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STABILITY OF STOCHASTIC FUNCTIONAL DIFFERENTIAL
EQUATIONS AND THE W-TRANSFORM

RAMAZAN KADIEV, ARCADY PONOSOV

Abstract. The paper contains a systematic presentation of how the so-called

“W-transform” can be used to study stability of stochastic functional differ-
ential equations. The W-transform is an integral transform which typically

is generated by a simpler differential equation (“reference equation”) via the

Cauchy representation of its solutions (“variation-of-constant formula”). This
other equation is supposed to have prescribed asymptotic properties (in this

paper: Various kinds of stability). Applying the W-transform to the given
equation produces an operator equation in a suitable space of stochastic pro-
cesses, which depends on the asymptotic property we are interested in. In

the paper we justify this method, describe some of its general properties, and
illustrate the results by a number of examples.

1. Introduction

Stability analysis for stochastic delay and functional differential equations is
usually based on the classical Lyapunov-Krasovskii-Razumikhin method (see e.g.
[12] and [16]), where one tries to find a suitable Lyapunov function (a Lyapunov-
Krasovskii functional) which ensures the prescribed stability property. Another
way is more straightforward: it uses direct estimates on solutions [12].

On the other hand, a recent progress in stability theory for deterministic func-
tional differential equations shows (see e.g. [2]) that at least for linear delay equa-
tions it seems to be more convenient to use special integral transforms to study
various asymptotic properties.

The idea of using the W-transform in stability theory was originally proposed
by Berezansky in his pioneer work [3]. Later on, this idea was developed by him
and his collaborators in a series of papers (see [1]). The method can be briefly
outlined as follows. Instead of studying stability of a given linear delay equation
with respect to the initial function, one first moves the initial function over to the
right hand side of the equation. By this, one arrives at another property called in
the literature ”admissibility of pairs of spaces” (see e.g. [13]). One proves then that
any kind of stability with respect to the initial function is implied by admissibility
of certain pairs of functional spaces. To check admissibility one choose a simpler
equation (called “a reference equation”), which already has the required property
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of admissibility. This new equation gives then rise to an integral transform (tradi-
tionally called ”the W-transform”) which, when applied to the original equation,
produces an integral equation of the form x − Θx = f . If the latter equation is
solvable (for instance, if ‖Θ‖ < 1), then admissibility, and hence stability, is proved.

In this paper, we try to extend this method to the case of stochastic functional
differential equations. We exploit the scheme that (in the deterministic case) was
developed in [1] replacing functional spaces by certain spaces of stochastic processes.
This enables us to put the study Lyapunov stability (e.g. asymptotic stability and
exponential stability) of stochastic delay equations into a unified framework in a
natural way. As we show, this method covers more general stochastic functional
differential equations and produces sufficient stability results in an efficient way.

Let us remark that the main purpose of the present paper is to give a theoretical
justification of the W-method in connection with stochastic stability. That is why
all the examples we present are illustrative and are not compared with the stability
results which can be found in the literature. A more specific analysis of some sto-
chastic delay equations, including a comparison with the existing stability criteria,
will be a subject of a forthcoming paper.

2. Notation and main assumptions

Basic notation. Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space
(see e. g. [11, p. 9]), Z := (z1, . . . , zm)T be a m-dimensional semimartingale [11,
p. 73] on it (we distinguish column vectors (a1, . . . an)T and row vectors (a1, . . . an)).

In the sequel, we let | · | denote the norm in Rn; Rk×n will be a linear space
consisting of all real k × n-matrices with the norm ‖.‖ that agrees with the chosen
vector norm in Rn. We write 0̄ for the zero column vector in Rn, the symbol Ē
denotes the unit matrix, while E stands for the expectation.

For convenience, we denote by λ∗ the complete measure on an interval I, gener-
ated by a nondecreasing function λ(t) (t ∈ I).

The following linear spaces of stochastic processes will be used in the sequel:
Ln(Z) consists of predictable n×m-matrix functions defined on [0,∞) with the

rows that are locally integrable with respect to the semimartingale Z, see e. g. [5];
kn consists of n-dimensional F0-measurable random variables (we set also k :=

k1);
Dn consists of n-dimensional stochastic processes on [0,∞), which can be rep-

resented in the following form:

x(t) = x(0) +
∫ t

0

H(s)dZ(s) (t ≥ 0),

where x(0) ∈ kn, H ∈ Ln(Z);
Lλ

q consists of scalar functions defined on [0,∞), which are q-integrable (1 ≤ q <
∞) with respect to the measure λ∗, generated by a nondecreasing function λ(t)
(t ∈ [0,∞));

Lλ
∞ consists of scalar functions defined on [0,∞), which are measurable and a.

s. bounded with respect to the measure λ∗, generated by a nondecreasing function
λ(t) (t ∈ [0,∞));

Lq stands for Lλ
q in the case when λ(t) = t (1 ≤ q ≤ ∞).

In addition, we will implicitly assume that the real numbers p, q satisfy the
inequalities 1 ≤ p < ∞, 1 ≤ q ≤ ∞.
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The following notational agreement will be used in the sequel:
∫ b

a
=

∫
[a,b]

(oth-
erwise we will write

∫
(a,b]

, or
∫
(a,b)

etc.
The variation of a function over a closed interval [a, b] will be denoted by

∨
[a,b],

and we will also write
∨

(a,b] for limδ→0+

∨
[a+δ,b] and

∨
[a,b) for limδ→0+

∨
[a,b−δ],

respectively.
Now we are able to formulate the main assumption on the semimartingale Z(t).

In what follows we always assume that the semimartingale Z(t) (t ∈ [0,∞)) can be
represented as a sum

Z(t) = b(t) + c(t) (t ≥ 0), (2.1)

where b(t) is a predictable stochastic process of locally finite variation and c(t) is
a local squire-integrable martingale [11, p. 28] such that all the components of the
process b(t) as well as the predictable characteristics < ci, cj > (t), 1 ≤ i, j ≤
m of the process c(t) [11, p. 48] are absolutely continuous with respect to to a
nondecreasing function λ : [0,∞) → R+. In this case, we can write

bi =
∫ ·

0

aidλ, 〈ci, cj〉 =
∫ ·

0

Aijdλ, i, j = 1, . . . ,m. (2.2)

For example, λ(t) = t for Itô equations. Without loss of generality, it will be
convenient in the sequel to assume that the first component of the semimartingale
Z(t) coincides with λ(t), i.e. z1(t) = λ(t). Clearly, we can always do it adding, if
necessary, a new, (m+1)-th component to the m-dimensional semimartingale Z(t).

It is known [5] that under the assumption (2.1) the space Ln(Z) can be described
as a set of all predictable n×m-matrices H(t) = [Hij(t)], for which∫ t

0

(|Ha|+ ‖HAH>‖)dλ < ∞ a. s. (2.3)

for any t ≥ 0. Here

a := (a1, . . . , am)T , A := [Aij ]. (2.4)

Note that a is an m-dimensional column vector and A is a m×m-matrix.
Under the above assumptions we can also write

∫ t

0
HdZ =

∫ t

0
Hdb +

∫ t

0
Hdc.

Moreover, we can describe the space Dn as a set consisting of all n-dimensional
adapted stochastic processes on [0,∞), the trajectories of which are right continuous
and have left hand limits for all t ∈ [0,∞) and almost all ω (the so-called ”cadlag
processes”). In addition, the following estimate holds:(

E
∣∣∣ ∫ t

0

HdZ
∣∣∣2p) 1

2p ≤
(
E

( ∫ t

0

|Ha|dλ
)2p) 1

2p

+ cp

(
E

( ∫ t

0

‖HAHT ‖dλ
)p) 1

2p

,

(2.5)
where cp is a certain positive constant depending on p (see e. g. [11, p. 65]).

Given H = [Hij ] ∈ Ln(Z) and a, A defined in (2.4), we will write

a+ := (|a1|, . . . , |am|)T , A+ := [|Aij |], H+ := [|Hij |]. (2.6)

Studying different kinds of stochastic stability requires different spaces of sto-
chastic processes which are listed below.



4 R. KADIEV, A. PONOSOV EJDE-2004/92

Main spaces. Assume that we are given:
a scalar nonnegative function ξ, defined on [0,∞) and locally integrable with respect
to the measure λ∗ generated by a nondecreasing function λ (λ is the same as in
(2.2));
a positive scalar function γ(t) (t ∈ [0,∞)).

Remark 2.1. In what follows we silently adopt the following convention: if in a
definition, a theorem etc. γ(t) is mentioned without any comments, then it is only
assumed to be a positive scalar function. Otherwise, additional properties of γ will
be explicitly described.

These functions are involved in the definitions of almost all spaces we are going
to use in the sequel. Both are crucial for our considerations as they are responsible
for the asymptotic behavior of the solutions.

kn
p = {α : α ∈ kn, ‖α‖kn

p
:= (E|α|p)1/p < ∞};

Mγ
p = {x : x ∈ Dn, ‖x‖Mγ

p
:= (sup

t≥0
E|γ(t)x(t)|p)1/p < ∞} (M1

p = Mp);

Λn
p,q(ξ) = {H : H ∈ Ln(Z), (E|Ha|p)1/pξq−1−1

+ (E‖HAH>‖p/2)1/pξq−1−0.5 ∈ Lλ
q };

Λn+
p,q (ξ) ={H : H ∈ Ln(Z), (E|H+a+|p)1/pξq−1−1

+ (E‖H+A+(H+)>‖p/2)1/pξq−1−0.5 ∈ Lλ
q }.

The following parameters are involved in the above definitions: The numbers p, q
are assumed to satisfy the inequalities 1 ≤ p < ∞, 1 ≤ q ≤ ∞; a, A are defined by
(2.4); a+, A+, H+ are given by (2.6).

In the last two spaces the norms are given by

‖H‖Λn
p,q(ξ) := ‖(E|Ha|p)1/pξq−1−1‖Lλ

q
+ ‖(E‖HAH>‖p/2)1/pξq−1−0.5‖Lλ

q
,

‖H‖Λn+
p,q(ξ) := ‖(E|H+a+|p)1/pξq−1−1‖Lλ

q
+ ‖(E‖H+A+(H+)>‖p/2)1/pξq−1−0.5‖Lλ

q
.

Operators and equations.

Definition 2.1. An operator V : Dn → Ln(Z) is called Volterra (see [9]) if for any
stopping time [11, p. 9] τ ∈ [0,∞) a. s. and any x, y ∈ Dn such that x(t) = y(t)
(t ∈ [0, τ ] a.s.) one has (V x)(t) = (V y)(t) (t ∈ [0, τ ] a.s.).

Definition 2.2. An operator V : Dn → Ln(Z) is called k-linear if

V (α1x1 + α2x2) = α1V x1 + α2V x2

for any αi ∈ k, xi ∈ Dn, i = 1, 2.

This property exclude “global” operations, like expectation, from the coefficients
of the equation, and therefore determines the pathwise way of describing solutions.

Remark 2.2. If V is continuous with respect to natural topologies in the spaces
Dn and Ln(Z), then one can show that k-linearity follows from the usual linearity
(with respect to R).

The central object of this paper is a stochastic functional differential equation

dx(t) = [(V x)(t) + f(t)]dZ(t) (t ≥ 0), (2.7)
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where f ∈ Ln(Z) and V : Dn → Ln(Z) is a k-linear and Volterra (in the sense of
Definition 2.1) operator.

In [15] it is shown that (2.7) covers linear stochastic delay equations, linear
stochastic integro-differential equations, linear stochastic neutral equations - all
with driven semimartingales etc. It can look a little bit confusing as (2.7) does not
depend on the values x(t) for t < 0. In fact, this dependence can be incorporated
into the right-hand side as it is demonstrated in the following example.

Example 2.1. Consider a linear scalar stochastic differential equation of the form

dx(t) = [a(t)(Tx)(t) + g(t)]dZ(t) (t ≥ 0) (2.8)
with the prehistory condition

x(s) = ϕ(s) (s < 0), (2.9)

where (Tx)(t) =
∫
(−∞,t)

dsR(t, s)x(s) is the distributed delay operator.
Under natural assumptions on the right-hand side (see [15]) this equation can

be reduced to the form (2.7) if one sets

(V x)(t) := a(t)
∫

[0,t)

dsR(t, s)x(s) and f(t) := a(t)
∫

(−∞,0)

dsR(0, s)ϕ(s) + g(t).

(2.10)

In addition to (2.7) we consider the associated homogeneous equation (f ≡ 0).

dx(t) = (V x)(t)dZ(t) (t ≥ 0). (2.11)

Using k-linearity of the operator V , we immediately obtain the following result.

Lemma 2.1. Let for any x(0) ∈ kn there exists the only solution (up to a P-
null set) x(t) of (2.7). Then one has the following representation (“the Cauchy
representation”) of the solutions

x(t) = X(t)x(0) + (Kf)(t) (t ≥ 0), (2.12)

where X(t) (X(0) = Ē) is an n× n-matrix, the columns of which are the solutions
of the linear homogeneous equation (2.11) (“the fundamental matrix”), while K :
Ln(Z) → Dn is a k-linear operator (“the Cauchy operator”) such that (Kf)(0) = 0
and Kf satisfies (2.7).

In what follows we will always consider equation (2.7) under the uniqueness as-
sumption, i.e. existence, for any x(0) ∈ kn, of the unique (up to a P -null set)
solution x(t) of this equation. In other words, according to Lemma 2.1, the repre-
sentation (2.12) is silently assumed to be fulfilled in all further considerations.

3. Mγ
p - stability

Definition 3.1. The zero solution of the linear homogeneous equation (2.11) is
called

(a) p-stable if for an arbitrary ε > 0 there exist η = η(ε) > 0 such that

E|X(t)x(0)|p ≤ ε (t ≥ 0)

for all x(0) ∈ Rn, |x(0)| < η.
(b) Asymptotically p-stable if it is p-stable and limt→+∞E|X(t)x(0)|p = 0 for

all x(0) ∈ Rn.
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(c) Exponentially p-stable if there exist c̄ > 0, β > 0 such that

E|X(t)x(0)|p ≤ c̄|x(0)| exp{−βt} (t ≥ 0)

for all x(0) ∈ Rn.

Similarly, we can define stability of solutions to the nonhomogeneous equation
(2.7). Clearly, the representation (2.12) implies that all solutions to (2.7) are p-
stable (asymptotically p-stable, exponentially p-stable) if and only if the zero solu-
tion to the homogeneous equation (2.11) is p-stable (asymptotically p-stable, expo-
nentially p-stable). In the sequel we shall therefore say that the nonhomogeneous
equation (2.7) is stable (in a proper sense) if the zero solution to the homogeneous
equation (2.11) is stable in the same sense.

Theorem 3.1. (A) . Equation (2.7) is p-stable if and only if X(·)x(0) ∈ Mp

for all x(0) ∈ Rn.
(B) . Equation (2.7) is asymptotically p-stable if and only if there exists a

function γ(t), for which γ(t) ≥ δ > 0 and limt→+∞ γ(t) = +∞, so that
X(·)x(0) ∈ Mγ

p for all x(0) ∈ Rn.
(C) Equation (2.7) is exponentially p-stable if and only if there exists a number

β > 0 such that X(·)x(0) ∈ Mγ
p for all x(0) ∈ Rn, where γ(t) = exp{βt}.

Proof. The proof is based on the ideas developed in [6].
(A). Letting (2.7) be p-stable we suppose that for some x0 ∈ Rn the solution X(·)x0

is not in Mp, i. e. for any K > 0 there exists t(K) > 0 such that E|X(t(K))x0|p >
K. Taking an arbitrary ε > 0 we find η > 0, which satisfies the definition of p-
stability from Definition 3.1, and put K0 = ε|2x0/η|p, t0 = t(K0), x′0 = η|x0|−1x0.
Then for the solution x(t) = X(t)x′0 we have E|x(t0)|p > ε, although |x(0)| < η.
This contradicts the assumption.

To prove the converse we first note that for each individual x(0) ∈ Rn one has

sup
t∈[0,∞)

E|X(t)x(0)|p ≤ K = K(x(0)).

As X(t) is linear and Rn is finite dimensional, then there is a constant K ′ which pro-
vides the uniform estimate: supt∈[0,∞) E‖X(t)‖p ≤ K ′. Hence for any ε > 0 we may
put η = (ε/K ′)1/p so that |x(0)| < η implies E|X(t)x(0)|p ≤ |x(0)|pE‖X(t)‖p ≤ ε
for all t ∈ [0,∞).
(B) Assume that (2.7) is asymptotically p-stable. We have to find γ(t) satisfying
conditions listed in Part (B) of the theorem. First we find a function γ̄(t) for which
a) 0 < γ̄(t) < M (t ∈ [0,∞)) and b) γ̄−1(t)E‖X(t)‖p → 1 as t → +∞. This is
possible due to p-stability of (2.7) and the boundedness of the function E‖X(t)‖p

(see Part A of the proof).
We set now γ(t) = 1/γ̄(t) and check directly that X(·)x(0) ∈ Mγ

p for all x(0) ∈
Rn.

The converse to Part (B) of the theorem is evident: for any γ(t), satisfying
conditions listed in Part a) of Definition 3.1, the space Mγ

p will be a subspace of
the space Mp and limt→+∞E|X(t)x(0)|p = 0 for all x(0) ∈ Rn.
(C) The exponential p-stability trivially implies that X(·)x(0) ∈ Mγ

p for all x(0) ∈
Rn, where γ(t) = exp{βt}. Conversely, if X(·)x(0) ∈ Mγ

p for all x(0) ∈ Rn, where
γ(t) = exp{βt}, then

sup
t∈[0,∞)

(exp{βt}E|X(t)x(0)|p) ≤ c′
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for some c′ = c′(x(0)). As X(t) is linear and Rn is finite dimensional we, as in Part
(A), find a constant c̄ such that

sup
t∈[0,∞)

(exp{βt}E‖X(t)‖p) ≤ c̄.

Clearly, this implies the exponential p-stability of (2.7). �

This theorem says that to prove p-stability (asymptotic, exponential p-stability)
of (2.7) we can check that the solutions of the homogeneous equation (2.11) belong
to a certain space of stochastic processes (Mp or Mγ

p ).
Minding Theorem 3.1, we introduce now a new definition of stability which is

more convenient for our purposes.

Definition 3.2. Equation (2.7) is called Mγ
p -stable, if for any x(0) ∈ kn

p we have
X(·)x(0) ∈ Mγ

p .

Due to Theorem 3.1 we can now say that:
• Mp-stability (i. e. Mγ

p -stability with γ = 1) of equation (2.7) implies the
Lyapunov p-stability of (2.7);

• Mγ
p -stability of (2.7) with γ satisfying γ(t) ≥ δ > 0 and limt→+∞ γ(t) =

+∞ implies the asymptotic p-stability of (2.7);
• Mγ

p -stability of (2.7) with γ(t) = exp{βt} (for some β > 0) implies the
exponential p-stability of (2.7).

Thus, we have replaced stability analysis of (2.7) by the problem of how resolve
this equation in a certain space of stochastic processes. This observation is crucial
for applying the method based on the W -transform, which we are going to describe
now.

As we already have mentioned any W -transform comes from an auxiliary equa-
tion, which we call a reference equation. That is why we assume given another
equation, similar to (2.7), but “simpler”. In addition, we assume the asymptotic
properties of the reference equation to be known.

Let the reference equation have the form

dx(t) = [(Qx)(t) + g(t)]dZ(t) (t ≥ 0), (3.1)

where Q : Dn → Ln(Z) is a k-linear Volterra operator, and g ∈ Ln(Z). Also for
equation (3.1) it is always assumed the existence and uniqueness assumption, i. e.
for any x(0) ∈ kn there is the only (up to a P-null set) solution x(t) of (3.1). Then,
according to Lemma 2.1, for this solution we have ”the Cauchy representation”
x(t) = U(t)x(0) + (Wg)(t) (t ≥ 0), where U(t) is the fundamental matrix of the
associated homogeneous equation, and W is the corresponding Cauchy operator.

Let us rewrite equation (2.7) in the form

dx(t) = [(Qx)(t) + ((V −Q)x)(t) + f(t)]dZ(t) (t ≥ 0),

or, alternatively,

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t) (t ≥ 0).

Denoting W (V −Q) = Θl, we obtain the operator equation

((I −Θl)x)(t) = U(t)x(0) + (Wf)(t) (t ≥ 0). (3.2)

Here and in the sequel by invertibility of the operator (I − Θl) : Mγ
p → Mγ

p we
mean that this operator is a bijection on the space Mγ

p .
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Remark 3.1. The letter ”l” in Θl stands for “left”, which indicates that the W-
transform is applied to the equation from the left hand side. Equivalently, one can
apply the W-transform from the right. This will lead to a similar theory and a
similar operator Θr. This approach is not studied in this paper. However, we are
planning to develop it in one of the forthcoming papers.

The following important result is proved in [9].

Theorem 3.2 ([9]). Let the reference equation (3.1) be Mγ
p -stable and the operator

Θl act in the space Mγ
p . Then, if the operator (I − Θl) : Mγ

p → Mγ
p is invertible,

then the equation (2.7) is Mγ
p -stable.

Let us stress that, in general, there is no direct dependence between stability
of the equation in question and invertibility of the operator equation (3.2). For
instance, in certain situations the operator Θl even does not act in the corresponding
space of stochastic processes, while both equations (2.7) and (3.1) are stable in this
space.

Nevertheless, if (2.7) is stable, then there always is at least one (in fact, infinitely
many) stable reference equations, for which the operator Θl will act in the related
space of stochastic processes and I − Θl will be invertible there. For instance,
one can choose equation (3.1) be identical to (or be in the vicinity of) the initial
equation (2.7).

This observation and Theorem 3.2 imply the following stability criterion based
on the W-transform.

Corollary 3.1. Equation (2.7) is Mγ
p -stable if and only if there exists a reference

equation (3.1), which is Mγ
p -stable and which gives rise to the invertible operator

(I −Θl) : Mγ
p → Mγ

p .

Among the assumptions imposed on the initial equation (2.7) and the reference
equation (3.1) one is more involved than the others when applying Theorem 3.2. It
is invertibility of the operator (I −Θl) : Mγ

p → Mγ
p . A reasonable method to check

this requirement in practice is to estimate the norm of the operator Θl in the space
Mγ

p .
Thus, from Theorem 3.2 we obtain the following simple result.

Corollary 3.2. Assume that there is a Mγ
p -stable reference equation (3.1), for

which the operator Θl act in the space Mγ
p and ‖Θl‖Mγ

p
< 1. Then (2.7) is Mγ

p -
stable.

In what follows we will need a more explicit description of the W -transform (and
the corresponding reference equation (3.1)), which is summarized in the assump-
tions below:
(R1) The fundamental matrix U(t) to (3.1)) satisfies ‖U(t)‖ ≤ c̄, where c̄ ∈ R+.
(R2) The W-transform coming from (3.1)) has the form

(Wg)(t) =
∫ t

0

C(t, s)g(s)dZ(s) (t ≥ 0), (3.3)

where C(t, s) is an n × n-matrix defined on G := {(t, s) : t ∈ [0,∞), 0 ≤
s ≤ t}, and satisfies

‖C(t, s)‖ ≤ ¯̄c exp{−α∆v}, (3.4)

where v(t) =
∫ t

0
ξ(ζ)dλ(ζ), ∆v = v(t)− v(s) for some α > 0, ¯̄c > 0.
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Example 3.1. Let a reference equation be given by

dx(t) = (A(t)x(t−) + g0(t)) dλ(t) +
m∑

i=2

gi(t)dzi(t) (t ≥ 0), (3.5)

where A(t) is an n×n-matrix with locally λ-integrable entries (in this case (Qx)(t) =
(A(t)x(t), 0̄, . . . , 0̄)). In this case it is straightforward that the kernel C(t, s) in (3.3)
is of the form C(t, s) = U(t)U−1(s). Note also that if we set A(t) = −αξĒ, then
conditions (R1) and (R2) will be fulfilled.

A more involved example of a reference equation is given by

dx(t) =
( ∫

[0,t)

dsR(t, s)x(s) + g0(t)
)
dλ(t) +

m∑
i=2

gi(t)dzi(t) (t ≥ 0), (3.6)

where the entries rjk(t, s) of a (non-random) n × n-matrix R(t, s), defined on the
set G from (R2), are of bounded variation in s and, in addition,

∨
s∈[0,t] rjk(t, s)

(t ∈ [0,∞)) are locally λ-integrable for all 1 ≤ j, k ≤ n. In this case, the represen-
tation (3.3) is again valid, but there is no direct relations between C(t, s) and the
fundamental matrix U(t). The estimate (3.4) can be obtained in special cases (see
[2] and [4] for details). One particular case of this reference equations is used in
this paper (see Section 5).

For more examples of reference equations (3.1), giving rise to the W-transforms
of the form (3.3) and which satisfy all the additional assumptions listed above, see
[7]. In the rest of this section we will be concerned with the Mγ

p -stability of (2.7)
with

γ(t) = exp
{

β

∫ t

0

ξ(s)dλ(s)
}

(t ≥ 0), (3.7)

where β is some positive number satisfying β < α (see (R2) for the notation). This
specific weight γ comes naturally from the W-transform satisfying (R1)-(R2). We
wish to use such a W-transform and the corresponding weight γ in order to prove
two main results of this section (Theorems 3.3 and 3.4). The first theorem justi-
fies the W-method in connection with Mγ

p -stability (and by this to the Lyapunov
stability of (2.7) with respect to the initial value x(0)). The second theorem deals
with the following fundamental problem which is also well-known for deterministic
functional differential equations (see e. g. [2]): find conditions, under which the
p-stability implies the exponential p-stability. We shall prove that it is the case if
the delay function satisfies the so-called “∆-condition” (see Definition 3.4 below).
The ∆-condition is fulfilled if for instance the delays are bounded (see Lemma 3.2).
Apart from the importance of these two general facts for the theory of stochastic
functional differential equations, the technique we use to prove them is itself a good
illustration of how the W-transform works in practice.

For further purposes we will need the following technical lemma.

Lemma 3.1. If the reference equation (3.1) satisfies the assumption (R2), then W ,
given by (3.3), is a continuous operator from (Λn

2p,q(ξ))
γ to Mγ

2p, where 2p ≤ q ≤ ∞
and γ is defined by (3.7) for all β (0 < β < α), the number α is the same as in
(3.4).

Proof. To prove the lemma it suffices to check that

‖Wg‖Mγ
2p
≤ c̄‖g‖(Λn

2p,q(ξ))γ (c̄ ∈ R+), (3.8)
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if g ∈ (Λn
2p,q(ξ))

γ . From the definition of the space Mγ
2p,

‖Wg‖Mγ
2p

= ‖γWg‖M2p
= ‖γ

∫ ·

0

C(·, s)g(s)dZ(s)‖M2p
.

We are to show that

lg := ‖
∫ ·

0

C(·, s)g(s)dZ(s)‖M2p
≤ c̄‖γg‖Λn

2p,q(ξ), (3.9)

where c̄ is some positive number. We have

lg ≤ ¯̄c(sup
t≥0

(E(
∫ t

0

exp{−(α− β)∆v}|γ(s)g(s)a(s)|dλ(s))2p)1/(2p)

+ cp sup
t≥0

(E(
∫ t

0

exp{−2(α− β)∆v}|γ(s)g(s)A(s)(γ(s)g(s))>|dλ(s))p)1/(2p))

≤ ¯̄c(sup
t≥0

(
∫ t

0

exp{−(α− β)∆v}dv(s))(2p−1)/2p

× (
∫ t

0

exp{−(α− β)∆v}(ξ(s))1−2pE|γ(s)g(s)a(s)|2pdλ(s))1/(2p)

+ cp sup
t≥0

(
∫ t

0

exp{−2(α− β)∆v}dv(s))(p−1)2p

× (
∫ t

0

exp{−2(α− β)∆v}(ξ(s))1−pE‖γ(s)g(s)A(s)(γ(s)g(s))>‖pdλ(s))1/(2p))

≤ ĉ
{

sup
t≥0

(
∫ t

0

exp{−(α− β)∆v}(ξ(s))1−2pE|γ(s)g(s)a(s)|2pdλ(s))1/(2p)

+ cp sup
t≥0

(
∫ t

0

exp{−2(α− β)∆v}(ξ(s))1−pE‖γ(s)g(s)A(s)(γ(s)g(s))>‖p

× dλ(s))1/(2p)
}

,

where ĉ is some positive number. Here we have used the inequality(
E

∣∣∣γ ∫ t

0

C(t, s)g(s)dZ(s)
∣∣∣2p)1/(2p)

≤¯̄c
(
E

( ∫ t

0

exp{−(α− β)∆v}|γ(s)g(s)a(s)|dλ(s)
)2p)1/(2p)

+ cp¯̄c
(
E

( ∫ t

0

exp{−2(α− β)∆v}‖γ(s)g(s)A(s)|(γ(s)g(s))>‖dλ(s)
)p)1/(2p)

,

which follows directly from the estimates (2.5) and (3.4).
To obtain further estimates we have to consider three cases separately: (1) q >

2p, q 6= ∞; (2) q = 2p; (3) q = ∞.
Let first q > 2p, q 6= ∞. Then

lg ≤ ĉ{sup
t≥0

[(
∫ t

0

exp{(−(α− β)q/(q − 2p))∆v}dv(s))(q−2p)/2pq

× (
∫ t

0

((E|γ(s)g(s)a(s)|2p)1/(2p)(ξ(s))q−1−1)qdλ(s))1/q]
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+ cp sup
t≥0

[(
∫ t

0

exp{(−2(α− β)q/(q − 2p))∆v}dv(s))(q−2p)/2pq

× (
∫ t

0

((E‖γ(s)g(s)A(s)(γ(s)g(s))>‖p)1/(2p)(ξ(s))q−1−0.5)qdλ(s))1/q]}

≤ c̄‖γg‖Λn
2p,q(ξ).

Assume now that q = 2p. In this case we derive the estimate

lg ≤ ĉ{sup
t≥0

(
∫ t

0

((E|γ(s)g(s)a(s)|2p)1/(2p)(ξ(s))q−1−1)qdλ(s))1/q

+ cp sup
t≥0

(
∫ t

0

((E‖γ(s)g(s)A(s)(γ(s)g(s))>‖p)1/(2p)(ξ(s))q−1−0.5)qdλ(s))1/q}

≤ c̄‖γg‖Λn
2p,q(ξ).

Finally, if q = ∞, then we have

lg ≤ ĉ{sup
t≥0

(
∫ t

0

exp{−(α− β)∆v}ξ(s)[(E|γ(s)g(s)a(s)|2p)1/(2p)(ξ(s))−1]2pdλ(s))
1
2p

+ cp sup
t≥0

∫ t

0

exp{−2(α− β)∆v}ξ(s)[(E‖γ(s)g(s)A(s)(γ(s)g(s))>‖p

× (ξ(s))−0.5)1/(2p)]2pdλ(s))1/(2p)}

≤ ĉ{vrai sup
0≤t≤∞

[(E|γ(t)g(t)a(t)|2p)1/(2p)(ξ(t))−1](1/α)1/(2p)

+ cpvrai sup
0≤t≤∞

[(E‖γ(s)g(s)A(s)(γ(s)g(s))>‖p)1/(2p)(ξ(t))−0.5](1/2α)1/(2p)}

≤ c̄‖γg‖Λn
2p,q(ξ).

The proof of the lemma is completed. �

Corollary 3.3. Assume that the reference equation (3.1) satisfies (R2). Then W
given by (3.3) is a continuous operator from Λn

2p,q(ξ) to M2p, where 2p ≤ q ≤ ∞.

From Lemma 3.1 and Theorem 3.2 we obtain the following result.

Theorem 3.3. Let γ(t) be given by (3.7) for some β (0 < β < α, where α is
taken from (3.4)). Assume that the reference equation (3.1) is Mγ

2p-stable. Assume
also that the operators V and Q from (2.7)) and (3.1), respectively, act from Mγ

2p

to (Λn
2p,q(ξ))

γ . Then the estimate ‖Θ‖Mγ
2p

< 1 implies the Mγ
2p-stability of (2.7),

where 2p ≤ q ≤ ∞.

This theorem offers a formal justification of stability analysis in the case (rather
general) when the W-transform is given by (3.3).

To formulate and prove the second main result of this section we need some
preparations. Below mp stands for the space Mp in the scalar case. We assume
that the k-linear operator V in (2.7) satisfies V : Mp → Λn

p,q(ξ). We will also use
the following notation related to the operator V :

• V x = (V1x, . . . , Vmx);
• (V βx)(t) := γ(t)(V (x/γ))(t) , where γ(t) is defined in (3.7).
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Definition 3.3. We say that a k-linear Volterra operator V̄ : mp → Λ1+
p,q(ξ) dom-

inates a Volterra operator V : Mp → Λn
p,q(ξ) , if 1) V̄ is positive, i. e. x ≥ 0 a. s.

implies V̄ x ≥ 0 a. s., and 2) (|V1x|, . . . , |Vmx|) ≤ V̄ |x| a. s. for any x ∈ Mp.

Definition 3.4. We say that a k-linear Volterra operator V : Mp → Λn
p,q(ξ) satisfies

the ∆-condition, if V is dominated by some k-linear Volterra operator V̄ : mp →
Λ1+

p,q(ξ) with the following additional assumption: there exists a number β > 0, for
which the operator

(V̄ βx)(t) := γ(t)(V̄ (x/γ))(t)
acts continuously from the space mp to the space Λ1+

p,q(ξ).

Definition 3.5. Let X, Y be two linear spaces consisting of predictable stochastic
processes on [0,∞), and T : X → Y be a k-linear Volterra operator. We say that
the operator T satisfies δ-condition if there exist two positive numbers δ′, δ′′,
δ′ > δ′′, providing the following implication for all t ∈ [0,∞): any x ∈ X, satisfying
x(ζ ′) = 0 for all ζ ′ ∈ [0, t] such that

∫ t

ζ′
ξ(s)dλ(s) < δ′, also satisfies (Tx)(ζ ′′) = 0

for all ζ ′′ ∈ [0, t] such that
∫ t

ζ′′
ξ(s)dλ(s) < δ′′.

Lemma 3.2. Assume that a k-linear Volterra operator V : Mp → Λn
p,q(ξ) is domi-

nated by a k-linear, bounded and positive operator V̄ : mp → Λ1+
p,q(ξ) satisfying the

δ-condition. Then the operator V satisfies the ∆-condition.

Proof. According to our notation

(V̄ β0x)(t) =
(
V̄

(
exp{β0

∫ t

·
ξ(s)dλ(s)}x

))
(t).

The δ-condition from Definition 3.5 implies that the value (V̄ y)(t) depends only on
the values y(ζ ′′), where

∫ t

ζ′′
ξ(s)dλ(s) < δ′′ (here δ′′ is again taken from Definition

3.5 and ζ ′′ ∈ [0, t]), and for these ζ ′′ we have exp{β0

∫ t

ζ′′
ξ(s)dλ(s)} ≤ exp{β0δ

′′}.
This leads to the following estimate

V̄ β0x ≤ V̄ (exp{β0δ
′′}|x|) = exp{βδ′′}V̄ |x|

almost everywhere. �

In examples below we use equations with a discrete delay as reference equations.
The next definition describes the corresponding operators.

Definition 3.6. Given a measurable function g : [0,∞) → R such that g(t) ≤
t (t ∈ [0,∞)) and a row vector G = (G1, G2, . . . , Gm), where Gi = Gi(t) are
all predictable and nonnegative stochastic processes, we define the weighted shift
operator GSg by (GSgx)(t) = G(t)(Sgx)(t), where

(Sgx)(t) =

{
x(g(t)), if g(t) ≥ 0 ,

0, if g(t) < 0 .
(3.10)

Clearly, GSg : D1 → L1(Z). To check the δ-condition from Definition 3.5 for
weighted shifts we will use special conditions on g. We will also need some new
notation: for a given measurable function g : [0,∞) → R we will write

χg(t) =

{
1, if g(t) ≥ 0 ,

0, if g(t) < 0 .
(3.11)
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Definition 3.7. We say that a measurable function g : [0,∞) → R satisfies the
δ-condition if there exists δ > 0 such that

∫ t

χg(t)g(t)
ξ(s)dλ(s) < δ for all t ∈ [0,∞).

Example 3.2. If a measurable function g : [0,∞) → R satisfies the δ-condition
from Definition 3.7, then the weighted shift operator GSg : D1 → L1(Z) satisfies the
δ-condition from Definition 3.5. To see this, we notice that according to Definition
3.7 there exists δ > 0 such that∫ t

χg(t)g(t)

ξ(s)dλ(s) < δ for all t ∈ [0,∞).

Setting δ′ = 2δ, δ′′ = δ and taking arbitrary t ∈ [0,∞) and x ∈ D1, for which
y(ζ ′) = 0 for all ζ ′ ∈ [0, t] satisfying

∫ t

ζ′
ξ(s)dλ(s) < δ′, we have to check that

(GSgx)(ζ ′′) = 0 a.s. for all ζ ′′ ∈ [0, t] such that
∫ t

ζ′′
ξ(s)dλ(s) < δ′′. This

follows from the equality (Sgx)(ζ ′′) = 0 a.s., or equivalently, from the estimate∫ t

χg(ζ′′)g(ζ′′)
ξ(s)dλ(s) < δ′. But this is implied by∫ t

χg(ζ′′)g(ζ′′)

ξ(s)dλ(s) =
∫ ζ′′

χg(ζ′′)g(ζ′′)

ξ(s)dλ(s) +
∫ t

ζ′′
ξ(s)dλ(s) < δ + δ′′ = δ′.

Note also that if λ = t (i.e. λ∗ is the standard Lebesgue measure), then ξ(t) ≡ 1,
and the δ-condition for g takes the following form: t − g(t) ≤ δ (t ≥ 0), i. e. the
delay will be bounded.

The concluding result of this section explains when the usual stability of solutions
implies the exponential and asymptotic stability. We present here only a general
principle, postponing all further discussions and examples until the last section.

Theorem 3.4. Let equation (2.7) and the reference equation (3.1) satisfy the fol-
lowing assumptions:

• The operators V,Q act as follows: V,Q : M2p → Λn
2p,q(ξ), where 2p ≤ q <

∞
• The reference equation (3.1) is M2p-stable and satisfies condition (R2)
• The operator V satisfies the ∆-condition.

If now the operator (I −Θl) : M2p → M2p is continuously invertible, then (2.7) is
Mγ

2p- stable, where γ is defined in (3.7) with some β > 0.

Remark 3.2. Note that under the assumptions of Theorem 3.4 the operator Θl

does act in the space M2p (see Corollary 3.3).

Proof of Theorem 3.4. First of all, we notice that (2.7) is Mγ
2p-stable if and only if

the equation

dy(t) = exp{β
∫ t

0

ξ(ζ)dλ(ζ)}
[(

V
(

exp
{
− β

∫ ·

0

ξ(ζ)dλ(ζ)
}
y
))

(t) + f(t)
]
dZ(t)

+ βξ(t)y(t)dλ(t) (t ≥ 0)
(3.12)

is M2p-stable. Hence, in order to prove the theorem it is sufficient to show the
existence of a positive number β, for which (3.12) will be M2p-stable. From Theorem
3.2 it follows that if the operator Θβ

l acts in the space M2p, and the operator
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(I − Θβ
l ) : M2p → M2p is invertible for some β > 0, then (3.12) will be M2p-

stable for this β. Here Θβ
l is a k-linear operator defined, according to our previous

notational agreements, by

(Θβ
l x)(t) := γ(t)(Θl(x/γ))(t), (3.13)

so that, in particular, Θ0
l = Θl.

Using the assumption of the theorem saying that the operator V satisfies the ∆-
condition, we obtain a number β0 > 0, for which the operator Θβ

l acts continuously
in the space M2p for all 0 ≤ β ≤ β0. This fact follows from Corollary 3.3 and
a simple observation that if the operator V satisfies the ∆-condition, then the
operator V̄ β acts from the space mp to the space Λ̄1+

2p,∞(ξ) and, moreover, it is
bounded for all 0 ≤ β ≤ β0. If now we check that

‖Θβ
l −Θl‖M2p → 0, (3.14)

when β → 0, then the operator (I − Θβ
l ) : M2p → M2p will also be invertible

for some β > 0. Clearly, in this case the continuous extension of the operator
(I−Θβ

l ) : M2p → M2p to the completion of the space M2p will be invertible as well.
The fact that the operator (I −Θβ

l ) : M2p → M2p will be invertible can be derived
from the observation that the solution of the equation (I−Θβ

l )x = g belongs to the
space Dn if g ∈ M2p, while the intersection of the space Dn with the completion of
the space M2p coincides with the space M2p.

Note that the operator (Θβ
l −Θl) is given by

((Θβ
l −Θl)x)(t) =

∫ t

0

C(t, s)(V (γ(t)/γ(.)−1)x)(s)dZ(s)+
∫ t

0

C(t, s)βξ(s)x(s)dλ(s).

Then

‖(Θβ
l −Θl)x‖M2p

≤ sup
t≥0

(
E

( ∫ t

0

|C(t, s)(V (γ(t)/γ(.)− 1)x)(s)a(s)|dλ(s)
)2p)1/(2p)

+ cp sup
t≥0

(E(
∫ t

0

‖C(t, s)(V (γ(t)/γ(.)− 1)x)(s)A(s)

× (C(t, s)(V (γ(t)/γ(.)− 1)x)(s))>‖dλ(s))p)1/(2p)

+ sup
t≥0

(
E

( ∫ t

0

|C(t, s)βξ(s)x(s)|dλ(s)
)2p)1/(2p)

≤ sup
t≥0

(
E

( ∫ t

0

exp{−α∆v}|(V (γ(t)/γ(.)− 1)x)(s)a(s)|dλ(s)
)2p)1/(2p)

+ cp sup
t≥0

(
E

( ∫ t

0

exp{−2α∆v}‖(V (γ(t)/γ(.)− 1)x)(s)A(s)

× (V (γ(t)/γ(.)− 1)x)(s)>‖dλ(s)
)p)1/(2p)

+ sup
t≥0

(
E

( ∫ t

0

exp{−α∆v}|βξ(s)x(s)|dλ(s)
)2p)1/(2p)

.
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Here we have used the inequality (2.5). The next estimation step is based on the
∆-condition for the operator V and the inequality

γ(t)/γ(s)− 1 ≤ (β/β0) exp{β0∆v} (s ∈ [0, t], 0 ≤ β ≤ β0),

following from the estimate

βν + β2ν2/2! + β3ν3/3! + . . . ≤ β/β0 + βν + β2ν2/2! + . . .

≤ (β/β0)(1 + β0ν + β2
0ν2/2! + . . . ) (ν > 0).

Using this estimate, we obtain

‖(Θβ
l −Θl)x‖M2p

≤ sup
t≥0

(E(
∫ t

0

exp{−α∆v}|(V̄ (|γ(t)/γ(.)− 1‖x|))(s)(a(s))+|dλ(s))2p)1/(2p)

+ cp sup
t≥0

(E(
∫ t

0

exp{−2α∆v}‖(V̄ (|γ(t)/γ(.)− 1‖x|))(s)

× (A(s))+(V̄ (|γ(t)/γ(.)− 1‖x|))(s)>‖dλ(s))p)1/(2p)

+ sup
t≥0

(E(
∫ t

0

exp{−α∆v}|βξ(s)x(s)|dλ(s))2p)1/(2p)

≤ sup
t≥0

(E(
∫ t

0

exp{−α∆v}|(β/β0)|(V̄β0 |x|)(s)(a(s))+|dλ(s))2p)1/(2p)

+ cp sup
t≥0

(E(
∫ t

0

exp{−2α∆v}(β2/β2
0)‖

× (V̄β0 |x|)(s)(A(s))+(V̄ β0 |x|)(s)>‖dλ(s))p)1/(2p)

+ sup
t≥0

(E(
∫ t

0

exp{−α∆v}|βξ(s)x(s)|dλ(s))2p)1/(2p)

≤ sup
t≥0

(
∫ t

0

exp{−α∆v}dv(s))(2p−1)/2p(β/β0)

×
∫ t

0

exp{−α∆v}(ξ(s))1−pE|(V̄ β0 |x|)(s)(a(s))+|2pdλ(s))1/(2p)

+ cp sup
t≥0

(
∫ t

0

exp{−2α∆v}dv(s))(p−1)/2p(β/β0)

×
∫ t

0

exp{−2α∆v}(ξ(s))1−pE‖(V̄ β0 |x|)(s)(A(s))+(V̄β0 |x|)(s)>‖pdλ(s))1/(2p)

+ β sup
t≥0

(
∫ t

0

exp{−α∆v}dv(s))(p−1)/2p(
∫ t

0

exp{−α∆v}ξ(s)E|x(s)|2pdλ(s))1/(2p)

≤ (β/β0)(1/α)(2p−1)/2p sup
t≥0

(
∫ t

0

exp{−α∆v}(ξ(s))1−pE|(V̄ β0 |x|)(s)(a(s))+|2p

dλ(s))1/(2p)

+ (cpβ/β0)(1/α)(p−1)/2p sup
t≥0

∫ t

0

exp{−2α∆v}(ξ(s))1−p

×E‖(V̄ β0 |x|)(s)(A(s))+(V̄β0 |x|)(s)>‖pdλ(s))1/(2p)
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+ β(1/α)(2p−1)/2p sup
t≥0

(
∫ t

0

exp{−α∆v}ξ(s)E|x(s)|2pdλ(s))1/(2p).

To proceed, we have to consider three cases: (1) q > 2p, q 6= ∞; (2) q = 2p; (3)
q = ∞. Treating each case separately and making use of the last estimate we
obtain, as in the proof of Lemma 3.1, that

‖(Θβ
l −Θl)x‖M2p ≤ (β/α)‖x‖M2p + βd‖V̄ β0‖Λ1+

2p,q(ξ)

for some positive number d. Hence, due to the boundedness of the operator

V̄ β0 : m2p → Λ1+
2p,q(ξ),

we get
‖(Θβ

l −Θl)x‖M2p ≤ (β/α)‖x‖M2p + βd̄‖x‖M2p ,

where d̄ is a positive number. From this we deduce that ‖Θβ
l − Θl‖M2p

→ 0 as
β → 0. This proves (3.14), and as it is was mentioned above, this suffices to
complete the proof of the theorem. �

4. Admissible pairs of spaces and stability with respect to the initial
function

Another name for admissibility of pairs of spaces is stability under constantly
acting perturbations. Roughly speaking, given a pair (B1, B2) of spaces of stochas-
tic processes, one calls it admissible for a linear stochastic differential equation if
any solution of the equation lies in B1 as soon as the right-hand side of the equation
(“perturbation”) lies in B2. This terminology goes back to Massera and Schäfer
[13] who studied admissibility for ordinary deterministic differential equations in
Banach spaces. The main idea of this theory is to connect admissibility and Lya-
punov stability (or the dichotomy of solution spaces). This approach proved to be
particularly useful for deterministic functional differential equations [2]. Stochastic
functional differential equations admissibility was studied in [7, 9], and in this paper
we continue those studies.

To outline this method in brief, let us again look at Example 2.1. Suppose we
want to study Lyapunov stability of the solutions of (2.8) with respect to the initial
function (2.9). The usual Lyapunov-Krasovskii-Razumikhin method suggests that
we rewrite (2.8) as an equation in a Banach space of all initial functions ϕ (usually
it is the space C[−h, 0]). A detailed description of this approach in the case of
stochastic differential equation can e.g. be found in the monographs [12, 16].

Another way is presented in [2] and developed in [7, 9] for the case of stochastic
delay differential equations. The idea is to rewrite (2.8) in a different manner,
namely in the form (2.7) with V and f defined in (2.10), as it is described in
Example 2.1. By this, the initial function ϕ will be included in the right-hand
side of the equation, and stability of (2.8) with respect to ϕ will be reduced to a
particular case of the general admissibility problem for the functional differential
equation (2.7). This approach is flexible and efficient, especially in the case of
linear equations. In its practical use, it is common to exploit the W-transform as
an additional tool.

The main objective of this section is to demonstrate how this approach, in com-
bination with the general results and techniques developed in the previous section,
can be utilized to derive stability of stochastic delay differential equations with
respect to the initial function ϕ.
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We start with some more notation. Let B be a linear subspace of the space
Ln(Z) (defined in Section 1). The space B is assumed to be equipped with a norm
‖.‖B . Given a weight γ(t) (t ∈ [0,∞)) we set Bγ = {f : f ∈ B, γf ∈ B}, which is
a linear space with the norm ‖f‖Bγ := ‖γf‖B .

For the sake of convenience we will also write xf (t, x0) for the (unique) solution
of (2.7). Here f is the right-hand side of (2.7) and x0 is the initial value of the
solution, i. e. xf (0, x0) = x0.

Definition 4.1. We say that the pair (Mγ
p , B) is admissible for equation (2.7) if

there exists c̄ > 0, for which x0 ∈ kn
p and f ∈ B imply xf (., x0) ∈ Mγ

p and the
following estimate:

‖xf (·, x0)‖Mγ
p
≤ c̄(‖x0‖kn

p
+ ‖f‖B).

By definition the solutions belong to Mγ
p whenever f ∈ B and x0 ∈ kn

p and
depend continuously on f and x0 in the appropriate topologies. The choice of
spaces is closely related to the kind of stability we are interested in. The first two
results in this section describe assumptions on the reference equation that are to
be checked if one wants to exploit the W-transform to study admissibility.

Theorem 4.1. Assume that the reference equation (3.1) satisfies conditions (R1)-
(R2). If the operator I−Θl acts in the space Mγ

p and has a bounded inverse in this
space, then the pair (Mγ

p , Bγ) is admissible for (2.7).

Proof. Under the above assumptions, U(·)x0 ∈ Mγ
p whenever x0 ∈ kn

p and

xf (t, x0) = ((I −Θl)−1(U(·)x0))(t) + ((I −Θl)−1Wf)(t) (t ≥ 0)

for an arbitrary x0 ∈ kn
p , f ∈ Bγ . Taking the norms and using (R1)-(R2) for the

reference equation, we arrive at the inequality

‖xf (·, x0)‖Mγ
p
≤ c̄(‖x0‖kn

p
+ ‖f‖Bγ ),

which holds for any x0 ∈ kn
p , f ∈ Bγ . Here c̄ is some positive number. This means

that the pair (Mγ
p , Bγ) is admissible for (2.7). �

If, in addition, we have the ∆-condition from Definition 3.4, then we can prove
more.

Theorem 4.2. Let γ be defined by (3.7), the assumptions of Theorem 3.4 be ful-
filled and the reference equation (3.1) satisfy the condition (R1). Then the pair
(Mγ

2p, (Λ
n
2p,q(ξ))

γ) is admissible for (2.7) for some β > 0.

Proof. First we note that the pair (Mγ
2p, (Λ

n
2p,q(ξ))

γ) is admissible for (2.7) if and
only if the pair (M2p, (Λn

2p,q(ξ)) is admissible for the modified equation (3.12). The
latter can be proved if we check that the assumptions of Theorem 4.2 imply the
assumptions of Theorem 4.1 for the modified equation (3.12), where we put γ = 1,
B = Λn

2p,q(ξ) and use 2p instead of p (so that Mp becomes M2p).
Then we check that there exists β0 > 0 such that the operator

I −Θβ
l : M2p → M2p,

where Θβ
l was defined in (3.13), has a bounded inverse for all 0 < β < β0. According

to the proof of Theorem 3.4 we have ‖Θβ
l − Θl‖M2p

→ 0 as β → 0, so that the
operator I −Θβ

l is invertible for sufficiently small β > 0.
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To see that the operator W is continuous from the space Λn
2p,q(ξ) to the space

M2p we apply Corollary 3.3. Summarizing, we conclude that for some β > 0 the
pair (Mγ

2p, (Λ
n
2p,q(ξ))

γ) is admissible for (2.7). �

We are now ready to investigate Lyapunov stability with respect to the initial
function ϕ. In the previous section we studied stability with respect to the initial
value x(0). The difference between these two stabilities can again be explained by
virtue of Example 2.1. In the initial condition (2.9) there is no formal difference
between all the “prehistory” values of the solution x(s), s ≤ 0. In fact, if we change
the value of the initial function ϕ(s) for one (or even countably many) s < 0, then
the solution x(t), t > 0 will not be changed. If we, however, change the value
ϕ(0), then the solution will be different, that is the instants s = 0 and s < 0
are different. This observation explains roughly why it is reasonable to treat the
function ϕ(s), s < 0 and ϕ(0) = x(0) separately. That is why we rewrite the delay
equation (2.8) with the initial condition (2.9) as the functional differential equation
(2.7). This idea proved to be fruitful in many cases (see e. g. [2, 7] and references
therein).

In our paper we exploit this approach to study Lyapunov stability wit respect to
the initial function with the help of the theory of admissible pairs of spaces and the
W-method. Generalizing Example 2.1, we consider a linear stochastic differential
equation with distributed delay of the form

dx(t) = (V̂ x)(t)dZ(t) (t ≥ 0),

x(ν) = ϕ(ν) (ν < 0),
(4.1)

where

(V̂ x)(t) = (
∫

(−∞,t)

dsR1(t, s)x(s), . . . ,
∫

(−∞,t)

dsRm(t, s)x(s)),

Ri(t, s) =
mi∑
j=0

Qij(t)rij(t, s).

Equation (4.1) can be rewritten in the form (2.7) by putting

(V x)(t) = (
∫

[0,t)

dsR1(t, s)x(s), . . . ,
∫

[0,t)

dsRm(t, s)x(s)),

f(t) = (
∫

(−∞,0)

dsR1(t, s)ϕ(s), . . . ,
∫

(−∞,0)

dsRm(t, s)ϕ(s)),
(4.2)

where Qij are n×n-matrices with the entries being predictable stochastic processes
and rij are scalar functions defined on {(t, s) : t ∈ [0,∞), −∞ < s ≤ t} for
i = 1, . . . ,m; j = 0, . . . ,m0. Let

Hi
0(t)=

mi∑
j=0

‖Qij(t)‖
∨

s∈(−∞,0)

rij(t, s),

Hi
1(t) =

mi∑
j=0

‖Qij(t)‖
∨

s∈[0,t]

rij(t, s) (i = 1, . . . ,m),

Hj= (H1
j , . . . ,Hm

j ) (j = 0, 1).
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Equation (4.1) will be considered under the assumption∫ t

0

(|Hja
+|+ ‖HjA

+H>
j ‖)dλ < ∞ a. e. for any t ≥ 0, j = 0, 1.

This implies, in particular, that Hj ∈ Ln(Z) (compare the last inequality with
(2.3)). The initial function ϕ will be a stochastic process such that f ∈ Ln(Z). An
example of such ϕ is given by a stochastic process on (−∞, 0) which is independent
of the semimartingale Z(t) and which has a. s. essentially bounded trajectories with
respect to to the measure λ∗, generated by the function λ(t). If these assumptions
are satisfied, then the operator V in equation (2.7), defined by the first formula in
(4.2), will be k-linear and Volterra and act from the space Dn to the space Ln(Z).
In addition, for any x(0) ∈ kn there will be the unique (up to a P -null set) solution
of (2.7) (remember that (2.7) is equivalent to (4.1)). For the proof of these results
see [7].

As a particular case of equation (4.1) we obtain stochastic differential equations
with “ordinary”, or concentrated delay. Another name is difference-differential
stochastic equations. By this we mean the following object:

dx(t) = (Ṽ x)(t)dZ(t) (t ≥ 0),

x(ν) = ϕ(ν) (ν < 0),
(4.3)

where

(Ṽ x)(t) =
( m1∑

j=0

Q̃1j(t)x(h1j(t)), . . . ,
mm∑
j=0

Q̃mj(t)x(hmj(t))
)
. (4.4)

Here hij are λ∗-measurable functions, for which

hij(t) ≤ t (λ∗ − a. e.) for t ∈ [0,∞), i = 1, . . . ,m, j = 0, . . . ,mi;

Q̃ij are n×n-matrices with the entries that are predictable stochastic processes for
all i = 1, . . . ,m, j = 0, . . . ,mi; ϕ is a stochastic process which is independent of
the semimartingale Z(t).

The assumptions imposed on the general delay equation (4.1) can easily be ad-
justed to its particular case (4.3). The details can be found in [7]. Here we just
outline briefly how equation (4.3) can be represented in the form (4.1) and then
formulate the assumptions on the coefficients. We set

Ri(t, s) =
mi∑
j=0

Q̃ij(t)rij(t, s),

where Q̃ij are the matrices from (4.4) and rij is the indicator (the characteristic
function) of the set

{(t, s) : t ∈ [0,∞), hij(t) ≤ s ≤ t},
defined on t ∈ [0,∞), s ∈ (−∞, t] for i = 1, . . . ,m, j = 0, . . . ,mi. By this, equation
(4.3) is rewritten in the form (4.1) and this leads automatically to the following
assumptions on the coefficients of (4.3):∫ t

0

(|HA+|+ ‖HA+H>‖)dλ < ∞ a. s. for any t ≥ 0,

where

H = (H1, . . . ,Hm), Hi :=
mi∑
j=0

‖Q̃ij‖ (i = 1, . . . ,m);
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the initial function ϕ is a stochastic process with trajectories which are a. s. essen-
tially bounded on [0,∞) with respect to the measure λ∗.

In what follows we treat equation (4.3) as a special case of (4.1).

Remark 4.1. The assumptions on the initial function ϕ do not imply, in general,
that ϕ should be cadlag. It is an important observation for what follows as we are
going to use a weaker topology (the Lp-topology) on the set of all ϕ. Moreover, we
do not treat the solution x(t) on t ∈ [0,∞) as a continuation of the stochastic process
ϕ. This is an essential feature of the theory of functional differential equations
presented in [2] as it offers more possibilities to choose a suitable topology in the
space of initial functions. A similar idea was also used in [14] to define the Lyapunov
exponents for stochastic flows associated with certain linear stochastic functional
differential equations. This was motivated by the fact that Ruelle’s multiplicative
ergodic theorem, which is needed to define the Lyapunov exponents, requires the
topology of a Hilbert space instead of the uniform topology on the space of initial
functions.

If we, nevertheless, want the solutions x(t) of (4.1) (or (4.3)) to be continuations
of the initial functions ϕ(t), then we can easily treat this situation as a particular
case of the more general setting described above. First of all we have to require that
ϕ(t) should be cadlag (or continuous, if the semimartingale Z(t) is continuous). In
addition, we set the continuity condition at t = 0, i. e. we demand that

x(0) = lim
δ→0−

ϕ(δ).

By this, the solution will be cadlag (or continuous) for all t.

Now we describe different kinds of stability of solutions of (4.1) and (4.3) which
we intend to study in this paper. The definitions below are classical, up to some
small adjustments, and can be found in many monographs (see e. g. [10, 14, 16]).

In the next definition we use the following notation: x(t, x0, ϕ) stands for the
solution of (4.1), with the initial function ϕ, such that x(0, x0, ϕ) = x0.

Definition 4.2. The zero solution of (4.1) (resp. of (4.3)) is called:
• p-stable with respect to the initial function, if for any ε > 0 there exists

η(ε) > 0 such that the inequality

E|x0|p + vrai sup
ν<0

E|ϕ(ν)|p< η

(vrai sup is the essential sup with respect to the measure λ∗) implies the
estimate

E|x(t, x0, ϕ)|p ≤ ε (t ≥ 0)
for any ϕ(ν), ν < 0 and x0 ∈ kn

p ;
• asymptotically p-stable with respect to the initial function, if it is p-stable

with respect to the initial function and, in addition, for any ϕ(ν), ν < 0
and x0 ∈ kn

p such that

E|x0|p + vrai sup
ν<0

E|ϕ(ν)|p < ∞

one has limt→+∞E|x(t, x0, ϕ)|p = 0;
• exponentially p-stable with respect to the initial function, if there exist

positive constants c̄, β such that

E|x(t, x0, ϕ)|p ≤ c̄(E|x0|p + vrai sup
ν<0

E|ϕ(ν)|p) exp{−βt} (t ≥ 0)
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for any ϕ(ν), ν < 0 and x0 ∈ kn
p .

It is easy to see that p-stability (resp. asymptotic p-stability, exponential p-
stability) of the zero solution of (4.1) with respect to the initial function implies p-
stability (resp. asymptotic p-stability, exponential p-stability) of the zero solution of
the homogeneous equation (2.11), corresponding to (4.1), with respect to the initial
value x(0). The converse is, in general, not true, even in the case of deterministic
delay equations (see e. g. [2]).

The notions of admissibility and stability with respect to the initial function are
close to each other. In the following lemma we assume, when treating admissibility,
that (4.1) is rewritten in the form (2.7).

Lemma 4.1. Assume that for any ϕ such that vrai supν<0 E|ϕ(ν)|p < ∞ the sto-
chastic process f defined in (4.2) belongs to a normed subspace B of the space
Ln(Z), the norm satisfying

‖f‖B ≤ K vrai sup
ν<0

(E|ϕ(ν)|p)1/p,

where K is a positive constant. If the pair (Mp, B) is admissible for (2.7), cor-
responding to (4.1), then the zero solution of (4.1) is p-stable with respect to the
initial function.

Proof. Under the assumptions of the lemma, we have

‖xf (·, x0)‖Mp
≤ ĉ(‖x0‖kn

p
+ ‖f‖B)

≤ ĉ(‖x0‖kn
p

+ K vrai sup
ν<0

(E|ϕ(ν)|p)1/p)

≤ c̄(‖x0‖kn
p

+ vrai sup
ν<0

(E|ϕ(ν)|p)1/p),

where ĉ, c̄, K are some positive numbers. From this, using the estimate x(t, x0, ϕ) =
xf (t, x0), we obtain

sup
t≥0

(E|x(t, x0, ϕ)|p)1/p ≤ c̄(‖x0‖kn
p

+ vrai sup
ν<0

(E|ϕ(ν)|p)1/p).

This implies p-stability of the zero solution of (4.1) with respect to the initial
function. �

Remark 4.2. Evidently, in Lemma 4.1 one can replace the space B by the space
Bγ for any reasonable weight γ. Then admissibility of the pair (Mγ

p , Bγ) for (2.7)
with γ(t) = exp{βt}, β > 0 will imply the exponential p-stability of the zero
solution of (4.1) with respect to the initial function. The asymptotic p-stability
of the zero solution of (4.1) with respect to the initial function can be derived
from admissibility of the pair (Mγ

p , Bγ) for the corresponding equation (2.7) , if
limt→+∞ γ(t) = +∞ and γ(t) ≥ δ > 0, t ∈ [0,∞) for some δ.

Definition 4.3. We say that the semimartingale Z(t) satisfies condition (Z):
(Z) If < ci, cj >= 0 for i 6= j, so that λ∗×P - almost everywhere Aij = 0 (i 6= j,

i, j = 1, . . . ,m).

We will subsequently use only semimartingales with condition (Z). We first treat
equation (4.1) including distributed delays. Wishing to use the W-transform and
the related operator Θl we have to rewrite (4.1) in the form (2.7). It is easily done
via the formulas (4.2).

We begin by listing some technical conditions:
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(D1) 1 ≤ p < ∞, 2p ≤ q ≤ ∞; supt∈[1,∞)(v(t) − v(t − 1)) < ∞, where v(t) =∫ t

0
ξ(s)dλ(s);

‖Qij‖|ai| ≤ ai
j , ‖Qij‖|Aii|0.5 ≤ hi

j (λ∗ ×P)-almost everywhere,

ai
j ×

∨
(−∞,·]

rij(·, s)ξq−1−1 ∈ Lλ
q , hi

j ×
∨

(−∞,·]

rij(·, s)ξq−1−0.5 ∈ Lλ
q

(i = 1, . . . ,m, j = 0, . . . ,mi).

Theorem 4.3. Let the semimartingale Z(t) satisfy condition (Z), the reference
equation (3.1) satisfy (R1)-(R2), and equation (4.1) satisfy (D1). If now the op-
erator (I − Θl) : M2p → M2p (constructed for (2.7) corresponding to (4.1)) has
a bounded inverse, then the zero solution of (4.1) is 2p-stable with respect to the
initial function.

Remark 4.3. Due to Corollary 3.3 the operator W , under the assumptions of
Theorem 4.3, are continuous from the space Λn

2p,q(ξ) to the space M2p, while the
operator Θl, defined in (3.2), acts in the space M2p.

Proof of Theorem 4.3. We first go over to the form (2.7) of equation (4.1), where
V and f are specified by the formulas (4.2).

Applying Theorem 4.1 gives us, under the assumptions of Theorem 4.3, admissi-
bility of the pair (M2p,Λn

2p,q(ξ)) for (2.7). The property of 2p-stability of the zero so-
lution of (4.1) with respect to the initial function follows now from Lemma 4.1 if we
manage to prove the following property: For any ϕ such that vrai supν<0 E|ϕ(ν)|p <
∞ the function f in equation (2.7) belongs to the normed space B := Λn

2p,q(ξ) and
the following estimate holds ‖f‖B ≤ K vrai supν<0(E|ϕ(ν)|2p)1/(2p), where K is a
positive number.

To prove this property, we observe that

‖f‖B = ‖(E|fa|2p)1/(2p)ξq−1−1‖Lλ
q

+ ‖(E‖fAf>‖p)1/(2p)ξq−1−0.5‖Lλ
q

≤ ‖
m∑

i=1

mi∑
j=0

(
E

( ∫
(−∞,0)

ai
j(·)|ϕ(τ)|dτ

∨
s∈(−∞,τ ]

rij(·, s)
)2p)1/(2p)

ξq−1−1‖Lλ
q

+ ‖
m∑

i=1

mi∑
j=0

(
E

( ∫
(−∞,0)

(hi
j(·)|ϕ(τ)|)2dτ

∨
s∈(−∞,τ ]

rij(·, s)
)p) 1

2p

ξq−1−0.5‖Lλ
q

≤ vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p)(
m∑

i=1

mi∑
j=0

‖ai
j ×

∨
s∈(−∞,0)

rij(·, s)ξq−1−1‖Lλ
q

+
m∑

i=1

mi∑
i=1

‖hi
j ×

∨
s∈(−∞,0)

rij(·, s)ξq−1−0.5‖Lλ
q
)

≤ K vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p),

where K is a positive constant, then f ∈ B and

‖f‖B ≤ K vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p).
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This completes the proof. �

Let us now consider discrete delays, that is equation (4.3) with the operators
(4.4). The following assumption will be used.
(D2) 1 ≤ p < ∞, 2p ≤ q ≤ ∞; supt∈[1,∞)(v(t) − v(t − 1)) < ∞, where v(t) =∫ t

0
ξ(s)dλ(s);

‖Q̃ij‖|ai| ≤ ãi
j , ‖Q̃ij‖|Aii|0.5 ≤ h̃i

j (λ∗ ×P)-almost everywhere,

ãi
jξ

q−1−1 ∈ Lλ
q , h̃i

jξ
q−1−0.5 ∈ Lλ

q (i = 1, . . . ,m, j = 0, . . . ,mi).

From Theorem 4.3 we have the following result.

Corollary 4.1. Let the semimartingale Z(t) satisfy condition (Z), the reference
equation (3.1) satisfy (R1)-(R2), and (4.3) satisfy (D2). If now the operator (I −
Θl) : M2p → M2p (constructed for equation (2.7) corresponding to (4.3)) has a
bounded inverse, then the zero solution of (4.3) is 2p-stable with respect to the
initial function.

Definition 4.4. Equation (4.1) (Equation (4.3)) is called Mγ
p -stable with respect

to the initial function, if for all x0 ∈ kn
p and ϕ such that vrai supν<0 E|ϕ(ν)|p < ∞

one has x(·, x0, ϕ) ∈ Mγ
p and

‖x(·, x0, ϕ)‖Mγ
p
≤ c̄(‖x0‖kn

p
+ vrai sup

ν<0
(E|ϕ(ν)|p)1/p),

where c̄ ∈ R+.

Let us stress that, as before, the notion of Mγ
p -stability of (4.1) with respect to

the initial function covers the classical notions of p-stability, exponential p-stability
and asymptotical p-stability of the zero solution with respect to the initial function.
It is also evident that Mγ

p -stability of (4.1) with respect to the initial function
implies Mγ

p -stability of the associated equation in the form (2.7).

Theorem 4.4. Let the semimartingale Z(t) satisfy condition (Z), the reference
equation (3.1) satisfy (R1)-(R2), and equation (4.1) satisfy D1. If now the operator
(I − Θl) : M2p → M2p (constructed for equation (2.7) corresponding to (4.1)) has
a bounded inverse and there exist numbers δij > 0 such that rij(t, s) = 0, where
−∞ < s ≤ t − δij < ∞, t ∈ [0,∞), i = 1, . . . ,m, j = 0, . . . ,mi, then (4.1) is
Mγ

2p-stable with respect to the initial function, where γ(t) = exp{βv(t)} for some
β > 0.

Proof. As in the previous theorem, we first rewrite (4.1) in the form (2.7). Then
we observe that under the assumptions of the theorem, the operator V in (2.7) will
act from M2p to Λn

2p,q(ξ). Due to Lemma 3.2, the operator V : M2p → Λn
2p,q(ξ)

satisfies the ∆-condition. Hence the assumptions of Theorem 4.2 are satisfied.
We proceed now as in the proof of the preceding theorem, i.e. we show that for

any ϕ such that vrai supν<0 E|ϕ(ν)|2p < ∞ the function f in equation (4.1), given
by the formulas (4.2), belongs to the normed space Bγ , where B := Λn

2p,q(ξ), and
the following estimate holds

‖f‖Bγ ≤ K vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p),

K being a positive number. In this case the Mγ
2p-stability of (4.1) with γ(t) =

exp{β
∫ t

0
ξ(ν)dλ(ν)} (for some β > 0) is implied Theorem 4.2 and Lemma 4.1.
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To check the above estimate on f we observe that

‖f‖Bγ = ‖(E|γfa|2p)1/(2p)ξq−1−1‖Lλ
q

+ ‖(E‖γfA(γf)>‖p)1/(2p)ξq−1−0.5‖Lλ
q
.

Now we have

‖(E|γfa|2p)1/(2p)ξq−1−1‖Lλ
q

+ ‖(E‖γfA(γf)>‖p)1/(2p)ξq−1−0.5‖Lλ
q

≤ ‖
m∑

i=1

mi∑
j=0

(
E

( ∫
(−∞,0)

γ(·)ai
j(·)|ϕ(τ)|dτ

∨
s∈(−∞,τ ]

rij(·, s)
)2p)1/(2p)

(ξ(·))q−1−1‖Lλ
q

+ ‖
m∑

i=1

mi∑
j=0

(
E

( ∫
(−∞,0)

(γ(·)hi
j(·)|ϕ(τ)|)2dτ

∨
s∈(−∞,τ ]

rij(·, s)
)p)1/(2p)

× (ξ(·))q−1−0.5‖Lλ
q

≤
[ m∑

i=1

mi∑
j=0

exp{β
∫ δij

0

ξ(ν)dλ(ν)}‖ai
j(·)×

∨
s∈(−∞,0)

rij(·, s)(ξ(·))q−1−1‖Lλ
q

+
m∑

i=1

mi∑
j=0

exp{β
∫ δij

0

ξ(ν)dλ(ν)}‖hi
j(·)×

∨
s∈(−∞,0)

rij(·, s)(ξ(·))q−1−0.5‖Lλ
q

]
× vrai sup

ν<0
(E|ϕ(ν)|2p)1/(2p)

≤ K vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p),

where K is some positive number. This gives f ∈ Bγ and

‖f‖Bγ ≤ K vrai sup
ν<0

(E|ϕ(ν)|2p)1/(2p).

The theorem is proved. �

From Theorem 4.4 for (4.3) we obtain the following result.

Corollary 4.2. Let the semimartingale Z(t) satisfy condition (Z), the reference
equation (3.1) satisfy (R1)-(R2), and equation (4.3) satisfy (D2). Assume that the
operator (I − Θl) : M2p → M2p (constructed for (2.7) corresponding to (4.3)) has
a bounded inverse, and there exist numbers δ̄ij > 0 such that∫ t

χhij
(t)hij(t)

ξ(ν)dν ≤ δ̄ij (t ∈ [0,∞)),

where i = 1, . . . ,m, j = 0, . . . ,mi, and χg(t) was defined in (3.11). Then (4.3) is
Mγ

2p-stable with respect to the initial function γ(t) = exp{β
∫ t

0
ξ(ν)dλ(ν)} for some

β > 0.

Proof. To apply Theorem 4.4 we notice that under the assumptions, listed in Corol-
lary 4.2, equation (4.3) in the form (4.1) has the following properties: rij(t, s) = 0
if −∞ < s ≤ t− δij < ∞ (t ∈ [0,∞)), where δij = inf{t ∈ [0,∞) :

∫ t

0
ξ(ν)dν > δ̄ij}

(i = 1, . . . ,m, j = 0, . . . ,mi). �

For the sake of completeness we also observe that the estimates on hij(t) in the
corollary imply the δ-condition on hij(t) (see Definition 3.7).
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5. Some sufficient conditions for stability of stochastic delay
equations

In this section we use the developed theory to derive certain stability results
for specific classes of equations (4.1) and (4.3). We stress, however, that all the
examples below are of an illustrative character. That is why we do not formally
compare them with the known stability criteria (e.g. those presented in [10] and
[12] as well as in other papers not listed in the bibliography). The aim of this
paper is to describe and illustrate an alternative method of studying stability. A
more careful analysis of specific classes is therefore left to forthcoming papers.
Here we only mention that our approach normally covers more general classes of
linear stochastic functional differential equations than the Lyapunov-Krasovskii-
Razumikhin method does in this case. Moreover, our method treats different kinds
of stability in an unified framework. Finally, the W-approach seems to give stability
criteria which are different, i.e. not exactly comparable, with those which can be
obtained with the help of other techniques. This observation suggests that the
W-method should be one of the additional instruments in “the stability analysis
toolbox”.

To study equation (4.1), we intend to use a special reference equation of the form
(3.1) with

(Qx)(t) =
(
−

∫
[0,t)

dsR(t, s)x(s)dλ(s), 0̄, . . . , 0̄
)
, R(t, s) =

l∑
j=0

Q1j(t)r1j(t, s).

(5.1)
Note that we use here the same Q1j , r1j (j = 0, . . . , l)as in (4.1). As we also want
the assumptions (R1)-(R2) to be fulfilled, we require that the n × n-matrices Q1j

should be non-random for j = 1, . . . , l (the matrices Q1j (j > l) are still allowed to
be random).

Let us now introduce to important constants which are used in what follows.
Assuming that the formula (3.3) from condition (R2) in Section 2 is valid we put

C1 = sup
t≥0

∫ t

0

ξ(s)‖C(t, s)‖dλ(s), C2 = sup
t≥0

∫ t

0

ξ(s)‖C(t, s)‖2dλ(s). (5.2)

We will also use the following notation: if M is an n× n-matrix function, then
we write ‖|M‖|Lλ

q
:= ‖ ‖M‖ ‖Lλ

q
. We proceed with describing the main assumptions

on the semimartingale Z(t).

Definition 5.1. For a semimartingale Z(t) we difne the conndition

(Z0) The condition (Z) from Definition 4.3 holds and, a1 = 1, A11 = 0, ai = 0
(i = 2, . . . ,m) λ∗ × P -almost everywhere (see (2.2)).

We note that, in fact, we can always deduce condition (Z0) from condition (Z) by
increasing the number of the components of the semimartingale Z(t) (and adjusting
the operator V̂ appropriately). This means that (Z) and (Z0) are equivalent. But in
this section we choose to use (Z0) as it simplifies our calculations. A typical example
we have in mind is given by the semimartingale coming from Itô equations.

In what follows we will also need some hypotheses on the coefficients of (4.1).
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(D3) 1 ≤ p < ∞, 2p ≤ q ≤ ∞; supt∈[1,∞) (v(t) − v(t − 1)) < ∞, where v(t) =∫ t

0
ξ(s)dλ(s); Q1j (j = 0, . . . , l) are non-random;

‖Q1j‖ ≤ a1
j (λ∗ ×P)-almost everywhere,

a1
j ×

∨
s∈(−∞,0)

r1j(·, s)ξq−1−1 ∈ Lλ
q ,

â1
j (·) := a1

j (·)×
∨

s∈[0,·]

r1j(·, s)ξq−1−1 ∈ Lλ
q , (j = 0, . . . ,m1),

‖Qij‖|Aii|0.5 ≤ hi
j (λ∗ ×P)-almost everywhere,

hi
j ×

∨
s∈(−∞,0)

rij(·, s)ξq−1−0.5 ∈ Lλ
q ,

ĥi
j(·) = hi

j(·)×
∨

s∈[0,·]

rij(·, s)ξq−1−0.5 ∈ Lλ
q (i = 2, . . . ,m, j = 0, . . . ,mi).

We remark that if we replace condition (Z) by condition (Z0), then condition (D1)
becomes condition (D3).

Our first theorem in this section is of general character and will in the sequel be
used to more specific studies.

Theorem 5.1. Let the semimartingale Z(t) satisfy condition (Z0), equation (4.1)
satisfy condition (D3), the reference equation (3.1), where Q is given by (5.1),
satisfy (R1)-(R2). Assume also that for some l (0 ≤ l ≤ m1) the following estimate
holds:

ρ := C1−q−1

1

m1∑
j=l+1

‖â1
j‖Lq + cpC

0.5−q−1

2

m∑
i=2

mi∑
j=0

‖ĥi
j‖Lq < 1,

where C1, C2 are given by (5.2). Then (4.1) is M2p-stable with respect to the initial
function. If, in addition, there exist positive numbers δij, i= 1, . . . ,m, j = 0, . . . ,mi

such that rij(t, s) = 0, where −∞ < s ≤ t − δij < ∞, t ∈ [0,∞), i = 1, . . . ,m,
j = 0, . . . ,mi, then (4.1) will be Mγ

2p-stable with respect to the initial function,
where γ(t) = exp{βv(t)} for some β > 0.

Proof. The proof of the first statement in the theorem is based on Theorem 4.3,
while the second statement exploits Theorem 4.4.

According to the assumptions of the theorem the operator Θl for (4.1) in the
form (2.7) acts in the space M2p. Now, if we manage to show that the operator
(I −Θl) : M2p → M2p has a bounded inverse, then applying Theorems 4.3 and 4.4
will prove Theorem 5.1.

To prove the invertibility of the operator (I − Θl) we check that, under the
assumptions of the theorem, the norm of the operator Θl in the space M2p is less
than 1. In this case the only continuous extension of the operator (I−Θl) : M2p →
M2p to the completion of the space M2p in its own norm will be invertible. To see
this, we observe that the equation (I − Θl)x = g will have the unique solution in
the space Dn for all g ∈ M2p, while the intersection of the completion of the space
M2p with the space Dn coincides with the space M2p by definition. This will imply
the existence of a bounded inverse of the operator (I −Θl) : M2p → M2p.
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In the rest of the proof we estimate the norm of the operator Θl, which is given
by

(Θlx)(t) =
∫ t

0

C(t, s)[(V x)(s)dZ(s)−
∫

[0,s)

dτR(s, τ)x(τ)dλ(s)],

in the space M2p. We have

‖Θlx‖M2p

≤
(

sup
t≥0

E
∣∣∣ ∫ t

0

C(t, s)
( m1∑

j=l+1

Q1j(s)
∫

[0,s)

dνr1j(s, ν)x(ν)
)
dλ(s)

∣∣∣2p)1/(2p)

+ cp

(
sup
t≥0

E
( ∫ t

0

‖C(t, s)‖2
m∑

i=2

|Aii(s)|
∣∣∣ ∫

[0,s)

dνRi(s, ν)x(ν)
∣∣∣2dλ(s)

)p)1/(2p)

≤ C
(2p−1)/2p
1 (‖x‖M2p

m1∑
j=l+1

(sup
t≥0

E
∫ t

0

‖C(t, s)‖

× (ξ(s))1−2p/q(â1
j (s))

2pdλ(s))1/(2p)) + cpC
(p−1)/2p
2 ‖x‖M2p

×
m∑

i=2

mi∑
j=0

(
sup
t≥0

E
∫ t

0

‖C(t, s)‖(ξ(s))1−2p/q(ĥi
j(s))

2pdλ(s)
)1/(2p)

.

Now we, as in the proof of Lemma 3.1, should consider three cases separately. We
omit the corresponding calculations here as they are identical with those in Lemma
3.1. Accepting this we then obtain, using the above estimate on ‖Θlx‖M2p

, that
‖Θlx‖M2p

≤ ρ‖x‖M2p
. Since ρ < 1, we conclude that ‖Θl‖M2p

< 1, and the theorem
is proved. �

Corollary 5.1. Let the semimartingale Z(t) satisfy condition (Z0) and reference
equation (3.1), where Q is given by (5.1), satisfy (R1)-(R2). Equation (4.1) is
supposed to have the following property:

• The functions ξ−1, Aii, the entries of the matrix Qij and the variation∨
s∈[0,·] rij(·, s) are all from the space Lλ

∞ for i = 1, . . . ,m, j = 0, . . . ,mi.

Also assume that for some l (0 ≤ l ≤ m1) one has the estimate
m1∑

j=l+1

‖|Q1j ×
∨

s∈[0,·]

r1j(·, s)ξ−1‖|Lλ
∞

+ cp(
√

C2/C1)
m∑

i=2

mi∑
j=0

‖|Qij(Aii)0.5 ×
∨

s∈[0,·]

rij(·, s)ξ−0.5‖|Lλ
∞

< 1/C1,

where C1, C2 are given by (5.2). Then (4.1) is M2p-stable with respect to the initial
function. If, in addition, there exist positive numbers δij, i= 1, . . . ,m, j = 0, . . . ,mi

such that rij(t, s) = 0, where −∞ < s ≤ t − δij < ∞, t ∈ [0,∞), i = 1, . . . ,m,
j = 0, . . . ,mi, then (4.1) will be Mγ

2p-stable with respect to the initial function,
where γ(t) = exp{βv(t)} for some β > 0.

We remark that the property assumed in Corollary 5.1, which describes the as-
sumptions on (4.1), implies the property (D3). The next proposition is a particular
case of Corollary 5.1 if we put ξ(t) ≡ 1 (t ∈ [0,∞).
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Corollary 5.2. Assume that the semimartingale Z(t) satisfies condition (Z0) and
reference equation (3.1), where Q is given by (5.1) with l = 0, satisfies (R1)-(R2).
Equation (4.1) has the following property:

• zi = 0 a. s. (i = 3, . . . ,m), m1 = 0, m2 = 0, the entries of the matrices
Qi0 and

∨
s∈[0,·] ri0(·, s) belong to the space Lλ

∞ (i = 1, 2).

Also assume that one has the estimate

cp(
√

C2/C1)‖|d2‖|Lλ
∞

< 1/C1,

where C1, C2 are given by (5.2) and d2 = Q20 ×
∨

s∈[0,·] r20(·, s)|A22|0.5. Then
(4.1) is M2p-stable with respect to the initial function. If, in addition, there exist
positive numbers δi (i = 1, 2) such that ri0(t, s) = 0, where −∞ < s ≤ t− δi < ∞,
t ∈ [0,∞), i = 1, 2, then (4.1) will be Mγ

2p-stable with respect to the initial function,
where γ(t) = exp{β(λ(t)− λ(0))} for some β > 0.

In the rest of the paper we are concerned with the stability analysis of equation
(4.3) with discrete time delays. As this equation is a particular case of equation
(4.1), we can use Theorem 5.1 to obtain sufficient conditions of Mγ

2p-stability of
(4.3) with respect to the initial function.

As we wish the reference equation to be a part of the studied equation, we define
Q in (3.1) as follows:

(Qx)(t) = (
l∑

j=0

˜̃Q1j(t)(Sh1j
x)(t), 0̄, . . . , 0̄), ˜̃Qij(t) = Q̃ij(t)χhij

(t). (5.3)

Shift operators of the form Sg are described in (3.10), while χg(t) is defined by

(3.11). In (5.3) we again require that the matrices ˜̃Q1j (j = 1, . . . , l) should be

non-random, while the matrices ˜̃Q1j (j > l) can be random). This is to ensure the
assumptions (R1)-(R2).

The assumptions on the coefficients of (4.3) are summarized in the following
condition

(D4) 1 ≤ p < ∞, 2p ≤ q ≤ ∞; supt∈[1,∞)(v(t) − v(t − 1)) < ∞, where v(t) =∫ t

0
ξ(s)dλ(s);

˜̃Qij(t) := Q̃ij(t)χhij
(t) (i = 1, . . . ,m, j = 0, . . . ,mi),

where χg is given by (3.11), ˜̃Q1j(t) are non-random for j = 0, . . . , l;

‖ ˜̃Q1j‖ ≤ ã1
j (λ∗ ×P)-almost everywhere,

ˆ̂a1
j = ã1

jξ
q−1−1 ∈ Lλ

q for j = 0, . . . ,m1,

‖ ˜̃Qij‖ |Aii|0.5 ≤ h̃i
j (λ∗ × P )-almost everywhere,

ˆ̂
hi

j = h̃i
jξ

q−1−0.5 ∈ Lλ
q for i = 2, . . . ,m, j = 0, . . . ,mi.

Clearly, if condition (Z) is replaced by condition (Z0), then condition (D2) becomes
condition (D4).

From Theorem 5.1 we now deduce the following corollary.



EJDE-2004/92 STABILITY OF STOCHASTIC EQUATIONS 29

Corollary 5.3. Let the semimartingale Z(t) satisfy condition (Z0), equation (4.3)
satisfy condition (D4), the reference equation (3.1), where Q is given by (5.3),
satisfy (R1)-(R2). Assume also that for some l (0 ≤ l ≤ m1) the following estimate
holds:

C1−q−1

1

m1∑
j=l+1

‖ˆ̂a1
j‖Lλ

q
+ cpC

0.5−q−1

2

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lλ

q
< 1,

where C1, C2 are given by (5.2). Then (4.3) is M2p-stable with respect to the
initial function. If, in addition, there exist positive numbers δij, i = 1, . . . ,m,
j = 0, . . . ,mi such that rij(t, s) = 0, where −∞ < s ≤ t − δij < ∞, t ∈ [0,∞),
i = 1, . . . ,m, j = 0, . . . ,mi, then (4.3) will be Mγ

2p-stable with respect to the initial
function, where γ(t) = exp{βv(t)} for some β > 0.

As an important particular case of Corollary 5.3 we obtain:

Corollary 5.4. Assume that the semimartingale Z(t) satisfies condition (Z0) and
the reference equation (3.1), where Q is given by (5.3), satisfies (R1)-(R2). Then
(4.3) has the following property:

• The entries of the matrices ˜̃Qij and the functions Aii, ξ−1 belong to the
space Lλ

∞ for i = 1, . . . ,m, j= 0, . . . ,mi.
Assume also that for some l (0 ≤ l ≤ m1) the following estimate holds:

m1∑
j=l+1

‖| ˜̃Q1jξ
−1‖|Lλ

∞
+ cp(

√
C2/C1)

m∑
i=2

mi∑
j=0

‖| ˜̃Qij(Aii)0.5ξ−0.5‖|Lλ
∞

< 1/C1,

where C1, C2 are given by (5.2). Then equation (4.3) is M2p-stable with respect to
the initial function. If, in addition, there exist positive numbers δij, i= 1, . . . ,m,
j = 0, . . . ,mi such that rij(t, s) = 0, where −∞ < s ≤ t − δij < ∞, t ∈ [0,∞),
i = 1, . . . ,m, j = 0, . . . ,mi, then (4.3) will be Mγ

2p-stable with respect to the initial
function, where γ(t) = exp{βv(t)} for some β > 0.

Remark 5.1. It is convenient to apply Theorem 5.1 and Corollaries 5.1 - 5.4 if it is
known that a part of the drift operator gives rise to a stable deterministic equation.
In this case we use this deterministic equation as a reference equation. In order
to achieve best possible stability results we have to find the constants C1 and C2

from (5.2), or at least good estimates on these constants. The exact values are only
known in exceptional cases (like for diagonal ordinary differential systems). But
good estimates on C1 and C2 can easily be found if the constants α and ¯̄c in (3.4)
are known or estimated.

In what follows we will restrict ourselves to the case of Itô delay equations. In
this case the semimartingale Z(t) has the form.

(B) Z(t) = (t, B1(t), . . . , Bm−1(t))T , where Bi, i = 1, . . . ,m−1 are independent
standard Wiener processes.

When this condition is satisfied, λ(t) = t and the associated measure λ∗ becomes
the Lebesgue measure which we denote by µ.

Remark 5.2. It is easy to see that the semimartingale, described in (B), satisfies
condition (Z0) as a = (1, 0, . . . , 0)T , and the m ×m-matrix A is given by Aii = 1
if i = 2, . . . ,m, and Aij = 0 otherwise, i.e. if i = j = 1 or i 6= j, i, j = 1, . . . ,m
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(see (2.4)). In addition, we have that Ln(Z) is a linear space consisting of n×m-
matrices, where all the entries are stochastic processes on [0,∞) that are adapted
with respect to the given filtration, and the first column in the matrix are a.s. locally
(Lebesgue) integrable, while the other columns are a.s. locally squire (Lebesgue)
integrable. The space Dn consists now of adapted stochastic processes on [0,∞)
with a.s. continuous trajectories.

We will also use an adjusted reference equation (3.1) with

Qx)(t) = (−κ(Shx)(t), 0̄, . . . , 0̄), κ is an n× n-matrix;

h(t) is a µ-measurable function such that h(t) ≤ t (t ∈ [0,∞)).
(5.4)

Recall that here µ is the Lebesgue measure, and the operator Sh is given by (3.10).
As before, we introduce a new condition to summarize assumptions on the coef-

ficients.
(D5) 1 ≤ p < ∞, 2p ≤ q ≤ ∞; supt∈[1,∞)(v(t) − v(t − 1)) < ∞, where v(t) =∫ t

0
ξ(s)ds;

˜̃Qij(t) := Q̃ij(t)χhij (t) (i = 1, . . . ,m, j = 0, . . . ,mi),

where χg is given by (3.11), ˜̃Q1j(t) (j = 0, . . . , l) are non-random,

‖ ˜̃Q1j‖ ≤ ã1
j (µ×P)-almost everywhere

ˆ̂a1
j = ã1

jξ
q−1−1 ∈ Lq for j = 0, . . . ,m1,

‖ ˜̃Qij‖ ≤ h̃i
j (µ× P )-almost everywhere,

ˆ̂
hi

j = h̃i
jξ

q−1−0.5 ∈ Lq for i = 2, . . . ,m, j = 0, . . . ,mi.
Note that if the semimartingale Z(t) satisfies condition (B), then (D4) becomes
(D5).

Recall that we use the following notation (adjusted for the case λ(t) = t, t ∈
[0,∞)): if M is an n× n-matrix function, then we write ‖|M‖|Lq

:= ‖ ‖M‖ ‖Lq
.

Theorem 5.2. Let the semimartingale Z(t) satisfy condition (B), equation (4.3)
satisfy condition (D5), reference equation (3.1), where Q is given by (5.4), satisfy
(R1)-(R2). Assume also that there exist a natural number l (0 ≤ l ≤ m1) and
positive constants ϑj (j = 0, . . . , l) such that∫

[χh(t)h(t), χh1j
(t)h1j(t)]

ξ(s)ds ≤ ϑj (j = 0, . . . , l).

Finally, the following estimate is supposed to hold:

ρ := C1−q−1

1 {‖|
( l∑

j=0

˜̃Q1j + ξκ
)
ξq−1−1‖|Lq

+
l∑

j=0

‖ˆ̂a1
j‖Lq

(ϑ1−q−1

j

m1∑
j=0

‖ˆ̂a1
j‖Lq

+ cpϑ
0.5−q−1

j

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lq

)

+
m1∑

j=l+1

‖ˆ̂a1
j‖Lq

}+ cpC
0.5−q−1

2

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lq

< 1,
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where C1, C2 are given by (5.2). Then (4.3) is M2p-stable with respect to the initial
function. If, in addition, there exist positive numbers δij, i= 1, . . . ,m, j = 0, . . . ,mi

such that the functions hij(t) satisfy the δij-condition for i = 1, . . . ,m; j = 0, . . . ,mi

(see Definition 3.7), then (4.3) will be Mγ
2p-stable with respect to the initial function,

where γ(t) = exp{βv(t))} for some β > 0.

Proof. As in Theorem 5.1, to prove the first part we use Corollary 4.1, while to prove
the second part we apply Corollary 4.2. Evidently, that under the assumptions of
Theorem 5.2 the operator V for (4.3) in the form (2.7) acts from M2p to Λn

2p,q(ξ).
By Corollary 3.3 this implies that Θl : M2p → M2p.

Due to Corollaries 4.1 and 4.2 it suffices to prove that the operator I − Θl has
a bounded inverse in the space M2p. We show that the norm of the operator Θl

in the space M2p is less than 1. As in the proof of Theorem 5.1, we then observe
that the only continuous extension of the operator (I − Θl) : M2p → M2p to the
completion of the space M2p in its own norm is invertible. Indeed, the equation
(I − Θl)x = g has the unique solution in the space Dn for all g ∈ M2p, while the
intersection of the completion of the space M2p with the space Dn coincides with
the space M2p by definition. This implies the existence of a bounded inverse of the
operator (I −Θl) : M2p → M2p.

In our case, the operator Θl is given by

(Θlx)(t) =
∫ t

0

C(t, s)((V x)(s)dZ(s)− κξ(s)(Shx)(s)ds) (t ≥ 0).

For short notation, let us write σ(t) = χh(t)h(t), σj(t) = χh1j (t)h1j(t) (j = 0, . . . , l).
Then estimating the norm of the operator Θl in the space M2p gives

‖Θlx‖M2p

≤ (sup
t≥0

E|
∫ t

0

C(t, s)[
l∑

j=0

( ˜̃Q1j(s) + ξ(s)κ)(Shx)(s)

+
l∑

j=0

˜̃Q1j(s)
∫ σ(s)

σj(s)

dx(τ) +
m1∑

j=l+1

˜̃Q1j(s)(Sh1j
x)(s)]ds|2p)1/(2p)

+ cp(sup
t≥0

E(
∫ t

0

‖C(t, s)‖2
m∑

i=2

|
mi∑
j=0

˜̃Qij(s)(Shij x)(s)|2ds)p)1/(2p)

≤ C
(2p−1)/2p
1 [(sup

t≥0

∫ t

0

‖C(t, s)‖ξ(s)‖
l∑

j=0

( ˜̃Q1j(s)ξ−1(s) + κ‖2pds)1/(2p)‖x‖M2p

+
l∑

j=0

(sup
t≥0

(E|
∫ σ(t)

σj(t)

dx(τ)|2p)1/(2p))(sup
t≥0

∫ t

0

‖C(t, s)‖ξ(s)(ã1
j (s)ξ

−1(s))2pds)1/(2p)

+ ‖x‖M2p

m1∑
j=l+1

(sup
t≥0

∫ t

0

‖C(t, s)‖ξ(s)(ã1
j (s)ξ

−1(s))2pds)1/(2p)]

+ cp(C2)(p−1)/2p‖x‖M2p

m∑
i=2

mi∑
j=0

(sup
t≥0

∫ t

0

‖C(t, s)‖2ξ(s)(h̃i
j(s)ξ

−0.5(s))2pds)1/(2p).
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Since x is a solution of equation (4.3),

Γk := sup
t≥0

(E|
∫ σ(t)

σj(t)

dx(τ)|2p)1/(2p)

≤
m1∑
j=0

sup
t≥0

(E|
∫ σ(t)

σj(t)

ξ(s)| ˜̃Qij(s)ξ−1(s)(Sh1j
x)(s)ds|2p)1/(2p)

+ cp

m∑
i=2

mi∑
j=0

sup
t≥0

(E|
∫ σ(t)

σj(t)

ξ(s)| ˜̃Qij(s)ξ−0.5(s)(Shij x)(s)|2ds|p)1/(2p)

≤ ϑ
(2p−1)/2p
k

m1∑
j=0

sup
t≥0

(E|
∫ σ(t)

σj(t)

ξ(s)(‖ ˜̃Qij(s)ξ−1(s)‖ |(Sh1j x)(s)|)1−2pds|)1/(2p)

+ cpϑ
(p−1)/2p
k

m∑
i=2

mi∑
j=0

sup
t≥0

(E|
∫ σ(t)

σj(t)

ξ(s)(‖ ˜̃Qij(s)ξ−0.5(s)‖

× |(Shij
x)(s)|)1−pds|)1/(2p),

where k = 0, . . . , l.
Now we have to consider three different cases: 1) q > 2p, q 6= ∞, 2) q = 2p, 3)

q = ∞. Fortunately, they can be treated in a similar way. Let us therefore restrict
ourselves to the first case.

Assuming q > 2p, q 6= ∞ we obtain

Γk ≤
(
ϑ1−q−1

k

m1∑
j=0

‖ˆ̂a1
j‖Lq

+ cpϑ
0.5−q−1

k

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lq

)
‖x‖M2p

where k = 0, . . . , l. From this and from the estimates for ‖Θlx‖M2p
we conclude

that ‖Θlx‖M2p
≤ ρ‖x‖M2p

. Since ρ < 1, we have ‖Θl‖M2p
< 1. This completes the

proof. �

We apply now Theorem 5.2 to an Itô equation with unbounded delays. In (4.3),
we therefore assume that

hij(t) = t/τij , τij ≥ 1 (i = 1, . . . ,m, j = 0, . . . ,mi). (5.5)

Such equation are known to have a number of “strange” properties, for instance they
are exponentially stable only in exceptional cases. Applying our general scheme
gives, however, asymptotic stability of such equations in a natural way. This is
shown in Corollaries 5.5-5.7 below.

Remark 5.3. In the case of the delays given by (5.5), the initial function in (4.3)
disappears as hij(t) ≥ 0 for all t ∈ [0,∞), i = 1, . . . ,m, j = 0, . . . ,mi. That is
why for (4.3) with the delays (5.5) it is natural to study its Mγ

p -stability in the
sense Definition 3.2 (which, in turn, for certain γ implies stability properties from
Definition 3.1).

Below we use the following function which determines asymptotical properties
of the equation we are interested in:

ξ(t) = 1[0,r](t) + 1[r,∞](t)(1/t) (t ∈ [0,∞)), (5.6)

where r > 0 is some number and 1e is the indicator of a set e. From Theorem 5.2
we obtain the following result.
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Corollary 5.5. Let the semimartingale Z(t) satisfy condition (B), equation (4.3)
with (5.5) satisfy condition (D5), the reference equation (3.1), where Q is given by
(5.4), satisfy (R1)-(R2). Assume also that there exist a natural number l (0 ≤ l ≤
m1) and a positive real number r such that

ρ := C1−q−1

1 {‖|(
l∑

j=0

˜̃Q1j + ξκ)ξq−1−1‖|Lq +
l∑

j=0

‖ˆ̂a1
j‖Lq (ϑ

1−q−1

j

m1∑
j=0

‖ˆ̂a1
j‖Lq

+ cpϑ
0.5−q−1

j

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lq )

+
m1∑

j=l+1

‖ˆ̂a1
j‖Lq

}+ cpC
0.5−q−1

2

m∑
i=2

mi∑
j=0

‖ˆ̂hi
j‖Lq

< 1,

where ξ are defined in (5.6), C1, C2 are given by (5.2) and ϑj = max{log τ1j , r(1−
τ−1
1j )}, j = 0, . . . , l. Then (4.3) is Mγ

2p-stable, where γ(t) = 1[0,r](t)+1[r,∞](t)(t/r)β

for some β > 0.

Remark 5.4. In fact, Corollary 5.5 gives us the usual asymptotic 2p-stability in
the sense of Definition 3.1.

Proof of Corollary 5.5. Using (5.6) we easily check that the delay functions hij(t) =
t/τij satisfy the δij-condition with δij = max{log τij , r(1−τ−1

ij )} (i = 1, . . . ,m, j =
0, . . . ,mi). This enables us to use Theorem 5.2 directly. �

Applying this corollary to the equation

dx(t) = Q(t)ξ−1(t)x(t)dt +
m∑

i=2

mi∑
j=0

Qij(t)x(t/τij)dBi−1(t) (t ≥ 0; τij ≥ 1), (5.7)

where Bi(t) (i = 2, . . . ,m) are independent standard Wiener processes, the n× n-
matrix Q(t) has entries from the space L∞ and

‖Qij(t)‖ ≤ qij(t)
√

ξ(t) (t ≥ 0, 2 = 1, . . . ,m, j = 0, . . . ,mi)

for some qij ∈ L∞ (ξ is again given by (5.6)) we obtain from Theorem 5.2 the
following result.

Corollary 5.6. Assume that there exists ᾱ > 0 such that

‖|Q + ᾱĒ‖|L∞ + cp

√
0.5ᾱ

m∑
i=2

mi∑
j=0

‖qij‖L∞ < ᾱ.

Then (5.7) is Mγ
2p-stable with respect to the initial function, where

γ(t) = 1[0,r](t) + 1[r,∞](t)(t/r)β

for some β > 0.

Proof. As the reference equation we can take

dx(t) = (diag[−ᾱ, . . . ,−ᾱ]ξ(t)x(t) + g1(t)) dt +
m∑

i=2

gi(t)dBi−1(t) (t ≥ 0). (5.8)

It is straightforward that conditions (R1)-(R2) are satisfied in this case. It is also
easy to see that (D5) is fulfilled. �
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The example below illustrates Corollary 5.6.

Example 5.1. The equation

dx(t) =
(
aξ−1(t)x(t) + bξ−1(t)x(t/τ0)

)
dt + cξ−0.5(t)x(t/τ1)dB(t) (t ≥ 0),

(5.9)
where ξ is again given by (5.6), B(t) is a scalar Wiener process, a, b, c, τ0, τ1 are
real numbers (τ0 ≥ 1, τ1 ≥ 1) is Mγ

2p-stable, where γ(t) = 1[0,r](t) + 1[r,∞](t)(t/r)β

for some β > 0, provided there exists ᾱ > 0 such that

|a + b + ᾱ|+ cp|c|
√

0.5ᾱ + (|ab|+ b2)δ0 + cp|bc|
√

δ0 < ᾱ,

and δ0 = max{log h0, (1− h−1
0 )r}.

Some situations where such a number α does exist are found in the dissertation
[7, Sect. 3.3], where the results are formulated in terms of coefficients of (5.9).

Let us now consider the case of a scalar equation of the form
dx(t) = [ax(t) + bx(h0(t))]dt + cx(h1(t))dB(t) (t ≥ 0),

x(ν) = ϕ(ν) (ν < 0),
(5.10)

where B(t) is a scalar Wiener process, a, b, c are real numbers, h0, h1 are µmeasur-
able functions such that hi(t) ≤ t (t ∈ [0,∞)) for i = 0, 1, ϕ is a stochastic process,
which is independent of the (scalar) standard Wiener process B(t).

We will now exploit the following reference equation:

dx(t) = (−ᾱ(Shx)(t) + g1(t)) dt + g2(t)dB(t) (t ≥ 0), (5.11)

where ᾱ > 0 and h(t) is µ-measurable and h(t) ≤ t for all t ∈ [0,∞). We remark
that in the works [6, 7], the Mγ

p -stability of (5.10) was studied with the help of
the reference equations (5.11) which was ordinary differential equations, i.e. when
h(t) ≡ t.

From Theorem 5.2, we obtain the following corollary for equation (5.10).

Corollary 5.7. (1) Assume that there exist positive numbers ᾱ and δ such that the
reference equation (5.11) satisfies t − h(t) ≤ δ (for all t ∈ [0,∞)) and conditions
(R1)-(R2). If

|a + ᾱ|+ δ(a2 + |ab|) + cp

√
δ|ac|+ |b|+ cp|c|C−1

1

√
C2 < C1,

where C1 and C2 are given by (5.2), then the zero solution of (5.10) is 2p-stable
with respect to the initial function. If, in addition, there exist positive numbers δ0,
δ1, for which t−hi(t) ≤ δi (i = 0, 1, t ∈ [0,∞)), then the zero solution of the (5.10)
exponentially 2p-stable with respect to the initial function.
(2). Assume that there exist positive numbers ᾱ and δ, δ0 such that the reference
equation (5.11) satisfies t − h(t) ≤ δ, h0(t) − h(t) ≤ δ0 (for all t ∈ [0,∞)) and
conditions (R1)-(R2). If

|a + b + δ(a2 + |ab|) + cp

√
δ|ac|+ δ0(|ba|+ b2) + cp

√
δ0|bc|+ cp|c|(

√
C2/C1) < C1,

where C1, C2 are given by (5.2), then the zero solution of (5.10) is 2p-stable with
respect to the initial function. If, in addition, there exist a positive number δ1, for
which t− h1(t) ≤ δ1 (t ∈ [0,∞)), then the zero solution of the (5.10) exponentially
2p-stable with respect to the initial function.

Remark 5.5. Formally, the inequalities in the lemma does not include the constant
ᾱ. However, the constants C1 and C2 depend on ᾱ through the formulas (5.2).
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If the reference equation (5.11) is an ordinary differential equation, then it is easy
to see that conditions (R1)-(R2) are satisfied. If equation (5.11) is not ordinary,
then (R1)-(R2) may fail, and the problem of how to find exponential estimates on
the fundamental matrix U(t) and the matrix kernel C(t, s) from the representation
(3.3) for the reference equation (5.11) is rather difficult. This was discussed in [2].
The problem of how one can numerically estimate the constant C1 in some particular
cases was studied in [4]. Similar algorithms cane be applied to the constant C2.
Using these estimates we derive below some stability results for (5.10).

Consider the following Itô delay equation:

dx(t) = bx(t− ε)dt + cx(h̃(t))dB(t) (t ≥ 0),

x(ν) = ϕ(ν) (ν < 0),
(5.12)

b, c, ε are real numbers, b < 0, ε > 0, −bε < π/2; h̃(t) is a µ-measurable function
such that h̃(t) ≤ t for all t ∈ [0,∞), ϕ is a stochastic process, which is independent
of the (scalar) standard Wiener process B(t).

Taking in the reference equation (5.11) with ᾱ = −b, h(t) = t − ε, we refer to
[2], where the assumptions (R1)-(R2) are verified.

Corollary 5.7 yields now the following result.

Corollary 5.8. (1). If 2|b|+|c|(
√

C2/C1)cp < C1, where C1, C2 are given by (5.2),
then the zero solution of (5.12) is 2p-stable with respect to the initial function. If,
in addition, there exists a number δ > 0 such that t− h̃(t) ≤ δ (t ∈ [0,∞)), then the
zero solution of (5.12) is exponentially 2p-stable with respect to the initial function.
(2). If |c|(

√
C2/C1)cp < C1, where C1, C2 are given by (5.2), then the zero solution

of (5.12) is 2p-stable with respect to the initial function. If, in addition, there exists
a number δ > 0 such that t− h̃(t) ≤ δ (t ∈ [0,∞)), then the zero solution of (5.12)
is exponentially 2p-stable with respect to the initial function.

The constants C1 and C2 can only be estimated numerically. An algorithm of
how to find C1 with an arbitrary precision is presented in [4]. There are some
estimates from this paper in Tables 1 and 2.

Table 1. Estimates for C1

−bτ 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.4
C1 1.001 1.164 1.262 1.510 1.840 2.290 4.620 9.740

Table 2. Estimates for C2

−bτ 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.4
C2 0.754 0.843 0.948 1.075 1.233 1.434 2.666 5.833
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