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I. INTRODUCTION

Groups form one of the most basic structure available in abstract algebra,

finding uses in a variety of areas in mathematics. In number theory the main object

of study is the set of integers, a group. The solutions to polynomial equations give

rise to a group. Well known results such as Euler’s Theorem, Diophantine equa-

tions, and solvability of polynomial equations have all benefited from the under-

standing of groups and their structure [3, p.14].

A natural tool for studying groups is a group action on a set. Group actions

provide a convenient way to study abstract groups. Seeing where a group can send

a particular element of a set gives you a sense of that element’s orbit. One question

that arises is to study the sizes of these orbits. In this thesis we will be concerned

with a lower bound for the largest orbit size. We will primarily concern ourselves

with group actions where G is a finite nonabelian group acting on a finite faithful

irreducible G-module V . It is known that ∣G∣/∣G′∣, where G′ is the commutator sub-

group, serves as a lower bound for the largest orbit size of G acting on V [8]. It is

even known that this inequality is either strict, or equal and G is abelian, or there

are at least two orbits of the largest orbit size in the action of G on V when G is

nonabelian. The next natural step is to consider what happens if there are exactly

two orbits of size ∣G∣/∣G′∣ in the action of G on V . In the cited paper the authors

conjecture that this can only happen when the group is the dihedral group of order

eight, while V = V (2,3) is a two dimensional vector space over a field of 3 elements.

In this thesis we will show that a slightly weaker version of this conjecture is in fact

true.

Definitions

In this section we will formalize the terms used throughout this thesis. We
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will also clarify notation which may vary in different sources. The definitions used

in this paper have been taken from [6, 10] and the notation is consistent with litera-

ture in finite group theory.

This thesis will assume the reader is familiar with the basic concept of a

group. A quick review of the properties of a group include a set G which is closed

under a binary operation which is associative, contains an identity, and has in-

verses. In this thesis all groups will be finite. That is to say the size of set G, de-

noted ∣G∣, is not infinite. An example of a group is the dihedral group on eight el-

ements, denoted D8. This group consists of the four rotational and four ’flip’ sym-

metries of a square. These are represented by D8 = {1, r, r2, r3, s, sr, sr2, sr3}, where

r can be considered a 90 degree rotation of a square, and s can be considered a flip

over a fixed axis of symmetry of a square. This produces the multiplication rule

sr = r−1s.

The first structures on a group G we will consider are smaller groups in-

side G called subgroups. Subgroups provide a way to get an idea of the structure

of larger groups. In this paper subgroups will be used to allow for induction on the

group. In the case of D8 we can look at only the set of rotations {1, r, r2, r3} and

see this forms a subgroup of D8. We will define some more special subgroups.

Definition 1. A normal subgroup is a subgroup H ≤ G such that for all g ∈ G we

have g−1Hg = H. This is denoted by H ⊴ G, and H ⊲ G if and only if H ⊴ G and

H ≠ G.

Notice that a normal subgroup is a group that is invariant under conjugation

by elements in G. These groups are also known to be characterized as the kernel of

some group homomorphism.

Definition 2. A group G is solvable if there exists a chain of subgroups 1 = H0 ⊲
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H1 ⊲ ... ⊲Hn = G such that Hi+1/Hi is abelian for i = 0, ..., n−1.

Notice this means that solvable groups are groups that are constructed by

extensions of abelian groups. Solvable groups will be the focus of this paper.

Definition 3. The Frattini subgroup, Φ(G) is the intersection of all maximal

proper subgroups of G.

The Frattini subgroup always exists in finite groups and possesses many use-

ful properties. For example, the Frattini subgroup is always normal. In the case of

D8 we have three maximal subgroups {1, s, r2, sr2} , {1, r, r2, r3}, and {1, rs, r2, sr3}.

Therefore Φ(D8) = {1, r2}. One property of the Frattini subgroup we will benefit

from is that it is nilpotent.

Definition 4. Let G be a finite group and p a prime. A Sylow p-subgroup of G

is a subgroup P ≤ G such that ∣P ∣ = pa is the full power of p dividing ∣G∣. The set of

all Sylow p-subgroups of G is denoted Sylp(G)

Definition 5. Let G be finite and solvable and let π be any set of prime numbers.

Hall’s Theorem guarantees a subgroup H ≤ G with order divisible only by primes in

π with ∣G∣/∣H ∣ divisible by none of these primes. A subgroup H ≤ G satisfying these

conditions is called a Hall π-subgroup of G.

The Sylow and Hall subgroups will provide us a natural way to ‘split-up’

groups into two subgroups using a free product.

Definition 6. A group G is called nilpotent if there exists a chain of subgroups

1 = G0 ⊲ G1 ⊲ . . . ⊲ Gn = G such that Gi+1/Gi ≤ Z(G/Gi). Where Z(G/Gi) = {g ∈

G/Gi∣gx = xg for all x ∈ G/Gi}.
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This formal definition can be replaced by another property that is equiva-

lent to being nilpotent. A group G is nilpotent if and only if it can be written as

the direct product of its Sylow subgroups for all primes p dividing ∣G∣. Notice that

because D8 is a finite p-group that it must be a nilpotent group.

Definition 7. The Fitting subgroup of G, written as F (G) is the unique largest

normal nilpotent subgroup of G.

In the example of D8, we would have F (D8) = D8, because D8 is nilpotent.

The Fitting subgroup will appear in relation to Gaschütz’ Theorem which we will

state in the next section.

Definition 8. Let H1 and H2 be subgroups of G. We define the commutator of

these groups to be

[H1,H2] = ⟨h−11 h−12 h1h2∣h1 ∈H1, h2 ∈H2⟩.

The commutator subgroup of G is the group [G,G] and denoted by G′.

The commutator subgroup is the smallest normal subgroup such that the

quotient group of the group by its commutator is abelian. It turns out that ∣G/G′∣

has a relation to the largest orbit size of a group action. In the case of D8 the com-

mutator subgroup is {1, r2}.

Definition 9. Let X be a set and G be a group. We say that G acts on X if for

every x ∈ X and g ∈ G there exists an element xg ∈ X such that x1 = x and xg
h = xgh

for all g, h ∈ G. If G acts on X, we call this a right group action.

The group action is an abstraction that appears naturally among many ob-

jects in mathematics. Therefore they are worth studying in their own right. We will

discuss a few properties of group actions next section.
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Definition 10. Let G act on the set X and x ∈ X. The orbit containing x of this

group action is the set {xg ∣g ∈ G}

An orbit of an element x can be thought of informally as elements in the set

that x can be taken to by an element in the group.

Definition 11. A group action is faithful if there is no g ∈ G where g ≠ 1 such that

xg = x for all x ∈X.

One will notice that a faithful action induces an injection from G to the

symmetric group on X.

Definition 12. A group action of G on X is said to be transitive if for every two

elements x, y ∈ X, there exists g ∈ G with xg = y. If this g is unique we say that the

action is regular.

Definition 13. Let G be a group and V vector space over a field. Let G act on V

such that (a + b)g = ag + bg for all a, b ∈ V and g ∈ G. We call V a G-module.

Definition 14. Let D be a subgroup of G and V be a G-module. If we consider

only the action of D on V we get a D-module denoted VD.

Definition 15. Let V,W be G-modules. We say V ≅ W as G-modules if and only

if there exists a vector space isomorphism φ ∶ V →W such that φ(vg) = φ(v)g for all

v ∈ V and g ∈ G.

Definition 16. A G-module V is irreducible if V has no proper non-zero G-

submodules.

Definition 17. A G-module V is completely reducible if it can be represented

as the direct sum of irreducible G-modules.
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Definition 18. Let V be a completely reducible G-module. Then V = V1⊕V2⊕ . . .⊕

Vn for irreducible G-modules Vi. One can write V = W1 ⊕ . . . ⊕Wm for some m ≤ n

such that Vi, Vj ≤ Wk for some i, j ∈ {1, ..., n} and some k ∈ {1, ...,m} if and only if

Vi ≅ Vj (as G-modules). Then the Wi are called the homogeneous components

of V .

Definition 19. An irreducible G-module V is called imprimitive if V can be

written as V = V1 ⊕ ... ⊕ Vn for n > 1 subspaces Vi that are permuted transitively by

G. We say that V is primitive if V is not imprimitive. V is called quasi-primitive

if VN is homogeneous for all N ⊲ G (where VN denotes V viewed as an N -module).

It is known that quasiprimitive is a weaker condition than primitive, that is

primitive implies quasiprimitive. However the reverse implication is not true.

This concludes the formal definitions that will be required for the main re-

sult.

Useful Theorems and Lemmas

The following results are all known and appear in other papers relating to

group theory. Their original sources have been indicated for proofs of the following

results. The first lemma will come in handy when we examine abelian subgroups in

our main theorem.

Lemma 1. [8, Lemma 2.2] Let A be an abelian finite group and let V be a finite

faithful completely reducible A-module. It is well-known that A has a regular orbit

on V . Write V = V1 ⊕ ... ⊕ Vn for irreducible A-modules Vi. Suppose that A has

exactly one regular orbit on V . Then A/CA(Vi) is cyclic of order ∣Vi∣ − 1 for all i

and A ≅ ⨉n
i=1A/CA(Vi) is of order ∏n

i=1(∣Vi∣ − 1).

The following theorem is of key importance in our paper. It is the main re-
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sult of [8] and will be used throughout the paper. In particular this paper is con-

cerned with expanding the third case, however the first two cases will also be used

to show our result. The following theorem will reference modules of mixed charac-

teristic. Mixed characteristic means that if V = V1 ⊕ . . . Vn then Vi and Vj need not

have the same characteristic for all i, j ∈ {1, . . . , n}

Theorem 1. [8, Theorem 2.3] Let G be a finite solvable group and V a finite faith-

ful completely reducible G-module, possibly of mixed characteristic. Let M be the

largest orbit size in the action of G on V . Then

∣G/G′∣ ≤M

More precisely, we have one of the following

1. ∣G/G′∣ <M

2. ∣G/G′∣ =M and G is abelian; or

3. ∣G/G′∣ = M , G is nilpotent, and G has at least two different orbits of size M

on V .

The following Lemma is well-known and very useful. The reader may recog-

nize this as a consequence of the isomorphism theorems.

Lemma 2. [8, Lemma 2.1] Let G be a finite group and N ⊴ G. Then

∣G/G′∣ = ∣G/G′N ∣ ⋅ ∣N ∶ N ∩G′∣;

and

∣G ∶ G′∣ divides ∣G/N ∶ (G/N)′∣ ⋅ ∣N ∶ N ′∣.
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Gaschütz’ Theorem will be used in the main proof to make a reduction to

nilpotent groups. This will allow us to narrow the scope of possible cases needed to

prove the result.

Theorem 2 (Gaschütz’ Theorem). [10, p.37] Let G be solvable. Then F (G/Φ(G)) =

F (G)/Φ(G) is a completely reducible and faithful G/F (G)-module (possibly of mixed

characteristic). Furthermore, G/Φ(G) splits over F (G)/Φ(G).

Lemma 3. Let D8 ≤ GL(2,3) (invertible 2x2 matrices on the field of three ele-

ments) act on V (2,3) = V . Let N ⊲ D8 with N being a Klein-4 group. Then N has

exactly one orbit of size four on V . If K is the other Klein-4 subgroup of D8, then

the orbit of size 4 from K acting on V is different than the orbit of size four of N

acting on V .

Proof. Let N = {1, r, s, sr2} and K = {1, r2, sr, sr3}, the two subgroups of D8

isomorphic to the Klein-4 group. Denoting V (2,3) by (i, j) where i and j are in-

tegers such that −1 ≤ i ≤ 1 and −1 ≤ j ≤ 1. Using right multiplication with

r =
⎡⎢⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
, s =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
we can calculate the two orbits of size four. When K

acts on V the orbit of size four is {(1,1), (1,−1), (−1,1), (−1,−1)} while the orbit of

size four in the action of N on V is {(1,0), (−1,0), (0,−1), (0,1)}. This concludes

the proof of Lemma 3

8



II. EXAMPLES AND STATEMENT OF RESULT

The following theorem is similar to a conjecture in [8] before becoming the

topic of this thesis. It will expand upon the third case of Theorem 1 in this paper

by considering the case where G is nonabelian, ∣G∣ is not divisible by a Mersenne

prime and has exactly two orbits of size M on V and V is irreducible. Our claim is

that this can only happen if and only if G = D8 and V = V (2,3), the vector space

of dimension two over the field of three elements. These orbits can be calculated

by the reader using the following matricies for r and s. The operation will be right

multiplication of matrices on the elements of V . We can generate D8 by using the

following matrices to generate a subset of the general linear group GL(2,3).

r =
⎡⎢⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
, s =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
The orbits can also be represented in the following picture. Imagine arrang-

ing these points in a 3 by 3 grid as they appear in the familiar xy-axis. The two

orbits can be seen with the connecting lines, both of size 4, while (0,0) remains as

a fixed point. Notice we see two squares, the symmetries of which are described by

D8.
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(1,1)

(1,−1)(−1,−1)

(−1,1) (0,1)

(1,0)

(0,−1)

(−1,0) (0,0)

If we recall the size of D8 and the size of D′
8 we see that ∣D8 ∶ D′

8∣ = 4 and

this action satisfies conditions of the next theorem.

Theorem 3. Let G be a finite nonabelian solvable group and V a finite faithful ir-

reducible G-module Suppose that M = ∣G/G′∣ is the largest orbit size of G on V ,∣G∣

is not divisible by a Mersenne prime, and that there are exactly two orbits of size

M on V . Then G is dihedral of order 8, and V = V (2,3).

We note that the original conjecture did not contain the added hypothesis

that ∣G∣ is not divisible by Mersenne prime. We still believe that the conjecture

holds without this condition, but have not found a way to dispense of the added

hypothesis in one case of our proof. Further work will be done in order to remove

this extra hypothesis.
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III. PROOF OF MAIN RESULT

Proof. In this proof we will use induction on the size of our group ∣G∣ several times.

We begin the proof by making a reduction and showing that if G is not a

nilpotent group it will not satisfy the conditions of our theorem.

If G is not nilpotent then the proof of Theorem 2.3 in [8] shows that the

largest orbit size of G on V is less than M . Here we reproduce the argument for

the convenience of the reader.

A Reduction to Nilpotent Groups

Suppose G is not nilpotent. Write F = F (G) for the Fitting subgroup and

Φ = Φ(G) for the Frattini subgroup of G. As G is not nilpotent, we have F < G,

and since F is normal in G, V is completely reducible as an F -module. Hence by

Theorem 2.0.2 applied to the action of F on V , we have that

∣F /F ′∣ ≤M. (1)

Moreover, by Gaschütz’ Theorem it is well-known that F /Φ is a faithful, completely

reducible G/F−module (possibly of mixed characteristic). We now write F /Φ =

W1 ⊕W2, where W1 = (F ∩ G′)Φ/Φ and W2 is G-invariant complement of W1 in

F /Φ. Hence

W2 ≅ (F /Φ)/W1 ≅ F /(F ∩G′Φ) as G-modules.

We now claim that G/F acts trivially on W2. For this it suffices to show that G

acts trivially on F /F ∩G′Φ. So let g ∈ G and x ∈ F . Then
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(x(F ∩G′)Φ)g = xg(F ∩G′)Φ = x[x, g](F ∩G′)Φ = x(F ∩G′)Φ,

the last equality being true since [x, g] ∈ F ∩G′. This proves our claim.

Now as G/F is faithful on F /Φ, but acts trivially on W2, we see that W1 is a

faithful completely reducible G/F -module (of possibly mixed characteristic). Thus

by Theorem 2.0.2 we conclude that

∣G ∶ FG′∣ = ∣(G/F ) ∶ (G/F )′∣ < ∣W1∣. (2)

So altogether with (3.1) and (3.2) we conclude that

∣G/G′∣ = ∣G ∶ FG′∣∣FG′/G′∣ < ∣W1∣ ⋅ ∣FG′/G′∣ = ∣(F ∩G′)Φ/Φ∣∣F ∶ (F ∩G′)∣

= ∣(F ∩G′)/(F ∩G′ ∩Φ)∣∣F ∶ (F ∩G′)∣

≤ ∣(F ∩G′) ∶ F ′∣ ⋅ ∣F ∶ (F ∩G′)∣

= ∣F /F ′∣ ≤M

This gives us ∣G/G′∣ < M contradicting our hypothesis. Therefore we know that G

must be nilpotent. This concludes the argument from [8].

A Reduction to p-groups

We can further make a reduction to p-groups. Assume that ∣G∣ is divisible

by at least two distinct primes, one of which we will call p. Let P ∈ Sylp(G) and

H ∈ Hallp′(G). It is known that because G is nilpotent, P ⊲ G [6, p.89]. Moreover

we can write G = P ×H [6, Theorem 8.11]. V is a finite G-module over a field, call
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it K. By [11, Lemma 10] there exists a field extension L of K such that if U is an

irreducible summand of V viewed as an LG-module, then the permutation actions

of G on V and U are permutation isomorphic. We may consider the action of G on

U instead. With relabeling we can assume that V is absolutely irreducible. By [1,

(3.6)] we may assume V = X1 ⊗X2, where X1 is a faithful irreducible P -module and

X2 is a faithful irreducible H-module. By Theorem 2.0.2 we can choose x1 ∈ X1 and

x2 ∈X2 such that

∣P /P ′∣ ≤ ∣xP1 ∣,

∣H/H ′∣ ≤ ∣xH2 ∣.

Clearly we may assume that ∣xP1 ∣ is the largest orbit size of P on X2, and ∣xH2 ∣ is the

largest orbit size of H on X2. Using [9, Lemma 3.3] if g ∈ P and h ∈ H such that

gh ∈ CG(x1 ⊗ x2) then x1g = αx1 and x2h = βx2 where α,β are scalars in the field

with αβ = 1. Now g and h have coprime orders so we have that α = β = 1 which

gives

CG(x1 ⊗ x2) = CP (x1) ×CH(x2).

This gives the following

∣G/G′∣ =M ≥ ∣(x1 ⊗ x2)G∣ = ∣G ∶ Cp(x1) ×CH(x2)∣ (3)

= ∣P ∶ CP (x1)∣∣H ∶ CH(x2)∣

= ∣xP1 ∣∣xH2 ∣ ≥ ∣P /P ′∣∣H/H ′∣ = ∣G/G′∣.

This shows that we have equality everywhere in 3, and so ∣xP1 ∣ = ∣P /P ′∣, and

∣xH2 ∣ = ∣H/H ′∣. Therefore ∣P /P ′∣ is the largest orbit size of P on X1 and ∣H/H ′∣ is

the largest orbit size of H on X2.
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Suppose that P and H have exactly one maximal orbit of size M1 = ∣P /P ′∣

and M2 = ∣H/H ′∣ on X1 and X2 respectively. By Theorem 1 P and H would be

abelian groups. Then G = P ×H would be abelian, a contradiction. Therefore, one

of the following holds, P has at least two orbits of size M1 on X1, or H has at least

two orbits size M2 on X2.

We will now show that P has no more than two orbits of size M1 on X1 and

H has no more than two orbits of size M2 on X2. The argument will be the same in

both cases. We assume P has three orbits of maximal size on X1. Let y1, y2 ∈ X1 be

the representatives of the remaining two orbits. Then as in (3.3)

∣(x1 ⊗ x2)G∣ = ∣(y1 ⊗ x2)G∣ = ∣(y2 ⊗ x2)G∣ =M,

making three orbits of size M when G acts on V contradicting our hypothesis. Us-

ing a similar argument we see that H cannot have more than two orbits of size M2

on X2.

We now will show that either P cannot have two orbits of size M1 on X1 or

H cannot have two orbits of size M2 on X2. If P and H both have two orbits of

maximal size we have y1 ∈ X1 as a second representative of an orbit size M1 and

y2 ∈ X2 a second representative of an orbit of size M2 of P and H, respectively.

Whenever it is assumed that P and H have a second orbit we will call upon these

elements to represent the second orbit. Then, again proceeding as in (3.3), we see

that

∣G/G′∣ = ∣(x1 ⊗ x2)G∣ = ∣(x1 ⊗ y2)G∣ = ∣(y1 ⊗ x2)G∣ = ∣(y1 ⊗ y2)G∣ =M

creating four orbits of size M in the action of G on V , a contradiction. Therefore P

has exactly two orbits of maximal size on X1 or H has exactly two orbits of maxi-
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mal size on X2 but not both. Next we consider what happens in these two cases.

First we consider the case where P has two orbits of size ∣P /P ′∣ on X1. H

must have exactly one orbit of size ∣H/H ′∣ on X2. Notice that (x1 ⊗ x2)G and (y1 ⊗

x2)G are two distinct orbits of G of size M . By part 2 of Theorem 1 H must be

abelian. Thus ∣H/H ′∣ = ∣H ∣ = ∣xH2 ∣, by Lemma 1 H ≅ H/CH(X2) and H is a cyclic

group of order ∣X2∣ − 1. We know that P is not abelian, since if it were, then G =

P ×H would be abelian. Therefore we can use induction, P = D8 and X1 = V (2,3).

This makes char(X1) = 3 so char(X2) = 3. Therefore ∣H ∣ = 3n − 1 for some n ∈ N

making ∣H ∣ even. This contradicts that P ∈ Syl2(G). Therefore P cannot have two

orbits size ∣P /P ′∣ on X2.

We now consider the case that H has two orbits of size ∣H/H ′∣ on X2. Then

P has one orbit of size ∣P /P ′∣ on X1. By Theorem 1 part 2 P is an abelian group

and by Lemma 1 P is cyclic of order ∣X1∣ − 1. We can see that H is not abelian, if

it were G = H × P would be abelian. Using induction we see that H = D8 and X2 =

V (2,3). This means ∣H ∣ = 8 and char(X1) =char(X2) = 3 and ∣P ∣ = ∣X1∣ − 1 = 3n − 1,

for some n ∈ N. Therefore ∣P ∣ is even contradicting gcd(∣H ∣, ∣G∣) = 1. This shows

that G must be a p-group.

The Case Where V is Quasiprimitive

Consider the case where V is quasiprimitive. Using the proof of Theorem

3.3 in [10] we know G = S × T where T is cyclic of odd order and S a 2-group.

There also exists a U ⊲ G where U is cyclic, ∣G ∶ U ∣ ≤ 2 and U has a regular or-

bit on V . This gives the inequality M ≥ ∣U ∣ ≥ ∣G∣/2. Because G is a nonabelian

p-group we have ∣T ∣ = 1 and G = S, and p = 2. By Corollary 1.3 in [10] G is

cyclic, quaternion, dihedral, or semi-dihedral and G ≇ D8. G is not abelian so

∣G∣ > 4 and 8∣∣G∣. It is also known that the derived subgroup of the quaternion,
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dihedral, and semi-dihedral 2-groups have index 4 [7, proof of Theorem A]. That is

∣G/G′∣ = 4 ≤ ∣G∣/2 ≤M . Here we have equality so ∣G′∣ = 2, ∣G∣ = 8. This makes G the

quaternion group. It is known that the quaternion group has a regular orbit on V

[10, Lemma 4.2(a)] contradicting M = 4. Therefore V can not be quasiprimitive.

The Case Where V is Quasiprimitive

From now on we may assume that V is not quasiprimitive. In particular, V

is imprimitive. By Corollary 0.3 in [10] there exists a D ⊴ G with ∣G ∶ D∣ = p where

p is prime and VD = V1⊕. . .⊕Vp for irreducible D-modules Vi of VD. We will consider

two cases, D′ < G′ and D′ = G′.

The Case Where D′ < G′

For the first case suppose that D′ < G′, that is, p∣D′∣ ≤ ∣G′∣. Using Theorem 1

we have the following inequality

M ≥ ∣D ∶D′∣ = ∣D∣
∣D′∣ =

p∣D∣
p∣D′∣ ≥

∣G∣
∣G′∣ =M.

Therefore ∣D ∶ D′∣ = M . Because ∩p
i=1CG(Vi) = 1 we have that D is isomorphic to a

subgroup of D/CD(V1) × . . . ×D/CD(Vp) [8, equation (4)]. We will use the symbol

H ⪅ G to denote that H is isomorphic to a subgroup of G. Then

D ⪅D/CD(V1) × . . . ×D/CD(Vp) =
p

i=1D/CD(Vi) =∶ T. (4)

Notice that the above equation tells us that if D/CD(Vi) is abelian for any i =

1, . . . , p then D/CD(Vi) is abelian for all i = 1, . . . , p and D must be abelian. We

will use this fact several times in the following arguments.

From Theorem 1, having ∣D ∶ D′∣ =M shows that D is abelian or has exactly

two orbits of size M on VD. We know D cannot have more than two orbits of size
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M on VD, otherwise G would have more than two orbits of size M on V or an orbit

larger than size M .

Recall that VD = V1 ⊕ V2 ⊕ ... ⊕ Vp, with Vi irreducible faithful D-modules.

Let Wi = ⊕p
j=1,j≠iVj. Write M1 for the largest orbit of size D on V1 and M2 for the

largest orbit of size CD(V1) on W1. Also let MD be the largest orbit size of D on V .

Let x ∈ VD be in a largest orbit of D on VD. Write x = x1 + x2 for some x1 ∈ V1 and

x2 ∈W1. Observe that

MD = ∣D ∶ CD(x)∣ = ∣D ∶ CD(x1) ∩CD(x2)∣ =

∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(x2)∣ = ∣xD1 ∣∣xCD(x1)
2 ∣.

If ∣xD1 ∣ < M1, then the same calculation would show that if y1 ∈ V1 with ∣yD1 ∣ = M1,

then ∣D ∶ CD(y1+x2)∣ >MD, contradicting the definition of MD. Thus we have ∣xD1 ∣ =

M1. Moreover, since ∣xCD(x1)
2 ∣ ≥ ∣xCD(V1)

2 ∣. We also can conclude that ∣xCD(x1)
2 ∣ ≥ M2,

because if ∣xCD(x1)
2 ∣ <M2, then let y2 ∈W1 such that ∣yCD(V1)

2 ∣ =M2, and then

MD = ∣(x1 + y2)D∣ = ∣D ∶ CD(x1) ∩CD(y2)∣ = ∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(y2)∣

M1∣yCD(x1)
2 ∣ =M1M2 >M1∣xCD(x1)

2 ∣ = ∣D ∶ CD(x)∣ =MD,

a contradiction. Thus altogether we get M ≥MD ≥M1M2. Then

M ≥ ∣xD∣ = ∣D ∶ CD(x)∣ = ∣D ∶ CD(x1) ∩CD(x2)∣

= ∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(x2)∣ =M1∣xCD(x1)
2 ∣ ≥M1∣xCD(W1)

2 ∣ =M1M2.

By applying Theorem 2 ∣D ∶D′∣ divides ∣D/CD(V1) ∶D/CD(V1)′∣∣CD(V1)/CD(V1)′∣
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and we have

M ≥M1M2 ≥ ∣D/CD(V1) ∶ (D/CD(V1)′)∣∣CD(V1) ∶ CD(V1)′∣ ≥ ∣D ∶D′∣ =M.

This shows M1M2 = MD = M . It also follows that M1 = ∣D/CD(V1) ∶ (D/CD(V1))′∣

and M2 = ∣CD(V1) ∶ CD(V1)′∣. Suppose there exists y1, z1 ∈ V1 where y1 and z1

are representatives of two new orbits of size M1 of D/CD(V1) acting on V1, then

arguing as we have previously x1 + y2, y1 + x2 and z1 + x2 are three representatives

of orbits of size M of D on VD. This contradicts our hypothesis. So D/CD(V1) has

at most two orbits of size M1 on V1. We also know that if D/CD(V1) has exactly

one orbit of size M1 on V1 then D/CD(V1) is abelian by Theorem 1, and by (4) D is

abelian. Therefore if D is abelian, then D/CD(V1) has exactly two orbits of size M1

on V1.

First we will consider the case that D is nonabelian.

The case where D is nonabelian.

We know by (4) that D/CD(V1) is not abelian, for the reason listed above.

As argued before CD(V1) must have exactly one orbit of size M2 on W1, other-

wise G would have too many orbits of size M . By induction D/CD(V1) = D8, V1 =

V (2,3), and p = 2 so ∣W1∣ = ∣V1∣ = ∣V2∣. We have D ⪅D/CD(V1)×D/CD(V2) ≅D8×D8

making CD(V1) ⪅ D8. If CD(V1) ≅ D8 then CD(V1) has two orbits of size M2 on V2.

Contradicting CD(V1) having exactly one orbit of size M2 on W1 = V2. Therefore

CD(V1) is of order one, two or four. This makes CD(V1) abelian which gives it at

least two regular orbits (i.e, two orbits of size M2 = ∣CD(V1)∣) unless CD(V1) is the

Klein four-group.

Since CD(V1) has only one orbit of size M2 on V2, we conclude that CD(V1)

is the Klein four-group. Since CD(V1) and CD(V2) are conjugate under the action

18



of G, then CD(V2) is also a Klein four-group. Let v1 ∈ V1 be in an orbit of size M1 =

4 of D/CD(V1) on V1, such that v1 is in a regular orbit of CD(V2) on V1 by Lemma

3. Now ∣CD(v1)∣ = 8, CD(v1) ∩CD(V2) = 1, therefore

CD(v1) ≅ CD(v1)/(CD(v1) ∩CD(V2)) ≅ CD(v1)CD(V2)/CD(V2) ≅D/CD(V2) ≅D8

where the third isomorphism comes from the isomorphism theorems. Hence we

have CD(v1) ≅ D8. Therefore CD(v1) acts faithfully on V2 and if z1, z2 ∈ V2 are

representatives of the the two orbits of size four in the action fo CD(v1) on V2, then

v1 + z1 and v1 + z2 are representatives of two orbits of size 16 =MD =M of D on VD.

Now let w1 ∈ V1 be in an orbit of D of size M1 = 4 such that w1 is not in a regular

orbit of CD(V2) on V1. Let z3 ∈ V2 be in the (unique) regular orbit of CD(V1) on V2

(so it is of size M2 = 4). Then clearly w1 + z3 is a representative of an orbit of size

16 = M of D on V , and this orbit is different from this orbit containing v1 + z1 and

v1 + z2. Thus we have found three orbits of size 16 =M of D on V which contradicts

our hypothesis. This concludes the case where D is nonabelian.

The Case Where D is Abelian.

We will consider two possibilities, that D has exactly one orbit of size M or

D has exactly two orbits of size M on V .

The Case Where D has Exactly One Orbit Size M .

In the proof of Theorem 1 in [8] it is shown that this results in G = D8 and

∣V ∣ = 9. The following argument has been reproduced for completeness.

Since D is abelian, D has regular orbits, so M = ∣D∣. Hence, D has exactly

one regular orbit on V , therefore by Lemma 1 we have D =
p

i=1CD(Wi). No-

tice that G/D cycles these direct factors around, therefore we see that ∣G ∶ G′∣ =
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p∣CD(W1)∣ (see [5]). Additionally, ∣G/G′∣ = ∣D∣ = ∣CD(W1)∣p which implies that

∣CD(W1)∣p−1 = p. This forces p = 2 and ∣CD(W1)∣ = 2. It follows that ∣D∣ = 4, D is

elementary abelian, ∣G∣ = 8, and G is nonabelian. Because M = ∣D∣ = 4, G does not

have a regular orbit on V , making G the dihedral group of order 8. D is elementary

abelian and has exactly one regular orbit on V so we conclude that ∣V ∣ = 9. This is

a second verification that D8 satisfies our hypothesis and ends the case from [8].

The Case Where D has Exactly Two Orbits of Size M.

Assume that D has exactly two regular orbits on V . As before we will de-

note the largest orbit size of the action of D/CD(V1) on V1 as M1, and M2 will de-

note the largest orbit size of CD(V1) acting on W1. Recall that D/CD(V1) has at

most two orbits of size M1 on V1. So the D/CD(Vi) for i = 1, . . . , p are all isomor-

phic and D/CD(Vi) has either one or two orbits of size M1 acting on Vi.

Suppose we have two orbits of size M1 in the action of D/CD(V1) on V1,

then as argued before CD(V1) has exactly one orbit of size M2 on W1. Using Theo-

rem 1 part (2) we see that CD(V1) is abelian. Using induction we see that D/CD(V1) ≅

D8, however the quotient of an abelian groups must be abelian creating a contra-

diction.

Hence we know that D/CD(V1) has only one orbit of size M1 in the action

of D/CD(V1) on V1 and CD(V1) has exactly two orbits of size M2 on W1. Hence we

have ∣D/CD(V1)∣ = ∣V1∣ − 1, and D/CD(V1) is cyclic. Now by (3.4) we have D ⪅
p

i=1D/CD(Vi) =∶ T and T has exactly one regular orbit on V . Every regular orbit

of T on V splits into ∣T ∣
∣D∣ regular orbits of D. Since D has no more than two orbits

of size M = MD(= ∣D∣), we see that ∣T ∣∣D∣ ≤ 2. If ∣T ∣∣D∣ = 1, then T = D and so CD(V1) ≅
p

i=1D/CD(Vi) has only one regular orbit (i.e., of size M2) on W1, a contradiction.

Therefore we know that ∣T ∣∣D∣ = 2. From Lemma 1 we have that ∣T ∣ = (∣Vi∣ − 1)p,
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thus

(∣V1∣ − 1)p = 2∣D∣ = 2pk (5)

for appropriate k. Hence 2 divides the right hand size, so 2p divides the left hand

size, this forces p = 2 and V = V1 ⊕ V2. We wish to show that ∣CD(V1)∣ = 2. Observe

that CD(V1) ∩ CD(V2) = 1 and so CD(V1) × CD(V2) = CD(V1)CD(V2) ≤ D. Let

g ∈ G −D and (1, a) ∈ CD(V1) ×CD(V2), then G′ contains the element

[(1, a), g] = (1, a)−1g−1(1, a)g = (1, a)−1(1, a)g = (1, a−1)(a∗,1) = (a∗, a−1)

for suitable a∗ ∈ CD(V1). If there are more than two choices for a ∈ CD(V2) then

∣G′∣ ≥ 3. On the other hand, ∣G∣∣G′∣ = ∣D∣ and ∣G∣
∣D∣ = 2 so ∣G′∣ = ∣G∣/∣D∣ = 2. We conclude

that ∣CD(V1)∣ ≤ 2. If ∣CD(V1)∣ = 1 then D = D/CD(V1), but we know that D has

exactly two orbits of size M1 on V1 while D/CD(V1) has only one orbit of size M1

on V1. Therefore we can say ∣CD(V1)∣ = 2.

We can now determine ∣D∣ using (5) we have that ∣T ∣∣D∣ =
∣D/CD(V1)∣∣D/CD(V2)∣

∣D∣ =

2. This implies 2∣D∣ = ∣D∣
2
∣D∣
2 = ∣D∣2

4 , or ∣D∣ = 8 and ∣G∣ = 16. From Lemma 1

∣D/CD(V1)∣ = ∣V1∣−1 giving us ∣V1∣ = 5, i = 1,2. So we can identify Vi with GF(5), and

thus V = GF(5)2. Then {(1,0), (2,0), (3,0), (4,0)} and {(0,1), (0,2), (0,3), (0,5)}

are both orbits of D on V (as D/CD(V1) has an orbit of size 4 on Vi), and their

union is an orbit of size 8 of G on V . Moreover, if a, b ∈ GF(5) − {0}, then (a, b)D

will contain (a,−b), since CD(V1) acts as x → −x on V2. Since D/CD(V1) has an or-

bit of size 4 on V1, we also see that (a, b)D will contain elements of the form (1,∗), (2,∗), (3,∗),

and (4,∗). Altogether we see that ∣(a, b)D∣ = 8 = M . Putting this together shows

that, since 8 = M , G has three orbits of size 8 on V , contradicting the hypothesis.
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This concludes the case where D′ < G′.

The Case where D′ = G′

We will consider the action of D/CD(V1) on V1 and CD(V1) acting on W1.

Using Theorem 1, we have the following inequalities

∣D ∶D′CD(V1)∣ ≤M1 (6)

∣CD(V1) ∶ CD(V1)′∣ ≤M2 (7)

where M1 is the largest orbit size of D/CD(V1) on V1 and M2 is the largest orbit

size of CD(V1) on W1. There are now four cases to consider; strict inequality in (6)

and (7), strict inequality in (6) or (7) but not both, and equality in (6) and (7).

First we consider the case where we have strict inequality in (6) and (7). Be-

cause G is a p-group we know that p∣D ∶ D′CD(V1)∣ ≤M1 and p∣CD(V1) ∶ CD(V1)′∣ ≤

M2. Therefore

M ≥M1M2 ≥ p2∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣.

Recall ∣G ∶D∣ = p and notice that ∣D ∶D′∣ ≤MD ≤ pM1M2 so

p2∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ p∣G ∶D∣∣D ∶D′∣ = p∣G ∶D′∣ = p∣G ∶ G′∣ > ∣G ∶ G′∣.

Putting the above equations together we have ∣G ∶ G′∣ < M . This contradicts our

hypothesis that ∣G ∶ G′∣ =M , and therefore either (6) or (7) must be an equality.

Suppose that (6) is equal, that is ∣D ∶ D′CD(V1)∣ = M1. If D/CD(V1) is

abelian then by (4) we have D is abelian. If D is abelian then 1 = D′ = G′ and G
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is abelian, a contradiction. Therefore we note that D/CD(V1) cannot be abelian for

the rest of the paper. By Theorem 1 we have that D/CD(V1) has at least two orbits

of size M1 on V1. Let v1, v2 ∈ V1 be representatives of two different orbits of size M1

in the action of D/CD(V1) on V1. Let w ∈W1 be in an orbit of size M2 in the action

fo CD(V1) on W1.

Because (7) is strict, we have p∣CD(V1) ∶ CD(V1)′∣ ≤ M2. This gives us the

following,

M ≥ ∣(vi +w)G∣ ≥ ∣vD/CD(V1)
i ∣∣wCD(V1)∣ =M1M2

≥ p∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ ∣G ∶ G′∣ =M

for i = 1,2. This gives equality everywhere. By hypothesis G has exactly two orbits

of size M on V . This means D/CD(V1) has exactly two orbits of size M1 on V1. By

induction D/CD(V1) ≅ D8, ∣V1∣ = 9 and p = 2. Thus M1 = 4, and clearly M2 ≤ 4. This

gives us CD(V1) ≤ D8. If CD(V1) ≅ D8 then ∣CD(V1) ∶ CD(V1)′∣ = 4 contradicting

(7) is strict. Therefore CD(V1) is size one, two, or four. This makes CD(V1) abelain.

That means M2 = ∣CD(V1)∣ = ∣CD(V1) ∶ CD(V1)′∣ which contradicts (7) is strict.

Therefore we know that (7) cannot be strict when (6) is equal.

We now consider the case that (6) and (7) are equalities. That is ∣D ∶D′CD(V1)∣ =

M1 and ∣CD(V1) ∶ CD(V1)′∣ =M2. Then

M = ∣G ∶ G′∣ = p∣D∣/∣D′∣ = p∣CD(V1) ∶D′CD(V1)∣CD(V1) ∶ CD(V1) ∩D′∣ ≤ pM1M2

also,

M ≥MD ≥M1M2,

so M1M2 ≤ MD ≤ M ≤ pM1M2. We know that exactly one of these inequalities

is strict because ∣D∣/∣D′∣ < p∣D∣/∣D′∣ = ∣G∣/∣G′∣ = M . We now have three cases to
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consider.

In all of these cases we know that D/CD(V1) has at least two orbits of size

M1 on V1, otherwise D/CD(V1) would be abelian, making D′ < (
p

i=1D/CD(Vi))′ =

1. Then we would have D′ = G′ = 1, contradicting that G is not abelian. Through-

out the following arguments we will let v1, v2 ∈ V1 be representatives of two orbits of

size M1 on V1.

We consider that M1M2 = MD = M < pM1M2. Assume that v3 ∈ V1 is

a third orbit of size M1 in the action of D/CD(V1) on V1. Then let w1 ∈ W1 be

a representative of an orbit of size M2 in the action of CD(V1) on W1. This gives

us (v1 + w1)D, (v2 + w1)D, and (v3 + w1)D; three orbits of size MD = M on V .

Thus we have three orbits are of size M in the action of G on V , a contradiction.

Therefore D/CD(V1) has exactly two orbits of size M1 on V1. Let w1,w2 ∈ W1 be

representatives of distinct orbits of size M2 in the action of CD(V1) on W1. We

see (v1 + w1)D, (v1 + w2)D, (v2 + w1)D, and CD(v2 + w2)D are four orbits of size

MD = M on V , a contradiction. Therefore we know that CD(V1) has exactly one

orbit of size M2 on W1. By Theorem 1 we see that CD(V1) is abelian. By induction

we have that D/CD(V1) ≅ D8, p = 2, and V1 = V2 = V (2,3). Therefore we have

CD(V1) ×CD(V2) ⪅D ⪅D/CD(V1) ×D/CD(V2) and CD(V1) ≤D/CD(V1) ≅D8.

If ∣CD(V1)∣ = 8, then CD(V1) ≅ D8, contradicting CD(V1) is abelian. If

∣CD(V1)∣ = 4, then CD(V1) must be the Klein-4 which we have previously shown

to be a contradiction. If ∣CD(V1)∣ = 2, then CD(V1) is Z2, the cyclic group of or-

der two. If we examine the table above we see that all subgroups of D8 of order two

have at least three orbits of size two in the action on V2. This is a contradiction. If

∣CD(V1)∣ = 1, then D/CD(V1) has two orbits of size four in the action of D/CD(V1)

on V1 and D/CD(V2) has two orbits of size four in the action of D/CD(V2) on V2.

Therefore D has either four orbits of size four or an orbit of size eight. This contra-
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dicts that G has exactly two orbits of size M = M1M2 = 4 in the action of G on V .

Therefore we know that M1M2 =MD =M cannot occur.

Suppose that M1M2 < MD = M = pM1M2. This gives us ∣D∣/∣D′∣ < MD and

we know D/CD(V1) has at least two orbits of size M1 in the action of D/CD(V1).

We claim that D/CD(V1) must have exactly two orbits of size M1 on V1. Let w ∈

W1 be such that ∣(v1 + w)D∣ = MD = M . Then any g ∈ G −D will stabilize the orbit

(v1 + w)D. In particular, there is a g ∈ G −D such that (v1 + w)g = v1 + w. Assume

that g ∈ G − D also fixes (v2 + w)D; then (v2 + w)g = (v2 + w)d0 = vd02 + wd0 for

some d0 ∈ D. Recall that g ∈ G −D cycles around the elements of the components

V = V1 ⊕ . . . ⊕ Vp. The first component of (v1 + w)g and (v2 + w)g are therefore the

same, they are also v1 and vd02 respectively. This means v1 = vd02 contradicting v1, v2

are from different D/CD(V1)−orbits on V1. Hence g cannot fix the orbit (v2 + w)D.

Therefore

M ≥ ∣(v2 +w)G∣ ≥ p∣(v2 +w)D∣ ≥ pM1M2 =M.

Thus (v1 +w)G and (v2 +w)G are two orbits of size M in the action of G on V . We

can then repeat this argument to show (v3 + w)D must be a third distinct orbit of

size MD = M , a contradiction. Therefore D/CD(V1) has exactly two orbits of size

M1 on V1. By induction we have D/CD(V1) ≅ D8, p = 2, V1 = V2 = V (2,3). We also

know CD(V1) × CD(V2) ⪅ D ⪅ D/CD(V1) ×D/CD(V1) ≅ D8 ×D8, and CD(V1) ≤ D8.

This tells us ∣CD(V1)∣ ∈ {1,2,4,8}.

If ∣CD(V1)∣ = 8, then CD(V1) ≅ D8. This means D ≅ D8 ×D8, ∣D∣ = 64, and

∣G∣ = 128. By [10, Lemma 2.8] we have G <D8 ≀Z2, where Z2. Because ∣D8 ≀Z2∣ = 128

we have that G = D8 ≀ Z2, which is known to be not metabelian [4, Satz 15.3 (d)],

that is G′′ ≠ 1. However we have that G′ = D′ = (D8 ×D8)′ which is size four. This

makes G′ abelian and G′′ = 1, a contradiction.
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If ∣CD(V1)∣ = 4 we have that ∣D∣ < ∣D/CD(V1) ×D/CD(V1)∣ = ∣D∣2/16 = 64.

That is ∣D∣ = 32. We also have D′ ≤ (D8 ×D8)′ so ∣D′∣ ≤ 4. Suppose ∣D′∣ = 4 then

∣D∣
∣D′∣ = 32

4 = 8, so MD = 16 = M1M2 a contradiction. Suppose that ∣D′∣ = 2. Notice

CD(V1) ∩CD(V2) = 1 so CD(V1) ×CD(V2) = 1 so CD(V1) ×CD(V2) = CD(V1)CD(V2).

Let g ∈ G −D and (1, a) ∈ CD(V1) ×CD(V2). Then

[(1, a), g] = (1, a)−1g−1(1, a)g = (1, a)−1(1, a)g = (1, a−1)(a∗,1) = (a∗, a−1)

for some a∗ ∈ CD(V1), and we have four choices for a ∈ CD(V1). Thus 2 = ∣D′∣ = ∣G′∣ ≥

4, a contradiction.

If ∣CD(V1)∣ = 2, then ∣D∣2
4 = 64 or ∣D∣ = 16. As before, we know that ∣D′∣ ∈

{2,4}. Suppose ∣D′∣ = 4, then ∣D∣
∣D′∣ = 16

4 = 4, and MD = 8. We know (v1,0) and (v2,0)

are both in D-orbits of size four on V . Let w ∈ V2 be a regular orbit. Then (v1 +w)

would be in an orbit of size eight, contradicting M1M2 <MD. Suppose that ∣D′∣ = 2,

then ∣D∣
∣D′∣ = 8 and MD = 16. Thus CD(V1) must have four orbits of size two on V2.

Let wi ∈ V2 for i = 1,2,3,4 be representatives of these four orbits. Then we know

by the table above that CD(V1) = {1, r}, because all other subgroups of D8 with

size two have only three orbits of size two on V2. We also know there must exist a

di ∈ D, i = 1,2,3,4 where wd1
1 = w2,w

d2
2 = w3,w

d3
3 = w4,w

d4
4 = w1. Without loss let

w1 = (1,0) and w2 = (1,−1). Then there exists a d ∈ D where (1,0)d = (1,−1) in

the action of D on V2, a contradiction. If CD(V1) = 1 then D ≅ D8, but D8/D′
8 = 4 =

MD, a contradiction.

Suppose that ∣D∣/∣D′∣ = M1M2 = MD < M . We know that D/CD(V1) has at

least two orbits of size M1 in the action of V1. Recall that v1 and v2 are representa-

tives of these orbits.

Let us first assume that CD(V1) has exactly one orbit of size M2 on W1.
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By Theorem 1 CD(V1) is abelian. Therefore CD(Vi) is abelian for all i = 1, . . . , p,

and it follows that for each i, CD(Wi) is abelian. We further claim that for each i,

CD(Wi) has exactly one regular orbit of Vi. To see this, observe that CD(V1) has

exactly one regular orbit on W1. Hence CD(V1)/(CD(V1) ∩CD(V2)) has exactly one

regular orbit on V2, and (CD(V1)∩CD(V2))/(CD(V1)∩CD(V2)∩CD(V3)) has exactly

one regular orbit on V3. We can repeate this until we finally get

(∩p−1
j=1CD(Vj))/(∩p

j=1CD(Vi)) ≅ CD(Wp)

has exactly one regular orbit on Vp. Since the actions of CD(Wi) on Vi are equiva-

lent for all i, the claim is true. Let A ∶= ∏p
i=1CD(Wi). We see that A ⊴ G, and A =

p

i=1CD(Wi) is an internal direct product because CD(Wi)∩∏j∈{1,...,p}−{i}CD(Wj)) =

1, for i = 1, . . . , p (all elements in ∏j∈{1,...,p}−{i}CD(Wj)) act trivially on Vi). Apply-

ing Lemma 2.2 to the action of CD(Wi) on Vi for all i. Putting this together thus

shows that if we write VA =X1⊕ . . .⊕Xm for some M ∈ N and irreducible A-modules

such that V1 =X1 ⊕ . . .⊕Xk for some k ∈ N, then m = kp and

∣A∣ =
m

∏
i=1

(∣Xi∣ − 1) = (∣X1∣ − 1)m ≤M

and

M1 ≥
k

∏
i=1

(∣Xi∣ − 1) = (∣X1∣ − 1)k.

Now recall that v1, v2 ∈ V1 are representatives of two orbits of size M1 of D/CD(V1)

on V1. Write vi = xi1 + . . . + xik with xij ∈Xj for j = 1, . . . , k, i = 1,2. We may assume

that v1 is in a regular orbit of A/CA(V1), and thus x1j /= 0 for j = 1, . . . , k. But then

vD1 = vA1 = {y1 + . . . + yk∣0 /= yi ∈ Xi for i = 1, . . . , k}, and this forces that x2j = 0 for at

least one j ∈ {1, . . . , k}. If we let g ∈ G −D and put zi = vi +
p−1
∑
j=1
vg

j

1 for i = 1,2, then
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it is clear that both z1 and z2 are in different orbits of size greater than or equal to

∣A∣ of G. Hence ∣G/G′∣ ≥ ∣A∣.

Now let q be the characteristic of V and write ∣X1∣ = qs. Write ∣A/CA(X1)∣ =

pt. Then pt = qs − 1 and hence with [10, Proposition 3.1] we know that either

s = 1, p = 2, and q is a Fermat prime; or t = 1, q = 2, and p is a Mersenne prime;

or s = 2, t = 3, p = 2, and q = 3. Moreover, by [10, Theorem 2.1] we know that

NG(X1)/CG(X1)Γ(X1) and since G is a p-group, altogether we conclude that

NG(X1)/CG(X1) ≅ A/CA(X1)

unless possibly in the third case, when ∣V1∣ = 9 and NG(X1)/CG(X1) ≅ Γ(32) is

possible (in the first case this is clear, in the second it follows by Fermat’s Little

Theorem). For the moment suppose that NG(X1)/CG(X1) ≅ A/CA(X1). Because

of the size of A with [10, Lemma 2.8] we conclude that G ≅ A/CA(X1) ≀G/A where

G/A transitively and faithfully permutes the Xi (i = 1, . . . ,m). Now with arguments

similar to the one in the proof of [6, Lemma 2] we see that

∣[A,G]∣ ≥ ∣A/CA(X1)∣m−1 = (∣X1∣ − 1)m−1.

Moreover, by [2, Theorem 2.3] we have ∣G ∶ G′A∣ = ∣G/A ∶ (G/A)′∣ ≤ pm/p. Hence

altogether we have

(∣X1∣ − 1)m = ∣A∣ ≤ ∣G/G′∣ = ∣G ∶ G′A∣∣G′A ∶ G′∣

≤ pm/p∣A ∶ A ∩G′∣

≤ pm/p∣A ∶ [A,G]∣

= pm/p(∣X1∣ − 1)
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Now clearly ∣X1∣ − 1 ≥ p, and so it follows that

pm−1 ≤ (∣X1∣ − 1)m−1 ≤ p
m
p .

So m − 1 ≤ m/p, and since m ≥ p, we get that p = m = 2, ∣X1∣ = 3, k = 1, V1 =

X1, ∣V ∣ = 9, M = ∣G/G′∣ = 4 and thus G is dihedral of order 8 acting on the nine

elements of V . But then D is abelian, and since G′ = D′, G is also abelian. This is

a contradiction.

In the exceptional case s = 2, t = 3, p = 2, q = 3 above we have that the kernel

K/A of the permutation action of G/A on the Xi is of order at most 2m. So we see

that G/Ω2(A) has A as an abelian normal subgroup, and so similarly as above

∣G/G′∣ ≤ ∣G ∶ G′K ∣∣G′K ∶ G′∣

≤ 2
m
2 ∣K ∶K ∩G′∣

≤ 2
m
2 ∣K/Ω1(A) ∶ (K ∩G′)Ω1(A)/Ω1(A)∣ ⋅ ∣Ω1(A)∣

Now ∣[K/Ω1(A),G/Ω1(A)]∣ ≥ 4m−1, and thus altogether

23m = 8m = (∣X1∣ − 1)m = ∣A∣ ≤ ∣G/G′∣ ≤ 2
m
2 ∣K/Ω1(A) ∶ [K/Ω1(A),G/Ω1(A)]∣ ⋅ 2m

≤ 2
m
2 ⋅ 8m

4m−1 ⋅ 2
m

= 2
3
2
m+m−1 ⋅ 8 = 2

5
2
m+2

Hence 3m ≤ 5
2m + 2 or, equivalently, m ≤ 4. Since m = kp = 2k, we have that m = 2 or

m = 4.

If m = 2, then k = 1 and thus Xi = Vi for i = 1,2. But then M1 = 8 = ∣V1∣ − 1,

and D/CD(V1) has exactly one orbit of size M1 on V1, contradicting our observation
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above that D/CD(V1) has at least two orbits of size M1 on V1.

If m = 4, then k = 2 and ∣V1∣ = 34. Hence G is isomorphic to a subgroup of

GL(8,3) and thus ∣G∣ ≤ 219. As above, we know that ∣G′∣ ≥ ∣[A,G]∣ ≥ (∣X1∣ − 1)m−1 =

83 = 29, and hence ∣G/G′∣ ≤ 210 < 212 = ∣A∣ ≤M , contradicting ∣G∣/∣G′∣ =M.

Therefore we know that CD(V1) has at least two orbits of size M2 on W1.

Let w1 and w2 be representatives of such orbits. If there exists a d ∈ CD(v1) such

that wd
1 = w2 we see that

M ≥MD ≥M1pM2 ≥ p∣D ∶D′∣ = ∣G/G′]

contradicting that MD <M . Therefore, no such d exists. This tells us that (v1 +w1)

and (v1 + w2) lie in different D-orbits on V . Similarly v2 + w1 and v2 + w1 are in

different D-orbits on V .

Now identify D with a subgroup of
p

i=1D/CD(Vi). Also let g ∈ G −D and

put

Li =
p−1
∑
j=0

(vgji )D ∶= {
p−1
∑
j=0
xj ∣xj ∈ (vgji )p for j = 0, . . . , p − 1} ⊂ V

for i = 1,2. The Li are clearly G-invariant subsets, and L1 ∩ L2 = ∅. For any x ∈

V2 ⊕ . . .⊕ Vp it follows that if the orbit (vi + x)D ⊂ Li (i ∈ {1,2}).

We now have several cases to consider. The D-orbits (v1 + w1)D and (v1 +

w2)D are both G−invariant. The D-orbits (v2 + w1)D and (v2 + w2)D are both G-

invariant. Lastly, one of the D-orbits (v1 + w1)D or (v1 + w2)D is not G-invariant,

and at least one of the orbits D-orbits (v2 +w1)D or (v2 +w2)D is not G-invariant.

Suppose that the D-orbits (v1 + w1)D and (v1 + w2)D are both G-invariant.

Then v1 + w1 ∈ L1 and v1 + w2 ∈ L1, and thus v2 + w1 ∉ L2 and v2 + w2 ∉ L2, that is
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(v2 +w1)D and (v2 +w2)D are not G-invariant, so that

M ≥ ∣(v2 +wi)G∣ ≥ p∣(v2 +wi)∣ ≥ pM1M2 ≥ p∣D/D′∣ = ∣G/G′∣

for i = 1,2. This tells us that CD(V1) has exactly two orbits of size M2 in the action

on W1.

Suppose that we have three orbits of size D/CD(V1) on V1, let v3 be a repre-

sentative of this orbit. We know that (v3+w1)D and (v3+w2)D are not G−invariant.

That means (v2 + w1)D = (v3 + w2)D, so there exists a g ∈ G −D with (v1 + w2)g =

vg2 +w
g
2 = v3+w1 and w1 = vg2 +x for some x ∈W2. Therefore w1 ∈ L1 so vg2 ∈ (vgj1 )D for

some j. We can choose g so that j = 1 giving us that vg2 ∈ (vg1)D but (vg1)D ∩ (vg2)D =

∅, a contradiction.

Therefore we have that D/CD(V1) has exactly two orbits of size M1 in the

action of V1. By induction D/CD(V1) ≅ D8, p = 2, and V1 = V (2,3). We know that

CD(V1) ×CD(V2) ≤ D ≤ D/CD(V1) ×D/CD(V2) ≅ D8 ×D8 and CD(V1) ≤ D/CD(V1) ≅

D8. Then ∣CD(V1)∣ ∈ {2,4,8}. If ∣CD(V1)∣ = 8 then D = D8 × D8, so ∣D∣ = 64,

∣D′∣ = 4 = ∣G∣ and ∣G∣ = 128. By [10, Lemma 2.8] we have G ≤ D8 ≀ Z2 is metabelian,

but ∣G′∣ = 4 a contradiction.

If ∣CD(V1)∣ = 4, then CD(V1) ≅ Z4 (because CD(V1) has two orbits of size

M2 on V2, therefore it is not the Klein-4). Thus Z4 × Z4 ≤ D ≤ D8 ×D8, ∣D∣ > 16,

and Z4 × Z4 < D so ∣D∣ = 32 and ∣D′∣ = 2. Because D′ < (D8 × D8)′ we have that

∣D′∣ ∈ {2,4}. If ∣D′∣ = 4 then ∣D∣
∣D′∣ = 32

4 = 8, contradicting that Z4 × Z4 has a regular

orbit (size 16) on V. Therefore ∣D′∣ = ∣G′∣ = 2, but CD(V1) = 4 which we have shown

makes ∣G′∣ ≥ 4, a contradiction.

If ∣CD(V1)∣ = 2, then CD(V1) ≅ Z2. This means that CD(V1) has at least three

orbits of size M2 on V2, a contradiction.
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The case where (v2+w1)D and (v2+w2)D are both G-invariant will follow the

same proof as in case 1 if we replace v1 with v2.

Suppose that at least one of the orbits (v1 + w1)D or (v1 + w2)D is not G-

invariant and at least one of the orbits (v2 +w1)D and (v2 +w2)D is not G-invariant.

Without loss we may assume that (v1 +w1)D is not G-invariant. If (v2 +w1)D is also

not G-invariant, we see that (v1 +w1)G and (v2 +w1)G are two distinct orbits of size

M , because

M ≥ (vi +w1)G ≥ pM1M2 = ∣G/G′∣

for i = 1,2 and if we write w1 = (x2, . . . , xp) ∈ V2⊕. . .⊕Vp then v1+w1 = (v1, x2, . . . , vp)

and v2 + w2 = (v2, x2, . . . , xp) have a different number of components in the corre-

sponding component of L1 and cannot be conjugate in G.

By induction we have that D/CD(V1) ≅ D8, V1 = V (2,3), p = 2, and V =

V1 × V2. As shown above, this leads to a contradiction.

Hence (v2 + w1)D is G-invariant and thus (v2 + w2)D is not G-invariant. A

similar argument then shows that (v1 + w2)D must be G-invariant otherwise (v1 +

w2)G and (v2 + w2)G would be in two different orbits of size M , and we could use

induction as above to show D/CD(V1) ≅D8, a contradiction.

Thus (v1 + w1)D and (v2 + w2)D are both G-invariant. If (v1 + w2)D and

(v2 + w2)D are G-conjugate then v2 + w1 ∈ L2 and v1 + w2 ∈ L1. This shows that

v1 +w1 and v2 +w2 can only be conjugate in G if p = 2, so now let p = 2.

Suppose there are three orbits of size M2 in the action CD(V1) on V2. Let

w3 ∈ W1 = V2 be a representative of such an orbit. As above it follows that v1 +

w1, v1 + w2 and v1 + w3 all lie in different D-orbits on V and so do v2 + w1, v2 + w2,

and v2 + w3, and as above, with w3 in place of w2 we see the following version of

case 3 must be true.
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At least one of the orbits (v1 + w1)D or (v1 + w3)D is not G-invariant, and

at least one of the orbits (v2 + w1)D or (v2 + w3)D is not G-invariant. We already

know that (v2 + w1)D is G-invariant, it follows that (v2 + w3)D is not G-invariant.

The argument from an earlier shows (v2 + w2)G and (v2 + w3)G are different G-

orbits. Assume that there is third orbit of size M1 in the action of D/CD(V1) on

V1, let v3 be a representative of this orbit. Then at least two or the three orbits

(v3+w1)D, (v3+w2)D, and (v3+w3)D are not G-invariant. If (v3+w1)D is G-invariant,

then (v3 + w2)G, (v3 + w1)G, and (v2 + w2)G are three G-orbits of size M , a contra-

diction. If (v3 + w2)D is G-invariant, then (v2 + w3)G, (v2 + w2)G, and (v3,w3)G are

three G-orbits of size M , a contradiction. Lastly, if (v3 + w3)D is G-invariant, the

(v3 +w1)G, (v2 +w2)G, and (v3 +w2)G are three G-orbits of size M , a contradiction.

We see that D/CD(V1) has exactly two orbits of size M1 on V1. By induction we

have that D/CD(V1) ≅D8, a contradiction. This concludes equality in (6) and (7).

Suppose we have equality in (7) and strict inequality in (6). That is

M ≥M1M2 ≥ p∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ p∣D/D′∣ = ∣G ∶ G′∣.

Because ∣G ∶ G′∣ = M we have equality everywhere, and M = M1M2,M1 > ∣D ∶

D′CD(V1)∣,M2 = ∣CD(V1) ∶ CD(V1)′∣. Again let MD denote the largest orbit size of

D on V , then MD ≥ M1M2 so MD = M . By Theorem 1 CD(V1) is abelian or has at

least two orbits of size M2 of D on W1.

Suppose CD(V1) has at least two orbits of size M2 on W1, and let w1,w2 ∈

W1 be representatives of these orbits. Let D/CD(V1) have at least two orbits of size

M1 on V1. Because M =M1M2 we have that (v1 +w1)D, (v1 +w2)D, and (v2 +w2)D

and (v2 + w1)D are all (not necessarily distinct) orbits of size MD = M . This means

that (v1 + w1)D is G-invariant, meaning that (v2 + w1)D is not G-invariant. That is
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∣(v2 +w1)G∣ >M1M2 =M , a contradiction.

Therefore we have that D/CD(V1) has exactly one orbit of size M1 on V1. If

(v1 +w) is not G−invariant then ∣(v1 +w)G∣ =M , but D has two orbit of size M on

V , different from (v1 +w)D giving G three G-orbits of size M on V , a contradiction.

Therefore (v1 +w)D is G-invariant. If CD(V1) has two orbits of size M2 on W1, then

(v +w1)D and (v +w2)D are two D−orbits of size M . Thus CD(V1) has exactly two

orbits of size M2 on W1. If M2 > M1, then CD(V1) < D would give us an orbit of

size M2 on V1 contradicting that M1 was the size of the largest orbit of D on V1. If

M2 = M1 then CD(V1) would have two orbits of size M1 on V1 contradicting that

D has exactly one orbit of size M1 on V1. If p = 2 then M1 > M2. Let g ∈ G − D

which permutes the elements of the components V1 → V2 → . . . → Vp → V1. Let

vg = x ∈ V2 and wg
1 = y ∈ W2. We claim that (x + y) ∉ (v + w1)D. Suppose not, then

(x+y)D = (v+w1)D. The V2 component of the left hand side has M1 choices for this

element. However, the right hand side has M2 choices for elements in V2 Therefore

(x + y)D is a third orbit of size M in the action of D on V , a contradiction. This

means p ≠ 2.

Using [10][Theorem 4.4] we know that p would have to be a Mersenne prime,

contradicting the original hypothesis that ∣G∣ is not divisible by a Mersenne prime.

Suppose that CD(V1) has exactly one orbit of size M2 on W1, then CD(V1) is

abelian by Theorem 1. As argued above and using Lemma 1 we conclude that there

is an irreducible normal subgroup of G such that if we write VA = X1 ⊕ . . . ⊕Xm for

some m ∈ N and irreducible A-modules Xi, then ∣A∣ = (∣Xi∣ − 1)m ≤ M . Without

loss we may assume that V1 = X1 ⊕ . . . ⊕Xk for some k ∈ N (which divides m), and

then M1 ≥ (∣X1∣ − 1)k = ∣A/CA(V1)∣. Now CA(V1) ≅ A/CA(W1) is isomorphic to

a maximal abelian subgroup of D/CD(V1). If there was a larger abelian subgroup,

call in V , this subgroup would still act on each Xj, (j = k + 1, . . . ,m) where for
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Yi = `∈{1,...,m}−{i}X` we put

Cj =Xi∈{1,...,m}−{j}CA(Yi) ≤ A =
m

i=1CA(Yi).

Hence there would exist a j ∈ {k + 1, . . . ,m} such that ∣BCB(Xj)∣ > ∣A/CA(Xj)∣ =

∣Xj ∣−1, a contradiction. Hence CA(V1) ≅ A/CA(W1) is self centralizing in D/CD(W1).

But as D/CD(V1) is nonabelian, clearly D/CD(W1) is nonabelian, and thus there

exists a d ∈ D and a ∈ CD(V1) such that 1 ≠ [d, a]. Hence D′ ∩ CA(V1) > 1. On the

other hand, we have, as CD(V1)′ = 1 and G′ =D′, that

M = pM1∣CD(V1)∣ = ∣G/G′∣ = p∣D/D′∣

= p∣D ∶D′CD(V1)∣∣D′CD(V1) ∶D′∣

= pM1∣D′CD(V1) ∶D′∣

= p∣M1CD(V1) ∶ (D′ ∩CD(V1))∣.

This forces D′ ∩CD(V1) = 1, and we have a contradiction. This concludes our proof.
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IV. The Open Case

In this section we will reiterate the conditions under which we use the Mersenne

prime condition. Let the action of G on V be imprimitive where D′ = G′. Let

M1 be the size of the largest orbit of D/CD(V1) on V1 and M2 be the largest or-

bit size of CD(V1) on M2. If ∣D ∶ D′CD(V1)∣ < M1 , ∣CD(V1) ∶ CD(V1)′∣ = M2 and

M1M2 = MD = M = p∣D∣/∣D′∣ = ∣G∣/∣G′∣, D/CD(V1) has exactly one orbit of size M1

on V1 and CD(V1) has exactly two orbits of size M2 on W1 then we know that p is a

Mersenne and q = 2. However we are almost certain this case cannot happen.
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