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WELL-POSEDNESS AND ENERGY DECAY OF A
TRANSMISSION PROBLEM OF KIRCHHOFF TYPE WAVE
EQUATIONS WITH DAMPING AND DELAY TERMS

ZHIQING LIU, CUNCHEN GAO, ZHONG BO FANG

ABSTRACT. We consider a transmission problem of Kirchhoff type wave equa-
tions with delay and damping terms, subject to a memory condition on one
part of the boundary. Under appropriate hypotheses on the relaxation func-
tion and the relationship between weights of damping and delay terms, we
establish well-posedness of the problem. Using the Faedo-Galerkin approxi-
mation technique, and introducing suitable energy and Lyapunov functionals,
we obtain estimates for exponential, polynomial, and logarithmic decay.

1. INTRODUCTION

We consider a transmission problem of Kirchhoff type wave equations with damp-
ing and delay terms,

wy — (1+ ||Vullgy, ) Au + pug + pows(t —7) =0, (z,t) € Sy, (1.1)
v — (L4 [|[Vo|g,)Av =0, (z,t) € Sa, (1.2)
subject to boundary and transmission conditions
v=0, (z,t)€dSy, (1.3)
ou v
(1+ HVUH?)J@ =1+ ||VUH?22)57 u=v, (z,t)€ s, (1.4)
t
0
u +/ g(t — )1+ [Vu(s)3,) g(j)ds 0, (r,)€0S:,  (L5)
0
and initial conditions
u(z,0) =uo(x), w(x,0)=ui(x), =z€Q, (1.6)
ug(x, t —7) = fola,t —7), (2,t) € QY x(0,7), (1.7)
v(x,0) = vo(z), ve(z,0) =v1(x), x€ No. (1.8)

Here, S; := Q; x (0,400) and 9S5; :=T; x (0,+00) with ¢ = 1,2 and j = 0, 1,2,
where Q C RY (N > 2) is a bounded domain with smooth boundary 9Q = I'oUT,
ToNTy = 0. Ty is the boundary of small ball B(xg) containing zo in Q, Qs C Q
is a subdomain with smooth boundary T'o UT; in the outside of B(xg), and Q1 =
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Q\ (Q2 U B(zp)) is a subdomain with smooth boundary I'y UT5. v denotes the
unit outer normal vector pointing towards the exterior of €2, and there exists § > 0,
such that m - v > 6 > 0 on I'y, where m := m(x) = x — z¢ (see Figure 1 for an
example). Moreover, u1 and pg are positive constants, 7 > 0 is the delay, g is a
positive function, and fy is the given history belonging to suitable spaces.

FIGURE 1. Domain .

Our transmission model - arises in several applications in physics and
biology, such as models of the transverse vibrations of a membrane composed by
two different materials in 7 and Q5.

In the past decades, there many authors investigated wave equations and sys-
tems with damping terms and showed that the dissipation produced by internal or

boundary damping can lead to the decay of solutions, see [, [0l 16}, [1°7, 18] 191 24} B3]
and the references therein. For examples, Cavalcanti et al. [16] studied the mixed

initial boundary value problem of linear degenerate wave equations with nonlinear
boundary damping and boundary memory sources

p1(z, O)ue + p2(x, )uy — Au =0, (z,t) € Q x (0, +00),

ou
oo Fut w4+ g@t)|u|ur = g x |ulTu,  (x,t) € 050,

ov
u=0, (x,t) €S,
u(z,0) = uo(x), u(z,0) =ui(x), =z €L,

where 2 C R¥Y is a bounded domain with boundary 9Q of C?, 9Q = I'o U T,
I'oNT; = 0. Meantime, Iy and I'; possess positive measures with

Ip:i={zxe€d: v-(r—x9) <0},
I'={ze€dQ: v-(xr—x9)>0}.

They established the existence and exponential decay estimates of the global solu-
tions. Later, Park and Bae [8] considered a Kirchhoff type wave equation

ugy — M(||Vul|3)Au — Au; =0, (z,t) € Q x (0, +00),

and obtained the same conclusion with [16] under similar conditions. Santos et al.
[T7] investigated the Kirchhoff type wave equation

Upp — M(HVUH%)Au —Aug + f(u) =0, (x,t) € Qx (0,+00),



EJDE-2021/95 A TRANSMISSION PROBLEM OF KIRCHHOFF TYPE 3

with boundary conditions
u=0, (x,t)€ ISy,

u —l—/o gt — s)(M(||VuH%)%(s) + Cr;is (s))ds =0, (x,t) € dS;.

They proved that the energy decays with the same rate to the relaxation function,
that is, the energy decays exponentially or polynomially provided the relaxation
function decays exponentially or polynomially, respectively. Bae [9] considered the
coupled wave equation of Kirchhoff type

uge — (L4 [Vul3 + [[Vol3)Au + Jul*u =0, (z,t) € Q x (0, +00),
v — (L4 [[Vull3 + [Vol3)Av + oo =0, (2,t) € 2 x (0, +00),

subject to mixed boundary conditions, and obtained the similar conclusion with
[T7]. We refer to [I8, 19l 24] on the decay estimates of degenerate wave equations
with localized damping and viscoelastic damping and linear systems with boundary
memory dissipation.

Most recently, for the research advances on the ground state solutions for quasi-
linear equations of Kirchhoff type and multiple positive solutions to the fractional
Kirchhoff problem, one can see [13], [14].

It is well known that delay effects, which arise in many practical problems, may
be the sources of instability. Hence, the control of PDEs with delay effects has
become an active area of research in recent years. For examples, it was proved in
[6] 211, 221, [25] 26] that an arbitrarily small delay may destabilize a system which is
uniformly asymptotically stable in the absence of delay, unless additional conditions
or control terms were imposed. A boundary stabilization problem for the wave
equation with interior delay was studied in [I5]. The authors proved an exponential
stability result under some Lions geometric conditions. Kirane and Said-Houari [20]
considered the viscoelastic wave equation with delay

t
uy — Au +/ g(t — s)Au(s)ds + pruy + pou(t — 7) =0, (z,t) € Q x (0,400),
0

where pq and po are positive constants. Under the hypothesis of 0 < p1 < puo,
they established general decay estimate of the energy. Later, Liu [31] improved this
result by considering the equation with a time-varying delay term, with coeflicient
12 not necessarily positive.

For the transmission problems, we can see [I} 2 [ [10, [T}, 23] B2] for the stud-
ies of existence, regularity, controllability and decay estimates of solutions for the
transmission problems with Laplacian operators. For example, Marzocchi [I] proved
that the solution for a semilinear transmission problem between an elastic and ther-
moelastic material in one-dimensional space decays exponentially. This result was
extended to the case of N-dimensional space by Marzocchi and Naso [2]. Bastos
and Raposo [32] investigated the transmission problem with frictional damping and
showed the well-posedness and exponential stability of the total energy. Recently,
There are many new results on transmission problems with operators of Kirchhoff
type, see [3 Bl [7, 12] 27, 28] 29, [30]. Bae [12] concerned the transmission problem
for the wave equations given by

Ugt — HVU’H?)lAu + |u|04u = Oa (.’E,t) € 517
v = [ Vol|g, A0 + [o]’v =0, (x,t) € Sa,
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subject to boundary and transmission conditions

v=0, (z,t)€dSyx (0,+00),
v
ov’
ds =0, (.’ﬂ,t) € 0853,

2 Ou
& 9y

ut / ot - )| Vu(s)|

and initial conditions

u=wv, |[Vul =Vl

5 Ou(s)
4y

(z,t) € 054,

u(z,0) = up(x), u(z,0)=wui(x), x=€Q,
v(z,0) = vo(x), ve(z,0) =vi(z), € Q.
He studied the global existence of solutions and showed that if the relaxation func-
tion decays exponentially or polynomially, the solutions decays with the same rates.

Later, Park [27, 28] considered the transmission problem of the Kirchhoff type wave
equations

uy — (L4 | Vullg,)Au=0, (z,t) € S,

v — (1 + ||Vv||5222)Av =0, (x,t) €Sy,
subject to the same boundary and transmission conditions with [I2]. He established
general decay results depending on the behavior of the relaxation function.

On the other hand, for the transmission problems with delay terms, Benseghir [3]
investigated the linear transmission problem with a delay term in one-dimensional
space

Upt — AUgy + prug + pou(t —7) =0,  (z,t) € Q x (0, +00),
vy — bugy =0, (x,t) € (L1, La) x (0, 400),
subject to boundary and transmission conditions
u(0,t) = v(Ls,t) =0,
w(Li,t) = v(L;,t), aug (L, t) = bug(Liyt), i=1,2,
and initial conditions
u(x,0) = uo(x), u(z,0) =ui(x), =z €L,

ug(z,t —7) = folz,t — 1), (x,t) € Qx(0,7),

v(x,0) = vo(z), ve(z,0) =v1(x), =€ (L1,La),
where 0 < Ly < Ly < L3, Q = (0,L1) U (Lo, L3), a and b are positive constants.
Under the assumption ps < p1, he showed the exponential stability of the solution

by introducing a suitable Lyaponov functional. Li et al. [7] studied the linear
transmission system with long time memory and delay terms

—+o0
Upt — AUy + / g(t — $)Uzz(s)ds + prus + pour(t —7) = 0, (2,t) € Q x (0, +00),
0
vy —bugy =0,  (z,t) € (L1, L2) % (0,+00),

with the same boundary, transmission and initial conditions with [3]. Under the
assumption ps < u1, they proved the well-posedness result by means of semigroup
theory and Hille-Yosida theorem. Furthermore, they established a general decay
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result, of which the exponential and polynomial decays are only special cases. More-
over, we refer to [5] for the similar transmission problem with short time memory
term.

In view of the works mentioned above, on can see that the studies on transmis-
sion problem for a Kirchhoff type wave system - with damping and delay
terms has not been started. The main difficulty encountered arises from the simul-
taneous appearance of the Kirchhoff type operators, delay and damping terms and
memory damping on one part of the boundary. Our first goal is to establish the
well-posedness of problem - by means of Faedo-Galerkin approximation
together with priori energy estimates. As for the asymptotic behavior, we establish
a general decay result under a wider class of relaxation functions and some condi-
tions on the boundary, by introducing suitable energy and Lyapunov functionals.

The remaining of this paper is organized as follows: In Sect.2, we present some
preliminaries and state the main results. In Sect.3, we establish well-possedness of
problem — and the general decay estimate of energy is derived in Sect.4.

2. PRELIMINARIES AND MAIN RESULTS

In this section, we present some materials needed in the proof and state the main
results. Throughout this paper, we define
HE(Q) :={ve H () :v=00nTy},

ou 0
V= {(u,v) € H' () x Hp(Q2) s u=v, (1+ HVuHQ1 =+ HVUHQ2) U}

(u,v)q, ::/ u(z)v(r)dr, i=1,2, (u,v)r; ::/ u(z)v(z)de, j=1,2.
Q; F]'
For a Banach space X, || - ||x denotes the norm of X. For simplicity, we denote

|l l2(q,) and || - ||L2(I‘j) by || - “|Ir,, respectively.
We use al the notation

(h*u)( /ht—s s)ds,

WOWQ):/hU—ﬁm@—u®M&

(hou)( /ht—s|u — u(s)|*ds.

A direct calculation shows that

(b, = — %%[/P (hou)(t)dT - (/Ot h(s)ds) [,

~ Shlolul, + 5 [ @ euear,

s

(2.1)

and
e wz, < ([ wois) [ o (2:2)

Differentiating (1.3]), we arrive at the following Volterra equation

ou 1 8u 1
14+ |[VulZ )— 4+ —¢" * (1 + [|[Vull3 ) — = ———uy.
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Applying the Volterra’s inverse operator, we obtain
ou 1

(1+ HVU\%I)% = —m(ut + k ok uy),
where the resolvent kernel satisfies k(t) + 55 (9’ * k)(t) = —(579'(). Denoting
r = 1/¢(0), then the aforementioned equality can be written as
0
(1+ ||Vu||?21)8—1: = —r[ug + k(0)u — k(t)uo + (K *u)(t)]. (2.3)
which (2.3]) implies (1.3).

For the resolvent kernel function k, as in [27) 28], we assume that
(H1) k:RT — R is a function of C? such that

k(0) > 0, tl‘gn k() =0, Kk'(t) <0,

and there exists a non-increasing continuous function & : RT™ — R¥ satisfy-
ing

+oo
/(1) > —€OK(8), VE>0, and / £(s)ds = +oo.
0

As in [26], we introduce the variable
z(x, p,t) = ue(z, t — 7p), (x,p,t) € S1 x(0,1).
Then z satisfies
Tze(z, p,t) + 25(x, p,t) =0, (x,p,t) € S1 x (0,1).
Therefore, problem (L.1)-(1.8) can be rewritten as

uy — (14 || Vullg, ) Au + pug + poz(z,1,8) =0, (z,t) € Sy, (2.4)
Tz(x, p,t) + 2p(z, p,t) =0, (x,p,t) € S1 x(0,1), (2.5)

v — (L+[|[Vol|g,)Av =0, (z,t) € Ss, (2.6)

v=0, (z,t)€dSy, (2.7)

A+ IVulR) 2 = (4 IVolR) 2w, (e)€ds,  (28)

(1+ ||Vu||?zl)$ = —rfus + k(0)u — k(t)up + (K" *u)(t)], (z,t) € 3Ss, (2.9)
u(z,0) = up(x), ut(z,0) =uy(x), x€ N, (2.10)

2(z,1,t) = folz,t —7), (z,t) € Q1 x (0,7), (2.11)

2(x,0,t) = wy, (z,t) € 5, (2.12)

v(x,0) = vo(z), ve(z,0) = v1(x), =€ Qa. (2.13)

Therefore, it is sufficient to consider problem (2.4)-(2.13)), which is equivalent to

©)- (@3

Firstly, we present the definition of weak solution of ([2.4)-(2.13).

Definition 2.1. Let the initial data (ug,vo) € Hg(Q1) x HZ(Q2), (u1,v1) € V, and
fo € L*(Q1 x (—7,0)) be given. Functions (u,v,z) € C(0,T;V x L?(£2; x (0,1)))
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are called the weak solution of problem (2.4))-(2.13)), if (u,v, z) satisfies the initial
conditions (u(0),v(0)) = (ug,vo), 2(x,1,t) = fo(z,t —7), for all t € (0,7), and

/ upddz + (1+ | Vull3,) / Vu-Voda + / wda + py / 22,1, 1)¢de
Ql Q1

1 Q1

+/ vttwdx+(1+||VvH?22)/ Vo - Vipdz
QQ Q2

_— /F [ue + £(0)u + (K *u)(t) — k(t)u(0)]¢dz,

/ thgodx—l—/ zppdx = 0,
Ql Ql

for all (¢,v) € V, all p(z,p) € L*(Q1 x (0,1)), and all t € [0, 7].

As for the well-posedness of solution to problem (2.4)-(2.13), by the Feado-
Galerkin approximation technique, we obtain the following result.

Theorem 2.2. Suppose that s < p1 and (H1) holds. Then for (ug,vo) € HZ (1) %
HZ(Q2), (u1,v1) €V, fo € L2(2; x (—7,0)) satisfying the compatibility conditions

0
1+ ||vu0||gl)$ fru; =0, onTy, vy =0, on Ty,
1%
ou ov
up = vo, (1+ ||Vu0||§21)a—yo =1+ ||VU0|\%2)7;a on Ty,

there exists a unique weak solution (u,v,z) of problem (2.4))-(2.13) such that
(u,v) € C((0,+00); V) N C((0, +00); L*(91) x L*(a)),
2 € C((0,+00); I2((0,1) x ).

To state the result of uniform decay rate for energy, we define the energy func-
tional

1 1
B(#) =g (lully, + o2, + IVelld, + [190l2,) + 3 (17uld, +190]4,)
) ) : . (2.14)
TR ful?, — - / (K ou)(t)dl + / / |2, p, ) Pdpda,
2 2 Iy 2 a2, Jo

where ( is a positive constant such that

Ty < < T1(201 — p2). (2.15)

Next, we establish a general decay estimate result.

Theorem 2.3. Let (u,v, z) be the solution of (2.4)-(2.13), assuming po < p1 and
(H1) holds. Then for tg > 0 large enough, there exist constants Co > 0 and @ > 0

such that
(i) E(t) < CoE(0)e~=Jo 895 for all t > to, if ug =0 on T,
(ii) otherwise, E(t) < Co[E(0) + |luoll?, fg k2(s)e® Jo §arqgle== [g €()ds gy
allt > tg.

Remark 2.4. The exponential decay and polynomial decay in previous literatures
are special cases of the result in Theorem In fact, if we take

1 1—|—0_

k(t)=e™7" o0>0, &@1)=o0; k(t) = A0 0>0, &) =1

b
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1 1
kt) = —————) ()= ————————
®) In(In(3 +¢))’ §() In(3+1¢)(3+1¢)’
then by the result of Theorem the energy may decay exponentially, polynomi-
ally, and logarithmically, respectively.

3. WELL-POSEDNESS

In this section, by using Feado-Galerkin approximation technique and some prior
estimates, we establish the well-posedness of problem (2.4])-(2.13).

Proof of Theorem[2.3. We divide the proof into four steps.
Step 1. Feado-Galerkin approximation. Let {(¢;,1;)}jen, be a basis for
V, which is orthogonal in L?(Q1) x L?(Qg). For all n > 1, denoting V,, :=
span{(¢1, 1), (P2,%2), - .., (¢n,¥n)} and defining the sequence {¢;(x, p) }1<j<n as
follows:

i (x,0) = ¢ ().
Then we may extend ¢;(z,0) by ¢;(x, p) over L?(2; x (0,1)) and denote W,, =

span = {p1,02...,0n}.
We define the approximations:

n

(w™ (2, 1), 0 =Y bin(t)(¢5(x), (),
Jj=1
2 (@, p,t) = cin(t)p;(@,p),
j=1

where (u(™, v, 2(")) are solutions to the following finite dimensional Cauchy prob-
lem:

/Qugf)gbjdx—l—(l—&-||Vu(")||52)1)/ﬂ Vul™ . Ve,dx

+u1/ uE”)quda:er/ 2 (2,1, )¢;da
Q1 1951

(3.1)
+/ oM pida + (1 + [Vo™2) [ Vo™ - Vy,de
QQ Q2
- / 1™ 4 k(0)ul™ + (K u™)(t) — k(t)uon]da,
Iy
/ th(")cpjdx—i—/ 2Mp;d =0, (3.2)
Q1 Q1
z(”)(a:,OJ) = u§”) (z,1), (3.3)
and
(Uon, Von) = (u(")(O),v(”)(O)) — (ug,v0), in Hg(Ql) X Hg(Qg), (3.4)
(u1n, v1n) = (@ (0), 0" (0)) = (ur,v1), inV, (3.5)
zon = 2 (2, 1,t) = fo(x,t —7), in L3(Qy x (—7,0)). (3.6)

According to the standard theory of ordinary differential equations, the finite di-
mensional problem (3.1))-(3.3) possesses a unique solution (b;,(t), ¢jn(t)) =1

.....
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[0,T,), T, > 0. The extension of these solutions to the whole interval [0, 7T, for all
T > 0, is a consequence of the first estimate which we are going to prove below.

Step 2. Energy estimates. A prior estimate I: Multiplying (3.1) by ,,(?)
and summing on 7, then using (2.1]) we have

Al N
SAGU™ I, + o™ 13, + IVa™ 3, + 190™]3,)

1
+ 7 UVa™lh, + [0, }

= a3, — #Q/Q w2 (2,1, t)dx — rllu™ |2, (3.7)
1

k() / uonu{Mdz — - / (K" ou™)(6)dT + 2 (1)]|lu™|2,
I's 2 I's 2

dr / (n) r (n)12
+dt[2/F2(k o u) (L — h(t) [u 3]

Multiplying (3.2)) by %c;n(t) and integrating over (0,1) on p and then summing on
7, we obtain

¢d ' n 2 ¢ n 2 (n) 2
5& o, Jo IZ( )(xapat” dpdx = _g[”’z( )(xal,t)”(zl - Hutn HQl]v (38)
where ( is a positive constant such that

Tpe < ¢ < T(20 — p2).

Combining (3.7) and (3.8)), we can derive

d n n r n r n
—EM @) +rlu™E, + 5 / (K" o u™)(£)dT — k' (t)[u ™2,
dt 2 Jr, 2
C n) 2 C n 2
= (= )l I3, — 5o 12" (@, 103, (3.9)
- /1,2/ uE")z(") (z,1,t)dz + Tk(t)/ uOnugn)dF,
Ql F2

where
n 1 n 1 n 1 n 1 "
EM™ () =< [[u |13, + oI5, + S Va2, + 2 [Vo™|3,
2 2 2 2
'S

1 n) |4 1 n) |4 n
IV, + 190, — 5 [ Wou)war (51

2
1
,
+ RO, + 5 [ [ 0P,
2 : 2 @, J0
It follows from Young’s inequality that
n H2 n M2
I—uz/Q a2 (@, 1,0)dz] < B2 [, + 21 @ LR, (B

rk2(t)
2

r
rh(t) / wonug" T < 2 g™ 7, + =5 luonIE, (3.12)
2
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Substituting (3.11)) and (3.12) into (3.10) we obtain

d ame " "
LB <= S, + [ (6 out ) @ar - K]
s
p2 G n
R R 1)
rk3(t
(&1, + D g 2,

2T 2 2

Integrating (3.13) over (0,t), 0 < ¢ < T, and then using Gronwall’s lemma and
(13.4)-(3.6), we obtain the first estimate

lud™ (13, + [of 13, + [Va™]3, + Vo™ |3, + Va4, + [[Vo™]|4,
) ) 2 (3.14)
12 @, 0Dl 0y + / Ju™ (s)]2,ds < Ly,

where L; > 0 is a constant independent of n.

A prior estimate II: First of all, it can be deduced easily from the assumptions
on initial data in Theorem ﬁ that Huif)(O)H%l + Hvt(f)(O)H?l2 < C, where C > 0
is independent of n. Differentiating with respect to ¢ and multiplying it by
b7, (t), and summing on j, we have

d 1l 1 1 )
a6, + 1ok, + 51Vl 1, + 5194,

1 n n 1 " . rE0)
+§Hvu( )||5221||VU,E )H?zl +§HV1}( )||g2)2||V’U§ )H?22 +TH’U/§ )H%Q

+( s V) -Vut")d:r)z +( /Q 2 Vo -w§">dx)2}

(n)2 (n) (n)2 (n) (3.15)
=3[|Vuy; g, /Q Vu™ - Vuydz + 3|| Vo, %, /Q Vo™ . Vo da
1 2

SO, — e / W2 (2,1, 1) + ok (1) / wpnul}dT
1 I

- r||u§?) ||12~2 — T/F (k" * u("))ugl)df - rk’(O)/F u(")ugf)dF.
2 2

Differentiating (3.2) with respect to ¢ and multiplying it by %c}’n(t)7 integrating
over (0,1) on p and then summing on j, we obtain

(d Lo > ¢ ryr.m 2 (n) 2
24t Jo, Jo |z (z, p, 1)) dpdw=—§[\|zt (z, 1, 0)|I5, — llug I3, ]- (3.16)
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Combining (3.15) and (3.16)), we can derive

d =
B0 il I,

= 3||w§">||?h Vu

) u™Mdz + 3|Vo™ |3, [ Vo - VoV da

C n n
<u1—2—>|\utt>um —p | " (@1 e (317)
1
Frk () | ugnugydl — K ™ yuly)
onlis r (K" * u'™)uy,’dT
FQ FQ
=k (O) [ auPdr - e L0l
Iy 2T
where
B () =5 I, + 5101, + 51V 13, + 5190712,
1 " n 1 " n
+ IV, IV 3, + S IV, Vo™ I3,
3.18
/ vaul™ . Vu(n)dx / Vol . Vv(n)dx) ( )
rkr n S n
O iz, + //|z”a:p, )Pdpda.
By Young’s inequality, we obtain
n 1 n 14 n
| = n2 / w2 (@, L )de] < Dl I, + T AV @ Lol (319)
1
(3.20)

H0) [ a0 < ol R, + (00 o,
’—r/ (K" s u™)(t) utt dF|
Iy
(3.21)
r k/ t 2 , t "
E D Oy [ K= (5, s,

< nrllu |12,
+ (K (0))2|u ™
4n 2’

|~k (0) / WU < el 2, (3.22)
2

where 0 < 1 < 1/3 is a constant. Substituting (3.19)-(3.22) into (3.17)), we can

derive
S B0 +r(1 = sl IR,
< 3|Vu™|q, ||Vu§">||§zl + 3 Vo™ g, [ Vo™ (13,
(=2 S, (o~ B @ LR, (3.23)
T ORI~ a0 [ K= ) (IR,

r
4

(K ()2 [uon |2, + — (' (0)2|u™2..
4 T2 " gy Iz
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Integrating (3.23) over (0,t), 0 < ¢t < T and then using Gronwall’s lemma, we
obtain the second estimate

i 13, + o5 13, + Va3, + Vo™ |3,
(n) 2 ‘ (n) 2 (324)
+ 1z (2, 0, D220 x(0,1)) +/0 llug, " (s)[IF,ds < Lo,

where Ly > 0 is a constant independent of n.

Step 3. Pass to the limit. It follows from the first prior estimate (3.14) and
second prior estimate ([3.24) that there exist subsequences of {u(™}, {v(™}, {z(M}
(we still denote the subsequences by {u(™}, {v(™}, {z(™} for convenience) such
that

(u™,v™) = (u,v) strongly in C(0,T;V),
(ug™0f") = (ur, )~ strongly in C(0,7: L*() x L*(22)),
2™ 5 2 strongly in C(0,T; L*(Q; x (0,1))),

(™, v™) = (u,v) weak star in L=(0,T;V),
(u§”),u§”)) — (ug,vy) weak star in L>(0,T; L*(€;) x L*(s)),
(u,EZ), vgf)) — (ug,ve)  weak star in L°°(0,T; L*(Q1) x L*(Q)),
=M 5 2 weak star in L>®(0,T; L*(Q; x (0,1))),
2™ 5 2, weak star in L(0, T; L*( x (0,1))),
u{™ — u, strongly in L2(0, T; L*(T'2)).

The above convergence results are sufficient to pass to the limit in the linear terms of
(3.1) and (3.2]). From the first estimate and taking the continuity of trace operator
Yo : HY(Qy) — H=(I'3) into account, we have

{u™} is bounded in L*(0,T; H? (T)),
{ugn)} is bounded in L(0,T; H? (Ty)),
{uﬁ?)} is bounded in L?(0,T; L*(T'y)).
The second estimate implies
(L [IVa™ 8, )ut™ = (L+ | Vulg, )u  strongly in C(0,T; Hy (1)),
(L+ Vo™ 3,)0™ — (1+ | Vul|3,)v  strongly in C(0,T; Hy(Q0)).
Thus we can pass to the limit in and to obtain

we — (1+ || Vullgy, ) Au+ prug + poz(z, 1,6) =0, in L?(0,00; L* (),
vy — (14 || Vo3, )Av =0, in L*(0,00; L*(22)),
T2z, p,t) + 2p(x,p,t) =0, in L?(0, 005 L* (1)),

P .
(1+ ||w||§h)ai: = —r[ug + k(0)u — k(t)uo + & * ), in L0, 00; HE(T'5)).
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Step 4. Uniqueness. Let (u,7,%) and (@, v, Z) be two solutions of problem ([2.4))-
(2.13). Then (u,v,2) = (u —u,v — v,Z — Z) satisfies

e — [+ [[Valg, ) AT — (1 + || Vallg, ) Adl

3.25
+ g + pez(z, 1,t) =0, (x,t) € Sy, (8.25)
7z (x, p,t) + Z,(x,p,1) =0, (2,8) € 51 x (0,1), (3.26)
B — [(1+ [VO|3,)A0 — (1+ [VEI3)AT =0, (r,0)€Ss  (3.27)
v=0, (z,t)€dSy, (3.28)
0 0T g O
A+ 1Vullg,) 5> — A+ Vallg,) o~
= (L4 VAR 22— (1 4+ 933,) o
u=v, (x,t)€ sy, (3.30)
Ju ou
—n2 (V¢ PYITEARY P
(@ + 19T 2T~ (14 v, ) 2 s
= —r[uy + k(0)a + (K xa)(t)], (z,t) €8S,
u(z,0) =0, U(x,0)=0, =€y, (3.32)
2z, 1,6) =0, (z,)€Q x(0,7), (3.33)
Z(x,0,t) = Uy, (x,t) € S, (3.34)
v(z,0) =0, Ti(x,0)=0, z€Qa. (3.35)

Multiplying (3.25)) and (3.27)) by u; and v, and integrating over Q; and s, respec-
tively, using (3.28)-(3.31) and (2.1), we obtain

1dg, _ ~ .
{IIUtII?zl oG, + [IVall, + 1Vol3,

2dt
+ [[Vallg, [Vallg, + IIWII%ZHV?IIEQ}
1
:§\|va||?h/Q Vi - Vigde — i Vi - (Va + Va)dz i Vi - Vigder
1 s " ~ N (3.36)
+ §HV1}HQ2 / Vv - Viude — Vo-(Vo+ Vo)dz [ VU-Vide
Qo Qg (923

~ ~ ~ r ~
~ @, — e [ @R L0 - @R, - 5 [ @ om) o

Ql 1—‘2
TN NTE R KA ot PP
RN, + 5[5 [ (W om(dr - ZOal?, |

Multiplying (3.26) by g?(:mp7 t) and integrating over Oy x (0,1) on z and p, re-
spectively, we obtain

¢d b ¢ opm N
sai J, ) e OFdede = =[2G L, — 5, ) (3.37)
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Combining (3.36)), (3.37) and using Young’s inequality and estimates (3.14]), (3.24)),
we can derive

1d
2dt

IV IV, — / (K o @)dD + k()12

+C/Ql/| x,p,t |dpdx}

< C(Ivall, +Ivoli,).

{HutHQI OIS, + IValg, + IVollg, + [Vals, [Vals,

(3.38)

Integrating (3.38) over (0,t), 0 < ¢t < T and then using Gronwall’s lemma, we
obtain

1
@&, + 1el8, + IVale, + [Voll3, +C/Q / |Z(@, p,t)[*dpda = 0.
1 /0

Hence, uniqueness follows.
With the above 4 steps, we obtain the well-posedness of solution for problem

E-T. 0

4. DECAY ESTIMATES

In this section, we consider the asymptotic behavior of problem ([2.4)-(2.13)). For
the proof of Theorem [2.3] we need the following lemmas.

Lemma 4.1. Let (u,v, z) be the solution of (2.4)-(2.13)), then we have

d
SR <~ Ll — (1 — o=~ 2wl — (=~ B2 (e, L) R,

T2 2 r " o, 2 (4.1)
ROz, ~ 5 [ R w)Oar + FE R,
s

Proof. Multiplying (2.4]) and ( -i by u; and vy, and integrating over £; and s,

respectively, with the ald of (2.7] and ( .7 we obtain
d 1 4 4
LUl + oaliy, + IVul2, + 1V0l3,) + F(1Vulld, +1900,)}
= —pfluel|, — ﬂz/ upz (@, 1, t)da — 7|3, +7"k(t)/ uguydl’ (4.2)
Ql FZ

_C " f ! 2 g f ’ _f 2
2/F2(k <>u)dF+2k(t)|u||rz+dt[2/r2(k ou)dl — k(1) Jull, ]

Multiplying (2.5)) by %z(m,p,t) and integrating over Oy x [0,1] with respect to x
and p, respectively, we have

ﬁi/ /1 or o C .
2t Jo, Jo |2 p, 1) Pdpde = — - (llz(z, L7, — fuell3,)- (4.3)
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Combining (4.2)), (4.3) and (2.14)), we can obtain

Lo = — (o — gl - S 2
SE) = = (= 55wl — o=l 10,

_ M2/ wz(z, 1, t)de — rllug|E, + rk(t)/ uourde (4.4)
Qi I
r " T 2
=5 [t owmar+ Zrlult,.
T2
By Young’s inequality, we obtain
H2 H2
= [ ws(e1del < Zlulh, + Zle@ 0, @)
1

T T
ri(®) [ s < S, + R0, (4.6)
2

Substituting (4.5)), (4.6]) into (4.4)), we obtain

d r 2 ¢ M2 2 ¢ H2 2
720 % gl = = 32 =l o = o0,
r r r :
+ 5ROl ~ 5 [ R on)Oar+ K @R,
s
Then we can derive the result of Lemma [4.1] O

Remark 4.2. From the range of ¢, we can see that p; — %f% > 0 and %f% > 0.

However, since

r

5’*'2(15)”“0”%2 >0,
E(t) may be not nonincreasing.

Now we define the functional
N N
Dy (t) := / [(m-Vu) + (5 - 0)ujudz +/ [(m-Vv)+ (? - 0)v]v,da,
Ql QZ

where 0 < 6 < 1 is a constant which will be determined later.

Lemma 4.3. Let (u,v,2) be a solution of problem (2.4)-(2.13), then for tg > 0
large enough, there exist vy > 0 such that

d 4 2 1 2
7210 == A= 0)[Vullg, —as|[Vulig, + (74771 — 0) |lu|?,
1 R 72 r?
I 1.t 2 - o 2 7k_2 t 2
+ 4772HZ(1‘, 6, +(2 + ns)l\UtHrz + o ®)l|luollr,

= Ollvelf, — (1= )AL + [ Vold,) IV,

where n;(i = 1,2,3) are sufficiently small positive constants.
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Proof. By (2.4) and integration by parts, we can derive

d
dt

= / (m - Vug)ugdr — (1 + ||Vu|\§h)/ V(m - Vu) - Vudz
Q

1

[(m - Vu) + (g — 0)u]uydz

w\z

N
(5 = OB, = (5 = 0) A+ [Vula,) [ Vul?,

N ou
+ e+ (G = 0+ 9l Grar
— U1 [(m - Vu) + (

(o5

—uz/ﬂl[(m-VU) (

) Jurdz

— 0)u)z(x,1,t)dx.

N\Z M\E

Noting that
N 2 1 2
(m - Vu)ude = ——[Jul|g, + 5 (m - v)|ug|=dT, (4.9)
o 2 2 Joo,

and

—/ V(m - Vu) - Vudx

ou | Ou
N
/Ql = il jaxj)axz]dm
3u 3u8mjd 1/ EN._i %

/Ql 1

W=l 9, Oz; Ox; 7y
N
2

1
~DIVul, 5 [ o) VaPar,
o

M

= (

Substituting (4.9), (4.10]) into (4.8]) to deduce that

%/ﬂ [(m - Vu) + (g — 0)uju,dz

1
= —Olluelld, — (1= O) (1 + [Vullg,) | Vuld, + 2/39 (m - v)|u|*dl

1
- = 1+ 1Vul|,) / m - v)|Vul2dT

o (4.11)

+/ [(m - Vu) + (——9) 1+||VuHQl)—dr
o

[(m-Vu) + (g — 0)ujudx

— M1 B)

[(m-Vu) + (g — 0)u)z(z,1,t)dz.
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Similarly, using (2.6) and integration by parts, we can derive
d N
T o, [(m - Vv) + (5 — 0)v]vdz

1 ~
= ~Ollulf, — (1= )0+ [ Vol Vel + 5 [ (m-Dlurfdr
. o1 (4.12)
ST, [ (me7)Tupdr
Q9

N 2 ov
" /mj(m Vo) + (G = 0)o)(1+ [ Volf3,) 5=,

where 7 denotes the outer normal vector pointing towards the exterior of s.

Adding (4.11) to (4.12) and using transmission conditions (2.8)), we obtain

d
= ®1(t) = = Ollu]d, — (1= 01+ [IVulld)]Vull,

de
1 1
+7/ (m~u)|ut|2dI‘—7(1—|—HVUH%I)/ (m~u)\Vu|2dF
2 I, 2 I,
N 0
+ [ om0+ (5 - ) + [Vulf,) Goar
s 2 8V

N
— /Ql[(m -Vu) + (5 — 0)u]updz

(4.13)
N
- H2/ [(m - Vu) + (5 —0)ulz(z, 1, t)dx
Q
= 0lluelld, — (1= 0)(1 +[[Voll3,)[Volia,
1 _ 1 ~
+7/ (m~u)|vt|2dI‘—7(1+||Vv||?22)/ (m - )| Vo|*dl’
2 To 2 To
N 0
+/ [m- Vo) + (X~ 0)o](1 + [IVo]}3,) 22T
To 2 3V
Since 6% :ﬁi%,i: 1,...,Nand m-v <0 on I'g, we have
1 _ 0
_7(1+||W||§22)/ (m-z/)|Vv|2dF+(1+||Vv||?22)/ (m - Vo) 22dr
2 o o ov
1 9 0V 2
:2<1+||W|92>/F0<m~u>!a;| ar <o.
Moreover, since v = 0 on I'g, (4.13]) can be rewritten as
d

= @1(t) == Ollu]d, — (1= 0)(A+ [IVullg)]Vull,

dt

1 1

+§/ (m.y)|ut|2dr—5(1+HW\|§21)/ (m - v)|Vu|?dT
Fz 1—‘2

N 5 \Ou
+ /FQ[(m V) + (5~ O)ul(1 + [ Vuliy,) Gedr

— /Q [(m - Vu) + (g - 0)ujuda

- ug/ﬂ [(m-Vu) + (g - 0)u)z(z, 1, t)dx
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= Olluellg, — (1 = 0)(A +[[Volé,) [ Vold,. (4.14)
It follows from Young’s inequality that

| — /Ql [(m - Vu) + (g - 0)uju,da|

N , ) (4.15)
<ol + (N~ 0) A dm | Vul, + 3,
m
N
‘ - /,42/ [(m - Vu) + (5 — 0)u)z(z, 1, t)dz|
& N . (4.16)
<o+ (5~ 0) M dmalVuld, + e L),
12
and
N ou
| [ [m-Vu) + (5 = 0)ul(1+ [[Vullg,) 5 -dT|
1)
N 2 1 ou 2
< 2R2TI?,||VU||1%2 + 2(5 —0)" N3 Vullg, + %H(l + HVUH%J%HFQ
N 2
< 2R%ns||Vull?, + 2(5 —0) N0z Vuld,
2 ) (4.17)
/
+ . [t 4+ k(0)u — k(t)uo + & * ul|p,
N 2 r2 r?
<2R%ns||Vull?, + 2(5 —0) N0 Vulg, + %llutﬂ%2 + 773762(%‘)HUO||%2

,',.2 7,2
+ Rl - k() / (K 0w,
13 UE Iy

where 7;(i = 1,2,3) are sufficiently small positive constants and we have used
inequality (2.2)) and the following identity

0
(L+ [ Vull3,) 5 = = vl + k(O)u = k(tuo + K x ul
= —rlus + k(t)u — k(t)uo — k' o ul.
Besides, A and A\; are the optimal constants of trace inequality and the first eigen-

value of —A with Dirichlet boundary condition, respectively, i.e. [[ul|g, < A||Vul/g,
and ||ul|g, < Ai||[Vul|g, , respectively.

Substituting 14.15”4.17) into (4.14)), we can derive

d 1 R 72
G0 <(g = O, (5 + )l = (0= ) Vuli,

1—-6 N 2
- {7 —2[R* + (5 — 0) A (im + pne)

2 2
N 2 1)
—2(= —0)" N3 ||Vu||21 — (5 —2R%p; ||VU||22
L e Lo, — e~ Rk )2
e O e

r? 2 2 2 ,
+ ROl - k) / (K o u)(t)dT

s

= Ollve]|d, — (1= 0)(1 + [Vol[g,)I VI3,
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Choosing n; (i = 1,2,3) small enough such that

1-6 N 2 N 2
a1 = 5= = 2R + (5 = 0) MG + p3me) = 2(5 —0) Nz > 0,
g — 2R2773 > 0,

it follows from lim;_, o k() = 0 that our result holds for ¢y > 0 large enough. O

Next, we define the functional

1
Dy(t) := T/ / e P|z(z, p, t)[Pdpda.
o, Jo

Then we have the following lemma.

Lemma 4.4. The functional ®2 satisfies

d 1
G020 < =CO [ [zt 0 Pdpde + a1 01, + el
1

where C(1) is a positive constant only depending on T.

Proof. We use the method introduced by [30] to prove this lemma. Taking the
derivative of ®4(t) directly, and using (2.5)), we have

d 1
—Dy(1) :27/ / e Pz(x, p, t)ze(x, p, t)dpda
dt o, Jo

1
=— 2/ / e "Pz(x, p, t)z,(x, p, t)dpda
o Jo
1 g 1
— [ [ e ptPlpde 7 [ [ e st .0 dps
o, Jo dp Q1 J0
1
=— / e 7 |2z, 1,0) — |2(x, 0,t)]* do — T/ / e~ |2z, p,t))? dpdx
2 2 J0
1
2
< —C(T)[/Q ; |2(2, p, )" dpda + |[2(2, 1, )11, ] + lluell?,,
1
where C(7) is a positive constant only depending on 7. O

Proof of Theorem[2.3. We define the Lyapunov functional

where M; (i = 1,2,3) are positive constants which will be determined later.
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Differentiating L(t) directly and using Lemma [4.1} Lemma [4.4] we have
d ¢ ) 1 2
CL) <=l — = =20, — (< — )My — M.
dt (t) < [(Ml o B) ) 1 (4771 ) 2 3] ||Ut||Q1

—[(1 = O)M][|Vullg, — Macn|[Vullg,

1
—M30(T)/ / |z(x, p,t)|* dpdz
o, Jo

M.
Sl -2y - 22 o) ae 11,
2r 2 4y
2 . (4.20)
1r T 2
— == — (— 4+ =) M-
[ 2 (773 + 2) 2] fuellr,
Myr  Mayr?
+ (5o 2R (0) ol
2 73
_ Ml’l‘ er

5 [ 0 owwar + k@,

= Mab||ve[§, — Ma(1 =) (1 + [[Vo[|3,) [ Vol?,-
Choosing M; > 0, (i = 1,2,3) such that

¢ pe I _
(11 — o ?) 1= (74771 0) My — M3 > 0,
¢ pe M,
(E—?) —74772 +M30(T)>0,
Mir r?
T_(%+§)MQ>O7

and since E(t) is equivalent to

1 1
luelléy, + lloellg, + IVl + 1Vollg, + 71Vella, + 71Vvllg,

1
k() ull?, — / (K ou)dl + / / \=(z, p ) Pdpda,
FQ Ql O

we know that there exist positive constants 31, B2, B3, such that
d

TLO) < BB + ok (1) [uo 2, - 53/ (K ouw)(t)dl, Vt>to.  (4.21)

I

Multiplying (4.21) by &(¢) and using (H) and (4.1]), we obtain

£(0) 5 1(0) <~ BLEDE® + BabOR @) uoll, — Pag(t) [ (¥ ou)(e)ar

Iy
< = BiE()B(t) + £ (1)K (D) [luolIE, + Bs / (k" o u)(t)dl

Iy (422)
< — Bi&(1)E(t) + BoE (0K (1) [[uolI?,
+ 5512 S B0 + B0 ol ]
Noting that £'(t) < 0, we have
%[&(t)L(t) - Lf?’E(t)] < —BiE()E() + [B2£(0) + Bl () |luolR,-  (4.23)
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Now, define the functional

L(t) = E})L(E) + iﬁE(t), Yt > to.

Then it is easy to verify that L£(t) is equivalent to E(t) and there exist constants
Y1, ¥2 > 0 such that

T L) < =MEWLE) + 2k (B)l|uolp,, ¥t > to. (4.24)

Case 1: If ug = 0 on Iy, inequality (4.24) becomes
d
SL(1) < ~MEDLD)
Integrating this inequality from 0 to ¢, we have

L(t) < L(0)e 1 Jo €6)ds g > ¢ (4.25)

It follows from the equivalence relation between L£(t) and E(t) that there exists a
constant C' > 0 such that

E(t) < CE(0)e o 600 v > ¢,

Case 2: If ug # 0 on I'z, we set

t
F(t) = L(t) — ya||uol|E, e~ Jo £()ds /O E2(s)er o €Mdrqs vt > 0. (4.26)

Then by calculating directly, and using we obtain
SFO < -nEOF W), izt
Integrating this inequality over (0,t), we have
Ft) < F0)e o &@)ds g > p (4.27)
Combining and , we have
L(t) < [c(o) + 2 luol2, /0 t k2(s)eM fa“€<">d7'ds]e—% J€@ds g >0 (4.28)

It follows from the equivalence relation between L£(t) and E(t) that there exists a
constant C' > 0 such that

t
E(t) < C|E(0) + 2lluol, / K3 (s)em i €0 s e ST > gy,
0
The proof of Theorem [2.3]is complete. O
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