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LIMIT CYCLES BIFURCATING FROM THE PERIODIC ORBITS
OF THE WEIGHT-HOMOGENEOUS POLYNOMIAL CENTERS
OF WEIGHT-DEGREE 3

JAUME LLIBRE, BRUNO D. LOPES, JAIME R. DE MORAES

ABSTRACT. In this article we obtain two explicit polynomials, whose simple
positive real roots provide the limit cycles which bifurcate from the periodic
orbits of a family of polynomial differential centers of order 5, when this family
is perturbed inside the class of all polynomial differential systems of order 5,
whose average function of first order is not zero. Then the maximum number
of limit cycles that bifurcate from these periodic orbits is 6 and it is reached.

This family of of centers completes the study of the limit cycles which can
bifurcate from periodic orbits of all centers of the weight-homogeneous poly-
nomial differential systems of weight-degree 3 when perturbed in the class of
all polynomial differential systems having the same degree and whose average
function of first order is not zero.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

One of the main goals in the qualitative theory of real planar polynomial differ-
ential systems is the determination of their limit cycles. Studying the number of
limit cycles of a polynomial differential system is strongly motivated by Hilbert’s
16-th problem (1900). For more details see [8] and [I4].

Many authors have studied the number of limit cycles which may bifurcate from
the periodic orbits of a center of a polynomial differential system when it is per-
turbed up to first order in the parameter of the perturbation. This problem is
known as the weak Hilbert’s problem. See for example [T}, 3].

Among the many tools for studying the maximum number of limit cycles that
may bifurcate from the periodic annulus of a center we have the Poincaré return
map, the Poincaré-Melnikov integrals, the Abelian integrals, and the averaging
theory. The last three methods are equivalent at first order, see for instance [7].
For studies on the weak Hilbert’s problem see, for example, the second part of [6]
and the hundreds of references quoted therein.

Here we consider the polynomial differential systems

i = P(z,y),
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where P and @ are polynomials with real coefficients. The degree of the system is
the maximum of the degrees of the polynomials P and @ .

We say that system is weight-homogeneous if there exist (sy,s2) € N and
d € N such that for any A € Rt = {X € R: X > 0} we have

Pz, A%2y) = A 4Pz y), QAT 2, Ay) = A2 Q) (x, y).

The vector (s1,s2) is called the weight-exponent of system and d is called
weight-degree with respect to the weight-exponent (s1, $2).

Our main goal is to solve the weak Hilbert’s problem for the weight-homogeneous
polynomial differential systems of weight-degree 3.

The classification of all centers of a planar weight-homogeneous polynomial dif-
ferential systems up to weight-degree 4 is found in [II]. In [II] two families of
weight-homogeneous polynomial differential systems having centers with weight-
degree 3 are provided. The first family can be written as

i = ax® + (b - 3ap)z?y — ary® — ay®, Lo
y = ax® + ax’y + (b + 3ap)zy® — ay®, (1.2)
with o € {=1,1}, a,b, n € Rand p > —1/3, after doing an affine change of variables
and a rescaling of the time. The weight-exponent of this family is (s1, s2) = (1, 1).
The second family is
i =ax® + by = P(x,y),
§ = cx’ +dz’y = Q(z,y),
with be # 0, 3a+d = 0 and 12(bc — ad) < 0. The weight-exponent of this family is
(s1,82) = (1,3).

In [I0] we provide a polynomial whose real positive simple zeros give exactly
the number of limit cycles that bifurcate from the periodic orbits of when
perturbed in the class of all polynomial differential systems of degree n and nonzero
first order average function is. In particular the maximum number of limit cycles
obtained is exactly [(n — 1)/2], where [z] denotes the integer part of z.

In this article we give two explicit polynomials whose real positive simple zeros
provide the number of limit cycles which bifurcate from the periodic orbits of the
center of the weight-homogeneous polynomial differential system , when the
first order average function is non-zero. The maximum number of limit cycles is
reached when the parameter d # 0.

More precisely here we consider the polynomial differential system

(1.3)

d
i=——a2®+by+ep(z,y),
3 (1.4)

= cx® + da’y + eq(x,y),

where

5 5
p(x,y) = Zpk(x’y)7 q(x,y) = ZQk($7y)a (15)
k=0 1=0

k k
pr(z,y) = Z i Y qu(a,y) = Z i ="'y,
=0 i=0

and ¢ is a small parameter.
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In [9] the authors found an upper bound for the maximum number of limit cycles
of system (1.4). Looking at statement (c) of Theorem A of [J] with n =5, p = 3
and ¢ = 1 an upper bound for the number of limit cycles of system with e
sufficiently small coming from the periodic orbits of the center (1.3)) is 8. Here
we prove that the maximum number of limit cycles that system can have is
exactly 6 and it is reached. See Corollary See [I2, Theorem 2] for another
study on the limit cycles that may bifurcate from the periodic orbits surrounding
a non-Hamiltonian center using averaging theory.

In what follows we state our main results where the functions f;(6), for i =
0,1,...,9, W(6), g1(f) and k(6) are given in Section [3|and the functions f;(6), for
i=0,1,...,9, W*(0), g7(0) and k*(#) are given in Section [4f We do not provide
these functions here due to their length.

Theorem 1.1. Suppose that d # 0. Let ro s be a positive simple root of the poly-
nomial

27
roF(ro) Z 2k 2/ Aopy1(6 (1.6)

where

i—5
91(0)?
Then for |e| > 0 sufficiently small parameter the perturbed systems have a limit
cycle bifurcating from the periodic orbit r(0,19 ) = k(8)ro s of the period annulus
of the center (1.3) if the first order average function is non-zero. In particular, the
polynomial as at most 6 positive simple real Toots and they are reached.

Theorem 1.2. Suppose that d = 0. Let ro s be a positive simple root of the poly-
nomaal

2m
roF () (Zvﬁ“ [ s [T asom). 0
0

where

oy WO Ok (0)
97 (0)
Then for |e| > 0 sufficiently small the perturbed systems (L.4)) have a limit cycle
bifurcating from the periodic orbit r(0,70s) = k*(8)ros of the period annulus of
the center (L.3|) if the first order average function is non-zero. In particular, the
polynomial (1.7)) has at most 5 positive simple real roots and they are reached.

Theorem is proved in Section [3| and Theorem is proved in Section [@ In
Section [5] we prov1de two examples that illustrate Theorems [I1] and [T.2] with the
maximum number of limit cycles.

From Theorems [[.1] and the next result follows.

Corollary 1.3. Applying the averaging theory of first order to the perturbed system
(1.4) when |e| is sufficiently small we can obtain at most 6 limit cycles bifurcating
from the periodic orbits of the center , and we have systems where these 6 limit
cycles are reached.
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2. PRELIMINARIES

In this section we give some well known results that we shall need for proving
Theorem Consider the system

% = Fy(t,x) +eFy(t,x) + O(e?), (2.1)

where ¢ # 0 is sufficiently small and the functions Fy, F; : R x @ — R" and
Fy iR x Q x (—eg,e0) — R™ are C? functions, T—periodic in the first variable and
Q) is an open subset of R™. We suppose that the unperturbed system

% = Fy(t,x) (2.2)

has a submanifold of periodic solutions of dimension n.
Let z(t, z,€) be the solution of system ([2.2]) such that x(0,z,¢) = z. The lin-
earization of the unperturbed system along a periodic solution x(¢,z,0) is

y = DXFO(t’X(ta Z, 0))}7 (23)

In what follows we denote by M,(t) the fundamental matrix solution of the
linearized system such that M,(0) is the identity matrix.

We assume that there is an open set U with Cl({U) C Q such that for each
z € Cl(U), x(t,z,0) is T—periodic, where x(t,z,0) denotes the solution of the
unperturbed system (2.2), and CI(U) the closure of U. The set C1(U) is isochronous
for system , i.e. it is formed only by periodic orbits with period T'.

The following result is the a version of averaging theorem for studying the bifur-
cation of T'—periodic solutions of system from the periodic solutions x(t, z, 0)
contained in Cl(U) of system when |e| > 0 is sufficiently small. See [4] for a
proof. For more details on the averaging theory see [5] and [I3].

Theorem 2.1 (Perturbations of an isochronous set). We assume that there exists
an open and bounded set U with Cl(U) C Q such that for each z € CYU), the
solution x(r,z,0) is T—periodic. Consider the function F : CI(U) — R"

T
F(z) = %/0 M, (t)Fy(t, x(t,2,0))dt. (2.4)

Then if there exists a € U with F(a) = 0 and det((0F /0z)(a)) # 0 then there exists
a T'—periodic solution x(t,€) of system (2.1) such that x(0,¢) — a when ¢ — 0.

In fact, if x(t,2,€) denotes the solution of the differential system such that
x(0,2,¢) = z, then the average function satisfies that x(T,z,¢) —z = eF(z) + O(g?),
see for more details [4] [7]. Then, by the Implicit Function Theorem it follows that
if F(z) # 0, then the simple zeros of the function F(z) provide limit cycles of the
differential system (2.1).

The following result is the generalized Descartes Theorem about the number of
zeros of a real polynomial. See [2] for a proof.

Theorem 2.2. Consider the real polynomial p(z) = a;; ™ + a;, 2" + -+ + a; o
with 0 < 4y <y < --- <, and a;, # 0 real constants for j € {1,2,...,r}. When
a;;a;;,, <0, we say that a;; and a;, ., have a variation of sign. If the number of
variations of signs is m, then p(x) has at most m positive real roots. Moreover,
it is always possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r — 1 positive real roots.



EJDE-2018/118 WEIGHT-HOMOGENEOUS CUBIC POLYNOMIAL CENTERS 5

3. PROOF OF THEOREM [I.1]

Suppose that d # 0. We apply the affine change of variables

5o S LSb = it
T=ox, §=-—_y, t=_5t
with a # 0 and system (|1.3)) becomes
1
&= P(x,y) = _5333 +y,
9 =Q(z,y) = ama® + 2%y,
where a; = —(4 +b?)/12 and b # 0. In the case b = 0 working in a similar

way we also can reach the previous differential system. The perturbed system
corresponding to the previous system is

i Lt byt (z,9)
T=—=x ep(z,y),
gt TYT Y (3.1)

g = a1z’ + 2%y +eq(z,y) .

We write system (3.1]) in the generalized polar coordinates z = 7 cosf, y = r3sin 6,
and we obtain the differential equation

d
CT; = Fo(r,0) + eFy (r,0) + O(c), (3.2)
in the standard form for applying the averaging theory of first order described in

Section 2] where

Fo(’f‘, 9) =

144(cos? 0 + 3sin” 0)
77g1(0)2
— P(rcos ), 73 sin 0)q(r cos 0,73 sin 9)) ,

Fi(r,0) = (Q(T cos 0,3 sin 0)p(r cos 0,73 sin )

hi(0) = cos @ ((b* + 4) sin 6 cos* @ — 6sin O(sin(260) + 2) + 4 cos6) ,
g1(0) = (4 +b*) cos® 6 — 24 cos® Osin 0 + 36sin? 0.
Note that the differential equation satisfies the assumptions of Theorem
Consider (6, rg) the periodic solution of the differential equation
dr  hi(0)
a0~ " g 6)
such that r(0,r9) = ro. By solving the previous differential equation we get

r(0,r0) = k(0)ro,

where
25/6(4_|_ 62)1/6
B BE)
with
B(0) = (3 (56 — 172) cos(20) + 6 (b* + 4) cos(46) + (b* + 4) cos(66) + 106

— 1925in(260) — 96 sin(46) + 616)"/°.
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Solving the variational equation (2.3)) for the differential equation (3.2)) we see
that the fundamental matrix solution M () is k(#). Using the polynomials p and ¢

given in (1.5 and system (|1.3)) we have that the integrant of the integral (2.4]) for
3-2)

the differential equation (| is

17

B B W (0)fi(6)
ML (O)F,(8,1(6, 7o) = ;) S (O2M )

o i a W(O)S(O)k(0)—*

R 6:(0)?

17 )
= Z T6_4Ai (6) )
=0

(6, ro)i_4

where

fo(8) = 4dgg cos® 6 — 12dgg sin 6,

f1(0) = 4dyg cos* 6 — 12d; sin 6 cos 6,

f2(8) = cos® 0 (—b%coo — 4ego + 4dag) + 12(coo — dag) sin 8 cos® ),

f3(6) = cos® @ (—b2010 —4e10 + 4d30) + 4sin 0 cos® O(3c1o + do1 — 3dsg)
— 12dg; sin® 6,

fa(0) = cos’ 0 (—b2020 — 4deog + 4d40) + 4 sin 6 cos* 0(3co0 + d11 — 3dap)
—12d41 sin? 0 cos 6,

f5(8) = sin 6 cos® 0 (—b*co1 — 4co1 + 12¢30 + 4day — 12ds0)
+cos® 6 (762030 — 4eso + 4d50) + 12(co1 — doy) sin? 0 cos? 6,
f6(0) = sinf cos’® 0 (—b2011 —4ery 4+ 12¢40 + 4d31) — (b2 + 4) 40 cos’ 0
+ 4sin? 0 cos® B(3c11 + dog — 3dz1) — 12dgy sin® 6,
f2(0) = sin 6 cos” 0 (—b2021 — 4co1 + 12¢5¢ + 4d41) — (b2 + 4) cso cos'® 0
4 4sin? 0 cos® O(3coy + dio — 3da1) — 12d;15 sin® 0 cos 6,
fs(0) = sin? 6 cos® 0 (—b2602 —4eo + 12¢31 + 4d22)
— (b* +4) c31sinf cos® O + 12(co2 — daz) sin® 6 cos? 0,
fo(0) = sin® 0 cos® 0 (—b2c1a — 4e1n + 12¢41 + 4dso)
— (b2 + 4) 41 sin 6 cos” 0 + 4 sin® 6 cos? 0(3c12 + dos — 3ds2)
— 12dg3 sin 6,
f10(0) = — (b2 + 4) Can sin? 0 cos” O + 4(3coy + dy3) sin® 6 cos® 6
—12d;3 sin* 0 cos 8,
f11(0) = sin® 0 cos® § (—bco3 — dcos + 12¢32 + 4dag)
— (62 + 4) c325in% 0 cos® O + 12(co3 — das) sin® 0 cos? 6,
f12(0) = — (b2 + 4) 13 sin® 0 cos® 0 + 4(3c¢13 + doa) sin® 6 cos® 0
—12dg4 sin® 0,
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f13(0) = — (b* +4) ca3 sin® @ cos” 0 + 4(3ca3 + dy14) sin® 6 cos? 6
— 12dy4 sin® 6 cos 0,

f14(0) = 12¢04 sin® 0 cos? 6 — (b2 + 4) coa sin 6 cos® 0,

f15(0) = — (b2 + 4) c14sin? 0 cos® 0 + 4(3¢14 + dos) sin® 6 cos® 0
—12d5 sin® 0,

f16(6) =0,

f17(8) = 12¢qs5 sin® f cos? 6 — (b2 + 4) co5 sin® 6 cos® 6,

W(6) =12 (3sin® 0 + cos® ) .

Computing integral we obtain

1 2w

17 2T
1 .
o —1 _ 1—4
Fro)=g2 | M7 OFR@.rO,r)dd = 7 ;ro | A0,
where the function A;(6) is defined in the statement of Theorem [1.1

If ¢ is even then it is easy to check that f;(6) = —fi(6 + «), for ¢ = 0,...,17,
and 6 € [m,37/2] U [37/2,7]. Since that k(0) = k(0 + ), g1(0) = ¢1(6 + 7) and
W(0) =W (0 + ), for § € [m,3n/2] U [37/2, 7| we can easily show that

37

2 5 i=5
[* s [T HOW 0RO,

- 20+ m)W(O+7m)k(0+ )0

0 g1(0 + )2 a0
_[F LOW(O)k(6) P
B /o g1(0)? 0
—— [ a0)a,

0

Il
|
\z‘
=
=
j=W
I

Thus if 7 is even we conclude that

27
/ A;(8)do = 0.
0
The coefficients A; and A7 are

Ay = [768 2%/3d, cos B(cos(260) — 2)(—12sin 6 + 3 cos 6 + cos(36))]/L,
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Ay = [3 x 2% (b2 + 4)2 cos sin® @ cos? A(cos(20) — 2)M]/N,
where

L= (1% +4)*" (3 (5% — 172) cos(20) + 6 (b* + 4) cos(40)

4/3
+ (b + 4) cos(66) + 10b% — 1925in(20) — 96sin(46) + 616) 7

M = (b* +4) cos® 0 — 12sin 6,

N = (3 (5% — 172) cos(26) + 6 (b* + 4) cos(40) + (b* + 4) cos(66)

4
+106% — 192sin(26) — 96 sin(46) + 616) .

Computing the integrals of the coefficients A; and A;7 in the variable 6, in the
interval [0, 27| we obtain that both are zero.
Claim: For ¢ = 3,5,7,9,11,13 or 15 we can choose the parameters that appear in
A; such that [27 A;(8)d6 # 0.

The proof of this claim follows from Example In summary the function F
defined in can be written as

7 27
1 _
Flro) = 5= 73 /O Agi1 (0)d6. (3.3)
k=1

Note that the coefficients Asg41(6) in are linearly independent for k =
1,..,7. Thus by the generalized Descartes Theorem, the average function F has at
most 6 positive simple zeros which provide limit cycles of system (L.4), when the
average function is non-zero.

4. PROOF OF THEOREM [I.2]

Suppose that d = 0. We take the affine change of coordinates
T=x, g§=y\/—blc, t=1tV—bc,
and system ([1.3)) becomes & = —y, y = z°. We write system (1.4) in the generalized
polar coordinates = rcosf, y = r>sinf, and we obtain the differential equation

% = Fo(’l’, 9) + €F1(T, 0) + 0(52)3 (41)

in the standard form for applying the averaging theory of first order described in
Section [2], where
7 (sin @ cos®  — sinf cos §)
cosf —3cos20+3
cos(20) — 2

rd (3 sin? 6 + cosb 0

Fo(?”, 6‘) =

Fl(T,e) = —

)2 <r2 cos® 0 p (7“ cos @, r3 sin 9)

+ sin @ q(rcos@,rgsirﬂ) )

Denote by g} () = cos® 0 — 3cos? 0 + 3. Note that the differential equation (4.1))
satisfies the assumptions of Theorem Consider r(0,rg) the periodic solution
of the differential equation 7 = Fy(r,6) such that r(0,79) = ro. For solving this
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differential equation we take z = cos?6 in g;(6), and we obtain a polynomial of
degree 3 in z which can be factorized in the form

91(2) = (z = 21)(z — 22) (= — 23),
where the coefficients of ¢g5(z) = (2 — 21) and g§(z) = (2 — 22)(z — 23) are reals, and
z; are the roots of g7, for i =1,...,3 given by

2+ 2 (3 - v5)"?

_ 22/33 T_\/g )
2021 FiVE) + (1+ivE) (6-2v5)*°
8 33— ‘

Thus the differential equation (4.1)) with € = 0 can be rewritten in the form

zZ1 =

@ B ( cos fsin 6 cos fsin 6 cos fsin 0 ) (4.2)
a0 " Lt cos20 2 tcos2f 3 fcos2h)’ ’
where
o = 22 -1 Oy 22 -1 = 2z —1 .
(23 — 21)(23 — 22) (21 — 22)(21 — 23) (22 — 21)(22 — 23)

The solution of differential equation (4.2]) with initial condition r(0,r¢) = r¢ is
r(0,70) = rok™(9),

where
k5(6) = ro(1— 25)C/2(1 — 20)C2/2(1 — 2)9/2 (cos? 0 — 25) '

—C2/2 —C5/2
) ( v

X (Cos2 0 — 2 cos? 6 — 22)

Solving the variational equation (2.3) for our differential equation (4.1]) we get
that the fundamental matrix is the function M*(6) = k*(6). Note that M*(6) does

not depend on rg. Using the polynomials p and ¢ given in (|1.5) and system (1.3
we have that the integrant of the integral (2.4)) for the differential equation (4.1 is

17 * *
MY O)Fy(0,7(0,70)) = Y gvf( 9()2)]&*(;2) r(6,70)
i=0 71

17 i
W) 0k )
Bl ; 0 91 (0)?

17 ]
=D o tAi(0),
=0

where
f5(0) = doosin®,
f1(0) = dypsinf cos b,
f3(8) = cop cos® O + dag sin 6 cos® 6,
f3(0) = c10 c0s% 0 + do; sin? 0 + dsg sin 6 cos® 6,
f1(0) = c20 cos’ 0 4 dy; sin® 0 cos 0 + dyg sin 6 cos* 0,
(0)

= (co1 + dsp) sin @ cos® 0 + 50 cos® 0 + day sin? 0 cos? 6,
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fé(0) = c118ind c0s® 0 + c40 cos® 0 + dya sin® 0 + dsq sin® 0 cos® 6,
f7(0) = co18in6 cos” 0 + c5p cos'? 0 + dyo sin® 0 cos @ + daq sin? 0 cos 6,
f5(0) = coz2 sin? @ cos® 0 + 31 sin 0 cos® O + das sin® 0 cos? 0,
15(0) = c12 sin? 0 cos® 0 + c41 sin 0 cos® @ + dos sin? 0 + dso sin® 6 cos® 6,
10(0) = cao sin? 0 cos” 0 + dy5 sin 0 cos 6,
¥ (8) = co3 sin® 0 cos® O + ¢392 sin? 0 cos® O + dy3 sin® 0 cos? 6,
*(0) = c135in® 0 cos® O + doy sin® 6,
73(0) = co3sin® 0 cos” 0 + dy4sin® O cos 6,
71(0) = cogsin 0 cos® 0,
¥(0) = c14sin” 0 cos® O + dos sin® 6,
1*6 (9) =0,
f12(0) = co5sin® O cos® 0,

W*(6) = 3sin? § + cos? 6.
Computing the integral (2.4]) we obtain

1

F*(T’O) = %

2m 1 17 ) 2
*\—1 . 1—4 *
[ arr@nere o =53 [T aiow.

where the function A} (6) is defined in the statement of Theorem [2.1
Analogously as in the proof of Theorem [[.I] we can show that if 7 is even then

/027T A7 (6)dd = 0.
The coefficients A}, A}; and A7, are given by
2% (7 - 3/5)"" sin(20) (cos(260) — 2)
’ (3- \/5)8/9 (—33 cos(26) + 6 cos(46) + cos(60) + 58)4/3 ,
2% (2+V5) */% 5in3 g cos 0(cos(26) — 2) (ca3 cos® 6 + dy4 sin® 0)

(1+ \/5)4/3 (cos® 6 — 3cos? 0 + 3)*® (3sin® 0 + cos® 0)2

. 32sin” 0 cos® 0(cos(26) — 2)
17 = —C05 )
R(0)

Ar=—dy

*
13 —

where

R(0) = \ 47+21\/5(2€/§cos49+4§/3(2+22/3\3/3 — V5 +22/3y/3 + \/5)

x cos? 0 + (2(3 + \/5))2/3 + (6 —2V5)¥3 + 46‘/5) ( —2(3 —V/5)%/3

x cos* 0 + (2\3/6 —2v5 - 2¥3(/5 - 3)) cos? 6 + \/30v/5 — 50

; 2
+2(3 - V5)X? = 3Y/6 - 2v5 - 2 22%)" (35in% 0 + cos®0) .
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The integrals of the coefficients A}, A}, and Aj; in the variable 6, in the interval
[0, 27] are zero because A}, Af; and A}, are odd functions.
Claim: For i = 3,5,7,9,11 or 15 we can choose the parameters that appear in A}
such that f027r Ax(0)do + 0.

The proof of this claim follows from Example

In short the function F defined in can be written as
27

5 27
1
Flro) = o= (8 [ g0+ nit [ apo)an). (43
k=1 0

Note that the coefficients A3, ;(f) in (4.3) are linearly independent for k =
1,2,3,4,5,7. Thus by the generalized Descartes Theorem, the average function F*
has at most 5 positive simple zeros which provide limit cycles of system (|1.4)), when
the average function is non-zero.

0

5. EXAMPLES

Example 5.1. Consider the quintic polynomial differential system with a center
at the origin

1 5
iz—gﬂfg‘*‘y’ ?J:—E$5+$QZJ’
with the perturbation

) 1 . 5
i=—ga’+y, =50+ %y +eqla,y), (5.1)

where
q(x,y) = dory + dn @’y + disxy® + dosy® + dasz®y® + diawy* + dosy”.
Writing system ([5.1)) in the coordinates x = rcos and y = r3sin# and taking the
quotient /6 we get the following system in the standard form of Theorem for
applying the averaging theory
dr

5 = Fo(r.0) + ey (1,0) + O(), (5.2)

where
rcosf (—6sin O(sin(20) + 2) + 4 cos® 6 + 5sin 6 cos* §)

36sin 6 + 5 cosb 0 — 24 sin 6 cos3 0
q (r cos d, 73 sin 9)

rd (36 sin? 6 + 5 cos® § — 24 sin 6 cos? 9)2 ’

with C(6) = cos(26) — 2, and E(#) = cos® @ — 3sin . Thus for system we have
M(0) = k(0) = (160/G(6))'/5, where

G(0) = —192sin(20) — 96 sin(46) — 501 cos(26) + 30 cos(46) + 5 cos(66) + 626,
and the integrant of the integral (2.4) of system ([5.2) is

7
> rgF T Ay (6),
1

Fo(T, 9) =

)

Fi(r,0) = —48 C(0)E(6)

with

3072{’/gsin9 C(6)(—12sin 6 + 3 cos 0 + cos(36))
Az(0) = —dox ROEE ;
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48sinf cos? 0 C(0)E(0)

(36in” @ + 5 cos® § — 24 sin f cos? 9)2 ’

98304 22/3/5sin? 0 cos § C(0) E(6)

A5(0) = —doy

A7(0) = —d
7( ) 12 T(9)7/3 3
393216/25%/3sin® 0 C(0) E(0)
Ay(0) = —d
9( ) 03 T(9)8/3 )
7864320 sin® 0 cos? 0 C(0) E()
A11(9) = —da3 T(9)3 ,
15728640 22/3/5sin* 0 cos 0 C(0) E(0)
A3(0) = —dua T(6)1073 )
62914560+/25%/° sin® 6 C(0) E(6)
Ay5(0) = —dos ROLE :

and
T(0) = —192sin(20) — 96 sin(460) — 501 cos(20) + 30 cos(40) + 5 cos(66) + 626.
Computing numerically the integral (2.4) for system ([5.2)) we obtain

1
Flrg) = o ( —4.2608..dyy — 2.0944.. doy 72 — 1.2770.. d1org — 1.2427.. dor§

— 1.0908.. dgzr§ — 0.7348.. d1470 — 0.5419.. d057'(1)2>.

Taking
720 1764 1624
ot 42608.0 27T 2.0944.0 2 1.2770.."
T35 R ! g1
037 124270 27 T71.0908." M T 073480 "% T 0.5419..°

The function F becomes

F(To) =

rg? — 21r¢° + 1750 — 73500 + 1624r) — 1764r3 +720 _ 1 ﬁ (2 i)
To 055 ’

Thus we have that F has 6 positive simple zeros given by rg; = Vi fori=1,...,6
which by Theorem [2.1} provide 6 limit cycles of the perturbed system (5.1]) for
¢ # 0 sufficiently small.

Example 5.2. Consider the quintic polynomial differential system with a center
at the origin

&=y, y=a
with the perturbation
& =—y+ep(r.y), §=21"+eq(z,y), (5.3)
where
p(z,y) = c302” + sz’ + crazy®,

q(z,y) = dory + dosy® + daza®y>.
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Writing system (5.3]) in the coordinates = rcos and y = r3sinf and taking
the quotient 7/ we obtain the following system in the standard form of Theorem
[27] for applying the averaging theory

d
75 = Folr.6) + eFi(r,6) + O(?), (5.4)
with Fy(r, @) given in the proof of Theorem and
cos(26) — 2

Fl(raa) =

[7"6 sin* @ (0141"6 c0s® 0 + dos + dosr? cos® 0)
r (3 sin? 0 + cos® 0)

+r2cos® o (030 + ¢5or2 cos? 9) + doy sin? (9] .

The functions k*(6) and M*(0) for system (5.4]) are given also in the proof of
Theorem [I.1] and the integrant of the integral (2.4)) of system ([5.4) is

5
Z Tgkﬁo’A;k-s-l (0) + T(%IAE(Q%
k=1

where
256 (6 — 2/5)"/" sin2 0(cos(26) — 2)

V7 = 3v/5(—33 cos(20) + 6 cos(40) + cos(66) + 58)5/3”
cos® 0(cos(20) — 2)
(3sin® @ + cos® 9)2 ,

cos'? f(cos(26) — 2)
Vcosb0 —3cos20+3 (3 sin® @ + cosb 0)2’

2% sin 0(cos(260) — 2)
(—33 cos(26) + 6 cos(46) + cos(60) + 58)8/3”

2% (V5 — 1)4/3 sin® § cos? f(cos(26) — 2)
(3—5) 2/ (—33 cos(26) + 6 cos(40) + cos(60) + 58)37
. 2% sin’(6) cos® A(cos(20) — 2)

Af5(0) = —c1a )
(—33 cos(26) + 6 cos(46) + cos(60) + 58)11/3
Computing numerically the integral for system we obtain

A3(0) = —do

AE(Q) = —C30

A7 (0) = —cs0

Ay(0) = —dos

A71(0) = —das

1
F*(ro) = - (2.1033.. do1 + 1.8138.. c3978 + 1.6169.. 5075 + 0.6310.. do37§

+0.1512.. dagrf + 0.0394.. 0147'(1)2).

Taking
1800 3990 3101
01 = 757033 P07 18138 0T 716169,
1050 140 1
037 063100 7T 01512, M7 00394

The function F* is now given by

rd2 — 14078 + 1050r8 — 310174 + 3990r2 — 1800
To

F*(ro) =
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5

2
To+15 2 .
= re —1).
S| (R

Thus we have that F7* has 5 positive simple zeros given by 79 ; = Vi, fori=1,...,5
which by Theorem provide 5 limit cycles of the perturbed system (5.3]) with
¢ # 0 sufficiently small.
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