dθ + r110

∫ 2π

0

A∗15(θ)dθ
)
. (4.3)

Note that the coefficients A∗2k+1(θ) in (4.3) are linearly independent for k =
1, 2, 3, 4, 5, 7. Thus by the generalized Descartes Theorem, the average function F∗
has at most 5 positive simple zeros which provide limit cycles of system (1.4), when
the average function is non-zero.

5. Examples

Example 5.1. Consider the quintic polynomial differential system with a center
at the origin

ẋ = −1
3
x3 + y, ẏ = − 5

12
x5 + x2y,

with the perturbation

ẋ = −1
3
x3 + y, ẏ = − 5

12
x5 + x2y + εq(x, y), (5.1)

where

q(x, y) = d01y + d21x
2y + d12xy

2 + d03y
3 + d23x

2y3 + d14xy
4 + d05y

5.

Writing system (5.1) in the coordinates x = r cos θ and y = r3 sin θ and taking the
quotient ṙ/θ̇ we get the following system in the standard form of Theorem 2.1 for
applying the averaging theory

dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2), (5.2)

where

F0(r, θ) =
r cos θ

(
−6 sin θ(sin(2θ) + 2) + 4 cos3 θ + 5 sin θ cos4 θ

)
36 sin2 θ + 5 cos6 θ − 24 sin θ cos3 θ

,

F1(r, θ) = −48C(θ)E(θ)
q
(
r cos θ, r3 sin θ

)
r4
(
36 sin2 θ + 5 cos6 θ − 24 sin θ cos3 θ

)2 ,
with C(θ) = cos(2θ)−2, and E(θ) = cos3 θ−3 sin θ. Thus for system (5.2) we have
M(θ) = k(θ) = (160/G(θ))1/6, where

G(θ) = −192 sin(2θ)− 96 sin(4θ)− 501 cos(2θ) + 30 cos(4θ) + 5 cos(6θ) + 626,

and the integrant of the integral (2.4) of system (5.2) is
7∑
1

r2k−3
0 A2k+1(θ),

with

A3(θ) = −d01

3072 3

√
2
5 sin θ C(θ)(−12 sin θ + 3 cos θ + cos(3θ))

T (θ)5/3
,
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A5(θ) = −d21
48 sin θ cos2 θ C(θ)E(θ)(

36 sin2 θ + 5 cos6 θ − 24 sin θ cos3 θ
)2 ,

A7(θ) = −d12
98304 22/3 3

√
5 sin2 θ cos θ C(θ)E(θ)
T (θ)7/3

,

A9(θ) = −d03
393216 3

√
2 52/3 sin3 θ C(θ)E(θ)
T (θ)8/3

,

A11(θ) = −d23
7864320 sin3 θ cos2 θ C(θ)E(θ)

T (θ)3
,

A13(θ) = −d14
15728640 22/3 3

√
5 sin4 θ cos θ C(θ)E(θ)
T (θ)10/3

,

A15(θ) = −d05
62914560 3

√
252/3 sin5 θ C(θ)E(θ)
T (θ)11/3

,

and

T (θ) = −192 sin(2θ)− 96 sin(4θ)− 501 cos(2θ) + 30 cos(4θ) + 5 cos(6θ) + 626.

Computing numerically the integral (2.4) for system (5.2) we obtain

F(r0) =
1
r0

(
− 4.2608.. d01 − 2.0944.. d21r

2
0 − 1.2770.. d12r

4
0 − 1.2427.. d03r

6
0

− 1.0908.. d23r
8
0 − 0.7348.. d14r

10
0 − 0.5419.. d05r

12
0

)
.

Taking

d01 = − 720
4.2608..

, d21 =
1764

2.0944..
, d12 = − 1624

1.2770..
,

d03 =
735

1.2427..
, d23 = − 175

1.0908..
, d14 =

21
0.7348..

, d05 = − 1
0.5419..

.

The function F becomes

F(r0) =
r120 − 21r100 + 175r80 − 735r60 + 1624r40 − 1764r20 + 720

r0
=

1
r0

6∏
i=1

(r20 − i).

Thus we have that F has 6 positive simple zeros given by r0,i =
√
i, for i = 1, . . . , 6

which by Theorem 2.1, provide 6 limit cycles of the perturbed system (5.1) for
ε 6= 0 sufficiently small.

Example 5.2. Consider the quintic polynomial differential system with a center
at the origin

ẋ = −y, ẏ = x5,

with the perturbation

ẋ = −y + εp(x, y), ẏ = x5 + εq(x, y), (5.3)

where

p(x, y) = c30x
3 + c50x

5 + c14xy
4,

q(x, y) = d01y + d03y
3 + d23x

2y3.
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Writing system (5.3) in the coordinates x = r cos θ and y = r3 sin θ and taking
the quotient ṙ/θ̇ we obtain the following system in the standard form of Theorem
2.1 for applying the averaging theory

dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2), (5.4)

with F0(r, θ) given in the proof of Theorem 1.1 and

F1(r, θ) = − cos(2θ)− 2

r
(
3 sin2 θ + cos6 θ

)2 [r6 sin4 θ
(
c14r

6 cos6 θ + d03 + d23r
2 cos2 θ

)
+ r2 cos8 θ

(
c30 + c50r

2 cos2 θ
)

+ d01 sin2 θ
]
.

The functions k∗(θ) and M∗(θ) for system (5.4) are given also in the proof of
Theorem 1.1 and the integrant of the integral (2.4) of system (5.4) is

5∑
k=1

r2k−3
0 A∗2k+1(θ) + r110 A

∗
15(θ),

where

A∗3(θ) = −d01

256
(
6− 2

√
5
)2/9

sin2 θ(cos(2θ)− 2)
9
√

7− 3
√

5(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)5/3
,

A∗5(θ) = −c30
cos8 θ(cos(2θ)− 2)(
3 sin2 θ + cos6 θ

)2 ,
A∗7(θ) = −c50

cos10 θ(cos(2θ)− 2)
3
√

cos6 θ − 3 cos2 θ + 3
(
3 sin2 θ + cos6 θ

)2 ,
A∗9(θ) = −d03

2
40
3 sin4 θ(cos(2θ)− 2)

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)8/3
,

A∗11(θ) = −d23

2
43
3
(√

5− 1
)4/3

sin4 θ cos2 θ(cos(2θ)− 2)(
3−
√

5
)2/3

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)3
,

A∗15(θ) = −c14
2

55
3 sin4(θ) cos6 θ(cos(2θ)− 2)

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)11/3
,

Computing numerically the integral (2.4) for system (5.4) we obtain

F∗(r0) =
1
r0

(
2.1033.. d01 + 1.8138.. c30r20 + 1.6169.. c50r40 + 0.6310.. d03r

6
0

+ 0.1512.. d23r
8
0 + 0.0394.. c14r120

)
.

Taking

d01 = − 1800
2.1033..

, c30 =
3990

1.8138..
, c50 = − 3101

1.6169..
,

d03 =
1050

0.6310..
, d23 = − 140

0.1512..
, c14 =

1
0.0394..

.

The function F∗ is now given by

F∗(r0) =
r120 − 140r80 + 1050r60 − 3101r40 + 3990r20 − 1800

r0



14 J. LLIBRE, B. D. LOPES, J. R. DE MORAES EJDE-2018/118

=
r20 + 15
r0

5∏
i=1

(r20 − i).

Thus we have that F∗ has 5 positive simple zeros given by r0,i =
√
i, for i = 1, . . . , 5

which by Theorem 2.1, provide 5 limit cycles of the perturbed system (5.3) with
ε 6= 0 sufficiently small.
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