Electronic Journal of Differential Equations, Vol. 2004(2004), No. 57, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND COMPARISON RESULTS FOR QUASILINEAR
EVOLUTION HEMIVARIATIONAL INEQUALITIES

SIEGFRIED CARL, VY K. LE, & DUMITRU MOTREANU

ABSTRACT. We generalize the sub-supersolution method known for weak so-
lutions of single and multivalued nonlinear parabolic problems to quasilinear
evolution hemivariational inequalities. To this end we first introduce our basic
notion of sub- and supersolutions on the basis of which we then prove exis-
tence, comparison, compactness and extremality results for the hemivariational
inequalities under considerations.

1. INTRODUCTION

Let Q C RY be a bounded domain with Lipschitz boundary 99, Q = Q x (0,7),
and T' = 9 x (0,7), with 7 > 0. In this paper, we study the following quasilinear
evolution hemivariational inequality:

u€ Wy, u(-,00=0 in Q
0
<a—?+Au—f,v—u>+/ J°(u;v —u)drdt >0, YVovely,
Q

where Vo = LP(0, 7; Wol’p(Q)), 2 < p < oo, with the dual Vi = L9(0,7; W~14(Q)),
Wo ={w € Vy : dw/ot € V'}, and (-, -) denotes the duality pairing between V' and
Vo. The real ¢ is the conjugate to p satisfying 1/p+1/g = 1. By j°(s;r) we denote
the generalized directional derivative of the locally Lipschitz function j : R — R at
s in the direction r given by

(1.1)

. i) —
§°(s;7) = limsup w’ (1.2)
y—s, t10 t

cf., e.g., [4 Chap. 2]. The operator A : V — Vj is assumed to be a second order
quasilinear differential operator in divergence form of Leray-Lions type

N
Au(z,t) = — Z a%ai(x,t,u(x,t),Vu(x,t)), (1.3)
i=1
where Vu = (00;‘1,,(;1—1;\,)
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Let 95 : R — 2%\ {0} denote Clarke’s generalized gradient of j defined by
0j(s) :=={CeR:j%s;r) >(r, Vr e R} (1.4)

A method of super-subsolutions has been established recently in [2] for quasilinear
parabolic differential inclusion problems in the form

Ju

ot
One can show that any solution of is a solution of the hemivariational in-
equality . The reverse is true only if the function j is regular in the sense of
Clarke which means that the one-sided directional derivative and the generalized
directional derivative coincide, cf. [4, Chap. 2.3].

The main goal of this paper is to generalize the sub-supersolution method to the
general case of evolution hemivariational inequalities (1.1f). This extension is by no
means a straightforward generalization of the theory developed for the multivalued
problems because of the intrinsic asymmetry of hemivariational inequalities
compared with the symmetric structure of the multivalued equation . In this
paper we introduce our basic notion of sub- and supersolutions for inequalities in
the form in a unified and coherent way which is inspired by recent papers on
the sub-supersolution method for variational inequalities, see [0} [7].

The plan of the paper is as follows: In Section 2 we introduce the notion of
sub-supersolution, and in Section 3 we provide some preliminary results used later.
In Section 4 we prove an existence and comparison result in terms of sub- and
supersolutions. Topological and extremality results of the solution set within the
interval formed by sub- and supersolutions are given in Section 5.

The theory developed in this paper can be extended to evolution hemivariational
inequalities involving even more general quasilinear operators of Leray-Lions type
and functions j : @ x R — R depending, in addition, on the space-time variables
(z,t). Moreover, without loss of generality homogeneous initial and boundary data
have been assumed.

+Au+0j(u)> f, in Q, wu=0 on I', w(-,0)=0 in Q. (1.5)

2. NOTATION AND HYPOTHESES

Let W1?() denote the usual Sobolev space and (WP(Q))* its dual space, and
let us assume 2 < p < co. Then WHP(Q) C L2(Q2) C (W1P(Q))* forms an evolution
triple with all the embeddings being continuous, dense and compact, cf. [9].

We set V = LP(0,7; WHP(Q2)), whose dual space is V* = LI(0, ; (WHP(Q))*),
and define a function space

W={ueV:u eV},

where the derivative v’ := u; = Ou/0t is understood in the sense of vector-valued
distributions, cf. [9], which is characterized by

/ u'(t)p(t) dt = —/ u(t)g'(t)dt, YV ¢ € C5e(0,7).
0 0
The space W endowed with the graph norm

[ullw = lfullv + [lullv-

is a Banach space which is separable and reflexive due to the separability and
reflexivity of V' and V*, respectively. Furthermore it is well known that the em-
bedding W c C([0,7], L?>(Q2)) is continuous, cf. [9]. Finally, because W(€) is
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compactly embedded in LP(2), we have by Aubin’s lemma a compact embedding
of W C LP(Q), cf. [9].

By W,7(Q) we denote the subspace of WP(Q) whose elements have gener-
alized homogeneous boundary values. Let W~19(Q) denote the dual space of
WyP(€2). Then obviously Wy*(Q) ¢ L*(2) ¢ W~14(Q) forms an evolution triple
and all statements made above remain true also in this situation when setting
Vo = LP(0,7; WyP(Q)), Ve = LY0, 7, W~19(Q)) and Wy = {u € Vy : uy € V).
Let || - |[v and || - ||y, be the usual norms defined on V and V4 (and similarly on V*
and Vj'):

T 1/p T 1/p
Jully = ( / Jun o dt) s Nullve = ( / O I

We use the notation (-,-) for any of the dual pairings between V and V*, V; and
Vi, Wh2(Q) and [WhP(Q)]*, and W, P(Q) and W~19(). For example, with
feviueV,

() = [ (7(0)u(e) .
0
Let L := 9/0t and its domain of definition D(L) given by
D(L)={u e Vy:u € Vy and u(0) =0}.

The linear operator L : D(L) C Vj — V can be shown to be closed, densely defined
and maximal monotone, e.g., cf. [0 Chap. 32].

We assume f € V;* and impose the following hypotheses of Leray-Lions type on
the coefficient functions a;, i = 1,..., N, of the operator A:

(A1) a; : Q@ x R x RY — R are Carathéodory functions, i.e. a;(-,-,s,£): Q — R
is measurable for all (s,¢) € R x RY and a;(z,t,-,-) : R x RN — R is
continuous for a.e. (z,t) € Q. In addition, one has

|ai(z,t,5,6)| < ko(z,t) +co (|s|P" +1€[P71)

for a.e. (x,t) € Q and for all (s,¢) € R x RY, for some constant cq > 0 and

some function kg € L1(Q).
N

(A2) Z(ai(w, t,s,&) —a;(z,t,8,6))(& — &) >0 for a.e. (z,t) €Q, forall seR
i=1

and all ¢,¢ € RY with & # ¢
N

(A3) Zai(x,t,s,ﬁ)& > v|¢P — ki(x,t) for ae. (z,t) € Q and for all (s,§) €
i=1
R x RY, for some constant v > 0 and some function k; € L'(Q).

(Ad) [ai(@t,5,€) — aiw, 1,5, )] < [ka(,8) + |57~ + [s'[P~ + [P~ (] — o'
for a.e. (z,t) € Q, for all 5,5’ € R and all £ € RY, for some function
ko € L1(Q) and a continuous function w : [0, +00) — [0, +00) satisfying

/ 1 dr = +o0.
o+ w(r)

For example, we can take w(r) = cr, with ¢ > 0, in (A4).
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The operator A : V — V* C V related with the quasilinear elliptic operator is
defined as follows:

N
(A(u),v) = Z /Q a;(-, -, u, Vu)v,, dedt, (2.1)

for all v, u € V. Due to (Al) the operator A : V. — V* C V{ is continuous
and bounded, and due to (A2) and (A3) the operator A : D(L) C Vy — V is
pseudomonotone with respect to the graph norm topology of D(L) (with respect
to D(L) for short), and coercive, see, e.g., [I, Theorem E.3.2]. Thus the evolution
hemivariational inequality may be rewritten as:

u€ D(L): (Lu+ A(u) — f,v —u) —|—/ Jo(usv —u)dedt >0, YveVy (2.2)
Q
A partial ordering in LP(Q) is defined by v < w if and only if w — u belongs
to the positive cone L% (Q) of all nonnegative elements of L”(Q)). This induces a
corresponding partial ordering also in the subspace W of LP(Q), and if u, w € W
with v < w then
[u,w]={veW: :u<v<w}
denotes the order interval formed by v and w. Further, for u,v € V,and Uy,Us C V,
we use the notation u A v = min{u, v}, u Vv = max{u,v}, Uy *xUs = {u*xv:u €
Up,v € U}, ux Uy = {u} * Uy with x € {A,V}.
Our basic notion of sub-and supersolution of is defined as follows:

Definition 2.1. A function u € W is called a subsolution of (1.1 if the following
holds:

(1) w(-,0)<0in Q,u<0onT,
(ii) @,ﬂrAgff,vfg)+fQj0(g;vfg)dxdt20, Voveunl.

Definition 2.2. u € W is a supersolution of (1.1)) if the following holds:
(i) @(-,0)>0in Q,w>0onT,
(i) (@ + Aa— f,o—a) + [, j°(@v —a)dzdt >0, YveaVvVp.
We assume the following hypothesis for j:

(H) The function j : R — R is locally Lipschitz and its Clarke’s generalized
gradient Jj satisfies the following growth conditions:
(i) there exists a constant ¢; > 0 such that

G <& Fei(sa—s)P !
for all §; € 0j(s;), i = 1,2, and for all s1, sy with s1 < sa.
(ii) there is a constant c2 > 0 such that

€coj(s): ¢ <ca(l+]|s|P™h), VseR.

Remark 2.3. The notion of sub-supersolution introduced here extends that for
inclusions of hemivariational type introduced in [2]. To see this let, for example,
u be a supersolution of the inclusion , i.e.,, u € W and there is a function
n € L9(Q) such that @(-,0) > 0in Q, @ > 0 on I', n(z,t) € dj(u(x,t)) and the
following inequality holds:

(g + Aa — f,0) + /Q n(x, t)p(x,t)dedt >0, YeoeVonLi(Q). (2.3)
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Thus (2.3)), in particular, holds for ¢ in the form ¢ = (w — @), for any w € Vg,
which yields by applying the definition of Clarke’s generalized gradient the following
inequality

(g + At — f, (w—u)") +/ GO, t); (w—u) " (x,t))dedt >0, Vwe V. (2.4)
Q

Since uVw = u+ (w — u)*, we see that is equivalent with Definition In
the case that j is regular in the sense of Clarke (see [4, Chap. 2.3]) one can prove
that the reverse is true, i.e., in this case any supersolution of (|1.1) according to
Definition is also a supersolution of the associated inclusion. Analogous
results hold for subsolutions. Moreover, any solution of is both a subsolution
and supersolution according to Definition [2.I] and Definition [2.2] respectively.

In the next section we provide some preliminaries used in the proofs of our main
results in Sections 4 and 5.

3. PRELIMINARIES

First let us recall a general surjectivity result for multivalued operators A : X —

in a real reflexive Banach space X. To this end we introduce the notion of
multivalued pseudomonotone and generalized pseudomonotone operators and their
relation to each other, cf., e.g., [8 Chapter 2]. Let X be a real reflexive Banach
space.

2X

Definition 3.1. The operator A : X — 2% is called pseudomonotone if the
following conditions hold:
(i) The set A(u) is nonempty, bounded, closed and convex for all u € X.
(ii) A is upper semicontinuous from each finite dimensional subspace of X to
the weak topology on X*.
(iii) If (un) C X with u, — u, and if v} € A(u,) is such that limsup(u}, u, —
u) < 0, then to each element v € X there exists u*(v) € A(u) with
liminf(u), u, —v) > (u*(v),u — v).
Definition 3.2. The operator A : X — 2% is called generalized pseudomonotone
if the following holds:
Let (u,) C X and (u)) C X* with v}, € A(u,). f u, = v in X and u), = v* in
X* and if lim sup{u}, u, — u) < 0, then the element u* lies in A(u) and
(1) = (" ).
Proposition 3.3. If the operator A : X — 2% is pseudomonotone then A is

generalized pseudomonotone.

Under an additional boundedness condition the following reverse statement is
true.

Proposition 3.4. Let A : X — 2% be a bounded generalized pseudomonotone
operator. If for each u € X we have that A(u) is a nonempty, closed and convex
subset of X*, then A is pseudomonotone.

Definition 3.5. The operator A : X — 25 is called coercive if either the domain
of A denoted by D(A) is bounded or D(A) is unbounded and

inf{(v*,v) : v* € A(v)}

[vllx

— +0o as ||v||x — oo, vE D(A).
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Let L : D(L) C X — X* be a linear, closed, densely defined and maximal
monotone operator. We finally introduce the notion of multivalued pseudomono-
tone operators with respect to the graph norm topology of D(L) (with respect to
D(L) for short).

Definition 3.6. The operator A: X — 2% is called pseudomonotone with respect
to D(L) if (i) and (ii) of Definition [3.1] and the following one hold:

(iv) If (u,) € D(L) with u, — uw in X, Lu, — Lu in X*, ul € A(u,) with
wh — u* in X* and limsup(u), up, —u) <0, then u* € A(u) and (u),u,) —
(u*, u).

The following surjectivity result which will be used later can be found, e.g., in
[5, Theorem 1.3.73, p. 62].

Theorem 3.7. Let X be a real reflexive, strictly convexr Banach space with dual
space X*, and let L : D(L) C X — X* be a closed, densely defined and mazimal
monotone operator. If the multivalued operator A : X — 2% is pseudomonotone
with respect to D(L), bounded and coercive, then L+ A is surjective, i.e., range (L+
A) = X*.

As already mentioned in Section 2 the operator L = 9/0t: D(L) C Vy — V' is
closed, densely defined and maximal monotone, and under hypotheses (A1)—(A3)
the operator A : Vy — V' is pseudomonotone with respect to D(L).

Consider the function J : LP(Q) — R defined by

J(v) = /Qj(v(:mt)) dedt, VoveLP(Q). (3.1)

Using the growth condition (H) (ii) and Lebourg’s mean value theorem, we note that
the function J is well-defined and Lipschitz continuous on bounded sets in L”(Q),
thus locally Lipschitz so that Clarke’s generalized gradient 9.J : LP(Q) — 25"(@) is
well-defined. Moreover, the Aubin-Clarke theorem (see [4, p. 83]) ensures that, for
each u € LP(Q) we have

£ € dJ(u) = ¢ € LIQ) with &(x,t) € Jj(u(z,t)) for a.e. (x,t) € Q. (3.2)
Denote the restriction of J to Vy by J|y,, then the following result holds.

Lemma 3.8. Under hypothesis (H)(ii) Clarke’s generalized gradient O(J|v, ) : Vo —
2Y6 s pseudomonotone with respect to D(L).

Proof. The growth condition (H) (i) implies that d(J|y,) : Vo — 2" is bounded.
From the calculus of Clarke’s generalized gradient (see [4, Chap. 2]) we know that
9(J|v,)(u) is nonempty, closed and convex. Condition (ii) in Definition is also
satisfied (see [, p.29]). Therefore, in view of Proposition [3.4] we only need to show
that O(J|y,) satisfies property (iv) of Definition To this end let (u,,) C D(L)
with w, — u in Vy, Lu, — Lu in V', u € 9(J|v)(upn) with v} — u* in V. We
are going to show that already under these assumptions we get u* € 9(J|y,)(u) and
(uk,up) — (u*,u), which is (iv). By the assumptions on (u,,) we have u,, — u in
Wo, which implies u,, — u in LP(Q) due to the compact embedding Wy C LP(Q).
Since Vj is dense in LP(Q) we know that u’ € 9J(uy), see [, p. 47], and thus
ul € LY(Q) with u} — u* in L9(Q). Because the mapping 8.J : LP(Q) — 2-"(@) is
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weak-closed (cf. [, p. 29] and note L?(Q) is reflexive), we deduce that u* € 9J(u),
and, moreover, the following holds:

(Un un) v Vo = (Un Un) La(Q),Lr(Q) = (U5 ) La(Q),Lr (@) = (U5 vy vos

which completes the proof. O

Corollary 3.9. Assume hypotheses (A1)-(A3) and (H)(ii), and let A : Vo — Vi be
the operator as defined in . Then A+ 9(J|v,) : Vo — 2%0 is pseudomonotone
with respect to D(L) and bounded.

Proof. The Leray-Lions conditions (A1)-(A3) imply that the (singlevalued) opera-
tor A is pseudomonotone with respect to D(L), and by Lemmathe multivalued
operator (J|y,) : Vo — 2" is pseudomonotone with respect to D(L) as well. To
prove that A 4+ d(J|v,) : Vo — 2" is pseudomonotone with respect to D(L) note
first that A + 9(J|y;,) : Vo — 2% is bounded. Thus we only need to verify prop-
erty (iv) of Definition To this end assume (u,) C D(L) with u,, — v in V),
Lu, — Luin Vi, u}, € (A+ 0(J|v,))(upn) with w} — u* in V{f, and

lim sup(u;,, u, —u) < 0. (3.3)
We need to show that u* € (A + 9(J|v,))(u) and (ul,u,) — (u*,u). Due to

ul € (A4 0(J|v,))(un) we have ul = Au,, + 1, with n, € 9(J|v,))(un), and (3.3)
reads

lim sup(Au, + M, up — u) < 0. (3.4)
Because the sequence (1,,) CnLq(Q) is bounded and u,, — w in LP(Q) we obtain
<77n,unu>/Q77n(unu)dxdtﬂ0 as n — oo. (3.5)
From and we deduce
lim sup(Auy,, un —u) < 0. (3.6)

n

The sequence (Au,,) C V{ is bounded, so that there is some subsequence (Auy) with
Auy, — v. Since A is pseudomonotone with respect to D(L), it follows that v = Au
and (Aug,ur) — (Au,u). This shows that each weakly convergent subsequence of
(Auy,) has the same limit Au, and thus the entire sequence (Au,,) satisfies

Aup, — Au and  (Aup, u,) — (Au,u). (3.7)

From (3.7) and u), = Au,, +n, — u* we obtain n,, = u} — Au,, = u* — Au, which in
view of (3.5 and the pseudomonotonicity of 9(J|y,) implies u* — Au € I(J|v, ) (u),
and thus u* € (A + 9(J|v,))(u), and, moreover

(uy — Aup, up) — (U — Au,u),
which yields (u},u,) — (u*, u). O
4. EXISTENCE AND COMPARISON RESULT

The main result of this paper is the following theorem.

Theorem 4.1. Let hypotheses (A1)-(A4) and (H) be satisfied. Given subsolutions
u; and supersolutions @;, i = 1,2, of such that max{u;,u,} =: u < @ :=
min{@, s }. Then there exist solutions of within the order interval [u, u).
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Proof. The proof will be carried out in three steps: (a), (b), and (c).

(a) Auxiliary hemivariational inequality.

Let us first introduce the cut-off function b : Q x R — R related with the ordered
pair of functions u, @, and given by

(s —a(z, )P~ if s > a(z,t),
b(z,t,s) =40 if w(z,t) <s < a(z,t), (4.1)
—(u(z,t) — s)P~t if s < u(z,t).

One readily verifies that b is a Carathéodory function satisfying the growth condi-
tion

|b(x,t,8)| < ko(x,t) +c3|sP! (4.2)
for a.e. (z,t) € Q, for all s € R, with some function ky € L (Q) and a constant
c3 > 0. Moreover, one has the following estimate

/ b(z, t,u(x, b)) u(z, t) dedt > ¢4 Hu||1£p(Q) —c5, Yue LP(Q), (4.3)
Q

where ¢4 and c5 are some positive constants. In view of (4.2]) the Nemytskij operator
B : LP(Q) — L(Q) defined by

Bu(z,t) = b(z, t,u(z,t))

is continuous and bounded, and thus due to the compact embedding Wy C LP(Q)
it follows that B : Wy — L%(Q) C Vg is completely continuous, which implies
that B : Vo — V§ is compact with respect to D(L). Let us consider the following
auxiliary evolution hemivariational inequality:

ueD(L):(Lu—l—A(u)—i—)\B(u)—ﬁv—u)—i—/j"(u;v—u)dwdtZO, YV ovely,
Q

(4.4)
where A is some positive constant to be specified later. The existence of solutions
of will be proved by using Theorem To this end consider the multivalued
operator A+ AB +d(J|y,) : Vo — 2%, where J is the locally Lipschitz functional
defined in and J(J|y,) is the generalized Clarke’s gradient of the restriction
J|v,- By Corollary[3.9)and the property of B we readily see that A+ X B+08(J|y,) :
Vo — 2% is pseudomonotone with respect to D(L) and bounded. In order to apply
Theorem [3.7| we need to show the coercivity of A+ X B + d(J|y,) : Vo — 2" . For
any v € Vo \ {0} and any w € 9(J|y,)(v) we obtain by applying (A3) (H) (ii) and
the estimate

(Av + AB(v) + w,v)
[lollve ||V0

v
|UHVO /z:aZ IR Vv dxdt—&—A( (v),v )—l—/@wvdwdt}
P P
||”HV0 /|Vv| dx dt — /leda:dt—l-czl)\|v||u,(@)
—C5A—02/(1+|U\P*1)|v|dxdt}
Q
1

2 [vllvllY, — Col,

[ollve
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for some constant Cy > 0, by choosing the constant A sufficiently large such that
c4A > co, which implies the coercivity. Thus we may apply Theorem to ensure
that range (L+ A+ X B+09(J|v,)) = Vi, which yields the existence of an v € D(L)
such that f € Lu + A(u) + A B(u) + 9(J|v, ) (u), i.e., there exists an £ € (J |y, )(u)
such that

ueD(L): Lu+A(u)—f+ABu)+£=0 in Vj. (4.5)

Since V; is dense in LP(Q) we get & € 0J(u) and thus by the characterization (3.2)
of 8J(u) it follows that £ € LI(Q) and &(x,t) € 9j(u(z,t)), so that from (4.5) we
get

(Lu+ A(u) — f + AB(u), @) —I—/ E(z, t)o(x,t)dxdt =0, Ve € V. (4.6)
Q
By definition of Clarke’s generalized gradient dj it follows
/ E(z,t) p(z,t)dedt < / Jo(u(z, t); o(x,t)) dedt, Yo e V. (4.7)
Q Q

In view of (4.6]) and (4.7)), (4.4) has a solution. Next we shall show that any solution
u of the auxiliary evolution hemivariational inequality (4.4) satisfies u < u < @.

(b) Comparison: u € [u, .

Let u be any solution of . We are going to show that u; < u < 4, holds, where
k, j = 1,2, which implies the assertion. Let us first prove that u < @; is true. By
Definition [2.2) a; satisfies @;(-,0) > 0in , #; > 0 on I, and

8@7'

<W+Aaj—f,u—aj>+/j"(aj;v—aj)dxdtzo, Yo eu; VVy,  (4.8)
Q

which implies due to v = 4; V¢ = @; + (p — u;)* with ¢ € Vj and wt = w V0 the
following inequality

(S 4 Ay~ f.(p— )" + /Qj"(ﬂj; (p—t;)")dedt >0, YoeVy (49)

Let M = {(¢p —u;)* : ¢ € Vp}, then one can show that the closure M =
Vo N LE(Q). Since s — j°(r;s) is continuous, we get from (4.9) by using Fatou’s
lemma the inequality
Ol
(G +Aw = 1)+ [ Pl ded =0, Ve HnIE@.  (410)
Q

Taking in (4.4) the special test function v = u — ¢ and adding (4.4) and (4.10) we

obtain:
ou 8’[7,j

<E ~ + A(u) — A(a;) + AB(u), ) < /Q

for all v € VN L’i(Q). Now we construct a special test function in (4.11). By
(A4), for any fixed € > 0 there exists d(e) € (0, ) such that

1
/ dr =1.
5(¢) w(r)

(7@ 9) + j°(ws —0) ) dedt (4.11)
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We define the function 6, : R — R4 by

0 if s < d(¢)
s 1
0.(s) = / dr ifdle)<s<e
(s) 5(e) wW(r) ©
1 if s > e.

We readily verify that, for each € > 0, the function 6. is continuous, piecewise dif-
ferentiable and the derivative is nonnegative and bounded. Therefore the function
0. is Lipschitz continuous and nondecreasing. In addition, it satisfies

0 — Xis>0y ase — 0, (4.12)

where x(s>0y is the characteristic function of the set {s > 0}. Moreover, one has

0 (s) {1/w(s) if6(e) <s<e

0 if s & [d(e),e].
Taking in the test function 6. (u — a;) € Vo N L (Q) we get
o(u —uy _ _ _
(P () + (Aw) — ARy), 00— )

+)\/QB(U) O-(u — uj)dadt (4.13)

< / (jo(ﬂj; O-(u—uj)) + 7% (u; —0-(u — ﬁ]))) dx dt.
Q
Let O, be the primitive of the function 6. defined by

0.() - | 0.(r) dr.

We obtain for the first term on the left-hand side of (4.13)) (cf., e.g., [3]) that
<W,9a(u—@)> :/@E(u—aj)(x,T) dx > 0. (4.14)
Q
Using (A4) and (A2), the second term on the left-hand side of (4.13]) can be esti-
mated as follows

<A(u) - A(ﬁj)age(ufﬂj»
N
D i
— ;/Q(ai(%t,u,Vu) —ai(x7t,uj,Vuj))%98(u_uj)dxdt

N
_ W O(u — 1y _
=1

- N/ (o + [ulP =" o+ [P~ + [V [P w(lu — a1)0L (u — @)V (u — a;)| da dt
Q

>-N vV (u— )| de dt,
{é(e)<u—uj<e}
(4.15)
where v = ko + |u|P7! + |1 [P~ + |[Vu; [P~ € LY(Q). The term on the right-hand
side of tends to zero as € — 0.
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Using (4.12)) and applying Lebesgue’s dominated convergence theorem it follows

lim [ B(u)0.(u—u;)dedt= / B(u) X fu—a,>0} d dt. (4.16)
=0 /g Q J

Again by applying Fatou’s lemma and the continuity of s — j°(r; s) we obtain the
following estimate for the right-hand side of (4.13))

timsup /Q (5153 0 (w = 1)) + 5 (w5 0. (u — @) ) da )

(4.17)
< /Q(jo(ujé X{ufﬂj>0}) +7° (u; _X{Ufﬂj>0})) dx dt.

Finally from (4.13)—(4.17)) one gets the inequality:

A/QB(U)X{“_””O} drdt < /Q(j"(ﬂj5><{u—uj>o})+j°(u; *X{u—aj>0})> dz dt.

(4.18)
Note that @ = min{@;, @z}, which by definition of the operator B yields

)\/ B(u)X{u—a;>0y dvdt = )\/
Q

(u—a)P " dx dt > A/ (u— ;)P dx dt.
{u>u;}

{u>u;}

(4.19)
The function r — j°(s;r) is finite and positively homogeneous, 9j(s) is a nonempty,
convex and compact subset of R, and one has

7°(s;r) = max{&r: £ € Jj(s)}. (4.20)

By using (H)(i), (4.20) and the properties of j and 9;j we get for certain {(z,t) €
0j(u(z,t)) and &;(x,t) € 0j(u;(x,t)) with £, & € LI(Q) the following estimate:

/Q(jo(uj§ X{u—ﬂj>0}) +7° (u; —X{u—ﬂj>0}>) dx dt
— [ (s re-n) ded:
{u>a;}

_ / (&, ) — £(2, 1)) da dt < e / (u(, ) — iy (2, )7~ dar .
{u>a;) {u>a;)
(4.21)

Thus (4.18), (4.19) and (4.21) result in
(A—rc1) / (u — ;)P ' dx dt < 0. (4.22)

{u>u;}
Selecting A large enough such that A > ¢;, then (4.22) implies that meas{u >

@;} =0, and thus v < @; in @), where j = 1,2, which shows that v < @. The proof
of the inequality u < u can be done analogously.

(¢) Completion of the proof of the theorem.

From steps (a) and (b) it follows that any solution u of the auxiliary evolution
hemivariational inequality with A > 0 sufficiently large satisfies u € [u, @],
which implies B(u) = 0, and hence u is a solution of the original evolution hemi-
variational inequality within the interval [u,@]. This completes the proof of
Theorem [l O

The following corollaries are immediate consequences of Theorem
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Corollary 4.2. Let w and w be any subsolution and supersolution, respectively of
satisfying w < w. Then there exist solutions of within the order interval

[w, @].
Proof. Set w = u; = uy and w = @; = @ and apply Theorem O

Let S denote the set of all solutions of (l.1) within the interval [w, @] of an
ordered pair of sub- and supersolutions. We introduce the following notion from
set theory.

Definition 4.3. Let (P, <) be a partially ordered set. A subset C of P is said to
be upward directed if for each pair x,y € C there is a z € C such that x < z and
y < z, and C is downward directed if for each pair xz,y € C there is a w € C such
that w < x and w < y. If C is both upward and downward directed it is called
directed.

Corollary 4.4. The solution set S of is a directed set.

Proof. Let uy, us € S. Since any solution of (1.1)) is a subsolution and a supersolu-
tion as well, by Theorem there exist solutions of ([1.1)) within [max{u;,us}, @]
and also within [w, min{w1, uz}], which proves the directedness. O

5. COMPACTNESS AND EXTREMALITY RESULTS

In this section we show that the solution set S of within the interval of an
ordered pair of sub-and supersolutions [w,w] possesses the smallest and greatest
elements with respect to the given partial ordering. The smallest and greatest
element of S are called the extremal solutions of within [w,®]. We shall
assume hypotheses (A1)-(A4) and (H) throughout this section.

Theorem 5.1. The solution set S is weakly sequentially compact in Wy and com-

pact in Vy.

Proof. The solution set S C [w,w] is bounded in LP(Q). We next show that S is
bounded in Wy. Let u € S be given, and take as a special test function in (1.1))
v = 0. This leads to

(ug + Au,u) < (f,u) + /Qjo(u; —u) dx dt. (5.1)

Since 1
(ug, u) = 5““('77)”%2(9) 20,
and

/ J%(u; —u) dedt < 62/ (1 + [u|P™1) |u| d dt,
Q Q

we get from (5.1) by means of (A3) and taking the L?(Q)-boundedness of S into
account the following uniform estimate

lullvy, <C, YueS. (5.2)
Taking in (1.1 the special test function v = u — ¢, where ¢ € B = {v € V; :
lv]lv, < 1} we obtain

(e, 2] < 1(F, )] + (Au, )| + | /Q 5 (s —p) dudi|. (5.3)
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In view of (5.2)), we obtain from
[{(ug, )| < const, Ve € B, (5.4)
where the constant on the right-hand side of does not depend on u, and thus
from and we get
lullw, <C, YuesS. (5.5)

Now let (u,,) C S be any sequence. Then by (5.5)) there exists a weakly convergent
subsequence (ug) with

up — u in Wy.
Since uy, are solutions of (L.1)), we have

0
(% + Aug — f,v — ug) —|—/ Jo(uk;v —ug)dedt >0, Voel. (5.6)
Q
Taking as special test function the weak limit u we get
0
(g =) < (O = fou =) + [ (i = u) do
Q

o (5.7)

< <at_f7u—uk>—|—/Qj°(uk;u—uk)d;vdt.

The weak convergence of (ug) in Wy implies ur, — u in LP(Q) due to the compact
embedding Wy C LP(Q), and thus by applying (H) (ii) the right-hand side of (5.7)
tends to zero as k — oo, which yields

lim sup(Aug, up — u) < 0. (5.8)
k

Since A is pseudomonotone with respect to D(L), from (5.8)) we get
Aup = Au  and  (Aug,ug) — (Au, u), (5.9)

and, moreover, because A has the (S, )—property with respect to D(L) the strong
convergence uy — u in Vp holds, see, e.g., [I, Theorem E.3.2]. The convergence
properties of the subsequence (uy) obtained so far and the upper semicontinuity of
7°: R x R — R finally allow the passage to the limit in , which completes the
proof. O

Theorem 5.2. The solution set S possesses extremal elements.

Proof. We prove the existence of the greatest solution of within [w, @], i.e.,
the greatest element of §. The proof of the smallest element can be done in a
similar way. Since W) is separable, S C Wy is separable as well, and there exists a
countable, dense subset Z = {z, : n € N} of S. By Corollary S is a directed
set. This allows the construction of an increasing sequence (u,) C S as follows.
Let uy = z1. Select uy,41 € S such that

max{zn, Un} < Upy1 < W@.

The existence of u,y1 is due to Corollary Since (u,) is increasing and both
bounded and order-bounded, we deduce by applying Lebesgue’s dominated conver-
gence theorem that w,, — w := sup,, u, strongly in L?(Q). By Theoremwe find
a subsequence (ug) of (u,), and an element v € S such that up — u in Wy, and
ur — w in LP(Q) and in V. Thus u = w and each weakly convergent subsequence
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must have the same limit w, which implies that the entire increasing sequence (u.,)
satisfies:

Up, WES: U, =w inWy, u,—w in V. (5.10)

By construction, we see that max{zi,22,...,2n} < Up41 < w, for all n; thus
Z C [w,w]. Since the interval [w, w] is closed in Wy, we infer

SCZclww| = w,wl,

which in conjunction with w € S ensures that w is the greatest element of S. [

Remark 5.3. It should be noted that our main results of Section 4 and Section 5
remain valid also in case that the operator A involves quasilinear first order terms,
i.e., operators A in the form

N
Au(z,t) = —

i=1

a—xiai(x,t,u(a:,t), Vu(z,t)) + ao(x, t,u(z, t), Vu(z,t)), (5.11)

where ag : Q@ x R x RV — R satisfies the same regularity and growth condition as
ai,izl,...,N.

Next we provide examples to demonstrate the applicability of the theory devel-
oped in this paper.

Example 5.4. Let cp denote the best constant in Poincaré’s inequality, i.e.,
/ |VolP dx dt > Cp/ [vPdzdt, Vv e V.
Q Q

Assume that (A1)-(A4) and (H) hold, and suppose in addition

(a) a;(z,t,0,0) =0 for a.e. (z,t)€Q,i=1,...,N.

(b) fe Lq( ) satisfying f(z,t) > max{0, min¢cp;(o) ¢} for ae. (z,t) € Q.

(¢) k1 =0 in assumption (A3).

(d) epv > cg, where v and ¢y are the constants in (A3) and (H) (ii), respec-
tively.

Under these assumptions, problem (|1.1)) admits an extremal nonnegative solution.
First, we check that w = 0 is a subsolution of problem (1.1). Indeed, using
Definition we have to check the inequality

<A0—f,v>+/ 7°(0;v) dz dt > 0,
Q

for all v € 0AVy = {min{0,w} : w € o} = {—~w™ : w € W} (where w™ =
max{0, —w}). Taking into account assumption (a), this reduces to

/(j°(0;71)+f)w7drdt20, Y w e V.
Q

This is true due to assumption (b) because

z,t) > min (= — max ((—1)=—5°(0;-1) for a.e. (z,t) € Q.
fat)> min ¢ == max ((~1) = —°(05-1) for ae. (1) €Q

The claim that w = 0 is a subsolution of (1.1 is verified.



EJDE-2004/57 QUASILINEAR EVOLUTION HEMIVARIATIONAL INEQUALITIES 15

Consider now the initial boundary value problem

du 9 - _
5—Z%ai(x,t,u7Vu)—62(1+|u| )=f mQ,

=1 7 (5.12)
u(,0)=0 in Q,

u=0 onl,
which may be rewritten as the following abstract problem:
we D(L): Lu+ A(u) + G(u) = f in Vy, (5.13)
where G : Vo — Vj is defined by

(G(u),v) = —ca /Q(l + |u[P~ Yo dx dt.

One easily verifies that A+ G : Vj — Vj is bounded, continuous and pseudomono-
tone with respect to D(L), and due to condition (d) given above A+ G : Vj — Vi
is also coercive. Thus L+ A+ G : D(L) C Vi — Vj is surjective, which implies
that and hence possesses solutions.
We are going to show that any solution of (5.12)) is nonnegative and a superso-
lution of . Let w € Wy be any solution of
Testing the equation by —a~ we find

du
o Ot

N
,_ o0
(—u )dmdt—i—ig_l/Qal(x,t,u,Vu)axi(—u ) dx dt

= /Q(CQ(I +alP~t) + f)(—u") da dt.

Since

] %(—fﬁ)dzdt - %/Q(a*)%s,f) dz > 0

and using assumption (A3), it follows that

,,/ |Vﬂ|pdxdt+cQ/ P da dt
{a<0} {a<0}

§02/ ﬂdxdt—i—/ fudxdt <O0.
{u<0} {u<o0}

Here we used also the assumptions (b) and (c). Taking into account that v > 0 we
conclude that u > 0.

To obtain the desired conclusion concerning the existence of extremal nonnega-
tive solutions of , it is sufficient to show that @ is a supersolution of problem
. Towards this, we see that every v € 4V V; can be written as v = u+ (w—u)™
with w € V. Then we have

<8£+Aﬂf,(wa)+>+/Qj (a; (w — @) ") dz dt
Z<@+Aﬂff,(wfﬂ)+>*Cz/(1+|a|P*1)(w71—L)+d$dt:07 Yw e Vi,
ot o

where hypothesis (H) (ii) has been used as well as the fact that @ solves the initial
boundary value problem (5.12). Therefore, @ > 0 is a supersolution of problem
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(T.1). Consequently, Theorem [5.2] yields extremal solutions in the order interval
[0, @].

Remark 5.5. In case we have p = 2 in Example 1 then condition (d) is not needed.

Example 5.6. Here we provide sufficient conditions for sub-supersolutions as
constants. Let us assume that a;(x,t,u,0) = 0 for a.e. (z,t) € @, all u € R,
i=1,...,N. Then we have the following proposition.

Proposition 5.7. Let D € R.
(a) If D <0 and f(x,t) > —j°(D;—1) for a.e. (x,t) € Q, thenu = D is a
subsolution of (1.1).
(b) If D > 0 and f(z,t) < j°(D;1) for a.e. (z,t) € Q, then 4 = D is a
supersolution of (1.1).
Proof. (a) We only need to check (ii) in Definition Note that u, = 0 and
Au=0. Let v e DAVy. Since v —u <0 in @, we have

@t"’A@—fﬂf—QH—/ 7 (uw;v — u)dz dt
Q

= / [°(Dsv —u) = f(v—w)ldxdt
Q

= / [1°(D; —1) + f]|lv — u|dz dt > 0.
Q
(b) Similarly, in the second case, we have v — D > 0 for v € D V V{) and

(ay + Aa — f, o —a) —I—/ j°(u;v — a)dx dt
Q

— [ eWiv =) - fo- wldede
Q

- /Q (D3 1) - f](v — @)da dt > 0.

As consequence, for example, if there exists D > 0 such that
—5°(0; =1) < f(x,t) < j°(D;1) for a.e. (2,t) € Q, (5.14)
then has a nonnegative bounded solution (in the interval [0, D]). Similarly, if
there is D < 0 such that
—j°(D;—1) < f(x,t) < 3°(0;1) for ace. (z,t) € Q, (5.15)
then has a nonpositive bounded solution (in [D, 0]).

It should be noted that, e.g., condition (5.14) may also formulated in terms of

the generalized gradient as follows:
min ( < f(x,t) < max for a.e. (2,t) € Q. 5.16
min (< f@0) < max ¢ (@.0)€Q (5.16)

Example 5.8. Finally, here we characterize a class of locally Lipschitz functions j
satisfying the hypothesis (H).

Let j1 : (—00,0) — R be a convex function and let j3 : [0,400) — R be a
continuously differentiable function such that
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(1) lims—o j1(s) = j2(0);
(2) Forallt <0 and all s >0,
—co(1+[tP"H < min €< max &< jh(s) <eo(l+ |sPH
AL+ < min €< max €< 53() < call 4157
(3) 3 }
sup J3(s1) —32(;912) <
0<s1<s2 (52 - Sl)p
Here ¢ and ¢y are positive constants.

Then j : R — R defined as j(s) = j1(s) for s < 0 and j(s) = ja(s) for s > 0 satisfies
(H).
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