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ASYMPTOTIC PROPERTIES OF SOLUTIONS TO
THREE-DIMENSIONAL FUNCTIONAL DIFFERENTIAL

SYSTEMS OF NEUTRAL TYPE

EVA ŠPÁNIKOVÁ

Abstract. In this paper, we study the behavior of solutions to three-dimensional

functional differential systems of neutral type. We find sufficient conditions
for solutions to be oscillatory, and to decay to zero. The main results are

presented in three theorems and illustrated with one example.

1. Introduction

We consider neutral functional differential systems[
y1(t)− a(t)y1(g(t))

]′ = p1(t)y2(t),

y′2(t) = p2(t)y3(t),

y′3(t) = −p3(t)f(y1(h(t))), t ≥ t0.

(1.1)

The following conditions are assumed:
(a) a : [t0,∞) → (0,∞] is a continuous function;
(b) g : [t0,∞) → R is a continuous and increasing function and limt→∞ g(t) =

∞;
(c) pi : [t0,∞) → [0,∞), i = 1, 2, 3 are continuous functions; p3 not identically

equal to zero in any neighbourhood of infinity,
∫∞

pj(t) dt = ∞, j = 1, 2;
(d) h : [t0,∞) → R is a continuous and increasing function and limt→∞ h(t) =

∞;
(e) f : R → R is a continuous function, uf(u) > 0 for u 6= 0 and |f(u)| ≥ K|u|,

where K is a positive constant.
For t1 ≥ t0, we define

t̃1 = min{t1, g(t1), h(t1)} .

A function y = (y1, y2, y3) is a solution of the system (1.1) if there exists a t1 ≥
t0 such that y is continuous on [t̃1,∞), y1(t) − a(t)y1(g(t)), yi(t), i = 2, 3 are
continuously differentiable on [t1,∞) and y satisfies (1.1) on [t1,∞). Denote by W
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the set of all solutions y = (y1, y2, y3) of the system (1.1) which exist on some ray
[Ty,∞) ⊂ [t0,∞) and satisfy

sup
{ 3∑

i=1

|yi(t)| : t ≥ T
}

> 0 for any T ≥ Ty.

A solution y ∈ W is considered to be non-oscillatory if there exists a Ty ≥ t0 such
that every component is different from zero for t ≥ Ty. Otherwise a solution y ∈ W
is said to be oscillatory.

The purpose of this article is to study asymptotic properties of solutions to
the three-dimensional functional differential systems of neutral type (1.1) and also
the special asymptotic properties of solutions whose first component is bounded.
The asymptotic and oscillatory properties of solutions to differential systems with
deviating arguments has been studied for example in the papers [1, 2, 4, 8, 10, 11].

For a y1(t), we define

z1(t) = y1(t)− a(t)y1(g(t)). (1.2)

Denote

P1(s, t) =
∫ s

t

p1(x) dx, P1,2(s, t) =
∫ s

t

p1(v)
∫ v

t

p2(x) dx dv,

P2(s, t) =
∫ s

t

p2(x) dx, P2,1(s, t) =
∫ s

t

p2(v)
∫ v

t

p1(x)dx dv, s ≥ t ≥ t0.

2. Classification of non-oscillatory solutions

Lemma 2.1 ([6, Lemma 1]). Let y ∈ W be a solution of (1.1) with y1(t) 6= 0 on
[t1,∞), t1 ≥ t0. Then y is non-oscillatory and z1(t), y2(t), y3(t) are monotone on
some ray [T,∞), T ≥ t1.

Let y ∈ W be a non-oscillatory solution of (1.1). From (1.1) and (c) it follows
that the function z1(t) from (1.2) has to be eventually of constant sign, so that
either

y1(t)z1(t) > 0 (2.1)
or

y1(t)z1(t) < 0 (2.2)
for sufficiently large t. Assume first that (2.1) holds. From [6, Lemma 4] it follows
the statement in Lemma 2.2.

Lemma 2.2. Let y = (y1, y2, y3) ∈ W be a non-oscillatory solution of (1.1) on
[t1,∞) and that (2.1) holds. Then there exists a t2 ≥ t1 such that for t ≥ t2 either

y1(t)z1(t) > 0

y2(t)z1(t) < 0

y3(t)z1(t) > 0
(2.3)

or
yi(t)z1(t) > 0, i = 1, 2, 3. (2.4)

Denote by N+
1 the set of non-oscillatory solutions of (1.1) satisfying (2.3), and

by N+
3 the non-oscillatory solutions of (1.1) satisfying (2.4). Now assume that (2.2)

holds. With the aid of the Kiguradze’s Lemma is easy to prove Lemma 2.3.
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Lemma 2.3. Let y = (y1, y2, y3) ∈ W be a non-oscillatory solution of (1.1) on
[t1,∞) and (2.2) holds. Then there exists a t2 ≥ t1 such that for t ≥ t2 either

y1(t)z1(t) < 0

y2(t)z1(t) > 0

y3(t)z1(t) < 0
(2.5)

or
y1(t)z1(t) < 0

yi(t)z1(t) > 0, i = 2, 3.
(2.6)

Denote by N−
2 the sets of non-oscillatory solutions of (1.1) satisfying (2.5), and

by N−
3 the non-oscillatory solutions of (1.1) satisfying (2.6). Denote by N the set

of all non-oscillatory solutions of (1.1). Obviously by Lemmas 2.2 and 2.3, we have

N = N+
1 ∪N+

3 ∪N−
2 ∪N−

3 . (2.7)

Lemma 2.4. Suppose that a(t) is bounded on [t2,∞) and y ∈ W be a non-
oscillatory solution of the system (1.1) with y1(t) bounded on [t2,∞), t2 ≥ t0.
Then

y ∈ N+
1 ∪N−

2 .

Proof. We must show that the set N+
3 ∪ N−

3 is empty. Let y ∈ W be a non-
oscillatory solution of (1.1) with y1(t) bounded on [t2,∞) and y ∈ N+

3 ∪ N−
3 .

Without loss of generality we suppose that y1(t) > 0 on [t2,∞). Because a(t) and
y1(t) are bounded, z1(t) is bounded on [t3,∞), where t3 ≥ t2 is sufficiently large.
If y ∈ N+

3 ∪N−
3 then a function |y2(t)| is nondecreasing and

|y2(t)| ≥ M, 0 < M = const. for t ≥ t3.

Integrating the first equation of (1.1) from s to t and using the last inequality we
get

|z1(t)| − |z1(s)| ≥ M

∫ t

s

p1(u)du, t > s ≥ t3. (2.8)

From (2.8) and (c) we have limt→∞ |z1(t)| = ∞. This contradicts the fact that
z1(t) is bounded and N+

3 ∪N−
3 = ∅. The proof is complete. �

Lemma 2.5 ([3, Lemma 2.2]). In addition to the conditions (a) and (b) suppose
that

1 ≤ a(t) for t ≥ t0.

Let y1(t) be a continuous non-oscillatory solution of the functional inequality

y1(t)[y1(t)− a(t)y1(g(t))] > 0

defined in a neighbourhood of infinity. Suppose that g(t) > t for t ≥ t0. Then y1(t)
is bounded. If, moreover,

1 < λ? ≤ a(t), t ≥ t0

for some positive constant λ?, then limt→∞ y1(t) = 0.

Lemma 2.6 ([9, Lemma 4]). Assume that q : [t0,∞) → [0,∞) and δ : [t0,∞) → R
are continuous functions, limt→∞ δ(t) = ∞, δ(t) > t for t ≥ t0, and

lim inf
t→∞

∫ δ(t)

t

q(s) ds >
1
e
.
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Then the functional inequality

x′(t)− q(t)x(δ(t)) ≥ 0, t ≥ t0,

has no eventually positive solution, and

x′(t)− q(t)x(δ(t)) ≤ 0, t ≤ t0

has no eventually negative solution.

3. Oscillation theorems

Theorem 3.1. Suppose that

a(t) is bounded for t ≥ t0, (3.1)

g(t) < h(t) < t < α(t) for t ≥ t0, (3.2)

where α : [t0,∞) → R is a continuous function,

lim sup
t→∞

∫ h−1(t)

t

KP2,1(u, t)p3(u) du > 1, (3.3)

lim inf
t→∞

∫ g−1(h(t))

t

p1(v)
∫ α(v)

v

KP2(u, v)p3(u) du dv

a(g−1(h(u)))
>

1
e
, (3.4)

where g−1(t) is the inverse function of g(t). Then every solution y = (y1, y2, y3) ∈
W of (1.1) with y1(t) bounded is oscillatory.

Proof. Let y ∈ W be a non-oscillatory solution of (1.1) with y1(t) bounded. From
Lemma 2.4 we have y ∈ N+

1 ∪ N−
2 on [t2,∞). Without loss of generality we may

suppose that y1(t) is positive for t ≥ t2.
I) Let y ∈ N+

1 on [t2,∞). In this case

y1(t) > 0, z1(t) > 0, y2(t) < 0, y3(t) > 0 for t ≥ t2. (3.5)

Integrating
∫ s

t
P2,1(u, t)y′3(u) du by parts with f(u) = P2,1(u, t), g(u) = y3(u), and

one gets ∫ s

t

P2,1(u, t) y′3(u) du = P2,1(s, t) y3(s)−
∫ s

t

P1(u, t) y′2(u) du.

Integrating by parts again with f(u) = P1(u, t), g(u) = y2(u), we have∫ s

t

P2,1(u, t) y′3(u) du = P2,1(s, t) y3(s)− P1(s, t) y2(s) + z1(s)− z1(t) . (3.6)

This equation implies

z1(t) = z1(s)− P1(s, t)y2(s) + P2,1(s, t)y3(s)−
∫ s

t

P2,1(u, t)y′3(u) du, (3.7)

for s > t ≥ t2. From (3.7) in regard to (3.5), (e) and the third equation of (1.1),
we get

z1(t) ≥
∫ s

t

KP2,1(u, t)p3(u)y1(h(u)) du, s > t ≥ t2. (3.8)

Since z1(t) ≤ y1(t) for t ≥ t2, it follows that

z1(h(t)) ≤ y1(h(t)) for t ≥ t3, (3.9)
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where t3 ≥ t2 is sufficiently large. Combining (3.8) and (3.9) we have

z1(t) ≥
∫ s

t

KP2,1(u, t)p3(u)z1(h(u)) du, s > t ≥ t3.

Putting s = h−1(t) and using the monotonicity of z1(h(u)) from the previous in-
equality we obtain

z1(t) ≥ z1(t)
∫ h−1(t)

t

KP2,1(u, t)p3(u) du, t ≥ t3;

1 ≥
∫ h−1(t)

t

KP2,1(u, t)p3(u) du, t ≥ t3,

which contradicts (3.3) and N+
1 = ∅.

(II) Let y ∈ N−
2 on [t2,∞). In this case

y1(t) > 0, z1(t) < 0, y2(t) < 0, y3(t) > 0 for t ≥ t2. (3.10)

Integrating
∫ s

t
P2(u, t)y′3(u) du by parts we derive the integral identity

y2(t) = y2(s)− P2(s, t)y3(s) +
∫ s

t

P2(u, t)y′3(u) du, s > t ≥ t2. (3.11)

From (3.11) with regard to (3.10), (e) and the third equation of (1.1) we get

y2(t) ≤ −
∫ s

t

KP2(u, t)p3(u)y1(h(u)) du, s > t ≥ t2. (3.12)

Because z1(t) > −a(t)y1(g(t)) for t ≥ t2 it follows

z1(g−1(h(t))) > −a(g−1(h(t)))y1(h(t));

−y1(h(t)) <
z1(g−1(h(t)))
a(g−1(h(t)))

for t ≥ t2. (3.13)

Combining (3.12) and (3.13), we have

y2(t) ≤
∫ s

t

KP2(u, t)p3(u)z1(g−1(h(u))) du

a(g−1(h(u)))
, s > t ≥ t2.

Multiplying the last inequality by p1(t), using the first equation of (1.1) and the
monotonicity of z1(g−1(h(t))) we get

z′1(t) ≤
[
p1(t)

∫ s

t

KP2(u, t)p3(u) du

a(g−1(h(u)))

]
z1(g−1(h(t))), s > t ≥ t2.

Let s = α(t) and so

z′1(t)−
[
p1(t)

∫ α(t)

t

KP2(u, t)p3(u) du

a(g−1(h(u)))

]
z1(g−1(h(t))) ≤ 0, t ≥ t2.

By Lemma 2.6 and condition (3.4), the last inequality has no eventually negative
solution, which is a contradiction and N−

2 = ∅. The proof is complete. �

Theorem 3.2. Suppose that

1 < λ? ≤ a(t) ≤ c, for t ≥ t0 and some constants λ?, c; (3.14)

t < g(t) < h(t) for t ≥ t0; (3.15)

t < α(t), where α : [t0,∞) → R is a continuous function (3.16)



6 E. ŠPÁNIKOVÁ EJDE-2005/47

and (3.4) holds. Then for every non-oscillatory solution, y ∈ W of (1.1) with y1(t)
bounded, we have limt→∞ yi(t) = 0, i = 1, 2, 3.

Proof. Let y ∈ W be a non-oscillatory solution of (1.1) with y1(t) bounded. From
Lemma 2.4 we have y ∈ N+

1 ∪ N−
2 on [t2,∞). Without loss of generality we may

suppose that y1(t) is positive for t ≥ t2.
(I) Let y ∈ N+

1 on [t2,∞). In this case (3.5) holds. By Lemma 2.5 it follows that
limt→∞ y1(t) = 0. We prove that limt→∞ y2(t) = limt→∞ y3(t) = 0 indirectly.

Let limt→∞ y2(t) = −S, 0 < S = const. Then

y2(t) ≤ −S, t ≥ t2. (3.17)

Integrating the first equation of (1.1) from t2 to t and using (3.17) we get

z1(t)− z1(t2) ≤ −S

∫ t

t2

p1(s) ds, t ≥ t2. (3.18)

From this inequality and (c) we have limt→∞ z1(t) = −∞ which contradicts z1(t) >
0 for t ≥ t2 and so limt→∞ y2(t) = 0.

Let limt→∞ y3(t) = P, 0 < P = const. Then

y3(t) ≥ P, t ≥ t2. (3.19)

Integrating the second equation of (1.1) from t2 to t and using (3.19) we get

y2(t)− y2(t2) ≥ P

∫ t

t2

p2(s) ds, t ≥ t2. (3.20)

From (3.20) and (c) we have limt→∞ y2(t) = ∞ and that contradicts y2(t) < 0 for
t ≥ t2 and so limt→∞ y3(t) = 0.

(II) Let y ∈ N−
2 on [t2,∞). Analogously as in the case (II) of the proof of Theo-

rem 3.1 we can show that N−
2 = ∅. The proof is complete. �

Example. Consider the system[
y1(t)− 2y1(3t)

]′ = ty2(t),

y′2(t) = ty3(t),

y′3(t) = −45t−5y1(9t), t ≥ t0 > 0.

(3.21)

In this example a(t) = 2, g(t) = 3t, h(t) = 9t, p1(t) = p2(t) = t, p3(t) = 45t−5,
f(t) = t, K = 1, P2(u, v) = 1

2 (u2 − v2). We chose α(t) = 2t and calculate the
condition (3.4) as follows

lim inf
t→∞

45
4

∫ 3t

t

v

∫ 2v

v

(u2 − v2)u−5 du dv =
405
256

ln 3.

All conditions of Theorem 3.2 are satisfied. Then for every non-oscillatory solution
y ∈ W of (3.21) with y1(t) bounded, it holds

lim
t→∞

y1(t) = lim
t→∞

y2(t) = lim
t→∞

y3(t) = 0.

For instance functions

y1(t) =
1
t
, y2(t) =

−1
3t3

, y3(t) =
1
t5

, t ≥ t0

are such a kind of solutions.
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Theorem 3.3. Suppose that

1 < λ? ≤ a(t), t ≥ t0 for some constant λ?; (3.22)

lim sup
t→∞

∫ t

h−1(g(t))

KP1,2(t, u)p3(u) du

a(g−1(h(u)))
> 1 . (3.23)

and (3.4), (3.15) and (3.16) hold. Then for every non-oscillatory solution y ∈ W
of (1.1), it holds limt→∞ yi(t) = 0, i = 1, 2, 3.

Proof. Let y ∈ W be a non-oscillatory solution of (1.1). From (2.7) we have y ∈
N+

1 ∪N+
3 ∪N−

2 ∪N−
3 on [t2,∞). Without loss of generality we may suppose that

y1(t) is positive for t ≥ t2.
(I) Let y ∈ N+

1 on [t2,∞). In this case (3.5) holds. By Lemma 2.5 it follows
that limt→∞ y1(t) = 0. We prove, that limt→∞ y2(t) = limt→∞ y3(t) = 0 indirectly
analogously as in the case (I) of the proof of Theorem 3.2.
(II) Let y ∈ N+

3 on [t2,∞). In this case

y1(t) > 0, z1(t) > 0, y2(t) > 0, y3(t) > 0 for t ≥ t2. (3.24)

In this case,
y2(t) ≥ M, 0 < M = const. for t ≥ t2.

Integrating the first equation of (1.1) from s to t and using the last inequality we
get

z1(t)− z1(s) ≥ M

∫ t

s

p1(u)du, t > s ≥ t2. (3.25)

From (3.25) and (c) we have limt→∞ z1(t) = ∞ and the function z1(t) is unbounded.
From (1.2), (3.15), (3.22) we have

y1(t) > a(t)y1(g(t)) > y1(g(t)),

which implies that y1(t) is bounded, but z1(t) < y1(t) which is a contradiction.
N+

3 = ∅.
(III) Let y ∈ N−

2 on [t2,∞). Analogously as in the case (II) of the proof of
Theorem 3.1 we can show that N−

2 = ∅.
(IV) Let y ∈ N−

3 on [t2,∞). In this case

y1(t) > 0, z1(t) < 0, y2(t) < 0, y3(t) < 0 for t ≥ t2. (3.26)

By interchanging the order of integrating in P1,2(t, u), we have∫ t

s

P1,2(t, u)y′3(u) du =
∫ t

s

( ∫ t

u

p2(x)
∫ t

x

p1(v) dv dx
)
y′3(u) du

and integrating
∫ t

s
P1,2(t, u)y′3(u) du by parts with f(u) =

∫ t

u
p2(x)

∫ t

x
p1(v) dv dx,

g(u) = y3(u), we get∫ t

s

P1,2(t, u)y′3(u) du = −P1,2(t, s)y3(s) +
∫ t

s

P1(t, u)y′2(u) du.

Integrating by parts again with f(u) = P1(t, u), g(u) = y2(u), one gets∫ t

s

P1,2(t, u)y′3(u) du = −P1,2(t, s)y3(s)− P1(t, s)y2(s)− z1(s) + z1(t).
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From the equation about, we derive the integral identity

z1(t) = z1(s) + P1(t, s)y2(s) + P1,2(t, s)y3(s) +
∫ t

s

P1,2(t, u)y′3(u) du, (3.27)

for t > s ≥ t2. From (3.27) in regard to (3.26), (e) and the third equation of (1.1)
we get

−z1(t) ≥
∫ t

s

KP1,2(t, u)p3(u)y1(h(u)) du, t > s ≥ t2. (3.28)

Since z1(t) ≥ −a(t)y1(g(t)) for t ≥ t2 it follows that

y1(g(t)) ≥ z1(t)
−a(t)

for t ≥ t2.

From the above inequality we have

y1(h(t)) ≥ z1(g−1(h(t)))
−a(g−1(h(t)))

, t ≥ t2. (3.29)

Combining (3.28) and (3.29) we have

−z1(t) ≥
∫ t

s

−KP1,2(t, u)p3(u)z1(g−1(h(u))) du

a(g−1(h(u)))
, t > s ≥ t2.

Putting s = h−1(g(t)) and using the monotonicity of z1(g−1(h(u))) from the last
inequality we get

−z1(t) ≥ −z1(t)
∫ t

h−1(g(t))

KP1,2(t, u)p3(u) du

a(g−1(h(u)))
, t ≥ t3 ,

where t3 ≥ t2 is sufficiently large and

1 ≥
∫ t

h−1(g(t))

KP1,2(t, u)p3(u) du

a(g−1(h(u)))
, t ≥ t3,

which contradicts (3.23) and N−
3 = ∅. The proof is complete. �
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[7] B. Mihaĺıková: A note on the asymptotic properties of systems of neutral differential equa-

tions, Proceedings of the International Scientific Conference of Mathematics, University of
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