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I. INTRODUCTION

In this thesis, we will develop a statistical model that captures in-the-moment

interaction between teacher and student in mathematics classrooms. We will model

this interaction by considering the teacher moves as a homogeneous Poisson process

and the student actions as a non-homogeneous Poisson process. Our model will

assess the causal relationship between these two Poisson processes.

Capturing the Nature of the Interaction

Pedagogical, productive, and meaningful moves on the part of teachers enable

students to elaborate their own ideas and engage with their peer’s ideas. Moreover,

meaningful teacher moves can help students draw conclusions or successfully

solve problems in classroom activities. Focusing specifically on mathematics

classrooms, productive teacher moves provide opportunities for students to engage

in deep mathematical reasoning and discourse, which will lead to higher levels of

engagement and achievement outcomes (Boaler and Staples, 2008). To understand

how teachers’ moves shape student engagement and achievement in mathematics

classrooms, it is important to investigate their initial and subsequent moves and

their effects on the nature of student and teacher interactions (Webb et al., 2014).

Capturing interactions between teacher and students in math classrooms

is a crucial area in mathematics education. Researchers have recently developed a

variety of instruments that capture particular aspects of these interactions (Jacobs

and Spangler, 2017). For example, one instrument may measure teacher moves and

students’ responses separately, while another instrument captures the teacher role

in discourse and the teacher reactions (Jacobs and Spangler, 2017). However, few

instruments explore how teacher and student activity unfolds over time.
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To address this need, Melhuish et al. (2020) have developed a

well-constructed instrument that captures the interactions in the moment in

mathematics classrooms, The Math Habits Tool. This instrument is used to

collect data and define the events occurring in the moment about the nature of the

students and teacher relationships in mathematics classrooms (Sorto et al., 2019).

However, to make use of this type of data, there is a need to develop statistical

models to explain the interactions in the moment in mathematics classrooms.

Why do we need a statistical model to capture the interactions between

teacher moves and student actions? Previous studies have employed qualitative

methods to investigate the processes of teacher-student interactions in mathematics

education (Jacobs and Spangler, 2017). To identify these interactions, researchers

typically follow certain steps. First, they observe classrooms over a period of

time and identify teacher and student moves as data. To analyze these data,

they examine interactions between teacher and students with a conceptual or

instrumental framework,using codes on discrete instances or holistic rubrics.

While qualitative analysis can serve to develop theories of how teacher and

student activity unfolds, and score-based instruments can link overall teaching

to student outcomes, there is a need to measure instruction at a fine-grained

level to quantitatively test theorized relationships between teacher and student

activity. Existing statistical models do not utilize timing precisely, such as whether

particular teacher moves precede students’ moves or how long after teacher makes

a productive and meaningful move, students respond to it. Thus, current models

do not adequately capture the interactive nature of teachers’ and students’ moves

as a process in time. However, to test theories of teacher-student interactions,

it is necessary to pay attention to the sequence and timing of the interactions

(Jacobs and Spangler, 2017). The theories being proposed are about interactions

that are happening over time, prior to the Math Habits Tool, but the current tools
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available were not precise enough to measure the actual processes these theories

purport to explain. Therefore, there is a need for a well-constructed model that

captures in-the-moment interactions between teachers and students in mathematics

classrooms.

The Math Habits Tool captures in-the-moment interactions between the

teacher and students. As these two processes (teacher’s moves and students’

actions) occur concurrently over time, a model should capture the interactions

while taking into account the time dimension. In our model, while the teacher’s

moves are considered homogeneous processes, the students’ responses are considered

non-homogeneous Poisson processes. This statistical model can therefore be used to

examine interactions over the time of their duration.

Homogeneous Poisson Process

The Poisson process is used broadly in many research areas, such as health,

engineering, and education. It is a counting process used to model the occurrences

of an event within a specified amount of time. For example, the receipt of daily

email from the administration or the times a user checks their social media account.

The plot of the Poisson process (see Figure 1) is a step function with jumps of

size 1 at each time when event is observed. Note that the jump size is constant

but the times of the jumps are random. In the example shown in Figure 1, seven

events are observed before time t = 40. In this section, we define and explain

the Poisson process with its properties, which is crucial for future chapters which

focus on simulating the homogeneous and non homogeneous Poisson processes and

developing a model that assesses the relationship between them. After testing the

model with simulated data, we will apply the model to real-world data. For further

background on Poisson processes see The Statistical Analysis of Series of Events

(Cox and Lewis, 1966), Introduction to Stochastic Processes (Cinlar, 1975), and
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Figure 1: Poisson Process

Introduction to Stochastic Process with R (Dobrow, 2016).

In this counting process, let N(t) denote the total number of arrivals over

[0, t], and λ be a constant to represent the rate of occurrences. N(t, t + h) denotes

total number of occurrences or events that have occurred in [t, t+ h], where h > 0.

Definition 1 (Poisson Process Dobrow (2016)). For λ > 0 and t > 0, a counting

process is called a Poisson process if the following criteria are met

1. N is non-decreasing with N(0) = 0.

2. The rate of occurrences of an event λ is constant over [0, t].

3. Two events cannot occur simultaneously. P (N(t + h) − N(t) > 1) → 0) as

h→ 0 for all t > 0.

4. Events in non-overlapping intervals are independent: N(t, t+h) is independent

of N(t).

5. The process has stationary increments, that is, for every t ≥ 0 and h ≥ 0 ,the

N(t+ h)−N(t) depends only on h, the length of the interval [t, t+ h].

To present several important properties of Poisson processes, let Tk be the

time of the kth event and Xk = Tk − Tk−1 be the Interarrival time between
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the (k − 1)th and kth event. See Figure 2 for a labeled sketch. In Theorem 1, we

derive the distributions of N(t), Tk and Xk. Of special importance, the interarrival

times of the Poisson process follow an exponential distribution, and thus exhibit

the memoryless property. The memoryless property is key to understanding the

uniqueness and limitations of the Poisson process. To understand the implications

of the memoryless properties, let us consider the following examples. Let N

represent the number of boys in a family and suppose there are four boys in this

family, and the parents are expecting their next child in three months. We know

that the probability is 50% for the next child to be either a boy or girl. That

their previous children are all boys does not affect the probability of the gender

of next child. The probability of having a girl is independent (forgets) the past.

For another example, consider placing an order for masks from an online store

given the mask shortage in the world because of Covid-19. Let us also say there

is an online store, and that it takes pre-orders for masks. Let us assume that we

ordered some masks and waited for a month and did not receive anything and

called the factory and asked them what the probability of receiving the masks in

the next ten-day is. Someone from customer service informed us that it is 20%,

then we have waited another ten days and did not receive anything again. We

called the company and asked the same question. The customer service gave us

the same answer. The probability of receiving the masks in the next ten days is

20% because it is exponential and it has memoryless property. This story is a good

representation of the memoryless property.

Theorem 1 (Properties of Poisson Process). Let N(t) be a Poisson process with

rate λ for t > 0, T1, T2, . . . be the event times then

1. N(t) ∼ Poisson(λt).

2. The interarrival times Xk ∼ Exponential( 1
λ
).

5



Figure 2: Poisson Process Interarrival Times

3. Tk ∼ Erlang(k, 1
λ
).

4. P (Xk > h+ s|Xk > s) = P (Xk > h) for h > 0 and s > 0.

Proof. The main ideas of the proof of the properties are shown below, see Dobrow

(2016) and Cox and Lewis (1966) for more details.

1. From the criteria of Definition 1 we can form a partition of [0, t]

0 < t1 =
t

m
< · · · < tk =

kt

m
< · · · < tm = t

with a sufficiently fine mesh so that N(tk) − N(tk−1) are independent and

approximately Bernoulli with probability of success p = λt
m

and N(t) =∑m
k=1 [N(tk)−N(tk−1)] ≈ Bin(m, p). Since mp = λt is constant as

m → ∞, the result follows from the Poisson approximation to the Binomial

Distribution: N(t) =
∑m

k=1 [N(tk)−N(tk−1)] ⇒ Poisson(λt) as m → ∞.

Since Poisson variables are approximately normally distributed when the

mean is large:

N(t)− λt√
λt

⇒ N(0, 1) as λt→∞

2. We begin with proof of the result for the first the interarrival time X1. Since

N(t) ∼ Poisson(λt) and X1 > x if and only if N(x) = 0, P (X1 >
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x) = P (N(x) = 0) = e−λx(λx)0

0!
= e−λx which recognize as the survival

function of the exponential distribution with mean 1
λ
. By condition 4 and the

linearity property of independent Poisson variables, N(t) − N(tk)|Tk = tk ∼

Poisson(λ(t− tk)). Hence, P (Xk > x) = P (N(tk + x)−N(tk) = 0|Tk = tk) =

e−λx.

3. By condition 5, Xk are independent. Tk =
∑k

j=1Xj is the sum of independent

exponential random variables and hence, follows an Erlang distribution.

4. Since the Xt ∼ Exponential( 1
λ
),

P (Xk > h+ s|Xk > s) =
e−λ(h+s) − e−λ(h+s)

e−λs
= e−λh = P (Xk > h).

Another key property, presented in Theorem 3, describes the relationship

between the uniform order statistics and inter arrival times. This property provides

an algorithm to simulate Poisson processes and compute the likelihood given an

observed process. To provide intuition for the property consider the simple case

with only 1 event observed in the interval [0, t].

Example 2. Suppose N(t) = 1 and investigate the distribution of the arrival time

T1. For every 0 ≤ s ≤ t,

P [T1 ≤ s|N(t) = 1] =
P [T1 ≤ s|N(t) = 1]

P [N(t) = 1]

=
P [N(s) = 1, N(t) = 1]

P [N(t) = 1]

=
P [N(s) = 1, N(t)−N(s) = 0]

P [N(t) = 1]

=
P [N(s) = 1] P [N(t− s) = 0]

P [N(t) = 1]

=
exp(−λ s) λ s exp(−λ (t− s))

exp(−λ t) λ t
=
s

t

(1)
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which is the cumulative distribution of the uniform distribution over [0, t]. Hence,

T1 ∼ Uniform(0, t).

To generalize to the case with more observed events we need to consider

uniform order statistics.

Definition 2 (Order Statistics). Let Y1, . . . , Yn be a sample of random variables.

The order statistics are the collection of the ordered variables

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

Note that Y(1) is the minimum and Y(n) is the maximum.

An important special case of the order statistics occurs when the variables

are i.i.d. Uniform(0, t), which we denote

U(1) < U(2) < · · · < U(n).

Note that since the uniform distribution is continuous, the probability of ties

is 0. Further, it can be shown that the joint density function of the uniform order

statistics is

fU1,...,Un(u1, ..., un) =
n!

tn

Dobrow (2016).

Using an extension of the argument in Example 2, Dobrow (2016) proves the

next theorem.
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Theorem 3. For any Poisson process, conditional on the event N(t) = n, the joint

distribution of the n arrival times t1, ..., tn is the same as the joint distribution of

U(1), U(2), ..., U(n), the order statistics of n i.i.d. Uniform(0, t) r.v.s. is given by

f(s1,...,sn) =
n!

tn
, 0 < s1 < s2 < s3 < ... < sn < t

Non-Homogeneous Poisson Process

A counting process N(t) is a non-homogenous Poisson process with the rate

function λ(t), t > 0 if:

• N(0) = 0 ,and if h < t, then N(h) ≤ N(t) for every h and t ≥ 0.

• This process has independent increments.

• The random variable of Nt+h − Nt is independent of any random variable

that occurred before time t where t and h ≥ 0. That means future events

are independent of the past history.

• The rate is not constant and it is a function of time for this process. Let

the number of events in the time of interval [0, t], these events are Poisson

distributed with the expected value of

E(Nt) = Λ(t)

where Λ(t) is the cumulative rate function and it is a non-decreasing

right-continuous function. It represents the expected number of events until

time t. Hence,

Λ(t) =

∫ t

0

λ(t)dt

Cinlar (1975).
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Pasupathy (2011) includes Theorem 4, the non homogeneous analog of Theorem

3. In Chapter 2, Theorems 3 and 4 are used to model the Student and Teacher

Processes, while in Chapter 3 they are used to simulate the process and study the

estimates. In addition to given theorems,

Theorem 4 (Pasupathy (2011)). Let Λ(t), t ≥ 0 be a positive , non decreasing

continuous function, and the random variables T1, T2, T3, ..., Tn are event times that

are non homogeneous Poisson process with expectation function Λ(t), and let Nt

represent the number of events that are occurring before time t so t ∈ [0, t0]. Then,

conditional on the number of events Nt0 = n, the event times T1, T2, T3, ..., Tn are

distributed as order statistics of a sample from distribution function F (t) = Λ(t)
Λ(t0)

.
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II. SINGLE CLASSROOM MODEL

In this chapter, we describe the simple model used for two stochastic processes, the

Teacher Process and the Student Process, and capture the relationship between the

processes in the parameter γ. Time is continuous and outcomes are discrete in the

Teacher Process, and it is a counting process. To make the problem tractable, the

Teacher Process is modeled with a simple homogeneous Poisson process. Since the

rate of the Student Process depends on the teacher moves, the Student Process

is modeled with a non-homogeneous Poisson process. As a result, the Teacher

Process is a homogeneous Poisson process with rate µ, while the Student Process

is a non-homogeneous Poisson Process whose rate is stochastic and a function of

the Teacher Process. The maximum likelihood estimate (m.l.e.) and it’s asymptotic

distribution are derived as described in Hogg et al. (2005).

Teacher Process

The Teacher Process is the driver of the two processes and follows a homogenous

Poisson process with rate µ over the interval [0, T ]:

Vt ∼ PoissonProcess(µ, [0, T ]).

Using Theorem 3, we can represent the process as,

Vt = {M,U(1), . . . , U(M)}

where M ∼ Poisson(µT ), U1, . . . , Um|M = m ∼ Uniform[0, T ], and U(1), . . . , U(m)

are the corresponding order statistics. The likelihood is

L(µ|Vt) =
e−µT (µT )M

M !
·M !T−M = e−µT (µ)M .

11



To find the m.l.e, take the log, take the derivative, set to zero, and solve.

l = log(L) = −µT +M log(µ)

and

l′ = −T +
M

µ
= 0.

Solving for µ yields the m.l.e., µ̂ = M
T

.

Student Process

The Student Process Yt is a non homogeneous Poisson process whose rate λt is a

function of the Teacher Process:

log(λt) = α0 + γVt,

where −∞ < α0 < ∞, exp(α0) is the base rate of occurrences and −∞ < γ < ∞

is the catalytic constant. Hence, when γ > 0 the rate of future occurrences in the

Student Process increases after each observed event in the Teacher Process. Use

Theorem 4 to represent the Student Process. Let

Λt =

∫ t

0

λsds =

∫ t

0

exp(α0 + γVs)ds = exp(α0)

∫ t

0

exp(γVs)ds.

Note that λt is a step function, hence, Λt is a piecewise continuous linear function

with change points at each occurrence, uj, of the Teacher Process. For convenience

of notation, let u(0) = 0 and u(M+1) = T represent the endpoints of the interval

[0, T ]. The value of Λt at each of the change points is given by

wj =

j∑
k=1

exp (γ(k − 1))
(
u(k)–u(k−1)

)
, j = 1, . . . ,M + 1

12



with w0 = 0. To find the formula of Λt throughout the interval [0, T ], define k∗t =

max{k : u(k) ≤ t} so that u(k∗t ) is the time of the last jump prior to time t. Then,

noting that Λt is linear between each change point, we see that

Λt = exp (α0)
(
wk + exp (γk)(t− u(k))

)
when u(k) ≤ t ≤ u(k+1).

To use results from Chapter 1, define a c.d.f. by normalizing the increasing function

Λt,

F (t) =
Λt

ΛT

= w−1
M+1

(
wk + exp (γk)(t− u(k))

)
when u(k) ≤ t ≤ u(k+1).

The quantile function (inverse of c.d.f.) is also piecewise linear and is given by

Q(y) =
wM+1y − wk

exp (γk)
+ u(k) when

wk
wM+1

≤ y ≤ wk+1

wM+1

.

Conditional on the Teacher Process, the Student Process follows a

nonhomogeneous Poisson Process, Yt|Vt ∼ PoissonProcess(λt, [0, T ]) which we

represent as Refer to Chapter 1 result, Yt = {N,X(1), . . . , X(N)} where N ∼

Poisson(ΛT = eα0wM+1) and

0 < X(1) < . . . < X(N) < T

are the order statistics from a sample of size N with c.d.f. F . We can generate the

sample by first taking a sample of uniform random variables from the unit interval

and applying the quantile function Q.

13



The likelihood function for the µ, α0 and γ is given by

L(µ, α0, γ|Vt, Yt) = L(µ|Vt)L(α0, γ|Vt, Yt)

= e−µT (µ)M
e−wM+1 exp(α0)(exp(α0)wM+1)N

N !
·

N !
eγk

∗
X(1) · · · eγk

∗
X(N)

wNM+1

= e−µT (µ)Me−wM+1 exp(α0)eNα0eγ
∑N
j=1 k

∗
X(j)

So the log likelihood is given by

l = −µT +M log(µ)− wM+1 exp(α0) +Nα0 + γ
N∑
j=1

k∗X(j). (2)

Taking the derivative with respect to µ,

∂l

∂µ
= −T +

M

µ
, (3)

we find that the m.l.e., µ̂ = M
T

, is the same as when considering the

Teacher Process alone. To find the estimates of α0 and γ, recall that wM+1 =∑M+1
k=1 eγ(k−1)

(
u(k) − u(k−1)

)
. From the derivatives,

∂l

∂γ
= −eα0

M+1∑
k=1

(k − 1)eγ(k−1)
(
u(k) − u(k−1)

)
+

N∑
j=1

k∗X(j) (4)

and

∂l

∂α0

= −eα0

M+1∑
k=1

eγ(k−1)
(
u(k) − u(k−1)

)
+N, (5)

we see that the sufficient statistics are M,N, u(1), . . . , u(M),
∑N

j=1 k
∗
X(j). Due to the

highly nonlinear form of (4) and (5), the likelihood equations have no closed form

solutions. In Chapter 3, the multiroot from the R package rootsolve will provide

numerical estimates of α0 and γ.
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Asymptotic Distribution

Under general regularity conditions, m.l.e.’s are consistent and asymptotically

normally distributed (Hogg et al., 2005). Furthermore, the asymptotic variance

can be computed from the Fisher Information which is the negative of the expected

value of the Hessian of the log likelihood (2).

Theorem 5. The Fisher Information contained in (Vt, Yt) is equal to

I = I(µ, λ, γ) = −


E
[
∂2l
∂µ2

]
0 0

0 E
[
∂2l
∂α2

0

]
E
[

∂2l
∂γ∂α0

]
0 E

[
∂2l

∂γ∂α0

]
E
[
∂2l
∂γ2

]


where

E

[
∂2l

∂µ2

]
= −T

µ
(6)

E

[
∂2l

∂α2
0

]
= − Teα0

λ(1− eγ)
(1− eλ(eγ−1)) (7)

E

[
∂2l

∂γ∂α0

]
= − Teα0+γ

(1− eγ)2

(
1− e−λ

λ
− eλ(eγ−1) +

e−λ

λ
(ee

γλ(eγλ− 1) + 1)

)
(8)

E

[
∂2l

∂γ2

]
= − Teα0+γ

(1− eγ)3

(
(1 + eγ)

(1− e−λ)
λ

− λeγ+λ(eγ−1) − eλ(eγ−1)

+(2− eγ)e
−λ

λ

(
ee
γλ(1− eγλ+ e2γλ2)− 1

)
+2

e−λ

λ
(ee

γλ(eγλ− 1) + 1)− e−λ

λ
(ee

γλ − 1)

)
(9)

and λ = µT .

The proof of Theorem 5 requires lengthy calculations involving exponential

sums (Boyadzhiev, 2009), Touchard Polynomials (Chrysaphinou, 1985) and
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low-order polylogarithms (Chrysaphinou, 1985). To ease exposition, the proof is

broken into several lemmas.

Lemma 6 (p Summation Formulas). For p in N, the p summation formula is given

by
∞∑
m=0

mp zm+1

(m+ 1)!
=

p∑
k=0

(−1)p−k
(
p

k

)
ezTk(z)

where Tk(z) =
∑k

j=0

(
k
j

)
zj is the Touchard Polynomial of order k.

The values of the summation formula for p = 0, 1, 2 are shown in Table 1.

Proof. The results follows from a change of variable n = m + 1, the binomial

theorem and interchanging the order of summation.

∞∑
m=0

mp zm+1

(m+ 1)!
=
∞∑
n=1

(n− 1)p
zn

(n)!
=

∞∑
n=1

p∑
k=0

nk(−1)p−k
(
p

k

)
zn

n!

=

p∑
k=0

(−1)p−k
(
p

k

) ∞∑
n=1

nk
zn

n!

=

p∑
k=0

(−1)p−k
(
p

k

)
(
∞∑
n=0

nk
zn

n!
)

=

p∑
k=0

(−1)p−k
(
p

k

)
ezTk(z)

where the final equality follows from the relationship between the exponential

function and Touchard Polynomials (Boyadzhiev, 2009):

∞∑
n=0

nk
zn

n!
= ezTk(z). (10)

The following lemma includes needed results for expected values of functions

of Poisson random variables.
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Table 1: p Summation Formulas for small values of p

p
∑∞

m=0m
p zm+1

(m+1)!

0 ez − 1
1 ez(z − 1) + 1
2 ez(1− z + z2)− 1

Lemma 7. If M ∼ Poisson(λ), then

E

[
1

M + 1

]
=

1− e−λ

λ
(11)

E

[
zM+1

M + 1

]
=

e−λ

λ
(ee

γλ − 1) (12)

E
[
zM
]

= e−λee
γλ (13)

E

[
M
z(M+1)

M + 1

]
=

e−λ

λ

(
(ee

γλ(eγλ− 1) + 1
)

(14)

E
[
MzM

]
= λeγ−λ+eγλ (15)

E

[
M2 z

(M+1)

M + 1

]
=

e−λ

λ

(
ee
γλ(1− eγλ+ (eγλ)2)− 1

)
(16)

Proof. The probability mass function for M is f(m) = e−λ(λ)m

m!
for m = 0, 1, 2, . . ..

The expected values are computed by manipulating the series using formulas from

Table 1 and (10).

Equation 11: Using a change of variable and the series representation of eλ we see

that

E

[
1

M + 1

]
=

∞∑
m=0

1

m+ 1

e−λ(λ)m

m!
=
e−λ

λ

∞∑
m=0

(λ)m+1

(m+ 1)!
.
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Change the index variable, m+ 1 = n, and then

E

[
1

M + 1

]
=
e−λ

λ

∞∑
n=1

(λ)n

n!
=
e−λ

λ

(
∞∑
n=0

(λ)n

n!
− 1

)
.

Recognizing the series representation of eλ provides the result.

Equation 12: Rewriting the series to match the p summation formula yields

E

[
z(M+1)

M + 1

]
=

∞∑
m=0

zm+1

m+ 1

e−λ(λ)m

m!
=
e−λ

λ

∞∑
m=0

(zλ)m+1

(m+ 1)!
.

The result follows from the p- cases formula in Table 1 with p = 0 and z =

zλ.

Equation 13: Using the series representation of the exponential function ezλ we

see that

E
[
zM
]

=
∞∑
m=0

zm
e−λ(λ)m

m!
= e−λ

∞∑
m=0

(zλ)m

m!
= e−λezλ.

Equation 14: Again we can rewrite the series to match a p summation formula.

E

[
M
z(M+1)

M + 1

]
=

∞∑
m=0

mzm+1

m+ 1

e−λ(λ)m

m!
=
e−λ

λ

∞∑
m=0

m(zλ)m+1

(m+ 1)!
.

The result follows from the p- cases formula in Table 1 with p = 1 and z =

zλ.

Equation 15:

E(MzM) =
∞∑
m=0

mzm
e−λ(λ)m

m!
= e−λ

∞∑
m=0

m(zλ)m

m!
.

The result follows from (10) with k = 1.

18



Equation 16:

E

[
M2 z

(M+1)

M + 1

]
=

∞∑
m=0

m2zm+1

m+ 1

e−λ(λ)m

m!
=
e−λ

λ

∞∑
m=0

m2(zλ)m+1

(m+ 1)!
.

The result follows from the p- cases formula in Table 1 with p = 2 and z =

zλ.

We are now ready to prove Theorem 5.

Proof. Starting with the first derivatives (3), (4) and (5), the second derivatives of

log likelihood function are given by

∂2l

∂µ2
= −M

µ2
(17)

∂2l

∂µγ
=

∂2l

∂µα0

= 0 (18)

∂2l

∂α2
0

= −eα0

M+1∑
k=1

eγ(k−1)
(
u(k) − u(k−1)

)
(19)

∂2l

∂γ2
= −eα0

M+1∑
k=1

(k − 1)(k − 1)eγ(k−1)
(
u(k) − u(k−1)

)
(20)

∂2l

∂γ∂αo
= −eα0

M+1∑
k=1

(k − 1)eγ(k−1)
(
u(k) − u(k−1)

)
(21)

Begin by noting that the zero elements of the information matrix follow from (18),

i.e. I1,2 = I1,3 = I2,1 = I3,1 = 0.

We now derive the other components of the information matrix.

Equation 6: Since M ∼ Poisson(µT ), E [M ] = µT and E
[
∂2l
∂µ2

]
= −T

µ
.
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To find the expected values of (19), (20), and (21), we first condition on M , the

number of occurrences in the Teacher Process, noting that

E
[(
u(k) − u(k−1)

)
|M
]

=
T

M + 1
.

Then we manipulate resulting series using the results from Lemmas 7 and Table 1.

Equation 7: Using a change of variable, n = k − 1, and recognizing the geometric

series, we see that

E

[
∂2l

∂α2
0

]
= E

[
− eα0T

M + 1

M+1∑
k=1

z(k−1)

]

= E

[
− eα0T

M + 1

M∑
n=0

zn

]

= E

[
−eα0T

M + 1
(
1− zM+1

1− z
)

]
=
−eα0T

1− z
E

[
1− zM+1

M + 1

]
=
−eα0T

1− z

(
E

[
1

M + 1

]
− E

[
zM+1

M + 1

])
.

Substituting (11) and (12) for expectations above gives

E

[
∂2l

∂α2
0

]
=
−eα0T

1− z

(
1− e−λ

λ
− e−λ

λ
(ezλ − 1)

)
=
−eα0T

1− z

(
1− e−λ

λ
− e−λ

λ
(ee

γλ − 1)

)
=
−eα0T

(1− z)

1

λ

(
1− e−λ − e−λeeγλ + e−λ

)
=
−eα0T

(1− z)

1

λ

(
1− e−λeeγλ

)
=
−eα0T

(1− z)

1

λ

(
1− eλ(eγ−1)

)
.
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Equation 7 follows by substituting eγ = z.

Equation 8: Conditioning on M and applying a change of variable, n = k − 1

yields

E

[
∂2l

∂α0∂γ

]
= E

[
−eα0

M+1∑
k=1

(k − 1)zk−1 T

M + 1

]

= −eα0TE

[
1

M + 1

M+1∑
k=1

(k − 1)zk−1

]

= −eα0TE

[
1

M + 1

M∑
n=1

nzn

]

= −eα0TE

[
1

M + 1
z

1− (M + 1)zM +MzM+1

(1− z)2

]

where the last equality follows from the low-order poly logarithm (Weisstein,

2002)
n∑
k=1

kzk = z
1− (n+ 1)zn + nzn+1

(1− z)2
.

Algebraic manipulation gives

E

[
∂2l

∂α0∂γ

]
= − eα0Tz

(1− z)2
E

[
1

M + 1
− zM(M + 1)

M + 1
+
MZM+1

M + 1

]
= − eα0Tz

(1− z)2

(
E

[
1

M + 1

]
− E

[
zM
]

+ E

[
MzM+1

M + 1

])
.

Substituting (11), (13) and (14) for expectations above gives

E

[
∂2l

∂α0∂γ

]
= − eα0Tz

(1− z)2

(
1− e−λ

λ
− e−λezλ +

e−λ

λ
(ezλ(zλ− 1) + 1)

)
.

Equation 8 follows by substituting eγ = z.
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Equation 9:

E

[
∂2l

∂γ2

]
= E

[
− eα0T

M + 1

M+1∑
k=1

(k − 1)2eγ(k−1)

]

= E

[
−eα0T

M + 1

M∑
n=0

n2zn

]
.

Using the low-order poly logarithm result (Sykora, 2006; Weisstein, 2002)

n∑
k=1

k2zk = z
1 + z − (n+ 1)2zn + (2n2 + 2n− 1)zn+1 − n2zn+2

(1− z)3

we can rewrite the expected value as

E

[
∂2l

∂γ2

]
= − eα0Tz

(1− z)3
E

[
1

M + 1
+

z

M + 1
− (M + 1)2zM

M + 1

+
(2M2 + 2M − 1)zM+1

M + 1
− M2zM+2

M + 1

]
= − eα0Tz

(1− z)3

(
(1 + z)E

[
1

M + 1

]
− E

[
(M + 1)zM

]
+E

[
(2M2 + 2M − 1)zM+1

M + 1

]
− E

[
M2zM+2

M + 1

])
= − eα0Tz

(1− z)3

(
E

[
(1 + z)

1

M + 1

]
− E

[
MzM

]
− E

[
zM
]

+2E

[
M2zM+1

M + 1

]
+ E

[
MzM+1

M + 1

]
− E

[
zM+1

M + 1

]
−zE

[
M2zM+1

M + 1

])
.
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Substituting the results from Lemma 7 yields

E

[
∂2l

∂γ2

]
=
−eα0Tz

(1− z)3

(
(1 + z)

(1− e−λ)
λ

− (e−λ(zλ)ezλ)− (e−λezλ)

+(2− z)
e−λ

λ
(ezλ(1− eγλ+ (eγλ)2)− 1)

+2
e−λ

λ
(ezλ(zλ− 1) + 1)− e−λ

λ
(ezλ − 1)

)
.

Equation 9 follows by substituting eγ = z.

Now that we have derived the Fisher Information, maximum likelihood

theory provides the asymptotic (as µT →∞) distribution

θ̂ = (µ̂, α̂0, γ̂)′ ∼̇ N(θ, I(θ)−1)

where θ = (µ, α0, γ)′. In applications, we substitute θ̂ in I(θ) to estimate the

variance. However, it is not clear how large T must be in order for the normal

approximation to be useful. This issue is investigated via a simulation study in

Chapter 3.
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III. SIMULATION STUDY

In Chapter 2, we derived the m.l.e. and its asymptotic distribution for the

parameters of the paired Teacher and Student Processes. We now describe a

simulation study programmed in R to investigate the small sample (i.e. small T )

distribution. In the Analysis section, the results are analyzed and compared with

the theoretical asymptotic distribution.

Simulation Description

Implementing the results from Chapter 2 in R, the order statistic representation of

Poisson processes was used to simulate the paired Teacher and Student Processes

for given choices of T , µ, α0 and γ. The function multiroot from the R package

rootsolve was used to compute numerical zeroes of score functions (4) and (5) and

find estimates of α̂0 and γ̂. For each choice of the parameters, 50 processes were

simulated and the following summary statistics were computed:

MSE(θ̂) = 50−1

50∑
i=1

(
θ̂i − θi

)2

(22)

Bias(θ̂) = 50−1

50∑
i=1

(
θ̂i − θi

)
(23)

V ar(θ̂) = MSEθ̂)−Bias(θ̂)2 (24)

where θ is either α0 or γ. When we simulated the data, we used T=50 and µ =

0.25 because these values were suitable for the real classroom environment and they

were based on the data that’s used in the application section. The values from −3

to 1 increasing by 0.01 used for α0 and the values from 0 to 0.4 increasing by 0.1

used for γ in the simulation. The complete R code is included in Appendix A and a

summary pseudocode in Figure 3.
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for (i in 1:50) do- end
M ← rpois(µ)

V ← sort(runif(M,min = 0,max = T )) . Teacher Process
Compute wj defined in Chapter 2
Compute Ft defined in Chapter 2
N ← rpois(1, wM+1)
Y ← sort(F−1

t (runif(N))) . Student Process
Compute sufficient statistics u(1), . . . , u(M),

∑M
j=1 k

∗
X(j)

Compute score function from Equations (4) and (5)
(α̂0, γ̂)i ← multiroot(score) . m.l.e. estimates

Biasγ̂ ← mean(γ̂ − γ)
Biasα̂0 ← mean(α̂0 − α0)
MSEγ̂ ← mean((γ̂ − γ)2)
MSEα̂0 ← mean((α̂0 − α0)2)
Compute Information, I from Theorem 5
var ← solve(I) =0

Figure 3: Pseudo Code for Simulation

Table 2 shows the first 5 rows of the results of the simulation.

Table 2: First 5 Rows of Results

gamma alpha0 cnt g.bias a.bias g.mse a.mse 95%CI(α̂0) 95% CI(γ̂)

0 -3.0 46 -0.36 -0.04 4.97 2.42 (-6.10,0.00) (-4.67,3.95)

0 -2.9 45 -0.18 -1.34 2.52 15.11 (-11.39,2.90) (-3.27,2.90)

0 -2.8 49 -0.02 -0.03 0.02 1.43 (-5.17,-0.48) (-0.32,0.26)

0 -2.7 49 -0.01 -0.30 0.02 3.24 (-6.48,0.47) (-0.30,0.27)

0 -2.6 49 -0.01 0.04 0.00 1.22 (-4.72,-0.39) (-0.17,0.13)

If the simulation results in no observed events for either process, no estimate

of the parameters is possible. Figure 4 illustrates the values of (α0, γ) that resulted

in fewer than 90% valid estimates. As α0 and γ decreases, the chances are of

observing events decreases considerably.
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Figure 4: Number of Valid Simulations

Analysis

We begin the investigation of the small sample distribution of α̂0 and γ̂, by

examining the distribution when α0 = −1.4 and γ = .01. We picked these

values because these values are based on the data we used in the application

section. From the density estimate of γ̂ shown in Figure 5, we see that it looks

approximately normal. We have performed the D‘Agostino-Pearson test and

Anscombe-Glynn test of kurtosis test to determine if our γ̂ values are exactly

normally distributed. The p-values (> 0.05) from both tests indicate that we have

failed to reject the null hypothesis that the data is approximately normal.

Table 3 presents the summary statistics from distribution of γ̂. As shown in

the graph of the estimated density, the bias equals to 0.003, and the distribution

is slightly positively skewed. However, the skewness is less than 0.5, and kurtosis

is almost 3, the kurtosis of the normal distribution. We can conclude that the

distribution of γ̂ values are approximately normal. There is no conflict between

the test results, Figure 5, and Table 3 in terms of being approximately normal for

γ̂ values.
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Figure 5: Density of γ̂ with α0 = −1.4 and γ = .01

Table 3: Summary Statistics for Small Sample Distribution of γ̂

mean var skew kurt mse

0.013 0.003 0.435 3.318 0.003

Now we consider the density plot for α̂0 for the case where γ = .01 and

α0 = −1.4 shown in Figure 6. In this density graph, the distribution is left skewed.

Also, p-values (< 0.05) from the D‘Agostino-Pearson test and Anscombe-Glynn

test of kurtosis test indicates that we reject null hypothesis and conclude that the

distribution of α̂0 values are not approximately normal. The statistics in Table

4 shows the summary statistics from distribution of α̂o. As shown in the Figure

6, the bias equals to −0.091, the distribution is slightly left skewed. Since the

skewness is -1.557 and kurtosis is very different from 3, the distribution of α̂o is not

approximately normal. We do not know the cause of this non normality, and we

need to investigate whether it is normal when µT goes to infinity.
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Figure 6: Density of α̂0 with α0 = −1.4 and γ = .01

Table 4: Summary Statistics for Small Sample Distribution for α̂0

mean var skew kurt mse

-1.491 0.629 -1.557 5.537 0.638

Figure 7 shows the effects of several α0 values on the distribution of γ̂ values

where γ = 0.01.
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Figure 7: The Effect of α0 on the Distribution of γ̂

Table 5: Summary Statistics for the Distribution of γ̂

alpha0 mean var skew kurt mse

-3.0 0.383 4.059 6.431 42.576 4.198

-2.8 0.026 0.012 -0.370 6.789 0.012

-2.6 -0.020 0.038 -1.720 14.220 0.038

-2.4 0.001 0.008 -0.146 4.849 0.009

-2.2 0.017 0.007 0.334 4.175 0.007

-2.0 0.018 0.004 0.696 4.537 0.004

-1.8 0.019 0.003 0.196 2.327 0.003

-1.6 -0.003 0.005 -0.779 4.905 0.005

-1.4 0.013 0.003 0.435 3.318 0.003

-1.2 0.021 0.002 1.875 9.454 0.002

-1.0 0.013 0.001 0.748 4.368 0.001

-0.8 0.013 0.002 1.208 7.656 0.002

-0.6 0.007 0.000 0.001 2.835 0.000

-0.4 0.013 0.001 0.091 2.877 0.001

-0.2 0.011 0.000 -0.194 2.492 0.000

0.0 0.008 0.001 0.438 4.065 0.001
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Figure 7 demonstrates that the distribution of γ̂ differs as αo values vary

in their range. It will enable us to investigate the distribution of γ̂ values. We can

conclude that the distribution of γ̂ is not approaching a normal distribution for

all the values of α0 in the simulation by looking at the heavy tails from Figure

7. Moreover, we see from the Table 5 that γ̂ values with the different αo values

are not always approaching a normal distribution. For instance, in the first row

of the table, we see that skewness and the kurtosis are very large compare to the

cut of values for a normal distribution. Another example is when α0 = −2.6,

skewness and kurtosis are very large in magnitude, and the distribution of the γ̂ is

not behaving like a normal distribution. Figure 7 and the Table 5 are crucial tools

for investigating the distribution of γ̂.

Table 6: Summary Statistics for Small Sample Distribution for α̂0

gamma mean var skew kurt mse

0.00 -1.406 0.353 -0.116 2.646 0.353

0.05 -1.532 0.233 -0.272 2.441 0.250

0.10 -1.436 0.173 -0.532 3.447 0.174

0.15 -1.401 0.098 -0.600 2.946 0.098

0.20 -1.394 0.066 -1.058 5.125 0.066

0.25 -1.463 0.034 0.340 4.005 0.038

0.30 -1.410 0.013 -0.533 3.463 0.013

0.35 -1.395 0.009 0.871 5.996 0.010

0.40 -1.412 0.005 -0.481 4.705 0.005
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Figure 8: Effect of γ on Distribution of α̂0

Figure 8 shows the effects of a couple of γ values on the distribution of

α̂0 values where α0 = −1.4. It would be appropriate to say that the most of

the density graphs are not representing the normal distribution. They have very

heavy tails and especially top density graph almost demonstrates a straight line. In

addition to Figure 8, we can also assess the distribution of α̂0 values by looking at

the Table 6. We see from Table 6 that the kurtosis values are not equal to 3 and

some of them are bigger than 3, and these values indicate that distributions have

heavy to moderate tails.

Figure 9 demonstrates the effects of α0(> −2.5) values on the Bias(γ̂) values.

When α0 values increase, the absolute Bias(γ̂) decreases. Also, overall, Bias(γ̂)

values are small in magnitude (< .03).
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Figure 10: Effect of α0 on MSE(γ̂)
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Figure 10 presents the effects of α0(> −2.5) values on the MSE(γ̂) values.

MSE(γ̂) values tend to decrease when α0 values increase.
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Figure 11: Effect of γ on Bias(α̂0)

Figure 11 demonstrates the effects of γ values on the Bias(α̂0) values where

α0 > −2.5. We see that when γ values increase, Bias(α̂0) values decrease. The

big difference between Bias(α̂0) values and Bias(γ̂) values is that Bias(α̂0) have

more negative values and slightly larger magnitude than Bias(γ̂). However, when γ

values increase, Bias(α̂0) values are approaching 0 more than Bias(γ̂). The picture

seems more stable.
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Figure 12: Effect of γ on MSE(α̂0)

Figure 12 exhibits the effects of γ values on the MSE(α̂0) values where

α0 > −2.5. When γ values increase, MSE(α̂0) values decrease. Overall, MSE(α̂0)

are larger than MSE(γ̂) values.
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Figure 13: V ar(α̂0) vs. V ar(γ̂)

Figure 14 illustrates the correlation between MSE(α̂0) and MSE(γ̂) where

α0 > −2.5. As MSE(α̂0) increases, MSE(γ̂) also tends to increase. We can call

this correlation as a fairly strong positive relationship. The interpretation of the
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Figure 14: MSE(α̂0) vs. MSE(γ̂)
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scatter-plot of Var(α̂0) versus Var(γ̂) is same as the interpretation of MSE graphs.

However, Figure 15 graph indicates a different result. As Bias(α̂0) increases,

Bias(γ̂) tends to decrease. We can call it as a fairly strong negative relationship.
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Figure 15: Bias(α̂0) vs. Bias(γ̂)
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IV. META-ANALYSIS OF MULTIPLE CLASSROOMS

SIMULATION

Motivation

As described in the preceding chapters, the goal of this project is to model the

relationship between two stochastic processes and estimate the catalytic constant

γ. In Chapter 2, we derived the maximum likelihood estimates and the asymptotic

distribution for the parameter estimates. However, the simulation study of the

small sample distribution described in Chapter 3 showed that data from one

classroom was insufficient to allow for the use of the asymptotic results. The

distribution was biased and the asymptotic variance estimates were too small

compared to the computed variance from the simulated data. In this chapter,

we extend the results shown above to a ”meta-analysis” of data collected from

observations of independent classrooms. A conventional meta-analysis is a

statistical method that combines the results of multiple studies because results

typically vary from one study to the next. In this research, we did not use different

studies, but we considered each classroom as an independent observation and

combined them to perform meta-analysis. Therefore, we will combine analyses from

separate classrooms to derive a pooled estimate of γ.

Method

The assumption of independence between the classrooms implies that the

log-likelihood for the combined data set will be the sum of the log-likelihoods from

each classroom. This provides a straightforward road map to extend the results

from Chapter 2 to the meta-analysis problem.

1. Extend the log-likelihood from (2.1) to include independent data from P

classrooms.
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2. Use the linearity of the derivatives to compute the gradient of the

log-likelihood and determine the likelihood equations for the meta-analysis.

3. Find the Hessian and compute the Fisher Information for meta-analysis

problem.

4. Adapt the R code from Chapter 3 to allow for data from multiple classrooms.

5. Repeat the simulation study described in Chapter 3 for the simulations of

data from P classrooms. Compare the results between two simulation studies.

Parameter Estimation

We start showing the extension of the log-likelihood function of one classroom

case to the log-likelihood function of P classrooms case by using the meta-analysis

method. We will repeat our previous experiment p = 1, ..., P times with fixed α0,γ

and µ. The log-likelihood of meta-analysis experiment is given by

lp =
P∑
p=1

(
−µTp +Mp log(µTp)− wM+1p exp(α0) +Npα0 + γ

Np∑
j=1

k∗X(j)p

)
. (25)

Taking the derivative with respect to µ,

∂lp
∂µ

=
P∑
p=1

(
−Tp +

Mp

µ

)
, (26)

we find that the m.l.e., µ̂ =
∑P

p=1
Mp

Tp
, is very similar to one classroom case. It is

appropriate to say that finding µ̂ was straightforward. To find the estimates of α0

and γ , we take the derivative of the log-likelihood function for P classrooms with

respect to α0 and γ. From the derivatives,
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∂lp
∂α0

= −eα0

Mp+1∑
k=1

eγ(k−1)
(
u(k)p − u(k−1)p

)
+Np, (27)

and

∂lp
∂γ

= −eα0

Mp+1∑
k=1

(((k − 1)eγ(k−1)
(
u(k)p

− u(k−1)p

)
+

Np∑
j=1

k∗X(j)p) (28)

we see that the sufficient statistics are
∑P

p=1Mp,
∑P

p=1 Np, {u(1)p , . . . , u(M)p},∑P
p=1

∑Np
j=1 k

∗
X(j)p

. Due to the highly nonlinear form of (27) and (28), the likelihood

equations have no closed form solutions. As in Chapter 2 and 3 , the multiroot

from the R package rootsolve will provide numerical estimates of α0 and γ. We

did not give all the details for this section since all the functions are extensions of

those in Chapter 2 and 3.

Asymptotic Distribution

These P classrooms are independent and Fisher information for meta-analysis can

be obtained adding each classrooms Fisher information,

I = I(µ, λ, γ) =
P∑
p=1

Ip(µ, λ, γ)

Ip(µ, λ, γ) = −


E
[
∂2lp
∂µ2

]
0 0

0 E
[
∂2lp
∂α2

0

]
E
[
∂2lp
∂γ∂α0

]
0 E

[
∂2lp
∂γ∂α0

]
E
[
∂2lp
∂γ2

]
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where

E

[
∂2lp
∂µ2

]
=

P∑
p=1

−Tp
µ

(29)

E

[
∂2lp
∂α2

0

]
=

P∑
p=1

− Tpe
α0

λ(1− eγ)
(1− eλ(eγ−1)) (30)

E

[
∂2lp
∂γ∂α0

]
=

P∑
p=1

− Tpe
α0+γ

(1− eγ)2
(
1− e−λ

λ
− eλ(eγ−1) +

e−λ

λ
(ee

γλ(eγλ− 1) + 1))(31)

E

[
∂2lp
∂γ2

]
=

P∑
p=1

− Tpe
α0+γ

(1− eγ)3

(
(1 + eγ)

(1− e−λ)
λ

− λeγ+λ(eγ−1) − eλ(eγ−1)

+(2− eγ)e
−λ

λ

(
ee
γλ(1− eγλ+ e2γλ2)− 1

)
+2

e−λ

λ
(ee

γλ(eγλ− 1) + 1)− e−λ

λ
(ee

γλ − 1)

)
(32)

and λ = µTp by using the extension of chapter 2 results, the Fisher information,

maximum likelihood theory provides the asymptotic (as T →∞) distribution

θ̂ = (µ̂, α̂0, γ̂)′ ∼̇ N(θ, I(θ)−1)

where θ = (µ, α0, γ)′. In applications, we substitute θ̂ in I(θ) to estimate the

variance and V̂ ar(θ̂) = I(θ)−1 = {
∑P

p=1 Ip}−1.

Meta-Analysis Study of Multiple Classrooms Simulation Description

Our description for simulation study is same as the previous one classroom

simulation except some extension. We have kept the first part of Figure 3 same

and we made a loop from 1 to P to find
∑P

p=1Mp,
∑P

p=1 Np, {u(1)p , . . . , u(M)p},∑P
p=1

∑Np
j=1 k

∗
X(j)p

. Also, we made another loop for (25) from 1 to P to estimate our

parameters. We have used (29),(30,(31),(32) and the Fisher information matrix for

meta analysis to compute to variance estimation. The complete R code is included
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in Appendix B.

Analysis for Meta-Analysis of Multiple Classrooms Simulation

Table 7: First 5 Rows of Results

gamma alpha0 cnt g.bias a.bias g.mse a.mse 95%CI(α̂0) 95% CI(γ̂)

0 -3.0 12 -0.012 0.18 0.00 0.08 (-3.26,-2.35) (-0.04,0.01)

0 -2.9 11 -0.001 0.09 0.00 0.03 (-3.13,-2.48) (-0.01,0.01)

0 -2.8 14 0.007 -0.03 0.00 0.02 (-3.15,-2.50) (-0.01,0.02)

0 -2.7 31 -0.001 -0.00 0.00 0.03 (-3.08,-2.31) (-0.03,0.02)

0 -2.6 30 0.003 -0.02 0.00 0.07 (-3.15,-2.08) (-0.02,0.03)

Table 7 shows the first 5 rows of the results of the meta analysis of multiple

classroom simulation. From Table 7, MSE(γ̂) values look 0. They are actually

not zero, some of them have 7 decimal places, therefore, they are too minuscule.

Our software program did not show them. We have calculated some of them

individually and observed that they are very small.

Figure 16 illustrates the number of valid simulations out of 50. As we see,

when α0 and γ gets smaller , we have less valid simulations. We also have many

number of 50 valid simulation when α0 > −2 with γ values. As we see from Figure

16, we have more valid number of simulations compared to the Figure 4 due to the

meta analysis experiment.

We now begin the investigation of the small sample distribution of α̂0 and γ̂,

by examining the distribution when α0 = −1.4 and γ = .01. From the density of γ̂

shown in Figure 17, we see that it looks approximately normal. We have performed

the D‘Agostino-Pearson test and Anscombe-Glynn test of kurtosis test to determine

if our γ̂ values are normally distributed. The p-values (> 0.05) from both outputs
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Figure 16: Number of Valid Simulations

indicate that we have failed to reject the null hypothesis, and we can conclude that

the data is normally distributed. It would be appropriate to state that we have

much higher p-values compared to the one classroom case tests.
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Figure 17: Density of γ̂ with α0 = −1.4 and γ = .01
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Table 8: Summary Statistics for Small Distribution for γ̂

mean skew kurt mse*1000 var*1000

0.011 0.529 2.798 0.0057 0.056

We can also see it from Table 8 that kurtosis is very close to 3 and skewness

is almost 0.5. This summary statistics align with our test results. As we mentioned

before variance and mse values are very small and our software program produced

them as 0. For the report purposes, we have multiplied variance and mse values by

1000.

Now we consider the density plot for α̂0 for the case where γ = .01 and

α0 = −1.4 shown in Figure 18. It seems that α̂0 values are slightly left skewed.

Also, p-values (> 0.05) from the D‘Agostino-Pearson test and Anscombe-Glynn test

of kurtosis test indicates that we have failed to reject null hypothesis and conclude

that the distribution of α̂0 is approximately normal. The statistics in Table 9 shows

the summary statistics from distribution of α̂0. As shown in the Figure 18, the

bias equals to −0.002, the distribution is normaly distributed. Since the skewness

is -0.603 and kurtosis is very close to 3, the distribution of α̂0 is approximately

normal.
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If we compare Figure 18 and Figure 6, we see that Figure 18 looks closer

to normal. Also our test results and Table 9 supports our decision. We see that

meta-analysis method gave us statistically better results. Both of α̂0 and γ̂ values

are normally distributed where α0 = −1.4 and γ = 0.01.
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Figure 18: Density of α̂0 with α0 = −1.4 and γ = .01

Table 9: Summary Statistics for Small Sample Distribution for α̂0

mean var skew kurt mse

-1.402 0.016 -0.603 3.003 0.016
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Figure 19 shows the effects of several α0 values on the distribution of γ̂

values where γ = 0.01. Wee see that Figure 19 looks more normal and has a smaller

spread compared to the Figure 7. Also, from Table 10, most of the kurtosis values

are very close to 3 and skewness values are very small. When we compare Table 10

and Table 5 , we see that kurtosis and skewness values indicate more normality for

meta analysis experiment. As we mentioned before, we multiplied original variance

and mse values by 1000 due the fact having too minuscule variance and mse values.
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Figure 19: The Effect of α0 on the Distribution of γ̂
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Table 10: Summary Statistics for Small Sample Distribution for γ̂

alpha0 mean var*1000 skew kurt mse*1000

-3.0 0.012 0.145 -0.737 3.004 0.149

-2.8 0.006 0.193 0.030 2.551 0.210

-2.6 0.009 0.171 0.228 2.435 0.172

-2.4 0.010 0.109 -0.639 3.636 0.109

-2.2 0.011 0.183 -0.275 2.824 0.185

-2.0 0.010 0.125 -0.064 3.228 0.125

-1.8 0.009 0.083 -0.410 2.974 0.084

-1.6 0.008 0.068 0.316 2.248 0.073

-1.4 0.011 0.056 0.529 2.798 0.057

-1.2 0.009 0.054 -0.529 3.584 0.054

-1.0 0.009 0.032 0.134 2.334 0.032

-0.8 0.011 0.038 0.223 2.417 0.038

-0.6 0.010 0.019 -0.152 2.761 0.019

-0.4 0.009 0.019 0.234 2.752 0.021

-0.2 0.010 0.013 0.167 3.099 0.014

0.0 0.010 0.018 0.208 2.386 0.018

0.2 0.010 0.010 0.054 3.349 0.010

0.4 0.009 0.010 0.128 2.577 0.011

0.6 0.010 0.005 -0.186 2.671 0.005

0.8 0.009 0.008 -0.199 2.581 0.009

1.0 0.009 0.006 -0.100 2.779 0.006

46



Table 11: Summary Statistics for Small Sample Distribution for α̂0

gamma mean var skew kurt mse

0.00 -1.382 0.016 0.027 2.809 0.016

0.05 -1.421 0.009 0.079 2.138 0.010

0.10 -1.406 0.007 0.013 2.837 0.007

0.15 -1.395 0.003 0.148 2.036 0.003

0.20 -1.402 0.002 -0.183 2.484 0.002

0.25 -1.398 0.001 -0.219 3.570 0.001

0.30 -1.401 0.000 0.210 2.592 0.000

0.35 -1.398 0.000 0.567 4.053 0.000

0.40 -1.400 0.000 0.210 2.893 0.000
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Figure 20: Effect of γ on Distribution of α̂0

Figure 20 illustrates the effects of a couple of γ values on the distribution

of α̂0 values where α0 = −1.4. It is not very clear to see from Figure 20 that if
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α̂0 values behave normal because of the scaling, but performed tests and Table 11

show that the distribution of α̂0 values from meta-analysis experiment behave more

normal. When we compare Table 11 and Table 6, we have less skewness and most

of the kurtosis values are around 3, and we have much smaller MSE values. For

instance, if we compare the fifth row of Table 11 and Table 6, we see a significant

difference. Table 11 shows smaller skewness values, better kurtosis values, much

more smaller variance and slightly less bias. However we could not see it from the

Figure 20 because of the scaling.
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Figure 21: Effect of α0 on Bias(γ̂)
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Figure 22: Effect of α0 on MSE(γ̂)

Figure 21 presents the effects of α0 > −2.5 values on the Bias(γ̂) values.

Bias(γ̂) values tend to decrease when α0 values increase. When we compare Figure

21 and Figure 9, we see notable differences that Bias(γ̂) values are mostly around 0

and they are smaller in magnitude on Figure 21. There is also much less spread in

Bias(γ̂) values in the meta analysis experiment.

Figure 22 illustrates the effects of α0 > −2.5 values on the MSE(γ̂) values.

It seems that MSE(γ̂) values decrease when α0 values increase. We also have a

couple of values that do not behave like the most of them. However, if we compare

Figure 22 and Figure 10, we have much smaller MSE(γ̂) values which indicates that

meta-analysis experiment results are statistically more powerful than one classroom

case study.
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Figure 23: Effect of γ on Bias(α̂0)
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Figure 24: Effect of γ on MSE(α̂0)
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Figure 23 exhibits the effects of γ values on the Bias(α̂0) values. It seems

that Bias(α̂0) values decrease when γ values increase. We also have a couple of

values that do not behave like the most of them. However, if we compare Figure 23

and Figure11, we have smaller Bias(α̂0) values, and they are mostly around 0 which

is a good sign for our meta-analysis experiment. Also, Bias(α̂0) values are smaller

in magnitude on Figure 23.

Figure 24 shows the effects of γ values on the MSE(α̂0) values. It seems that

MSE(α̂0) values decrease when γ values increase. If we compare Figure 24 and

Figure12, we have smaller MSE(α̂0) values and they are mostly around 0 which is

an important indication for our meta-analysis experiment.
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Figure 25: MSE(α̂0) vs. MSE(γ̂)

Figure 25 illustrates the correlation between MSE(γ̂) and MSE(α̂0) where

α0 > 2.5. As MSE(γ̂) increases, MSE(α̂0) also tends to increase. We can call this

correlation as a fairly strong positive relationship by looking at the graph and the

correlation coefficient value.

Figure 26 has same interpretation as Figure 25. However, Figure 27 indicates
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Figure 26: V ar(α̂0) vs. V ar(γ̂)

a different result. As Bias(γ̂) decreases, Bias(α̂0) tends to increase. We can call this

correlation as a fairly strong negative relationship.
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Figure 27: Bias(α̂0) vs. Bias(γ̂)

Overall, our results from meta-analysis experiment are statistically better

than one classroom case.
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V. APPLICATION

Data Description

The National Science Foundation funded project (DRL-1814114), Using Technology

to Capture Classroom Interactions: The Design, Validation, and Dissemination

of a Formative Assessment of Instruction Tool for Diverse K-8 Mathematics

Classrooms, led by Dr. Kathleen Melhuish is developing a formative assessment

tool called the Math Habits Tool (MHT). The MHT is intended to capture patterns

of in-the-moment teacher-student and student-student classroom interactions. As

part of this work, the team has coded video observations for teaching moves that

can serve to catalyze student productive engagement with mathematics (catalytic

teaching habits) and productive ways students engage in mathematics. Teachers

actions consist of teacher routines and catalytic teaching habits which are classified

as either high or low. Students responses are coded as students habit of interaction

and student habits of mind. There are 24 independent mathematics classrooms

with different teachers. We have coded all teachers moves separately, but we coded

students moves without differentiating them.

Parameter Estimation

In this chapter, we will use the previously described method to analyze the data

from 24 independent mathematics classrooms. We will estimate the parameters

of the log-linear rate function of Student Processes as well as the constant rate of

Teacher Process. For this purpose, we will start by analyzing one classroom data

and then apply the meta-analysis methods to estimate µ̂, α̂0 and the γ̂ values and

compute asymptotic variance. Our primary interest is to estimate the catalytic

constant γ to assess the effect of the catalytic teaching habits on the observed

examples of productive student engagement.
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In this thesis, we have developed three models. The first model is coded

by including all the teacher moves as a teacher process. It means that we did not

differentiate teacher moves. We coded teacher routine, catalytic teaching habit

high, and catalytic teaching habit low as teacher moves and student actions by

combining student’s habit of interaction and student‘s habit of mind.

Figure 28: First Model (All teacher moves)

In our second model, we included only catalytic teaching habit low moves as

Teacher Process and kept the Student Process the same as the first model.

Figure 29: Second Model (Low teacher moves)

In our third model, we included only catalytic teaching habit high moves as

Teacher Process and kept the Student Process the same as the first model and the

second model.
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Figure 30: Third Model (High teacher moves)

First of all, we have prepared the data frame that we can use in our models.

In our data frame, we have enumerated 24 independent classrooms, such as the

first classroom, second classroom, and third classroom. We randomly have chosen

the fifth classroom and estimate µ, α0 and γ values for one classroom analysis.

Also, we have computed the variance of estimations. To obtain these results, we

have used R programming software. It provided us many numerical methods to

maximize our log-likelihood function and find the maximum likelihood estimators

of the parameters. The complete R code is included in Appendix C

The following table is the summary of the fifth classroom by using the first

model. As we see from Table 12, α̂0 and γ̂ are negative. It is acceptable for α̂0

to be less than 0, but γ̂ being less than zero implies that teacher moves are not

helping the students.

Table 12: The First Model (All Teacher Moves) Results For One Classroom

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.5 -1.429146 -0.05644022 0.6225259 0.05033712

The following table is the summary of the fifth classroom by applying the

second model.

Table 13: The Second Model (Low Moves) Results for One Classroom

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.1481481 -1.699543 -0.1130635 0.590564 0.1449812
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The next table is the summary of the fifth classroom by applying the third

model.

Table 14: The Third Model (High Moves) Results for One Classroom

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.1296296 -1.384556 -0.2081086 0.5235135 0.1679655

As we can see from the Table 12, the Table 13, and the Table 14, all γ̂

values are negative in three models for fifth classroom that we randomly selected.

For sensitivity analysis, we also ran these three models for a couple of classrooms

individually. We have found that sometimes γ̂ values are greater than 0, but

sometimes they were slightly less than 0. We know from Chapter 3 that single

classroom data did not allow us to use asymptotic results. Hence, we have

applied the meta-analysis method that has explained in Chapter 4. We combined

24 classrooms to perform meta-analysis experiment. We have used the same

codes that are used in Chapter 4 for the log-likelihood function and the Fisher

information matrix. We have derived µ̂, α̂0, γ̂, and their standard deviation from

the fisher information theory. We have used same three models that are used with

individual classrooms. The followings are results of the first model:

Table 15: The First Model (All Teacher Moves) Results For 24 Classrooms

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.609834 -1.1817 0.01400656 0.066822 0.002262891

The Table 15 illustrates that we have a higher γ̂ value compared to the

Table 12. Also we have much smaller standard deviations compared to the Table

12.

The following table presents the results of the second model for 24

classrooms. When we compare the Table 13 and the Table 16, we see that we have

a higher γ̂ value and smaller standard deviations for γ̂ and α̂0 in the meta-analysis

experiment compared to one classroom analysis.
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Table 16: The Second Model (Low Teacher Moves) Results for 24 Classrooms

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.2745849 -1.137404 0.02692045 0.06355882 0.004541115

The new table illustrates the results of the third model for 24 classrooms.

The Table 17 depicts that we have a positive γ̂ value and higher α̂0 value compared

to the Table 14. They have both show the statistics summary of the third model.

Also we have much smaller standard deviations in the Table 17.

Table 17: The Third Model (High Moves) Results For 24 Classrooms

µ̂ α̂0 γ̂ sd( α̂0) sd(γ̂)
0.2418582 -1.12592 0.02948545 0.06255076 0.005125693

As we mentioned before, our main interest is to estimate catalytic constant

gamma. Let us present the new figure that explains all these six models.

Figure 31: All six models together

We see from Figure 31 that the results of the models that used the

meta-analysis experiment demonstrate higher γ̂ values. We also tested each γ̂

values from the models that used meta-analysis method to see if these γ̂ are
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significantly greater than 0. As we see from the Figure 31, p-values(< 0.001) for γ̂

values in three meta-analysis models indicate that γ̂ values are significantly greater

than 0.

If we compare the results among three meta-analysis models, we see that

first model has the highest µ̂ value. We anticipated this because first model has the

highest teacher moves. We have reduced the number of teacher moves in the second

and the third models. Since our primary interest is to estimate gamma, we would

like to compare these three models that used meta-analysis experiment results in

terms of γ̂ values. We see that third model(high teacher moves) has the highest

γ̂ value. We also wanted to investigate and the visualize the student rate versus

classroom time. Since second model and third model have the higher γ̂ values

compare to the first model for 24 classrooms models, we wanted to compare the

effect of high and low moves on the student rate in the mathematics classrooms.

We have calculated the expected value of the student rate

λt = eα0+γVt

by using (13), we have computed the following expected value.

E(λt) = eα0euT (eγ−1)

The Figure 32 presents the expected value of the student rate versus time for

second and third models that employed meta-analysis method.
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Figure 32: Expected Value of the Student Rate Function versus Time

As the Figure 32 illustrates, we have obtained the higher student rate with

CTHH moves compared to CTHL until some time. However, after some times ,

the lower teacher moves slightly lead to a higher student rate. We are not able

to explain the reason now, but we will look at the different characteristic of the

teacher moves in the future research. Overall, our newly developed basic model

works to explain in-the-moment interaction between teacher and student by taking

the time into account. We hypothesized to see whether catalytic gamma value is

greater than 0, and productive, meaningful pedagogical teacher actions lead to a

higher student rate. We found that γ̂ values from three meta-analysis models are

significantly greater than 0. However, we could not explain why higher moves do

not lead to a higher student rate in mathematics classrooms all the time, but we

hope to explain it in the future research.
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VI. FUTURE RESEARCH

• Use the second model with more classrooms and observe the value of the

parameters.

• Add a set of predictor variables x1, ..., xk which take on possibly different

values in each classroom xkj with j = 1, . . . P classrooms. Adjust definition

of intensity rate to take predictor variables into account:

log(λt) = α0 + β1x1j + ...+ βkxkj + γVt

• Adjust likelihood from previous section and use it to write the maximum

likelihood for α0, β and γ. Modify the R code to find maximum likelihood

and test it out.

• Power analysis should perform to determine how large P needs to be to be

able to estimate parameters in simplest case which applies to the real world

data.

• Create a different log linear rate function such as exponential polynomial rate

function and investigate the range of φ

λt = eα0+γVtΦ

or

log(λt) = α0 + γ log(Vt + 1).
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APPENDIX SECTION

APPENDIX A

set.seed(4000)

library(tidyverse)

sim_aw <- function(time,mu) {

path <- matrix(0, nrow = 1, ncol = 2)

jumps_number <- rpois(1, lambd = mu * time)

jumps_time <- runif(n = jumps_number, min = 0, max = time) %>% sort()

jumps_time

}

two.pois.sim2 <- function(time, mu, alpha0, gamma){

tset <- sim_aw(time, mu)

M <- length(tset)

w<-rep(0,M+2)

if(M>0){

u.diff = c(tset, time)- c(0, tset)

w[2:(M+2)] = exp(alpha0)*cumsum(exp(gamma*0:M)*u.diff)

Ftinv<- function(u){

k = findInterval(u, w/w[M+2])+1

(w[M+2]*u- w[k-1])*exp(-alpha0-gamma*(k-2))+c(0, tset)[k-1]

}

} else{
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tset = NA

Ftinv = function(u){time *u}

w[2] = time*exp(alpha0)

}

N=rpois(1, w[M+2])

if(N>0){

X0=rep(NA,N)

for(i in 1:N){

X0[i]=Ftinv(runif(1))

}

}else{

X0= NA

}

list(t.times = tset, s.times = if(is.numeric(X0)){sort(X0)}else{NA})

}

library(rootSolve)

mle.sim.gamma<- function(gamma, n.sim =50,time= 50, mu=0.5, alpha0=0){

sim.res = matrix(0, nrow = n.sim, ncol = 9)

colnames(sim.res)<- c("time", "mu", "alpha0",

"gamma", "M", "N", "r","alpha0hat","gammahat")

param <- c(time, mu, alpha0, gamma)

for(i in 1:n.sim){
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two.pois.sim2(time, mu, alpha0, gamma)-> res

if(is.numeric(res$t.times)&is.numeric(res$s.times) ){

r= sum(findInterval(res$s.times, c(0, res$t.times, 50))-1)

N= length(res$s.times)

M = length(res$t.times)

u.diff = c(res$t.times, time)- c(0, res$t.times)

model=function(par){

l.prime.ad=(-exp(par[1])*sum(exp(par[2]*0:M)*u.diff) +N)

l.prime.gd=(-exp(par[1])*sum((0:M)*exp(par[2]*0:M)*u.diff) +r)

c(l.prime.ad=l.prime.ad,l.prime.gd=l.prime.gd) }

p3<- multiroot(model,c(-1, 1),maxiter=1000000)$root[1]

p5<-multiroot(model,c(-1, 1),maxiter=1000000)$root[2]

sim.res[i,] = c(param, c(M, N, r,p3,p5))}else{

sim.res[i,] = c(param,

length(res$t.times),

length(res$s.times),

rep(NA, 3))

}

}

return(sim.res)

}

mle.sim.gamma(0.3,50,50,0.5,0)

sim.multi <- mle.sim.gamma(0,50,50,0.5,0)

for( i in seq(from=0, to=0.4, by=0.01)){ for( j in seq(from=-3, to=0,

by=0.1)){
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sim.multi= rbind(sim.multi,mle.sim.gamma(i,50,50,0.5,j) )

}

}

modvar<- function ( p3,p5,time,M)

{

EValphaa<- (exp(p3)*((1-exp(p5))^-1)*time*(M)^-1*

(1-exp(M)^(exp(p5)-1)))

EValphaandgam<- (exp(p3)*time*exp(p5)*(1-exp(p5))^-2

*(((1-exp(-M))*(M)^-1)

-(exp(-M)*exp(M*exp(p5)))+exp(-M)*(M)^-1*

(exp(exp(p5)*M)*(exp(p5)*M-1)+1)))

EVgamma<- exp(p3)*time*exp(p5)*(1-exp(p5))^-3*(

(1+exp(p5))*(1-exp(-M))*(M)^-1-

exp(-M)*exp(exp(p5)*M)*(exp(p5)*M+1)+(2-exp(p5))*exp(-M)*M^-1*(

exp(exp(p5)*M)*(1-exp(p5)*M+(exp(p5)*M)^2)-1

)+ 2*exp(-M)*M^-1*(

exp(exp(p5)*M)*(exp(p5)*M-1)+1

)-exp(-M)*(M)^-1*(exp(exp(p5)*M)-1))

return(matrix(c(EValphaa, EValphaandgam,

EValphaandgam, EVgamma),nrow=2,ncol=2))

}

modvar(p3,p5,time,M)

my.mean = function(x){mean(x, na.rm = TRUE)}

zeljun11<-as.data.frame(sim.multi)%>%mutate(g.diff = gammahat - gamma,

a.diff = alpha0hat-alpha0)%>%

group_by(gamma,alpha0)%>%

64



summarise(cnt = sum(!is.na(gammahat)), g.bias = my.mean(g.diff),

a.bias = my.mean(a.diff), g.mse = my.mean(g.diff^2) ,

a.mse= my.mean(a.diff^2) )

APPENDIX B

library(tidyverse)

sim_aw <- function(time,mu) {

path <- matrix(0, nrow = 1, ncol = 2)

jumps_number <- rpois(1, lambd = mu * time)

jumps_time <- runif(n = jumps_number, min = 0, max = time) %>% sort()

jumps_time

}

two.pois.sim2 <- function(time, mu, alpha0, gamma){

tset <- sim_aw(time, mu)

M <- length(tset)

w<-rep(0,M+2)

if(M>0){

u.diff = c(tset, time)- c(0, tset)

w[2:(M+2)] = exp(alpha0)*cumsum(exp(gamma*0:M)*u.diff)

Ftinv<- function(u){

k = findInterval(u, w/w[M+2])+1

(w[M+2]*u- w[k-1])*exp(-alpha0-gamma*(k-2))+c(0, tset)[k-1]

}
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} else{

tset = NA

Ftinv = function(u){time *u}

w[2] = time*exp(alpha0)

}

N=rpois(1, w[M+2])

if(N>0){

X0=rep(NA,N)

for(i in 1:N){

X0[i]=Ftinv(runif(1))

}

}else{

X0= NA

}

list(t.times = tset, s.times = if(is.numeric(X0)){sort(X0)}else{NA})

}

library(rootSolve)

mle.sim.gamma<- function(gamma, n.sim =50,time= 50, mu=0.5, alpha0=0){

sim.res = matrix(0, nrow = n.sim, ncol = 6)

colnames(sim.res)<- c(

"time", "mu", "alpha0"
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"gamma","alpha0hat","gammahat")

param <- c(time, mu, alpha0, gamma)

u.diff = list(0)

r = rep(0, 20)

N= rep(0, 20)

M = rep(0, 20)

for(i in 1:n.sim){for( p in seq(from=1, to=20, by=1)){ 

two.pois.sim2(time, mu, alpha0, gamma)-> res 

if(is.numeric(res$t.times)&is.numeric(res$s.times) ){

r[p]= sum(findInterval(res$s.times, c(0, res$t.times, 50))-1) 

N[p]= length(res$s.times)

M[p] = length(res$t.times)

u.diff[[p]] = c(res$t.times, time)- c(0, res$t.times)

}else{

r[p] = NA

}

}

if(sum(is.na(r))<1){

model=function(par){

l.prime.adp = 0

l.prime.gdp = 0

for (p in 1:20){ l.prime.adp=(-

exp(par[1])*sum(exp(par[2]*0:M[p])*u.diff[[p]])+N[p]) + 

l.prime.adp l.prime.gdp=(-

exp(par[1])*sum((0:M[p])*exp(par[2]*0:M[p]) *u.diff[[p]])

+r[p]) + l.prime.gdp }
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c(l.prime.adp=l.prime.adp,l.prime.gdp=l.prime.gdp) }

p3<- multiroot(model,c(-2,2))$root[1]

p5<-multiroot(model,c(-2,2))$root[2]

sim.res[i,] = c(param, c(p3,p5)) } else {

sim.res[i,] = c(param, rep(NA,2))

}

}

return(sim.res)

}

sim.multi <- mle.sim.gamma(0,50,50,0.5,0)

for( i in seq(from=0, to=0.4, by=0.01))

{ for( j in seq(from=-3, to=1, by=0.1)){

sim.multi= rbind(sim.multi,mle.sim.gamma(i,50,50,0.5,j) )

}

}

summultimeta<-as.data.frame(sim.multi)

my.mean = function(x){mean(x, na.rm = TRUE)}

zelmeta<-as.data.frame(sim.multi)%>%mutate(g.diff = gammahat - gamma,

a.diff = alpha0hat-alpha0)%>%

group_by(gamma,alpha0)%>%

summarise(cnt = sum(!is.na(gamma.hat)), g.bias = my.mean(g.diff),

a.bias = my.mean(a.diff), g.mse = my.mean(g.diff^2) ,

a.mse= my.mean(a.diff^2) )
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View(zelmeta)

APPENDIX C

All Teacher Moves

library(tidyverse)

library(rootSolve)

for (i in 1:24){

assign(paste0("s.times", i), (dataframe%>%

mutate(time=(Minutes+Seconds/60))

%>%filter(LessonCode == i, category ==1 ))$time)

assign(paste0("t.times", i),

(dataframe%>%mutate(time =

(Minutes+Seconds/60))

%>%filter(LessonCode == i, category >1 ))$time)

}

Time<-list(58.8333333,63.6,53.25,59.28333333,54,44.8,64.33333333,

44.51666667,40.4666667,71.88333333,74,57.03333333,47.56666667,

60,56.06666667,

43.15,66.83333333,46.85,41.06666667,

44.23333333,43.0333333,

41.15,42,34.85)

myteacher<-list(t.times1,t.times2,t.times3,t.times4,t.times5,

t.times6,

t.times7,t.times8,t.times9,t.times10,t.times11,t.times12,t.times13,

t.times14,t.times15,t.times16,t.times17,t.times18,

t.times19,t.times20,t.times21,
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t.times22,

t.times23,t.times24)

mystudent<-list(s.times1,s.times2,s.times3,s.times4,s.times5,s.times6,

s.times7,s.times8,s.times9,s.times10,s.times11,s.times12,

s.times13,s.times14,s.times15,s.times16,s.times17,s.times18,

s.times19,

s.times20,s.times21,s.times22,s.times23,s.times24)

N=NULL

u.diff=NULL

M=NULL

r=NULL

for(i in 1:24){

N[i]=length(mystudent[[i]])

M[i]=length(myteacher[[i]])

u.diff[[i]] = c(myteacher[[i]], Time[[i]])- c(0, myteacher[[i]])

r[i]= sum(findInterval(mystudent[[i]],

c(0, myteacher[[i]], Time[[i]]))-1)

}

model=function(par){

l.prime.adp = 0

l.prime.gdp = 0

for (p in 1:24){

l.prime.adp=(-exp(par[1])*sum(exp(par[2]*0:M[p])*

u.diff[[p]])

+N[p]) + l.prime.adp

l.prime.gdp=(-exp(par[1])*sum((0:M[p])*exp(par[2]*

0:M[p])*u.diff[[p]])
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+r[p]) + l.prime.gdp }

c(l.prime.adp=l.prime.adp,l.prime.gdp=l.prime.gdp) }

p3<- multiroot(model,c(-1,0))$root[1]

p5<-multiroot(model,c(-1,0))$root[2]

Tim=c(58.8333333,63.6,53.25,59.28333333,54,44.8,64.33333333,

44.51666667,

40.4666667,71.88333333,74,57.03333333,47.56666667,60,

56.06666667,43.15,

66.83333333,46.85,41.06666667,44.23333333,43.0333333,41.15

,42,34.85)

modvar <- function ( p3,p5,Tim,M)

{

EValphaa<- sum((exp(p3)*((1-exp(p5))^-1)*Tim*(M)^-1*

(1-exp(M)^(exp(p5)-1))))

EValphaandgam<- sum((exp(p3)*Tim*exp(p5)*(1-exp(p5))^-2*(((1-exp(-M))*

(M)^-1)-

(exp(-M)*exp(M*exp(p5)))+exp(-M)*(M)^-1*(exp(exp(p5)*M)*

(exp(p5)*M-1)+1))))

EVgamma<- sum( exp(p3)*Tim*exp(p5)*(1-exp(p5))^-3*(

(1+exp(p5))*(1-exp(-M))*(M)^-1-

exp(-M)*exp(exp(p5)*M)*(exp(p5)*M+1)+(2-exp(p5))*exp(-M)*M^-1*(

exp(exp(p5)*M)*(1-exp(p5)*M+(exp(p5)*M)^2)-1

)+ 2*exp(-M)*M^-1*(

exp(exp(p5)*M)*(exp(p5)*M-1)+1

)-exp(-M)*(M)^-1*(exp(exp(p5)*M)-1)))

return(matrix(c(EValphaa, EValphaandgam, EValphaandgam,

EVgamma),nrow=2,ncol=2))
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}

sum(M)/sum(Tim)

mod1=solve(modvar(p3,p5,Tim,M))

mod1

High Moves

library(tidyverse)

library(rootSolve)

for (i in 1:24){

assign(paste0("s.times", i), (dataframe

%>%mutate(time = (Minutes+Seconds/60))

%>%filter(LessonCode == i, category ==1 ))$time)

assign(paste0("t.times", i), (dataframe

%>%mutate(time = (Minutes+Seconds/60))

%>%filter(LessonCode == i, category ==4 ))$time)

}

Time<-list(58.8333333,63.6,53.25,59.28333333,54,44.8,64.33333333,

44.51666667,40.4666667,71.88333333,74,57.03333333,47.56666667,

60,56.06666667,43.15,66.83333333,46.85

,41.06666667,44.23333333,

43.0333333,41.15,42,34.85)

myteacher<-list(t.times1,t.times2,t.times3,t.times4,t.times5,t.times6,

t.times7,t.times8,t.times9,t.times10,t.times11,t.times12,t.times13,

t.times14,t.times15,t.times16,t.times17,

t.times18,t.times19,t.times20,
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t.times21,t.times22,t.times23,t.times24)

mystudent<-list(s.times1,s.times2,s.times3,s.times4,s.times5,s.times6,

s.times7,s.times8,s.times9,s.times10,s.times11,s.times12,s.times13,

s.times14,s.times15,s.times16,s.times17,s.times18,s.times19,

s.times20,

s.times21,s.times22,s.times23,s.times24)

N=NULL

u.diff=NULL

M=NULL

r=NULL

for(i in 1:24){

N[i]=length(mystudent[[i]])

M[i]=length(myteacher[[i]])

u.diff[[i]] = c(myteacher[[i]],

Time[[i]])- c(0, myteacher[[i]])

r[i]= sum(findInterval(mystudent[[i]],

c(0, myteacher[[i]], Time[[i]]))-1)

}

model=function(par){

l.prime.adp = 0

l.prime.gdp = 0

for (p in 1:24){

l.prime.adp=(-exp(par[1])*sum(exp(par[2]*0:M[p])

*u.diff[[p]])

+N[p]) + l.prime.adp

l.prime.gdp=(-exp(par[1])*sum((0:M[p])*exp(par[2]*0:M[p])

*u.diff[[p]])
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+r[p]) + l.prime.gdp }

c(l.prime.adp=l.prime.adp,l.prime.gdp=l.prime.gdp) }

p3<- multiroot(model,c(-1,0))$root[1]

p5<-multiroot(model,c(-1,0))$root[2]

Tim=c(58.8333333,63.6,53.25,59.28333333,54,

44.8,64.33333333,44.51666667,

40.4666667,71.88333333,74,57.03333333,

47.56666667,60,56.06666667,43.15,

66.83333333,46.85,41.06666667,44.23333333,

43.0333333,41.15,42,

34.85)

modvar <- function ( p3,p5,Tim,M)

{

EValphaa<- sum((exp(p3)*((1-exp(p5))^-1)*Tim*(M)^-1*

(1-exp(M)^(exp(p5)-1))))

EValphaandgam<- sum((exp(p3)*Tim*exp(p5)*(1-exp(p5))^-2*

(((1-exp(-M))*(M)^-1)-(exp(-M)*exp(M*exp(p5)))+exp(-M)*

(M)^-1*(exp(exp(p5)*M)*(exp(p5)*M-1)+1))))

EVgamma<- sum( exp(p3)*Tim*exp(p5)*(1-exp(p5))^-3*(

(1+exp(p5))*(1-exp(-M))*(M)^-1-

exp(-M)*exp(exp(p5)*M)*(exp(p5)*M+1)+(2-exp(p5))*exp(-M)*M^-1*(

exp(exp(p5)*M)*(1-exp(p5)*M+(exp(p5)*M)^2)-1

)+ 2*exp(-M)*M^-1*(

exp(exp(p5)*M)*(exp(p5)*M-1)+1

)-exp(-M)*(M)^-1*(exp(exp(p5)*M)-1)))

return(matrix(c(EValphaa, EValphaandgam, EValphaandgam,

EVgamma),nrow=2,ncol=2))
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}

sum(M)/sum(Tim)*

Low Moves

mod1=solve(modvar(p3,p5,Tim,M))

mod1

library(tidyverse)

library(rootSolve)

for (i in 1:24){

assign(paste0("s.times", i), (dataframe%>%mutate(time =

(Minutes+Seconds/60))%>%filter(LessonCode == i, category ==1 ))$time)

assign(paste0("t.times", i), (dataframe%>%

mutate(time = (Minutes+Seconds/60))%>%

filter(LessonCode == i, category==3 ))$time)

}

Time<-list(58.8333333,63.6,53.25,59.28333333,54,44.8,64.33333333,

44.51666667,40.4666667,71.88333333,74,57.03333333,

47.56666667,60,56.06666667,43.15,66.83333333,

46.85,41.06666667,44.23333333,43.0333333,

41.15,42,34.85)

myteacher<-list(t.times1,t.times2,t.times3,t.times4,t.times5,t.times6,

t.times7,t.times8,t.times9,t.times10,

t.times11,t.times12,t.times13,t.times14,

t.times15,t.times16,t.times17,t.times18,

t.times19,t.times20,t.times21,t.times22,
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t.times23,t.times24)

mystudent<-list(s.times1,s.times2,s.times3,s.times4,s.times5,s.times6,

s.times7,s.times8,s.times9,s.times10,s.times11,s.times12,

s.times13,s.times14,s.times15,s.times16,s.times17,s.times18,

s.times19,s.times20,s.times21,s.times22,

s.times23,s.times24)

N=NULL

u.diff=NULL

M=NULL

r=NULL

for(i in 1:24){

N[i]=length(mystudent[[i]])

M[i]=length(myteacher[[i]])

u.diff[[i]] = c(myteacher[[i]], Time[[i]])- c(0, myteacher[[i]])

r[i]= sum(findInterval(mystudent[[i]],

c(0, myteacher[[i]], Time[[i]]))-1)

}

model=function(par){

l.prime.adp = 0

l.prime.gdp = 0

for (p in 1:24){ l.prime.adp=(-exp(par[1])*sum(exp(par[2]*0:M[p])*

u.diff[[p]]) +N[p]) + l.prime.adp

l.prime.gdp=(-exp(par[1])*sum((0:M[p])*exp(par[2]*

0:M[p])*u.diff[[p]]) +r[p]) + l.prime.gdp }

c(l.prime.adp=l.prime.adp,

l.prime.gdp=l.prime.gdp) }

p3<- multiroot(model,c(-1,0))$root[1]
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p5<-multiroot(model,c(-1,0))$root[2]

Tim=c(58.8333333,63.6,53.25,59.28333333,54,44.8,64.33333333,

44.51666667,

40.4666667,71.88333333,74,57.03333333,47.56666667,60,56.06666667,

43.15,

66.83333333,46.85,41.06666667,44.23333333,

43.0333333,41.15,42,34.85)

modvar <- function ( p3,p5,Tim,M)

{

EValphaa<- sum((exp(p3)*((1-exp(p5))^-1)*Tim*(M)^-1*

(1-exp(M)^(exp(p5)-1))))

EValphaandgam<- sum((exp(p3)*Tim*exp(p5)*(1-exp(p5))^-2*(((1-exp(-M))*

(M)^-1)-(exp(-M)*exp(M*exp(p5)))+exp(-M)*

(M)^-1*(exp(exp(p5)*M)*(exp(p5)*M-1)+1))))

EVgamma<- sum( exp(p3)*Tim*exp(p5)*(1-exp(p5))^-3*(

(1+exp(p5))*(1-exp(-M))*(M)^-1-

exp(-M)*exp(exp(p5)*M)*(exp(p5)*M+1)+(2-exp(p5))*exp(-M)*M^-1*(

exp(exp(p5)*M)*(1-exp(p5)*M+(exp(p5)*M)^2)-1

)+ 2*exp(-M)*M^-1*(

exp(exp(p5)*M)*(exp(p5)*M-1)+1

)-exp(-M)*(M)^-1*(exp(exp(p5)*M)-1)))

return(matrix(c(EValphaa, EValphaandgam, EValphaandgam, EVgamma),

nrow=2,ncol=2))

}

sum(M)/sum(Tim)

mod1=solve(modvar(p3,p5,Tim,M))

mod1
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