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EXISTENCE OF SOLUTIONS TO SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS HAVING FINITE LIMITS AT +oco

CEZAR AVRAMESCU & CRISTIAN VLADIMIRESCU

ABSTRACT. In this article, we study the boundary-value problem
i=f@txz), wx(-00)=az(+00), #(—00)=d(+00).

Under adequate hypotheses and using the Bohnenblust-Karlin fixed point the-
orem for multivalued mappings, we establish the existence of solutions.

1. INTRODUCTION

Let f: R? — R be a continuous mapping. Consider the infinite boundary-value
problem

&= f(t,x,x), (1.1)
z(—00) = z(+00), &(—00) = &(+00), (1.2)
where z(+00) and #(£00) denote the limits

x(+o0) = t_lirinoom(t) and #(do0) = t_lé?oog'c(t), (1.3)

which are assumed to be finite. Problem (1.1)-(1.2) may be considered as a gene-
ralization of problem (1.1) with boundary condtions

z(a) = z(b), (a) = x(b), (1.4)

as a — —oo and b — +o00. The bilocal boundary-value problem (1.1)-(1.4) is closely
related to the problem of finding periodic solutions to (1.1). The reader is referred
to [17, 19, 20] where extensive use of topological degree theory is made to study
this problem.

Problem (1.1)-(1.2) is related to the so-called convergent solutions, i.e. the solu-
tions defined on Ry = [0, +00) (or R) and having finite limit to +o00 (respectively
—00), see [4, 5, 14, 15, 16]. For studies on (1.1)-(1.2) using variational methods,
we refer the reader to [1, 2, 3, 13, 20, 21]. In [12] the existence of the solutions to
the equation (1.1) with the boundary conditions x(c0) = &(o0) = 0 is studied for
flt,u,v) = g(t)v — u+ h(t,u). Through the Schauder-Tychonoff and Banach fixed
point Theorems estimates for the solutions are found.
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When f is a differentiable function, (1.1) can be written as

¥ =a(t,z, )T + b(t,x, L)z + c(t), (1.5)
where a, b : R® — R, ¢ : R — R, a(t,u,v) := 01 di(t su, sv)ds, b(t,u,v) =

01 %(t, su, sv)ds and c(t) := f(¢,0,0), for all t, u, v € R.
Sufficient conditions for the existence of solutions to the linear problem

i = a(t)d + b(t)x + c(t), (1.6)

with boundary condition (1.2), were given in [11]. By using this result, in the real
Banach space

X = {z € C*(R) : (3) z(+o0), (I)#(£oo)}
endowed with the uniform convergence topology on R one defines an operator T :
X — 2% which maps u € X into the set of the solutions to the problem (1.7)-(1.2),
where
&= a(t,u(t),u(t))d + bt u(t), w(t))x + c(t). (1.7)
Next one considers the restriction of T to a bounded, convex and closed set M,
conveniently chosen so that the Bohnenblust-Karlin Theorem can be applied. The
compactness of T'(M) is established by using a characterization developed by the
the first author in [4, 6].
The use of a multivalued operator T is motivated by the fact that one can-

not determine a solution to the problem (1.7)-(1.2) through an “initial” condition
independent of u.

2. MAIN RESULT

Let a, b: R3 = R, ¢c: R — R be continuous functions, and let

aq(t) == uglefR {a(t,u,v)}, oft) = S.up]R {a(t,u,v)},

u,ve

t
5(0) 1= sup {bit.u )}, Ai(0) = e ([ asls)ds).
u,veER 0
for i € {1,2} and t € R. We shall assume that a;, ag, § are defined on R.
Consider the following hypotheses, where the integrals are considered in the
Riemann sense:
(A1) The mappings a; and «s are bounded on R, and lim;_ 1+, «;(t) = 0, for
1€ {1,2}

(A2) limy 400 Ai(t) =0 for i € {1,2}

(B1) 0 < b(t u v) for every t, u, v € R and limy_,4 o 5(t) =0
(B2) f (A ft f((sé)ds)dt eRforie{l,2}

(B3) f_:: f(tt)) dt < +oo, for i € {1,2}

(Cl) f le(t)|dt < +o0

“+o00 c .
2) [T (ftA(zgds)dteRforze{lﬂ}.
Our main result is as follows:

Theorem 2.1. If the hypotheses (A1)-(A2), (B1)-(B3), (C1)-(C2) are satisfied,
then (1.5)-(1.2) has a solution.
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Since
1
i ()ﬁ = e
T Ay( foA() - OofoA()dS

is a real number by hypothesis (B3), it follows by hypothesis (B2), via a well known
convergence criterion for Riemann integrals, that for each i € {1,2},

+oo
/ Ai(t)dt < +0. (2.1)
— 00
Similarly, by hypothesis (A2),
Bt) _ L le@®)]
A G =0 e =0
A () A0
it follows, by hypothesis (B3), that
“+oo
B(t)dt < +oo, (2.2)
and, by hypothesis (C1),
/+OO Ol < oo, (2.3)
—0o0 Al(t)

for each i € {1,2}.

Remark 2.2. (i) One can replace the hypothesis (B2) by
(B2) [T Ai(t)dt < +o0.

(ii) Assumption (B2’) does not imply (C2).

(i) Indeed, since (B3) implies the boundedness of the mapping fo ) f(‘?) ds and
therefore, (B2’) implies (B2).
(ii) It is sufficient to choose c(t) = A;(t), for all t € R, where i =1 or i = 2.

For proving our main result we use the following theorem.
Theorem 2.3 (Bohnenblust-Karlin [22, p. 452]). Let X be a Banach space and

M C X be a convex closed subset of it. Suppose that T : X — 2% is a multivalued
operator on X satisfying the following hypotheses:

(a) T(M) C 2™ and T is upper semicontinuous
(b) the set T(M) is relatively compact
(¢c) for every x € M, T(x) is a non-empty convex closed set.

Then T admits fixed points.
Recall that T : M — 2M is upper semicontinuous if for every closed subset A of
M, the set
T'A)={zeM :T(z)NA+0}
is also a closed subset of M. Another useful result is the following Lemma.

Lemma 2.4 (Barbélat) Iff [0,400) — R satisfies: (a) f is uniformly continuous
and (b) the integral fo t) dt exists and is finite, then lim;_, | o f(t) = 0.



4 CEZAR AVRAMESCU & CRISTIAN VLADIMIRESCU EJDE-2004/18

The main idea of this paper is to build a multivalued operator T' defined on an
adequate space which satisfies the hypotheses of the Bohnenblust-Karlin Theorem.
We define

X = {z € C*(R) : (3) z(+o0) and &(£c0)},

which, endowed with the usual norm,
]| == sup max { |z(¢)], |£(t)|},
teR

becomes a real Banach space. The relative compactness of the set T'(M) be will be
proved by using the following Proposition.

Proposition 2.5 (Avramescu [4, 6]). A set A C X is relatively compact if and
only if the following conditions are fulfilled:
(a) There exist hy, ho > 0 such that for every x € A and t € R, we have
(2(8)] < by and [5()] < hy
(b) For every K = [a,b] C R and € > 0 there exists 6 = 0(K,e) > 0 such that
for every x € A and t1, to € K with |t; —ta] < 8, we have |x(t1) —z(t2)| < €
and |£(t1) — &(t2)| < e
(¢c) For every € > 0 there exists T = T(g) > 0 such that for every t1, to with
[t1], |t2| > T and ty-ta > 0, and for every x € A, we have |x(t1) —x(t2)] < €
and |(t1) — (t2)] < e.

3. CONSTRUCTION OF THE MULTIVALUED OPERATOR T

Let u € C?(R) be arbitrary. Consider the problem
& = ay, ()T + by (t)x + c(t)

. . (3.1)

x(+00) = x(—00), z(+00) = @(—00),

(
where a,(t) := a(t,u(t),u(t)) and b, (t) = b(t,u(t),u(t)). Consider the homoge-
neous problem

&= ay(t)T + by(t)x
2(+00) = 2(—00), (-+00) = d(—00). (32)

Since .
x(t) = exp (/ y(s)ds), teR
is a solution to & = a,(t)& + b, (t)z if aond only if y is a solution to
¥ = auy + by —y?, (3.3)

we have a,(t)y — y? < 7 < a,(t)y + by(t), for every t € R.
Let v, w satisfy

o(0) = ¢ (3.4)
and
W = Zmz(()t))i;r bu(t) (3.5)
Hence

Y= ayy + by _y2
y(0) =¢,
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which implies

o(t) <y(t) <w(t), ift>0,
w(t) <y(t) <wo(t), ift<0.
Let au(t) := exp (fg ayu(s)ds), for every t € R. Thus

U(t) _ §ay ()

= 7
1+¢ fo ay,(s)ds (3.6)
w(t) = au(t) [g+/t buls) 1
“ 0 au(s)
Therefore,
t
) < gty <aufe+ / P 4], ez,
1+& [, au(s)ds 0 u(s)
¢
u(t) [g+/ buls) ds} <y —Fl®) o,
0 u(s) 14+¢ [, au(s)ds
We write
gu(t) S y(t) < Gu(t), forteR, (3.7)
where
Sy (t) 1
) 14€ [y au(s)ds’ itt=>0
gu(t) ==  bals) . (3.8)
o (t) [§+f0 au(s)ds}, ift<0
and
t bu(s) 3
()€ + ds|, ift>0
Gu(t) = ( )[f Jo i } . (3.9)
Sail: ift <0
1+¢ fot ay(s)ds’ - 7
Let y,, denote the solution to the equation (3.3) with the initial condition
Hence, ¢y (t) < yu(t) < Gy(t), for every t € R. From (3.6) we see that y,, is defined
for all ¢t € R if and only if
1 1
6 € T oo
5

) = (A, fha)-
ay(s)ds foooau(s)d5> s )

We let A := sup,cc2r) {Au} and p = inf,co2r) {#tu}. Since
A1) < () < As(2),

for every ¢ > 0 and u € C*(R)
Ag(t) < au(t) < Au(t),

) (3.10)
for every t < 0 and u € C*(R)
it follows that
1 - 1 1 _,
oAyt~ [ au(s)ds T [ As(t)dt
and
e 1 1 1
o Awdt T [0 au(s)ds
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Therefore,
1 1
Jo o Ao(t)dt Jo o Au(t)dt
Let

gt):= inf g,(t) and G(t):= sup Gu(t), fort e R.
u€C?(R) weC2(R)

For t <0, we have

w0z [ 2] > awhe [ 2y

au(s) 0 AQ(S)
and for t > 0,
L4+ X [y au(s)ds — 1+ X [ Asx(s)ds
Thus o
Mg (t .
R ift>0
glt) = { Ao A 2 . (3.12)

MO[N+ [y 28ds], ire<o.

Similarly

3.13)
A () - (

T [T AL (5)ds” ift<o0.

By hypothesis (A2), one has g(+00) = G(£o00) = 0. Thus for every & € (A, u) and
for every y solution to the equation (3.3) with the initial condition y(0) = £, w

have

G<t)::{A2 [“*ft e s}, ift>0

g(t) <y(t) < G(t), foreveryteR. (3.14)
Let &1, & € (A p), & # &2 be arbitrary, and yi* be the solution to the problem

5= au(t)y + bu(t) —

y(0) =¢&
where i € {1,2} and u € C%(R). Let z¥(t) —exp foy (s)ds), for t € R, i € {1,2}
and u € C?(R). Then z%(0) = 1, #%(0) = &, @%(t) = () x¥(t), for t € R,

i € {1,2} and u € C%(R).
Let us prove that, for every i € {1,2} and u € C?*(R), z¥(+o0), i%(£00), exist
and are finite. Indeed, by relation (2.1),

o0 = o ([ urtoa)

< exp ( O+°° As(t) [+ /Ot fl(zs)) ds] dt)

<o {([ " aawa) fur [T L a} < o,

and

IN
o
”
o
—
N

/0 ) Aoydr) - A+ /O ) fl(fs))ds}} < 4o,
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for every i € {1,2} and u € C?(R). For i € {1,2} and u € C%(R),
t
ot 6)] = exp ([ t(s)ds).
0

Hence, for ¢t > 0,

o ([ urtias) <o {(

400

As(t)dt) - [u+ /0 m 51(2) ds” =4

and for t <0,
A (t)dt) - [A+/_OO B(s) ds}} —: 5.

exp (/Ot y?(s)ds) < exp {(/0 o Ail(s)

Therefore, taking M; := max {d1,02} > 0, we have |z¥(¢)| < M, for every ¢t € R,
i € {1,2}, and u € C*(R).

Since g and G are continuous with g(+oo0) = G(+o0) = 0 it follows that they
are bounded on R. But

g(t) < y(t) < G(t), foreveryt € R, ic{l1,2} and u € C*(R).

— 00

Hence, there exists a constant d3 > 0 such that
lyi(t)| < b3, forteR, ie{1,2} and u e C*(R)
and so
[Z¥(t)] < My - 63 =: My, forteR, ie{1,2} and u e C*(R).
For u € C?(R) the general solution to the nonhomogeneous equation
& = ay ()& + by (t)x + c(t) (3.15)
is
(t) U u(t)-l— U u(t)—l— u(t) /t u( ) C(S) d
x(t) =iz x x - 2Y(s) s m——=—=ds
Y121 Y2 Lo 2 0 1 (52 . gl)au(s)
c(s)

(1) / ) e

with 7%, 7% € R. From the condition z(+00) = z(—00), we have

N - (27 (+00) — af(—00)] 415 - [25(400) — 5 (—00)]

+o0 cls
= 2} (+00) - /0 xhy(s) - ey ds

(3.16)

. e c(s)
-z} (—00) - /0 x5 (s) m———Fy——ds (3.17)

_ N N C) R
w0 [t g

Now we prove that the relation (3.17) is satisfied by infinitely many pairs (v, ~¥),
u € C%(R). Indeed, if we denote by

dy =z} (+00) — z}(—00), do:=x§(+00) — 25 (—00),

and ds the right hand side of (3.17), then we have to consider only three cases.
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Case 1. If dy # 0 and dy = 0, it follows that ~j* = di’ and 4 € R; similarly, if
d1 =0 and dy # 0, it follows that 7' € R and 5 = d
Case 2. If dy # 0 and ds # 0, it follows that

ds — don¥
7{‘:372% and v € R.
dy
Case 3. If d; = 0 and dz = 0, we show that ds = 0 (and so the solutions are ~,
75 € R).
Indeed, in this case, 2 (+00) = 2¥(—00) and z¥(+00) = 2¥(—0), and we have
to prove that

too c(s Hoo c(s
xY (+00) / zy(s) - () ds :xg(+oo)~/ x}(s) - () ds. (3.18)

—00 Oéu(S) —o0 Oéu(S)

To prove (3.18) we shall apply Lemma 2.4 to the mapping f : [0, +00) — R, defined

by
+t ols 4t ols
s =t [ ase) has—ann- [ are) Lha

2"

—t Oéu(s) -t Oéu(s)
Thus
df o [T el®) wry. [ (). )
dt() xl(t)'/_t x2(8).au(s)d _x2(t)'/_t z1(s) a,(s) ds

+ A ) 30 - (0 (1),

Since &} (+00) =z} (£00) - y;*(+o0) = 0, i € {1,2}, the mapping > is bounded on
R (see hypothesis (C2)), and
lim [2Y(2) - 23 (=t) = 23(4) - 27 (=1)] = 0,

t——+o0

it follows that lim;_, 4 o Z—{(t) = 0. Therefore f is uniformly continuous on [0, +00),
being Lipschitz on [0,400). Since z¥, i € {1,2} are bounded, from (C2) it follows

that f t) dt exists and is finite. Hence, by Lemma 2.4 we obtain

Now we define the multivalued operator T : X — 2%, by

) c(s
Tu = {vi‘x‘f(-)+7¥$3(~)+$3(')'/o 7i(s)- (525(1))au(s)ds
c(s)

¢)
-z} () - zy(s) ————ds,
1() /0 2() (52_51)au(8)
with [yi] + 13| < 1, 91, 94 satisfying (3.17)},
for every u € X. By (3.15)-(3.16) we have

x(t)|<2M1+|£2]\/;[€1|(|/t (s 2ds +|/ 2 ds|).

Hence |z(t)| < kq, for every t € R, where

3 M +o00 2M? O Je(s)
kl = maX{2M1+ ‘62_§1|/ 5 |§2_€1|[m A2(s)d
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Similarly

l2(t)] =
and there exists another constant ko > 0,
M My [T° oM My [°
kg::max{2M2+ ! 2/ | d L 2My + — 2/
€2 — &1l €2 — &1

such that |z(t)| < ko, for every t € R. Remark that, by relation (2.3), k1, ko are
finite. We let &k := max{k;, k2}, and

M = {gg € C*(R), |z(t)| <k, |@(t)] <k, for every t € R}.

)

E () + A5l (E) + i () /0 24(5) g — ) /0 225052

u(s) ay(s)

4. PROOF OF MAIN RESULT

To prove Theorem 2.1 it is sufficient to prove that the operator T has a fixed
point. We do this in three steps.
Step 1: For every u € M, T(u) is a non-empty convex closed set. Let u € M be
arbitrary.

From the definition of T" we see that T'(u) is non-empty and convex.

Let (™)nen C T(u) be such that 2™ — x and ™ — & uniformly on R as n — oo.
We have

2 (t) =@t () + 2 s (8) + HY (D),
for every n € N, with [+{,,[ + |73 .| < 1, 71 ,,, 7%, satisfying (3.17), and

HY(t) := m%(t)~/0 x’f(s)'mds_ﬁ(t)'/o 73(s)- (&C;Mds

Then there exist subsequences such that v, = —~{" and 73, — 73, as n — oo.
Since (z¥7),en converges uniformly to y := Y4z + y4xy + HY, it follows that
x =1y. Also
3':’%—>y=a':, as n — o0.
So x € T'(u), that is T'(u) is a closed set.

Step 2: T(M) is relatively compact. The relative compactness of T'(M) will be
proved by using Proposition 2.5.

From the definitions of 7" and M we see that |z(¢)| < k, |£(¢)| < k, for all t € R.
Thus the first condition of Proposition 2.5 is fulfilled with h; = ho = k.

Conditions (b) and (c) of Proposition 2.5 are implied by the following assump-
tion:

(d) There exist f1, fo: R — Ry integrable on R such that for every x € A

[2(t)] < f1(t) and |EQ@)] < fa(t), fort€R.

This last assertion follows from the fact that, for every t1,t5 € R,
ta

x(tl)—x(tg):/2dc(t)dt and :b(tl)—dc(tg)z/ (1) dt

t1 t1

For i € {1,2} let

t B(s) |€i] A2 (2)
maX{A2 (t) [+ fo 0 A s)ds]7 N+ J! fxz s)dsl} t=20

[€:] A1 (1) 0 B(s)
max{|1+gi_[; i oa At = A+ [, xayds ]} t<0.

q1i(t) =
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Hence |z¥| is bounded by the integrable function My - g1;, @ € {1,2}. Furthermore,

(s)
|/x2 RO

is bounded (on the positive semiaxis by m “Jo oo Jfl(fil) ds and on the negative

semiaxis by | 5 f_oc ff(il ds), and |2}| is bounded by an integrable function,

we see that
A c(s)
|x1 ./0 xz(s)-—(gz_fl).au(s)dﬂ

is bounded by an integrable function. Similarly,

O < C) N
|x2'/0 z(s) (52—51)-au(8)d8|

is bounded by an integrable function. Therefore, the existence of f; in assertion
(d) follows. Now, since

Z(t) = ay(O)&(t) + by () + c(t),
a,, is bounded (hypothesis (A1)), |#| is bounded by an integrable function, |z| is
bounded (by k), b, is integrable on R (by relation (2.2), hypothesis (B1), and |¢| is
integrable on R (by hypothesis (C1)), we see that |Z| is bounded by an integrable
function. This proves the existence of fs, and hence assertion (d) is verified.

Step 8: T is upper semicontinuous. Let A be a closed subset of M. Hence if
(tn)n C A such that u,, — u and 4, — @ uniformly on R, as n — oo, it follows
that u € A.

Let z, € T~1(A) be such that 2z, — z and %, — # uniformly on R, as n — oo.
We have to prove that z € T-*(A). Since 2z, € T 1(A) there exists z, € A,
T, € Tz,. Thus

and
Tp(400) = xp(—00), En(+00) =Ep(—00), neN. (4.2)
Since x,, € T(M) and T(M) is relatively compact, the sequence x,, contains sub-
sequence converging in C? to some x. One can assume that x, — z, &, — @
uniformly on R, as n — oo.
Since a(t, zn(t), 2n(t)) — alt, 2(t), 2(t)) and b(t, z,(t), 2n(t)) — b(t, 2(2), 2(2)),
uniformly on compact subsets of R, it follows that x is solution to the equation
& =a(t,z(t),2(t))2 + b(t, 2(t), 2(t))z + c(t),
with
z(0) = hm 2,(0) and £(0) = lim &,(0).

Furthermore, by (4.2) we find, by passing to the limit as n — oo,
x(+00) = x(—00) and &(+00) = z(—00).

Since the set A is closed, x € A. Therefore, 2 € T~1(A), which completes the proof
of Theorem 2.1.
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