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NONLOCAL STURM-LIOUVILLE PROBLEMS WITH INTEGRAL
TERMS IN THE BOUNDARY CONDITIONS

MUSTAFA KANDEMIR, OKTAY SH. MUKHTAROV

Communicated by Ludmila S. Pulkina

ABSTRACT. We consider a new type Sturm-Liouville problems whose main
feature is the nature of boundary conditions. Namely, we study the nonhomo-
geneous Sturm-Liouville equation

p()u” (z) + (a(z) = Nu = f(z)
on two disjoint intervals [—1,0) and (0, 1], subject to the nonlocal boundary-
transmission conditions

™) (=1) + Frul™) (=0) + mul™*) (+0) + yul™) (1)

Ny 2 myp
+ > SkyulE) () + Y Z/ Ko ()uD (t)dt = fr, k=1,2,3,4.
j=1 v=1;=07%v
where Q1 :=[-1,0), Q2 := (0,1] and z; € (—1,0) U (0, 1) are internal points.

By using our own approaches we establish such important properties as Fred-
holmness, coercive solvability and isomorphism with respect to the spectral
parameter A.

1. INTRODUCTION

Various generalizations of classical Sturm-Liouville problems for ordinary lin-
ear differential equations have attracted a lot of attention because of the appear-
ance of new important applications in physical sciences and applied mathematics.
For instance, theoretical investigations have become interested in the discontinu-
ous Sturm-Liouville problems for its application in physics. The discontinuity of
the coefficients of the equations in the Sturm-Liouville problems corresponds to
the fact that the heterogeneous media consists of two different materials. On the
other hand, transmission problems appear frequently in various fields of physics
such as in electrostatics, magnetostatics and in solid mechanic for discontinuous
problems (in these regard see, [8, 21]). Solvability and some spectral properties of
nonlocal Sturm-Liouville problems have been investigated by many authors; see for
example, [3, 4, 12 13| 14, 20, 27, 28]). An important special case of the nonlocal
Sturm-Liouville problems are so-called multipoint Sturm-Liouville problems. Such

2010 Mathematics Subject Classification. 34A36, 34B08, 34B24.

Key words and phrases. Sturm-Liouville problem; nonlocal boundary conditions;
coercive; solvability; Fredholmness.

(©2017 Texas State University.

Submitted October 11, 2016. Published January 12, 2017.

1



2 M. KANDEMIR, O. SH. MUKHTAROV EJDE-2017/11

problems have been extensively studied by many authors; see for example, [9] 10}, [11]
and references therein.

In general, the mathematical problems encountered in the study of boundary
value transmission problems or nonclassical problems cannot be treated with the
usual techniques within the standard framework of Sturm-Liouville problems. In
classical theory of boundary-value problems for ordinary differential equations is
usually considered for equations with continuous coefficients and for boundary con-
ditions which contain only endpoints of the considered interval. This article deals
with one nonclassical boundary-value problem for a second-order ordinary differ-
ential equation with discontinuous coefficients and boundary conditions containing
not only endpoints of the considered interval, but also a finite number of internal
points and integral terms. Namely, we consider the differential equation

LA\ = p(x)u”(z) + (¢(z) = Nu(z) = f(z), x€[-1,0)U(0,1] (1.1)
together with new type boundary conditions

Ly := o™ (=1) 4 Bpu™) (—0) 4 npul™) (+0) + ™) (1)

ok L . 1.2
1 SLRCEIEMED 9 B A S CTCIG Iy S
j=1 v=1j=0"7

for k = 1,2, 3,4, where p(x) is piecewise constant function, p(z) = p; for z € [—1,0),
p(z) = po for & € (0,1]; A-complex parameter; p; (i = 1,2), ok, Bk, My Tk, Oki
(i =1,2, k = 1,2,3,4) are complex coefficients; my, (k = 1,2,3,4) are integers;
Q :=(-1,0), Q2 := (0,1); Kro; € W;"’“(—l,O)—i—Wg”(O,l); zp; € (=1,0) U (0,1)
are internal points and ¢(z) is measurable function on [—1,0) U (0, 1]. Naturally,
we shall assume that, p1 # 0, po # 0 and |ax| + |Be| + |mk] + [7&] # 0 (B =
1,2,3,4). Some special cases of the considered Sturm-Liouville problem f
arise after an application of the method of separation of variables to the varied
assortment of physical problems, namely, in heat and mass transfer problems (see,
for example, [I9]), in diffraction problems (for example, [1]), in vibrating string
problems, when the string loaded additionally with point masses (see, [29]) and
etc. Some problems with transmission conditions which arise in mechanics were
studied in [21] 29]. Investigation of various spectral properties of some nonlocal
boundary-value problems can be found in some works of Imanbaev [12], Sadybekov
[26], Shakhmurov [27], Aliyev [2] and Rasulov [25]. Note that some new type Sturm-
Liouville problems with nonlocal boundary conditions were investigated by authors
of this paper and some others [5] [6] [7, 15, 16, 24, 22| 23].

2. HOMOGENEOUS EQUATION WITH NONHOMOGENEOUS TRANSMISSION

CONDITIONS
For convenience we denote
Nk 2 mpg )
Spu =Y 6pul™) (z1),  Fru = ZZ/ Ko (u (t)dt, &k =1,2,3,4.
j=1 v=1j=0" v

We consider the homogeneous differential equation

Lo(\)u := p(x)u” () — Au(xz) =0 (2.1)
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with the nonlocal and nonhomogeneous boundary conditions
Liou == au!™) (=1) + Brul™) (=0) + nju™) (40)

(2.2)
+ eul™) (1) + Spu = fr,, k=1,2,34.

For convenience we shall use the notation
wi=—(pr Y2 wa = (T VYR ws = (0N wa = (' N2,
w = min{argp;, argpe}, @ := max{argp;, argps},
aqwi™t Prwyt mwgt o ywyt
wl?  Pawy?  Mowg?  yowy'?
azw(™®  fawy® nawy® yswy?|’
Wit Pawy™ mawz™ yawy™
B (w,w) ={AeC:m+w+e<argA<3r+w—c}

0=

for real € > 0 small enough.

The direct sum of Sobolev spaces W (—1,0)+W}(0,1) (for an integer k > 0 and
real ¢ > 1) is defined as Banach space of complex-valued functions v = u(z) defined
on [—1,0) U (0, 1] which belong to W¥(—1,0) and W} (0,1) on intervals (—1,0) and
(0,1) respectively, with the norm

[ullg,x = ||U||W;(7170) + Hu”ifv;(o,l)-

Here, as usual, Wf(a, b) is the Sobolev space, i.e. the Banach space consisting of all
measurable functions u(x) that have generalized derivatives on the interval (a,b)
up to k-th order inclusive with the finite norm

S Ha
g =3 ([ O @rar) "
i=0 @

Theorem 2.1. If 0 # 0 then for any € > 0 there exist p. > 0 such that for all X €
B.(w,w) for which |\ > p., the problem [2.1)-(2-2) has a unique solution u(z,\)
that belongs to W(—1,0)+WL(0,1) for arbitrary | > max{2, max {my, my, ms3, ms}+
1} and for these A the coercive estimate

l 4
_ a1
S I TFlullgr < CE) Y INT T £ (2.3)
k=0 =0

s valid.

Proof. Let A = p?. Let us define four basic solutions u; = u;(x, u) (i = 1,2,3,4) of
(2.1) as

wi(, ) == {exp(wiu(x —&)) forxel;

0 for x ¢ I,
where, {1 = -1, 6 =6 =0, =1; j=1fori=1,2and j = 2 for i = 3,4;
I = I, = [-1,0), I3 = I, = (0,1]. Then the general solution of (2.1)) can be

written in the form

U(.’IJ,/J) = chuk@jvﬂ)' (24)
k=1
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Substituting this expression into (2.2) yields the following system of linear homo-
geneous equations with respect to variables Cy, Csy, Cs, Cy:

(wip)™ (o + Bre™")C1 + (wop)™* (cre™ 2 + B) Co
+ (w?)u)mk (nk + ,ykew3ll)03 + (W4M)Mk (’r’keiuhhu + 7k>04 = fkv k= 17 2a 37 4.
(2.5)
From \ € B.(w,®) it follows that

T+e 3m—¢
< arg(wip) <

fori =1,3;

——— <arg(wip) < T=° fori= 2,4.
2 2
Consequently, for these A and for € > 0 (small enough), we have
(=1 Re(wip) < —|Al|ws] sin%, k=1,2,3,4.
Hence, the determinant of the system (2.5) has the form

mi mi mi my
1wy Biws Mws Yiwy

mo mo mo ma
oWy Bows, Nows Yowy

ms3 ms3 ms3 ms3
Q3wq 53‘”2 TI3Ws Y3Wy
oqwi™ fawy™ maws™ yaw)™

frof™ onwyt mwst mwyt

4 AT () e | B2 aawy™ w5 mawy )
Bawi™  azwy™® ysws® nzwy™
Bawi™  agwy™ yaws™ nawy™

A(N) = Az Ziza

=A"(0+1r(N)

where m = my + mg + mg + my and r(A) — 0 as |A| — oo in the angle B, (w,®).
Since 6 # 0, there exist p. > 0 such that for all complex numbers A satisfying
A € B.(w,@) and || > p. we have A(\) # 0. So, for these A, system has a
unique solution

4
ZAM Vo i=1,2,3,4

=1

where A;x(A) is an algebraic complement of (i, k)-th element of the determinant
A(X). Tt is easy to see that each of the determinant A, () has the representation

A (N) = (Oig + ri(N))A™T™x

where 6,5 are complex numbers and r;; — 0 as |A] — oo in the angle sB.(w,®).
Then we have
4

—m ezk + Tk ) .
Ci(N) = Z)\ kak’ i=1,2,3,4.
k=1

Therefore, the solution of problem (2.1)-(2.2)) has the form

) = 3o S ) ),

1=1 k=1 ( )
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From this it follows that for each integer { > 0

4 4
Rl PR el S (Youd V) S TSP PRIAY D (2.6)
k=1 i=1
Further, by (2.4) we have the inequality

0 0
Jaa N gy = [ ARV g < [l e,
1 -1

= (— gAlfen]sin 5) 7! (emallsing 1)
< Oe)|A\!
as |A\| — oo in the angle A € B.(w,@). In a similar way we have
lur( VI 1) < CEOWT, i =2,3,4

as |A\| — oo in the angle A € B.(w,®). Substituting these inequalities in (2.6]) we

have
4

g1
0z, (-1,0) < Ce) D IA ™71 fil
k=1
which, in turn, gives us the needed estimation (2.3)). The proof is complete. O

3. FREDHOLM PROPERTY OF PROBLEM WITH MULTIPOINT AND FUNCTIONAL
CONDITIONS

Let us consider problem (|1.1)-(1.2) and the operator £ corresponding to this
problem. Suppose that | > max{2, max{mi,ms,m3,ms} + 1} and define a linear
operator £ from W}(—1,0)+W/(0,1) into WE2(—=1,0)+W/2(0,1) 4+ C* by action
low

Lu = (L(N)u, Lyu, Lou, Lyu, Lyu).

Theorem 3.1. Let the following conditions be satisfied:
(1> P1 7é 07 D2 7é 0;' .
(2) the functionals Fi, k = 1,2,3,4, in W (—1,0)+W (0, 1) are continuous;
(3) q(z) is measurable function on [—1,0) U (0,1].

Then the linear operator L is bounded and Fredholm.

Proof. The operator £ can be rewritten in the form
Eou = (Lo()\)u, Llo’u,7 LQOU, L30u’ L40u),
Liu = (q(x)u+ Aow, Fru, Fou, Fau, Fyu)

where Ao € B:(w,w) is some complex number sufficiently large in modulus. By
Theorem the operator Lo is an isomorphism from WE(—1,0)+W/(0,1) onto
WL 2(=1,0)+W[2(0,1)+C*. Further, it is easy to see that the linear operator £y
acts compactly from W}(—1,0)+W,(0,1) onto W/ =2(—1,0)+W/}=2(0, 1)+C*.
Consequently, we can apply the theorem of Fredholm operator perturbation [22]
p. 238] to the operator L = Ly + Ly, which follows that £ is Fredholm. Moreover,
it is obvious that the operator £ is bounded. So, the proof of the theorem is
complete. (I
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4. TSOMORPHISM AND COERCIVENESS OF THE PRINCIPAL PART OF THE PROBLEM
Consider problem — without internal points, namely,
Lo(Wu = pla)u(z) - Mu(@) = f(a), (4.1)
Liou := cpul™) (=1) + Brul™) (—=0) + npu™) (+0) + ™) (1) = fr,,  (4.2)
for k =1,2,3,4. The corresponding operator is
Lou = (Lo(MNw, Lygu, Logu, Laou, Laou).

Theorem 4.1. Let the following conditions be satisfied:

(1) 8 #0;

(2) 1 > max{2, max{m, ma, msg,mg} + 1}.
Then for each € > 0 there exist p. > 0 such that for all complex numbers \ sat-
isfying A € Be(w, @), |A| > pe the operator Lo(\) from Wi(=1,0)+WL0,1) onto
W572(71,0)4W{§’2(0, 1)+C* is an isomorphism and for these X the following in-
equality holds for the solution of f,

l
-k
D ullw,,
k=0

) (4.3)
1—2 —m,—1
CE) (Il + A F Nl + D2 A7)
v=1

Proof. 1t is obvious that the linear operator Lo()) is continuous from the space
Wh(=1,04+WL0,1) to W[ 2(=1,0)+W/[=2(0,1)+C*. Let (f(x), f1, f2. f3, f4) €
Wl 2(-1,0 —l—Wl (0,1 +(C4 be any element. We shall seek the solution u(z, A) of
problem i in the form of the sum u(xz, \) = uy(z, A) + uz(z, A) as follows.
By fo(z) (v = 1,2) we shall denote the restriction of f(z) on the interval 2.

Let f,() € W(ﬁfz(R) be an extension of f,(-) € Wé*Q(Lj) such that the extension
operator S, f, = f, from W/ =2(I1,) to W/=2(R) is bounded for v = 1,2. [30),
Lemma 1.7.6], where as usual R = (—o00, 00). First consider the equations

—po(a)u” () + Mu(z) = fo(z),z € R
for v = 1,2. By applying the [30, Theorem 3.2.1] we see that this equation has a

unique solution @1, = @1y(-,A) € W}(R) and for uy,(z,A) (ie. the restriction of
U1y (2, A on interval) ©,,) the estimate

L =2
DN urollwg e,y < CEUS w2,y + A Z 1flL,@n),  (44)
k=0

for v = 1,2, is valid for all complex numbers A satisfying A € B.(w, ). Conse-
quently, the function

(2, )) = uir(x,N), for x € (—1,0)
! uia(z, ), for z € (0,1)

satisfies equation (4.1)). In terms of this solution, we construct the boundary-value
problem

p(x)u” (z) — Mu(z) =0, z€(—1,0)U(0,1),
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Lkou = .fk - Lkoul(")‘)ak = 1727374'

By Theorem this problem has a unique solution uy = us(x, \) that belongs to
Wé(fl, O)J}Wé (0,1) for all complex numbers X satisfying A € B.(w,®), sufficiently
large in modulus, and for these A the estimate

l 4
STINE uzllgr < ) ST IATT T D3 (| f] + | Luoual) (4.5)
k=0

v=1

holds. By applying the of Theorem and taking into account [27, Theorem
1.7.7/2], we have that for all A € B.(w, @) and | > max{2, max{m1, mz, mg, ms}+1}
that the following estimates hold.

N = D21 Lygus | < CINE™ =072 g || gma 1,0 cmo fo,1]
< OO [luallgo + lluaflg.) (4.6)
< CE) 1 flga—z + A [ ll40)-
From and we have the inequality

l
I—k
D I [lullg
k=0

4
12 —m,—1
< CE) (I llga-2 + NZ* 1 Fllgo + 32 W02, ).
v=1

(4.7)

It is easy to see that the function u(z, \) defined as u(xz, \) = ui(x, \) + ua(x, A)
is the solution of the considered problem —. Taking into account the
estimates and (4.7), we see that for this solution the needed estimation
is valid. Moreover, from estimate (4.3 it follows the uniqueness of the
solution. On the other hand by Theorem the operator L is Fredholm from
Wi(—1,0)+WE0,1) to WE2(=1,0)+W/2(0,1)+C*. Now, isomorphism of this
operator follows from the fact that it is a Fredholm and one-to-one operator. So,the
proof of the theorem is complete. O

5. SOLVABILITY AND COERCIVENESS OF THE MAIN PROBLEM WITH NONLOCAL
BOUNDARY CONDITIONS

Now, we can study the main problem (|L.1))-(1.2])
Theorem 5.1. Let the following conditions be satisfied:
(1) 6 £0;

(2) 1 > max{2, max{my, ma, m3, my} + 1},
(3) The functionals F, are continuous in W™ (—=1,0)+W;(0,1).

Then for each € > 0 there exist p. > 0 such that for all complex numbers \ €
B.(w, @) for which |A\| > p. the operator

LN := (L(\)u, Lyu, Lou, Lau, Lyu)

is an isomorphism from WL(—1,0)+Wk(0,1) onto W[ =2(—1,0)+W/}~2(0,1)+C*
and for these X\ the following coercive estimate holds for the solution of problem
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[L1)-2)
! I—k -2 4 1
SN g < @ (I laas + NZ o+ ST 9211]) - (5.1)
k=0 v=1

where C(g) is a constant which depends only on €.

Proof. Let (f(x), f1, f2, f3, f4) be any element of Wé‘Q(—l,O)—i—W_Q(O, 1)+C%. As-
sume that there exists a solution u = u(z, A) of problem (1.1)-(1.2) corresponding
to this element. Then this solution satisfies the equalities

Lo(\u = L(\u — g(a)u, (52
Liou = Lyu — Spu — Fru, kK =1,2,3,4.

By applying Theorem to the problem (5.2))-(5.3)) we have that for this solution
the following a priory estimate hold

!

L =2
DA fullgr < C(E)(IIL(A)U —q(@)ullgi—2 + A7 [[L(A)u = g(x)ullq,o
k=0

4
SN Ly — Sy — Fuu)

v=1

+C€) (I lg2 + NF 1l + la(e)elga-2 (5.4)

4
-2 gy —1
+IN T llg(@)ullgo + > A D2\ f,|

v=1

4
+ ) T2 (S + |fvu|)>

v=1

Let ¢ be any real number satisfying
.1 .
0<5<m1n{§,1+xki,|xki|,l—xki:k:1,2,3,4, i=1,2,...,n}.

By applying the same approach as in [24], sec. 2.8.3] it is easy to construct a function
Ys(x) € C§°[—1,1] such that

Ys(x) =1 forxe[-1+04,-6]U[51-1],

§ ) §
Ys(x) =0 forze[-1,-1+ 5] U [—5, 5] Ul- 2 1]
and 0 < s(x) <1 for all z € [-1,1]. Tt is obvious that
[Swul < Cll(su) ™ ler-1- (5.5)

By [25, Theorem 3.10.4], for u € Wé(fl, ())%Wé((), 1) the following estimate holds,

—my—1 me L
N =D oy < Clfullg + 1M ullq.0) (5.6)
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By Theorem [5.1] from (5.5)) and (5.6) it follows that for all A\ € B.(w,®) sufficiently
large in modulus the following estimate holds,

A== 2) S u] < CIN 7072 (1) | gy
< O([[sullqr + 1N [¥5ully.0)
< C(e) (| Lo\ (Wsw) -2 + 1A 2 [ Lo(N) ($5u) ] 0.0)
< C(e) (ILo(Mullgi—2 + N Z | Lo(Nullgo

l—1—k
+ la(@)ullga—s + A7 g(a u||q,o+Z|A| iy
1—2
<ce)( A 1100
1—1—-k
+lla@)ulgr-z + 1N F gt u||q,o+Z|A| Jullo)

(5.7)
By [5, Theorem 1.3.3] there is a positive constant C' such that for all u in the set
Wé(—l, 0)—i—Wé (0,1) and for each k = 0,1,...,l—1 the following inequality is valid

_k_

lullgr < Cllully}! (5.8)

Applying the well-known Young inequality
1 1.0
ab < —(aa)? + —(—)1
~(@a) + (D)

where a > 0,b6>0,a>0,1<p,q < o0, ]; %: 1 to the right-hand of (5.7)) for

ke 1 kE+1

o= lllfih b=l p=

we have

k —(k

lullgs < O (57 Nl + g0 Vlhullgo)
for k=0,1,...,1 — 1. We denote
A(e) = max {C——a'F k=0,1,...,1—1}
max k+1 ck=0,1,..., ,
B(a) = a_(kH):k::O,l,...,l—l}.
Then from inequality (5.6)), we have
1 =
A28 u) < Ce )(IIfIIq,zszAI 7 [1£lla.0)
Zm’ =A@l w1 + B(@)ul40)
(5.9)

l
< (C(e)A(a) + Diz, @) A2 ST INF ulg
k=0
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where D(e, @) is a constant which depends only on € and a. In view of [30, Theorem
1.7.7/2], for any ¢ > 0 we obtain

gk < Cllullgprr + C(Oullg,o-
On the other hand, from [5, Lemma 1.8] and [25, Theorem 8.19] we have

[[u

| Feu| < Z / Kty (D (0)dt] + | [ Ky (1) (1)t
Q
my
gs%p(z / Kias O Old+ Y [ uas (a0 )
4_ Q4 <_ Q4
=0 (5.10)
Ss%p(Z/ K, (1) |dt+Z/ [y ()]t
j=07
< Chllullgr + Collullgk
< C”UHq k-
From and (| we have
lg(x)ullg—2 + 1A = llg(z |q,o+Z|)\|(l o= 2 (| Syl + | Foul)
< CEIfllga—z + A= 1 fllq0) + C(lullq, 0)
1
2 _ ik
COIN = llullg.o + (C(e)A(@) + D(g, a) A7) Y T IA = [Jullg.r
F=0 (5.11)

4
+C YN
v=1
-2
CE)flgi—2+ 1A= 1 Fllq.0)
+ (C(e)A(e) + D(e, )N 72) ZIM 2 [ullg.n
Substituting ((5.10)) into we obtaln

l 4
>IN ullgn < c<e>(||f||q,l_2 HF o + 3 A= D2, )
k=0

+(Cle)Aa) + D(e, a)|A| "2 ZIM [[ellg,k-

For a fixed € > 0 we can choose a > 0 so small, and |/\| so large that
C(e)A(@) 4+ D(e, )|\ Y%7 < 1.

Thus, for A € B.(w,®) sufficiently large in modulus we obtain a priori estimate
(5.1). From this estimate it follows the uniqueness property of the solution of prob-
lem (1.1)-(1.2)), i.e. the operator £(A) is one-to-one operator. Moreover, by Theo-
rem 3.1|the operator £()) from W(—1,0)+WE(0,1) to W} =2(—-1,0)+W.2(0,1)+C*
is Fredholm. Consequently, the existence of a solution results in its uniqueness. So,
the proof of the theorem is complete. O
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