
IMPLEMENTATION OF AN ALGORITHM

TO APPROXIMATE CONSTRAINED

TETRAHEDRIZATIONS WITH

PRE-SPECIFIED TRIANGULAR FACES

THESIS

Presented to the Graduate Council of
Southwest Texas State University

in Partial Fulfillment of
the Requirements

For the Degree of

Master of Science

By

Brian J. Collins, B.S.

San Marcos, Texas
August, 1997

COPYRIGHT

by

Brian Jaines Collins

1997

To my parents whose constant love and
support means everything to me.

Acknowledgments

This thesis would not have been possible if it were not for the kind help of many
people, including those specifically acknowledged here.

First, I would like to thank my mother who constantly prayed for me and
continually prodded me to continue working on this thesis. Without her love, prayers, and
support this whole project would probably never have been completed.

Next, I would like to thank Dr. Carol Hazlewood for being my thesis advisor and
bringing me along into her wonderful area of expertise. After an undergraduate course in
computational geometry, a graduate course in computational geometry, and now a thesis
in computational geometry I now understand a lot more now than I used to about the
subject. I am still dreaming of faceted objects in multidimensional space like she wanted
us to in class.

Next, I would like to thank Dr. Donald Hazlewood who graciously let me use the
office in the SWT Math Lab for my research plus space for my Sun 3/60. Also, I am
grateful for allowing me to use the newly acquired Sun Spare 20 and purchasing the Spare
Works C++ compiler which was a great help to the development of the code for this
thesis.

I would also like to thank the singles groups of Live Oak Community Church in
Austin, Texas and New Life Community Church in Cedar Rapids, Iowa for supporting me
both in prayer and in life.

I also thank and acknowledge assistance from: Brian D. Hernandez (Lockheed
Martin M&DS Valley Forge), Robert W. McBeth (Lockheed Martin Missiles & Space
Austin Division), Gary Stokes (Lockheed Martin M&DS Valley Forge), David E. Seale
(Rockwell Collins Avionics & Communications), Michael A. Miller (Rockwell Collins
Avionics & Communications), and Wayne I. Hughes (Rockwell Collins Avionics &
Communications).

i

TABLE OF CONTENTS
ACKN'OWLEDGMENTS ..•.. I

TABLES •...•.........•••........•......................... IV

FIGURES ..•...................................... V

ABSTRACT .. 'VI

CHAPTER I .. 1

1. IN"TRODUCTION ... 1

CHAPTER Il ••.•.••••••••••..•••.••••.••.••..•.•.........•......•••......•..•••.•..••••••.•••••••••••••••.••••••..••••••••••••••••••.•.•••••••••..•.•.. 3

2. BASIC DEFIN'ITIONS ... 3

CHAPTER m .. 8

3. CLASS DESIGN ... 8

3.1 OOABASECLASSES ... 8
3.1.1 Point2 Class ... 9
3.1.2 Point3 Class ... 10
3.1.3 Plane Class .. 10
3.1.4 Une_Segment2 Class ... 14
3.1.5 Line_Segment3 Class ... 16
3.1.6 SubFacet2 Class ... 19
3.1.7 SubFacet3 Class ... 19
3.1.8 Facet2 Class ... 20
3.1.9 Facet3 Class ... 21
3.1.10 OOA Model Diagram ... 22

3.2 00D DERIVED CLASSES •••••••...••••••.•......•....••••..••.•...••••••..••..••..••..• 24
3.2.1 Problem Domain Component ... 24

3.2.1.1 Constrained_Tetrahedrization Class ... 25
3.2.1.2 List Class .. 27
3.2.1.3 Convex_Hull Class .. 27
3.2.1.4 BSP _Tree Class .. 28

3.2.2 Human Interaction Component ... 30
3.2.2.1 OOGL Class .. 30

3.2.3 Task Management Component .. 32
3.2.4 Data Management Component .. 32

CHAPTER IV ... 33

4. PROGRAM DESIGN ... 33

4.1 OOABASECLASSPR.OGRAMIMPLEMENTATION ... 33
4.1.1 Standardized Implementation Style .. 34
4.1.2 Plane Class Implementation .. 35

4.1.2.1 Plane Equations ... 35
4.1.2.2 Classify _Polygon Service of Plane Class .. 36

4.2 OOD DERIVED CLASS PR.OGRAM IMPLEMENTATION •.•.•••.•••..•••.••••••••••••.•••••.•.•.•••••••••••••.•.•..•.•.•••.•••••• 37
4.2.1 Constrained_Tetrahedrization Class lmplementation37

ii

4.2.2 List Class Implementation ... 38
4.2.3 Convex_Hull Class Implementation .. 39
4.2.4 BSP _Tree Class lmplementadon ... 39
4.2.5 OOGL Class lmplementadon ... 39

4.30nmR.IMPLEMENTATION ... 40
4.4 TEsT DRIVER IMPLEMENTATION .. 40

4.4.1 Test_Pla Driver .. 40
4.4.2 Test_Lis Driver .. 41
4.4.3 Test_Del Driver .. 41

4.4.3.1 Delaunay Triangulation ... 41
4.4.4 Test_Ctr. Driver .. 42

4.5 FINAL IMPLEMENTATION 'I'EsTING ... 44

CHAPfER V ... 49

5. CONVEX HULLS ... 49

5.1 CONVEX SETS ... 50
5.2 CONVEX HULLS IN THREE DIMBNSIONS .. 50
5.3 CONVEX Huu.. ALooRnHM ... 51
5.4 SPLITTING CONVEX HULLS .. 52

5.4.1 Splitting in E ... 52
5.4.2 Splitting in E3 ... 54

CHAPfER 'VI. ..••..••.••.•..•.••...••.•..••..•..•.......•••..•.•••••.•.•...........•.•••..•.••......•...•.••..•...•••..........•......•............• 58

6. BSP TREES ... 58

6.1 BSP TREE CONSTRUCTION .. 59
6.2 BSP TREE MERGING ... 60

CHAPfER VD .. 62

7. PROGRAM IMPLEMENTATION•... 62

7 .1 Co:MPILER AND PLA'IFORM CHOICE .. 62
7.1.1 Compiler Choice Alternative .. 63
7.1.2 Output and Final Considerations ... 63

7 .2 PLATFORMS .. 63
7.2.1 IBM PC Compatible (MS-DOS) ... 63
7.2.2 Sun 3/60 ... 64
7.2.3 Sun Sparc20 64
7.2.4 DEC Alpha ... 64
7.2.5 IBM PC Compadble (Linux) ... 65

BIBLIOGRAPHY•.•.•....................................•... 66

VIT A ••.••..•.........•...•.•••••.•••••••••••••••••.•••••.•••.••••••••..•••••••••..••••••...•.•.....•.....•..•.....••.•.•....••..••.......•...•..•.•.•..•.• 69

APPENDIX .. 70

iii

TABLES
Table 4-1 - Table of OOA Base Classes and Implementation Filenames .. 34
Table 4-2 - Table of 00D Derived Classes and Implementation Filenames ... 37

iv

FIGURES
Figure 2-1 - Class-&-Object Structure Notation ... 3
Figure 2-2 - Gen-Spec Structure Notation [7] .. 5
Figure 2-3 - Whole-Part Structure Notation [7] ... 6
Figure 3-1 - Point2 Class Representation and Object-&-Class Diagram ... 10
Figure 3-2 - Point3 Class Representation and Object-&-Class Diagram ... 10
Figure 3-3 - Plane Class Representation and Object-&-Class Diagram .. 11
Figure 3-4 - Examples of Coincident, In Front Of/ In Back Of, and Spanning Planes 12
Figure 3-5 - Example of Point Coincident to, a Point In Back of, and a Point In Front of a Plane 13
Figure 3-6 - Example of the Normal Vector to the Plane and the Angle Between Two Planes 14
Figure 3-7 - Line_Segment2 Class Representation and Object-&-Class Diagram 15
Figure 3-8 - Example of a Line Segment Intersecting, and not Intersecting a Second Line Segment 16
Figure 3-9 - Line_Segment3 Class Representation and Object-&-Class Diagram 17
Figure 3-10 - Example of a Line Segment Spanning, Coincident to, and In Back Of a Plane 18
Figure 3-11 - SubFacet2 Class Representation and Object-&-Class Diagram ... 19
Figure 3-12 - SubFacet3 Class Representation and Object-&-Class Diagram ... 20
Figure 3-13 - Facet2 Class Representation and Object-&-Class Diagram ... 21
Figure 3-14-Facet3 Class Representation and Object-&-Class Diagram ... 22
Figure 3-15 - Coad/Y ourdon OOA Object Model Diagram .. 23
Figure 3-16-Constrained Tetrahedrization Algorithm[17] ... 24
Figure 3-17 - Constrained_Tetrahedrization Class Representation and Object-&-Class Diagram 26
Figure 3-18 - List Class Representation and Object-&-Class Diagram ... 27
Figure 3-19 - Convex_Hull Class Representation and Object-&-Class Diagram 28
Figure 3-20 - Example of a BSP Tree Construction in 2D.[33] .. 29
Figure 3-21 - BSP _Tree Class Representation and Object-&-Class Diagram ... 30
Figure 3-22 - Sample chull.off OOGL File Output ... 31
Figure 3-23 - Sample triangs.off OOOL File Output .. 31
Figure 3-24 - Sample bspchull.off OOGL File Output ... 32
Figure 4-1 Point2 Base Class OOP Implementation Example .. 34
Figure 4-2 - Sample Plane with Vectors .. 36
Figure 4-3 - Example Plane Equation Calculation ... 36
Figure 4-4 - Constrain Service Pseudocode .. 38
Figure 4-5 - Delaunay Triangulation ... 42
Figure 4-6 - Mathematica Gmphical Output of Sample Project Input Data .. 44
Figure 4-7 - Example Geomview screen [15] ... 45
Figure 4-8 - Geomview Camera View of the Five Partition Planes .. .46
Figure 4-9 - Geom view Camera View of the Convex Hull ... 47
Figure 4-10 - Geomview Camera View of the Convex Hull Split by One Plane .. 48
Figure 5-1 - Example of a Set of Points P in E2 and the Convex Hull of P ... 49
Figure 5-2 - Example of a Convex Hull with n > 3 in E2 ... 50
Figure 5-3 - Example of a Convex Set and a Non-Convex Set ... 50
Figure 5-4 - Example Convex Hull with n > 4 in E3 .. 51
Figure 5-5 - Examples of Partitioning Convex Hulls in E2 .. 54
Figure 5-6 - Example of Partitioning a Facet in E3 .. 55
Figure 5-7 - Example of Special Case Coincident Facets in E3 ... 56
Figure 5-8 - Example of a Convex Hull Spanning a Plane in E3 .. 57
Figure 5-9 - Example of a Delaunay Triangulation of Coincident Points ... 57
Figure 6-1 - Sample BSP Tree in E2 .. 59
Figure 6-2 - Pseudocode for BSP Tree Construction .. 60
Figure 6-3 - Pseudocode for Convex Hull Merge Into BSP Tree ... 61

"

ABSTRACT

IMPLEMENTATION OF AN ALGORITHM

TO APPROXIMATE CONSTRAINED

TETRAHEDRIZATIONS WITH

PRE-SPECIFIED TRIANGULAR FACES

by

Brian James Collins, B.S.
Southwest Texas State University

August 1997

Supervising Professor: Dr. Carol Hazlewood

A tetrahedrization is a decomposition of a region in space into tetrahedra. It is not

always possible to construct a tetrahedrization that contains prespecified facets. There is

an unimplemented algorithm for producing a reasonably efficient approximate solution.

Given points and triangles that intersect in (possibly empty) mutual faces, a binary space

partition is used to define subregions of the convex hull of the input. The planar boundary

faces of these subregions are triangulated with constraints, and the subregions are covered

with tetrahedra that preserve the boundary triangles. The constraints are such that the set

of tetrahedra is a tetrahedrization and the specified triangles are unions of facets of

tetrahedra. An Object-Oriented analysis, an Object-Oriented design, and a C++

implementation of an algorithm to split the convex hull of a finite set of points by a plane

is presented.

vi

Chapter I

INTRODUCTION

1. Introduction
In Hazlewood's paper[17] a method is described for constructing a

tetrahedrization in three-dimensional Euclidean space that includes specified triangular
regions as the union of facets of tetrahedra. It is not always possible to construct a
tetrahedrization in which specified triangles appear as facets and the current methods to
determine if such a tetrahedrization exists is considered an NP-hard problem. NP-hard
problems do not have a solution that completes in polynomial running time, O(nk) for any
constant k, and an optimal solution is intractable.[9] In an earlier paper by
Hazlewood[l6] and Sun's thesis[29] a method is presented that uses an approximation
algorithm to construct a tetrahedrization. An algorithm that returns near-optimal
solutions in polynomial time (either worst case time or average case time) is considered an
approximation algorithm.[9] Approximation algorithms or exponential running time
algorithms (with small input sets) are both acceptable solutions for NP-hard problems.
The algorithm presented in Hazlewood' s paper[l 7] theoretically can construct such a
tetrahedrization in polynomial time and space. This thesis describes the implementation of
the algorithm presented in Hazlewood's paper.[17]

A tetrahedrization is a decomposition of a region in space into tetrahedra.
Tetrahedrization algorithms are important for applications involving surface modeling,
applications involving modeling 3D objects with non-convex boundaries, and modeling
3D surfaces with discontinuities. The 2D analog to this problem has an O(n lg n) solution
and a solution always exists, but the 3D problem does not always have a solution. A
tetrahedrization of a finite set of points is a collection of tetrahedra that intersect in mutual
(possibly empty) faces and cover the convex hull of the point set. It is not always possible
to construct a tetrahedrization that contains prespecified facets. Presented in
Hazlewood' s paper[17] there is an unimplemented algorithm for producing a reasonably
efficient approximate solution. Given points and triangles that intersect in (possibly
empty) mutual faces, a binary space partition is used to define subregions of the convex
hull of the input. The subregions are covered with tetrahedra in such a way that the result
is a tetrahedrization in which the specified triangles are unions of facets of tetrahedra.
The pseudo code for this algorithm is presented in Chapter 4. This thesis concentrated on

1

the Object-Oriented Analysis, the Object-Oriented Design, the portable C++
implementation of the algorithm to split the convex hull of a finite set of points by a plane,
and visualization in the Geomview[15] program.

In Chapter 2 basic concepts and definitions are presented. In Chapter 3 a basic
Object-Oriented analysis and a basic Object-Oriented design with classes designed to
implement the algorithm is presented. In Chapter 4 a basic Object-Oriented programming
implementation in C++ and sample program output in the Mathematica[36] and
Geomview[l5] programs is presented. In Chapter 5 detailed information about convex
hulls is presented. In Chapter 6 detailed information about BSP trees is presented. In
Chapter 7 physical program implementation issues are presented. In the appendix, a
detailed C++ implementation is presented.

2

Chapter II

BACKGROUND

2. Basic Definitions

This chapter introduces the basic definitions and concepts of several key words
that are used in chapter 3 through chapter 7.

Computational Geometry The generation of efficient algorithms to solve geometric
problems; or the systematic study of geometric algorithms.

Object

Class

Class-&-Object

An abstraction of something in a problem domain, reflecting
the capabilities of a system to keep information about it,
interact with it, or both; an encapsulation of Attribute values
and their exclusive Services. (synonym: an Instance)[?]

A description of one or more Objects with a uniform set of
Attributes and Services, including a description of how to
create new Objects in the Class.[7]

A term meaning a Class and the Objects in that Class.[7]

,, ..., ~ r
Class Name

Class Attribute,

Class Services
... ~

"'- ~

Figure 2-1- Class-&-Object Structure Notation

3

Base Class

Derived Class

00

OOA

OOD

OOP

Gen-Spec Structure

A base class or super class is a root class from which other
classes are derived from. The newly derived classes inherit the
base class functionality and add their own additional
functionality.

A class that is derived from a base class or a super class. It has
all of the inherited functionality from the parent class and it can
add its own functionality.

Object-Oriented. A methodology of analysis, design, and
programming that subdivides a problem into classes that
contain attributes and services that can act upon those classes.
A class combines a data structure and the services to act upon
that data structure into one reusable object. Object-Oriented
systems encompass the ideas of: Encapsulation, Inheritance,
Polymorphism, Dynamic Binding, and Generic Relationships.

Object-Oriented Analysis, establishes the classes in the problem
domain. It specifies what each object in each class needs to
know and do, and it specifies object interactions all in one
model.[7]

Object-Oriented Design, adds design considerations to the
OOA results. Mainly, OOD focuses on human interaction,
data management, and task management classes. It includes
additional detail on what each object in each class needs to
know and do, and it specifies additional object interactions all
in one model. [8]

Object-Oriented Programming, the implementation in a
programming language of the classes developed through the
OOA and OOD processes.[6]

A half circle symbol in Coad/Y ourdon design diagram which
represents a generalization class - specialization class
relationship. The Class-&-Object at the top of the half circle
symbol is the generalization class and any Class-&-Object's at
the bottom of the half circle symbol are the specialization
classes. For example, a generalized "sensor" class might have
a specialization "critical sensor" class and a specialization
"standard sensor" class derived from it.

4

,,
r

"-

"·

Whole-Part Structure

,,. "I
'I

Generalizatior 1

~
~ ...

A
'I~

fr ·~

r

Specialization Specialization ~

... "-
...;

Figure 2-2 - Gen-Spec Structure Notation [7)

A triangle symbol in Coad/Y ourdon design diagram which
represents a whole class - part class relationship. The Class-&­
Object at the top of the triangle symbol is the whole class and
any Class-&-Object's at the bottom of the triangle symbol are
the part classes. Numbers next to the whole class denote how
many parts the whole class may have, and numbers next to the
part classes denote how many whole classes the part class can
belong to. For example, an "aircraft" class might have 1 or
more engines, but an "engine" class would only belong to 1
aircraft.

5

2D

3D

Convex Set

Convex Hull

Tetrahedrization

BSPTree

r

'-.

r ..,
Whole

l,m l,m

.., r ..,
Partl Part2

~ '-. ~

Figure 2-3 - Whole-Part Structure Notation [7]

2 Dimensional Space, E2 also known as Euclidean space.

3 Dimensional Space, E3•

d Dimensional Space, Ed.

A set A is convex if for every pair of points p and q in set A,
the line segment pq is in set A. See chapter 5 for a detailed
explanation.

The convex hull of a set of points P is the smallest convex set
that contains P.[26] See section 3.2.3 and section 5.1 for a
detailed explanation.

A tetrahedrization of a finite set of points is a collection of
tetrahedra that intersect in mutual (possibly empty) faces and
cover the convex hull of the point set

Binary Space Partition Tree - A BSP Tree is a data structure
that represents a recursive, hierarchical subdivision of n­
dimensional space into convex subspaces.[33] See section
3.2.4 and chapter 6 for a detailed explanation.

6

Plane Angle

Coincident

Spanning

Hyperplane

The angle between two planes is the angle between the two
normals to the planes. See section 3.1.1, figure 6, for a
detailed explanation.

Two planes that lie in the exact same space are coincident
planes. The angle between the two planes is exactly O degrees.
See section 3.1.1, figure 4, for a detailed explanation.

Two planes that intersect each other are spanning planes. The
intersection between two non-coplanar planes is a line. The
angle between the two planes is greater than O degrees. See
section 3.1.3, figure 6, for a detailed explanation.

In Ed dimensional space, a hyperplane is a Ed-t dimensional
object that is used to divide Ed space into two half-spaces. In
E3 a plane is a hyperplane, in E2 a line is a hyperplane.

7

Chapter Ill

CLASS DESIGN

3. Class Design
The class design in this project followed common Object-Oriented (00) design

principles. All Object-Oriented Analysis (OOA) and Object-Oriented Design (00D) were
performed using the Coad/Y ourdon Object-Oriented Method.[6, 7 ,8] The Object­
Oriented Programming (OOP) implementation followed directly from the OOA and 00D
processes and was done in the C++ programming language. The base classes of the
problem domain were designed during the OOA phase of the project. Other classes were
designed during the 00D phase of the project from the OOA base classes to solve the
problem of implementing the Constrained Tetrahedrization algorithm as needed.

3.1 OOA Base Classes
The base classes were designed during the OOA phase of the project with the base

objects of the problem in mind. The only true "base classes", by the Object-Oriented
definition of the term, are the Point2 and Point3 classes which are self-contained classes
and form the basis for all other class construction in the OOA phase of the project. The
other classes that are built from the Point2 and Point3 classes are still called base classes
for the terms of this project because they are classes that were designed during the OOA
phase of the project and they are base objects for solving the problem in the Constrained
Tetrahedrization algorithm.

The five major activities of OOA are:[7]

1. Subject Layer
2. Class-&-Object Layer
3. Structure Layer
4. Attribute Layer
5. Service Layer

8

A subject is a mechanism for guiding a reader through a large, complex model.
Subjects are also helpful for organizing work packages based upon initial OOA
investigation.[8] The subject layer for the problem domain was one simple task, so I
decided to have one subject named Constrained Tetrahedrization which is the name of the
program. The whole purpose of the program was to take in a set of points and a set of
partitioning planes as input and to provide a set of partitioned convex hulls as output.
The single purpose of the program only needed a single subject to represent it.

The Class-&-Object layer for the problem domain started out in the realm of 2D
and 3D geometry objects. The natural classes that fell out of the 2D analysis were objects
like point2 and line_segment2, which represented a point in E2 and a line segment in E2•

The natural classes that fell out of the 3D analysis were objects like point3,
line_segment3, and plane, which represented a point in E3, a line segment in E3, and a
plane in E3• Other classes that fell out of the analysis in this stage were objects like
facet2, facet3, subfacet2, and subfacet3 which were subparts of a tetrahedron object. The
tetrahedron object was not defined during the OOA phase of the project because it was a
more complex object that needed further analysis and design.

The Structure layer for the problem domain ended up being standard Geometric
representations for the most part. In 3D, for example, a line segment is composed of two
points, a plane is composed of three points, a facet has three points, and a subfacet has
two points. In 2D, for example, a line segment is composed of two points, a facet has
two points, and a subfacet has one point.

The Attribute layer for the classes in the problem domain only consisted of the
standard Geometric representations for the most part. In 3D, for example, a point had 3
attributes X, Y, and Z. In 2D, for example, a point had 2 attributes X and Y.

The Service layer for the classes in our problem domain only consisted of the
standard constructors, destructors, and accessors at this point in the analysis which meant
that there were no services defined in the design because these standard services are not
denoted in the Coad/Y ourdon object model. The next sections describe the classes built
during the OOA phase of the project on a class by class basis.

3.1.1 Point2 Class
The Point2 class is a representation of a point in 2D or Euclidean space.

Internally it is represented with 2 double length floating point numbers labeled X and Y.
Common constructors, destructors, and accessors are provided with the class to make the
class as open and re-usable as possible, but they are not shown using the Coad/Y ourdon
object model. Shown in Figure 3-1 is the object that this class represents and the Object­
&-Class diagram:

9

Point2

X
YAxis • p(x,y) y

\. ,,

XAxis

Figure 3-1 - Point2 Class Representation and Object-&-Class Diagram

3.1.2 Point3 Class
The Point3 class is a representation of a point in 3D space. Internally it is

represented with 3 double length floating point numbers labeled X, Y, and Z. Common
constructors, destructors, and accessors are provided with the class to make the class as
open and re-usable as possible, but they are not shown using the Coad/Y ourdon object
model. Shown in Figure 3-2 is the object that this class represents and the Object-&-Class
diagram:

r .,
Point3

X
YAxis • p(x,y ;z.) y

z

XAxis

Figure 3-2 - Point3 Class Representation and Object-&-Class Diagram

3.1.3 Plane Class
The Plane class is a representation of a plane in 3D space. Internally it is

represented with 3 points labeled Pl, P2, and P3. Internally it is also is represented with 4
double length floating point numbers labeled A, B, C, and D. The plane coefficients
(Ax+By+Cz+D=0) are calculated using Newell's Method.[5,30] Common constructors,

10

destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown
in Figure 3-3 is the object that this class represents and the Object-&-Class diagram:

r " Plane

Pl
P2

YAxis P3
,y,z) A

B
C
D

Classify _Polygon
Classify _Polygon2
Angle
Normal

... ~

3

l
r

Point3

X
V
z

... ~

Figure 3-3 - Plane Class Representation and Object-&-Class Diagram

The services that are shown in this class design were added during the 00D phase
of the design. The Classify _Polygon service in this class takes the current plane object
and a plane that is passed in as a parameter and it determines whether the parameter plane
is coincident, in back of, in front of, or spanning the current plane. Shown in Figure 3-4
are examples of coincident, in back of/ in front of, and spanning planes:

11

Y Axis

Y Axis

Coincident Planes

Plane l & Plane2

Parallel Planes

Either (Planel is ln_Front_Of Plane2)
Or (Plane2 is ln_Back_ Of Plane l)
Depending on parameter order

XAxis

Spanning Planes

Figure 3-4 - Examples of Coincident, In Front Of/ In Back Of, and Spanning Planes

12

The Classify _Polygon2 service in this class takes the current plane and a point that
is passed in as a parameter and it returns whether the point is coincident, in back of, in
front of, or spanning the current plane. Shown in Figure 3-5 are examples of a point
coincident to a plane, a point in back of a plane, and a point in front of a plane:

Y Axis

Point Coincident to Plane

YAxis •

Point In Back Of Plane

•
Y Axis

Point In Front Of Plane

Figure 3-5 - Example of Point Coincident to, a Point In Back of, and a Point In Front of a Plane

13

The Angle service in this class takes the current plane and a plane that is passed in
as a parameter and it returns the angle between the two spanning planes. The Normal
service in this class returns the normal vector to the current plane. Shown in Figure 3-6
are examples of the normal vector to a plane and the angle between two spanning planes:

Normal Vector to Plane

V Axis

The Angle Between Two Planes is
the Angle Between the Two Plane Normals

YAxis

XAxis

Figure 3-6 - Example of the Normal Vector to the Plane and the Angle Between Two Planes
'

3.1.4 Line_Segment2 Class
The Line_Segment2 class is a representation of a line segment in 2D space.

Internally it is represented with 2 points labeled Pl and P2. Common constructors,
destructors, and accessors are provided with the class to make the class as open and re-

14

usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown
in Figure 3-7 is the object that this class represents and the Object-&-Class diagram .

, .,
Line_Segment ~

Pl

Y Axis p l(x,y) P2

Intersection ..
2

XAxis Ii , "I

Point2

X
y

\.

Figure 3-7 - Line_ Segment2 Class Representation and Object-&-Class Diagram

The services that are shown in this class design were added during the OOD phase
of the design. The Intersection service in this class takes the current line segment and a
second line segment that is passed in as a parameter and it returns a point as the
intersection point between the two line segments. If the line segments do not intersect in
a single point then the origin (0,0) is returned. This error value should be sufficient for
this project since all of the data resides in quadrant I. Adding in cases in the code to
handle intersection error properly is left for future expansion of this thesis. Shown in
Figure 3-8 are examples of a line segment intersecting, and not intersecting a second line
segment:

f

15

Y Axis

Y Axis

p2

XAxis

Line Segments Intersecting
Intersection Point Returned

XAxis

Line Segments Not Intersecting
Origin Point Returned

Figure 3-8 • Example of a Line Segment Intersecting, and not Intersecting a Second Line Segment

3.1.5 Line_Segment3 Class
The Line_Segment3 class is a representation of a line segment in 3D space.

Internally it is represented with 2 points labeled Pl and P2. Common constructors,
destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown
in Figure 3-9 is the object that this class represents and the Object-&-Class diagram:

16

r .,
Line_Segment 3

Pl

V Axis p l(x,y ;z) P2

Intersection
\._ ~

2

XAxis l1
r .,

Point3

X
V
z

"-

Figure 3-9 - Line_ Segment3 Class Representation and Object-&-Class Diagram

The services that are shown in this class design were added during the OOD phase
of the design. The Intersection service in this class takes the current line segment object
and a plane that is passed in as a parameter and it returns a point as the intersection point
between the line segment and the plane. If the line segment is coincident to the plane then
the midpoint of the segment is returned. If the line segment is in back of or in front of the
plane then the origin (0,0,0) is returned since there is no intersection to return. This error
value should be sufficient for this project since all of the data resides in quadrant I.
Adding in cases in the code to handle intersection error properly is left for future
expansion of this thesis. Shown in Figure 3-10 are examples of a line segment spanning,
coincident to, and in back of a plane:

17

YAxis

YAxis

YAxis

p2

Line Segment Spanning Plane
Intersection Point Returned

Line Segment Coincident to Plane
Line Segment MidPoint Returned

p 1 Line Segment In Back of Plane
Origin Point Returned

Figure 3-10 - Example of a Line Segment Spanning, Coincident to, and In Back Of a Plane

18

3.1.6 SubFacet2 Class
The SubFacet2 class is a representation of a subfacet of a 2D tetrahedron. In 2D,

three points are needed to define a tetrahedron, two points are needed to define a facet of
a tetrahedron, and one point is needed to define a subfacet of a tetrahedron. Internally
this class is derived from the Point2 class. Common constructors, destructors, and
accessors are provided with the class to make the class as open and re-usable as possible,
but they are not shown using the Coad/Y ourdon object model. The SubFacet2 class is
derived from the Point2 class since it is very similar in structure. Shown in Figure 3-11 is
the object that this class represents and the Object-&-Class diagram:

SubFacet of a Tetrahedro------

/
YAxis ~

XAxis

Point2

X
V

SubFacet2

Figure 3-11 - SubFacet2 Class Representation and Object-&-Class Diagram

3.1. 7 SubFacet3 Class
The SubFacet3 class is a representation of a subfacet of a 3D tetrahedron. In 3D,

four points are needed to define a tetrahedron, three points are needed to define a facet of
a tetrahedron, and two points are needed to define a subfacet of a tetrahedron. Internally
this class is derived from the Line_Segment3 class. Common constructors, destructors,
and accessors are provided with the class to make the class as open and re-usable as
possible, but they are not shown using the Coad/Y ourdon object model. The SubFacet3
class is derived from the Line_Segment3 class since it is very similar in structure. Shown
in Figure 3-12 is the object that this class represents and the Object-&-Class diagram:

19

YAxis

SubFacet of a Tetrahedr,._-----

/

XAxis

Line_Segment

Pl
P2

Intersection

SubFacet3

Figure 3-12 - SubFacet3 Class Representation and Object-&-Class Diagram

3.1.8 Facet2 Class
The Facet2 class is a representation of a facet of a 2D tetrahedron. In 2D, three

points are needed to define a tetrahedron and two points are needed to define a facet of a
tetrahedron. Internally this class is derived from the Llne_Segment2 class. Common
constructors, destructors, and accessors are provided with the class to make the class as
open and re-usable as possible, but they are not shown using the Coad/Y ourdon object
model. The Facet2 class is derived from the Line_Segment2 class since it is very similar
in structure. Shown in Figure 3-13 is the object that this class represents and the Object­
&-Class diagram:

20

Facet of a Tetrahedron

YAxis

XAxis

Line_Segment

Pl
P2

Intersection

Facet2

Figure 3-13 - Facet2 Class Representation and Object-&-Class Diagram

3.1.9 Facet3 Class
The Facet3 class is a representation of a facet of a 3D tetrahedron. In 3D, four

points are needed to define a tetrahedron and three points are needed to define a facet of a
tetrahedron. Internally this class is derived from the Plane class. Common constructors,
destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. The
Facet3 class is derived from the Plane class since it is very similar in structure. Shown in
Figure 3-14 is the object that this class represents and the Object-&-Class diagram:

21

Facet of a Tetrahedron

/
YAxis

XAxis

Pl
P2
P3
A
B
C
D

Plane

Classify _Polygo
Classify _Polygo
Angle
Normal

Facet3

Figure 3-14 - Facet3 CI~ Representation and Object-&-Class Diagram

3.1.10 OOA Model Diagram
All of the Coad/Y ourdon OOA Layers that were developed during the OOA phase

of the project are shown together on one diagram which forms an object model diagram.
The Coad/Y ourdon OOA Object Model Diagram for the Constrained Tetrahedrization
project follows:

22

..,

Une_Segment2

Pl
P2

Intersection
Is , ,

2 (I
l 1

~~ ~ j
.~

1

a
,

Plane

Pl
P2
P3
A

" B
Une_Segment3 C

D
Pl Classlfy_Polygon P2 Classlfy_Polygon2

Intersection Angle

'
Normal ' ·, ~-

1 2 3 1
J. ~

1 1

I

a· Polnt3

~ X
V
z

Figure 3-15 - Coad/Yourdon OOA Object Model Diagram

23

3.2 OOD Derived Classes
The derived classes were designed during the OOD phase of the project with the

flushing out of the OOA design and the implementation of the Constrained
Tetrahedrization algorithm in mind. The classes were designed to solve specific problems
in the Constrained Tetrahedrization algorithm and were built using only the base classes
that were designed during the OOA phase of the project.

The four major activities of OOD are:[8]

1. Problem Domain Component
2. Human Interaction Component
3. Task Management Component
4. Data Management Component

3.2.1 Problem Domain Component
The problem domain component of OOD is the activity where the design modifies

the OOA results to resolve a design consideration. In this activity you can also show the
other three OOD components in a collapsed form. In the Constrained Tetrahedrization
project there were some classes that were not discussed in the OOA results that were
needed to solve some problems in the Constrained Tetrahedrization algorithm. The main
Constrained Tetrahedrization algorithm as presented below contains none of the objects,
except for Plane, that were created in the OOA phase of the project. This is where the
OOD phase of the project was needed to complete the overall project design. The first
object added was the Constrained_Tetrahedrization object which represented the main
project class.

constrain(P',F,T)
begin

end.

construct B;
construct C, the convex hull of P';
for j = 1 to k do

Kj <- plane(fj) n C;
for j = 1 to k do

compute constraints for Kj;
for j = 1 to k do

triangulate Kj with constraints;
triangulate facets of C with constraints;
for i = 1 to 1 do

Ti <- tetrahedrization of R1 ;

T <- u Ti

Figure 3-16 - Constrained Tetrahedrization Algorithm[17]

24

As parameters, P' is a set of points in E3, F is a set of k triangles which have
vertices in P' and which intersect in (possibly empty) mutual faces, and Tis the output of
the tetrahedrization. [17] The set of points P', since an unknown number of points could
be entered, was represented by a generic List class. The set of k triangles F, since an
unknown number of partitioning planes could be entered, was also represented by a
generic List class. In the implementation, the three points that formed the "triangles" or
partitioning planes did not come from the set of points in P', but they were randomly
generated points. The implementation differed at this point from the paper[17] because
the paper[l 7] stated that F is a set of k triangles which have vertices in P'. The theory of
partitioning a polygon or a convex hull with a plane should not rely on the points of the
plane also belonging to the points that form the polygon or convex hull. Any arbitrary
plane should be able to partition a polygon or a convex hull. The next obvious classes
that came from this level of the project were the Convex_Hull class and the BSP _Tree
class which were explicitly called out in the algorithm. These four obvious classes formed
the basis for a top-down OOD design.

3.2.1.1 Constrained_ Tetrahedrization Class
The Constrained_ Tetrahedrization class is a representation of the main

Constrained Tetrahedrization class that is the OOA subject layer and the main
implementation of the algorithm.[17] Common constructors, destructors, and accessors
are provided with the class to make the class as open and re-usable as possible, but they
are not shown using the Coad/Y ourdon object model. Shown in Figure 3-17 is the object
that this class represents and the Object-&-Class diagram:

25

r, ~.,
Constrained_Tetrahedrizatlon

P_Prime
F
B
C

Constrain
\,,_\.. ,J~

1 1 1 1

l1 1 1 l1
f' ' r ,.

BSP_Tree Convex_Hull

I. ..
i,_ i,_ ~

~' ,. '
List<Point3> List<Point3>

O.m O.m

I. .. I. ..
1

i,_ .. i,_ _...
1 ,. ,-, ,,. --.

r ~

Plane Point3

Pl
X P2

P3
y

A z
B
C ..

I,_

D

Classify_Polygon
Classify _Polygon2
Angle

~I.
Normal

~

Figure 3-17 - Constrained_Tetrahedrization Class Representation and Object-&-Class Diagram

26

3.2.1.2 List Class
The List class is a representation of a double linked list of objects. Common

constructors, destructors, accessors, and standard list services are provided with the class
to make the class as open and re-usable as possible, but they are not shown using the
Coad/¥ ourdon object model. The List class comes in several instances: List<Point3>,
List<Poina>, List<Facet3>, List<Facea>, List<SubFacet3>, List<SubFacea>, and
List<Plane>. All of theses instances were implemented in the OOP phase of the project
through the use of C++ generic templates. Shown in Figure 3-18 is the object that this
class represents and the Object-&-Class diagram:

List
Head
Tail
Pfr

., '

"'r "r "I., "'r "I

List<Point3> List< ... > List<Facet3:::

\. \. ~
b,. \. b,.

Figure 3-18- List Class Representation and Object-&-Class Diagram

3.2.1.3 Convex_Hull Class
The Convex_Hull class is a representation of a geometric convex hull. A convex

hull is represented geometrically by a list of facets which contain three vertices each.
These facets are triangular and when they are all connected together they make up the
facets or the outer surface of the convex hull. A more in depth explanation of convex
hulls can be found in chapter 5. Common constructors, destructors, accessors, and

27

standard list services are provided with the class to make the class as open and re-usable
as possible, but they are not shown using the Coad/Y ourdon object model. In the OOP
phase of the project, a single service called Giftwrapping[6,26] was developed that takes a
List<Point3> class and an address to a List<Facet3> class as parameters and then fills in
the List<Facet3> class with the facets of the convex hull. This was an improper design,
and the Giftwrapping service has been kept, but the Convex_Hull class keeps the list of
Facet3's internally. The Convex_Hull class is derived from the List<Facet3> class.
Shown in Figure 3-19 is the object that this class represents and the Object-&-Class
diagram:

r-r 'I~

List<Facet3:

V Axis

.J
_.,i

XAxis

''r 'I ...
Convex_Hull

Giftwrapping
\.: "-'

Figure 3-19 - Convex_ Hull Class Representation and Object-&-Class Diagram

3.2.1.4 BSP _ Tree Class
The BSP Tree class is a representation of a special binary tree called a binary

space partition (BSP) tree. A BSP Tree is a data structure that represents a recursive,
hierarchical subdivision of n-dimensional space into convex subspaces. BSP tree
construction is a process which takes a subspace and partitions it by any hyperplane that
intersects the interior of that subspace. The result is two new subspaces that can be
further partitioned by recursive application of the method.[33] A more in depth
explanation of BSP trees can be found in chapter 6. Common constructors, destructors,
accessors, and standard list services are provided with the class to make the class as open
and re-usable as possible, but they are not shown using the Coad/Y ourdon object model.

28

Shown in Figure 3-20 and Figure 3-21 is an example of BSP tree construction in 2D and
the Object-&-Class diagram:

)4)4
I D I

A
1-.

B
I

C "' , I
C .,

I I' L--,
I E I
I I

0 -~

Figure 3-20 - Example of a BSP Tree Construction in 2D.(33]

29

Parti tion Plane
,,-,

BSP_Tree
O,m O,m

V Axis "
- Root -

/4onvex Hui Build_Tree
,

Merge_Convex_Hl
\.

""'..i "-

1 1
r " r r

.,
Plane Convex_Hull

Pl
P2
P3
A
B Giftwrapping
C "-""" 4..i
D

Classify _Polygon
Classify _Polygon2
Angle
Normal

~,J ~

Figure 3-21 - BSP _ Tree Class Representation and Object-&-Class Diagram

3.2.2 Human Interaction Component
The human interaction component of 00D is the activity where the design takes

graphical user interface issues into design consideration. The Constrained
Tetrahedrization project was designed to operate as a single thread of execution task
using the standard input and standard output which is common to UNIX programs.
There was only one class that was considered during the human interaction component of
00D which was a class that output geometric classes into to the standard OOOL output
file format[23,32] so that they could later be displayed by the Geomview[l5] X-Windows
based 3D graphics viewing program.

3.2.2.1 OOGL Class

The OOGL class is an output class that creates OOOL files for later use with the
Geomview package.[15,23,32] In the 00D phase of the project only the existence of this
class was known about, because there was a requirement to view the results in a graphical
manner, but the exact services that would be needed were not known. In the OOP phase

30

of the project, three services were developed to output OOGL files for three specific
objects in the problem. The three objects that are able to be output in OOGL format are
the Convex_Hull (i.e. List<Facet3>) class, the Llst<Plane> class, and the BSP _Tree class.

The first service, named Output_ Convex_Hull, talces a Llst<Point3> class and a
Convex_Hull (i.e. Llst<Facet3>) class as parameters and outputs an OOGL file named
chull. off that will represent the Convex Hull graphically. This service could be
updated in the future to only take a Convex_Hull (i.e. List<Facet3>) class as a parameter
and generate the point list internally. The format[23,32] of this file is as follows:

OFF
nP nf n.
P1X P1Y P1Z
. . . { np points }
P.Px P.PY P.pz
3 f1P1 f1P2 f1P3
. . . {nt facets}
3 f.tP1 f.tP2 f.tP3

Figure 3-22 - Sample chull.off OOGL File Output

Where np = number of points, nf = number of facets, ne = number of edges (set to
0 since it's not used in the current version of Geomview), the first set of real numbers are
the points in the facets of the convex hull, and the second set of integer numbers are the
facets. The only points that have to be listed in the OOGL file are the points actually in
the facets, but for the convex hull object all of the points were listed in the OOGL file not
only the external points, but also the internal points. The facets are then listed as integers
which refer to the position of the points in the list.

The second service, named Output_ Triangles, takes a List<Plane> class as an
argument and outputs an OOGL file, named triangs . off, that will represent all of the
partition planes graphically. The format[23,32] of this file is as follows:

LIST
{=OFF
3 1 0
P1X P1Y P1Z
P2X P2Y P2Z
p3x PS p3z
3 0 1 2
}
{=OFF

... {repeat for each object in List<Plane> class}

Figure 3-23 - Sample triangs.off OOGL File Output

The third service, named Output_BSP _ Tree, takes a BSP _ Tree class and a
Llst<Point3> class as arguments and outputs an OOGL file, named bspchull.off, that will

31

represent the BSP _Tree partition planes and the multiple convex hulls that are in the
BSP _ Tree leaf nodes. The format[23,32] of this file is as follows:

LIST
{= OFF

... {partition plane information}
}
{=OFF

... {repeat for each partition plane in the BSP Tree class}

= OFF
... {convex hull information}

}
{=OFF

•.. {repeat for each convex hull in the BSP_Tree class}

Figure 3-24 - Sample bspchull.off OOGL File Output

At the time of this writing, the third service has not been fully implemented
because during the process in which the convex hull gets partitioned by the BSP tree,
extra points, that are not in the original point set, are generated without point id's and are
given a point id of 0 by default. The resulting output OOGL data, containing all of the
extraneous points, is incorrect. A new service, much like the new service needed for the
Output_ Convex_Hull service, will have to be created which will generate the point lists
internally and generate the correct OOGL output. Sample display output from the OOGL
classes will be shown in chapter 4.

3.2.3 Task Management Component
The task management component of OOD is the activity where the design takes

multiple tasks or concurrent behavior into design consideration. All services in this
project are implemented in a single task. No task management component design is
needed in this project.

3.2.4 Data Management Component
The data management component of OOD is the activity where the design takes

the storage and retrieval of user objects from a data management system such as a
database into design consideration. All services in this project are implemented to keep
all attributes in local memory, no data persistence is needed No data management
component design is needed in this project.

32

Chapter IV

PROGRAM DESIGN

4. Program Design
The Object-Oriented Programming (OOP) implementation [6] of the program in

the C++ language follows directly from the OOA and 00D design specifications as they
were presented previously in chapter 3. The first step in the OOP process was to
implement the OOA base classes in the C++ language, then to implement the rest of the
OOA classes that were derived from the OOA base classes. After the OOP
implementation of the OOA classes was completed to satisfaction, the OOP
implementation of the 00D classes began. The OOP implementation of the 00D classes
was a tedious task and took a long time, due to the algorithm complexities, to implement
the code of the classes and to test each class as it was being developed. The BSP _Tree
class and the Convex_Hull class were the most challenging to develop because of the
complexity of the data structures and the complexity of the algorithms in those classes.
The internal design of those two classes were complex enough and were crucial enough to
the implementation of the Constrained Tetrahedrization algorithm[l 7] to be presented in
chapter 5 and chapter 6. This chapter further explains the OOP implementation issues of
the program.

4.1 OOA Base Class Program Implementation
The OOA base class design was easy to implement and the C++ code was very

straight forward. The basic implementation of the Point2, Point3, Line_Segment2,
Line_Segment3, SubFacet2, SubFacet3, Facet2, and Facet3 classes was produced in
about two days worth of effort for all of the classes. Basic testing of the classes took
about one day worth of effort for each class. Some of the implementation and testing of
services in the Plane class took several weeks to work through due to the complexity of
the Vector Calculus needed in some of the algorithms. Shown in Table 4-1 are the OOA
base classes that were implemented and their corresponding filenames, these files are
included in the appendix of this thesis:

33

Cla~
Point2

Implementation Filenames
point2.h, point2.cc

Point3
Line_Segment2
Line_Segment3
SubFacet2
SubFacet3
Facet2

point3.h, point3.cc
lineseg2.h, lineseg2.cc
lineseg3.h, lineseg3.cc
sfacet2.h, sfacet2.cc
sfacet3.h, sfacet3.cc
facet2.h, facet2.cc

Facet3 facet3.h, facet3.cc

Table 4-1 - Table of OOA Base Classes and Implementation Filenames

4.1.1 Standardized Implementation Style
For the base classes a standardized Object-Oriented C++ class implementation was

followed in all of the classes. Each class would have all class attributes private and have
public accessor services to all of the attributes. For example, shown below is a standard
point2.h file that defines the Point2 class:

class Point2
{

} ;

public:
& Destructors II Constructors

Point2();
Point2(double, double);
Point2(Point2&);
~Point2 ();

II Operators

II Default Constructor
II Secondary Constructor
II Copy Constructor
II Default Destructor

Point2& operator=(const Point2&);
int operator==(const Point2&);
int operator!=(const Point2&);
friend ostream& operator<<(ostream&,Point2);

// Accessor Services
double GetX();
void SetX(double);
double GetY () ;
void SetY(double);
int Get ID() ;
void SetID(int);

II Services
double Distance(Point2); II distance between 2 points

private:
II Attributes
double X;
double Y;
int ID;

Figure 4-1 Point2 Base Class OOP Implementation Example

34

Notice the common elements of style in the class design. All private attributes are
explicitly declared as private and not defaulted to private. Constructors are provided for
standard allocation with no parameters, allocation with parameters, and copy
constructors. The entire class is also indented and plenty of whitespace and comments are
included to make the code more readable and maintainable. The Point3, Line_Segment2,
Line_Segment3, SubFacet2, SubFacet3, Facet2, and Facet3 classes were all implemented
in a similar style.

4.1.2 Plane Class Implementation
The Plane class implementation was a major undertaking considering the limited

design and lack of information about Planes in Calculus and Geometry books. From the
OOA design and a few Calculus books[3,5,13,25] all that is known about a plane is that
we are given three points in E3 to define the plane, and that the standard equation of a
plane is Ax+By+Cz+D=O.

4.1.2.1 Plane Equations
The first problem that had to be overcome in the Plane class implementation was

figuring out the standard equation of a plane given only 3 points that were in the plane.
The first method that was implemented was Newell's Method, which was presented with
implemented code in a Graphics Gems book[5,18]. For a first time quick implementation
this seemed like it was the answer. It later turned out that the numbers produced by
Newell's Method as implemented by the Graphics Gems book were not accurate enough
for use by my project. Later on in the project a new method was developed that uses
vectors to determine the plane equation.

N

Y Axis

XAxis

35

Figure 4-2 - Sample Plane with Vectors

The method of detennining the plane equation using vectors is:

1. Form vectors P1P2 and P1P3.
2. Form the Normal vector N which is the cross product of vectors P1P2 and

P1P3 (i.e. P1P2 X P1P3).
3. Given an arbitrary fourth point P in the plane, the dot product of vector PlP

and N will be equal to O (i.e. PlP • (P1P2 X P1P3) = 0).
4. Solve for A, B, C, and D of the plane equation.

For example:
Given the points { (0, 1, 1), (1, 1, 2), (-1, 2, -2)}

PlP2 = (1-0)i + (1-l)j + (2-l)k
P1P2 = li + 0j + lk
P1P3 = (-1-0)i + (2-l)j + (-2-l)k
P1P3 = -li + lj - 3k
N = (P1P2 X P1P3)
N = ((0) (-3)-(1) (l)]i - ((1) (-3)-(1) (-l)]j + ((1) (1)-(0) (-l)]k
N = -li + lj - 3k
PlP = (x-0)i + (y-l)j + (z-l)k
<(x-0)i+(y-l)j+(z-l)k>•<-li+2j+lk> = 0
-l(x-0)+2(y-l)+l(z-1) = 0
-lx+0+2y-2+1z-1 = 0
-lx+2y+lz-3 = 0
The plane equation is: x-2y-lz+3 = 0
A= 1, B = -2, C = -1, and D = 3

Figure 4-3 - Example Plane Equation Calculation

This vector method of finding the plane equation translated very easily into a C++
implementation. The C++ implementation can be found in the file plane.cc which is
included in the appendix as a reference.

4.1.2.2 Classify_ Polygon Service of Plane Class
The Plane class contains two different types of Classify _Polygon services. These

services take the current plane and either a second plane or a Point3 and determines if the
second object is in front of, in back of, coincident to, or spanning the first plane object.
These services have been described in some detail in section 3.1.3 and diagrams that
graphically depict these two services are shown in Figure 3-4 and Figure 3-5.

The first service was first implemented by testing the signed distance of each point
in the second plane to the first plane and then categorically determining if the other plane
was spanning (differing signs), in front (all signs positive), in back (all signs negative), or
coincident (all distances= 0 ± a tolerance). This would be the correct method to
determine how a polygon interacted with a plane, but this method does not work to
determine how two planes interact with each other. If all of the points of the second
plane are on one side of the second plane then either IN_FRONT or IN_BACK would

36

have been returned, but that does not guarantee that the two planes will not intersect
further out in space. This first implementation method of the first service was abandoned
in favor of another method.

The first service determines if the second plane is parallel to the first plane. If the
planes are parallel then the two planes are checked for coincidence. If the two planes are
coincident then the value COINCIDENT is returned. If the two planes are parallel then
the signed distance from one point in the second plane is tested from the first plane, and
either IN_FRONT or IN_BACK is returned depending on the sign. Since planes are
infinite in nature, if the planes are neither coincident nor parallel, then they must intersect
somewhere so the value SPANNING is returned.

The second service determines the signed distance from a point to the plane. If the
sign of the distance is positive and the distance is greater than O (± a tolerance) then the
value IN_FRONT is returned. If the sign of the distance is negative and the distance is
greater than O (± a tolerance) then the value IN_BACK is returned. If the point lies in the
plane(± a tolerance) then the value COINCIDENT is returned. The value SPANNING is
not returned by this service because geometrically speaking a point can not span a plane.

4.2 OOD Derived Class Program Implementation
The 00D derived class design implementation in C++ code was of average

difficulty and pretty straight forward. The first basic implementation of the
Constrained_Tetrahedrization, List, Convex_Hull, BSP_Tree, and OOGL classes was
produced in about three days worth of effort for each class. However, the basic testing of
the classes took several weeks worth of effort. A lot of the services in these classes had
major bugs in some of their implementations that needed to be fixed. Shown in Table 4-2
are the 00D derived classes that were implemented and their corresponding filenames,
these files are included in the appendix:

Class
Constrained_Tetrahedrization
List
Convex_Hull
BSP_Tree
OOGL

Implementation Filenames
ctz.h, ctz.cc
list.h, list.cc
chull.h, chull.cc
bsptree.h, bsptree.cc
oogl.h,oogl.cc

Table 4-2 - Table of OOD Derived Cla~es and Implementation Filenames

4.2.1 Constrained_ Tetrahedrization Class Implementation
The Constrained_ Tetrahedrization class (CTZ) is the main class that is in charge

of implementing the Constrained Tetrahedrization algorithm.[17] The design of this
algorithm was discussed previously in section 3.2.1 and section 3.2.1.1 of this thesis. The
CTZ class has one service called Constrain, which takes a List<Point3> class and a
List<Plane> class as inputs and it implements the Constrained Tetrahedrization algorithm

37

producing a BSP Tree with partition planes in the inner nodes and convex hulls in the leaf
nodes as an output. Presented in Figure 4-4 is the C++ style pseudocode for the
Constrain service of the CTZ class:

llconstrain(P', F, T)
II begin
I I 1. construct B, the BSP Tree of F;

construct C, the convex hull of P';
for j = 1 to k do

II 2.
II 3.
II
II
II
II
II
II
II
II
II

Kj <- plane(fj) intersect C;
4. for j = 1 to k do

compute constraints for Kj;
5. for j = 1 to k do

triangulate Kj with constraints;
triangulate facets of C with constraints;

6. for i = 1 to 1 do
Ti<- tetrahedrization of Ri;
T <- T union Ti;

II end.

Figure 4-4 - Constrain Service Pseudocode

Currently, the CTZ class only implements a few steps of the Constrained
Tetrahedrization algorithm. Step 1 is implemented by creating a new BSP _Tree class and
constructing the BSP tree partition plane structure using the List<Plane> class that is
passed into the CTZ class. The details of BSP tree construction are presented in chapter
6. At this point in the algorithm the BSP tree leaf nodes are empty since the partitions are
not partitioning any objects. Step 2 is implemented by creating a new Convex_Hull class
and defining the facets of the convex hull using the Llst<Point3> class that is passed into
the C1Z class. The details of convex hull construction are presented in chapter 5. Step 3
is implemented by merging the convex hull into the BSP tree. The details of merging
objects into a BSP tree are presented in chapter 6. After the merging is complete, the
BSP tree leaf nodes will have convex hull's inside of them representing the part of the
convex hull that resides in that space partition. Step 4 and beyond of the Constrained
Tetrahedrization algorithm has not been completed due to time constraints on this thesis.
The completion of this algorithm is left for future expansion.

4.2.2 List Class Implementation
The List class is the major container class in this project. Every major class in the

project uses this class to store a list of objects as an attribute. This class was mainly
developed as a specialized convex hull class because a convex hull is defined as a list of
facets. It is also useful to hold onto a list of points instead of having to work with arrays
which are not flexible enough due to fixed limits on array size. This List class was
implemented using C++ templates to give it a generic behavior and allow it to store
objects of any type. On future projects it is recommended that a pre-developed and pre­
tested list class be used instead of developing one from scratch. Possibly the list class that
comes as part of the popular Standard Template Library (STL) tool kit would be enough.

38

4.2.3 Convex_Hull Class Implementation
The Convex_Hull class is a major part of implementing the Constrained

Tetrahedrization algorithm. This class was modified from a FORTRAN algorithm and an
ANSI C algorithm which were developed during previous course work. The convex hull
wasn't an original class in this project, but it existed as a specialized service called
Giftwrapping. This Giftwrapping service was an algorithm adapted from previous course
work and from the text book[26] for that course. It was later determined during the
OOD phase of the project that a convex hull really was its own class, and it should be
derived from List<Facet3> or List<Facet2> depending on if the convex hull was in 3D or
2D space using the Giftwrapping routine as a service of the class. The details of convex
hull construction are presented in chapter 5. This class was difficult to implement and
test because of the plane equations discussed in section 4.1.2.1 and because of the method
of determining the angle between two planes. Once the Plane class was fixed, the
Convex_Hull class was easily debugged and tested. The convex hull that was generated
by the Giftwrapping service was compared against the convex hull that the quickhull[28]
program computed for the same point set. From 100 random point test data set, both
programs generated the same 56 facet convex hull.

4.2.4 BSP _ Tree Class Implementation
The BSP _Tree class is a major part of implementing the Constrained

Tetrahedrization algorithm. The BSP tree is a data structure that was first developed for
the computer graphics field to partition graphical objects for hidden surface removal and
therefore faster object rendering. The initial information about BSP trees was obtained
from an ACM SIGGRAPH paper[22] and from the Internet at a site that maintains the
BSP Tree FAQ[33]. The details of BSP tree construction are presented in chapter 6.
This class was difficult to implement and test because by the initial class design the
storage for the partitioning planes and the partitioned objects resided in the internal nodes
of the tree. This design made the algorithms for tree traversal difficult and harder to
implement, also the algorithms for convex hull partitioning were difficult and harder to
implement. After researching the BSP tree material further, it was found that the
partitioned objects should only reside in the leaf nodes of the tree while only the
partitioning planes reside in the internal nodes of the tree. After redesigning the class
appropriately, the implementation and testing became easier for the tree traversal and the
convex hull partitioning routines.

4.2.5 OOGL Class Implementation

The OOGL class is the only class that fell into the Human Interaction Component
of the OOD design. It is not a true Graphical User Interface (GUI) class because its job is
to take geometric objects and output their description in the OOGL description
language[23,32] which will then later be displayed by the Geomview program[15] which
acts like the GUI. The design of this class really is not Object-Oriented, but it is more
functional in nature. The idea of a class that has no attributes, but just has services that

39

take parameters in and give output is a functional design. This class should be removed
and the services should be distributed to the classes that need them. For example the
service OOGL::Output_Convex_Hull should be removed and it should become the
service Convex_Hull::OOGL_Output which is a more Object-Oriented approach to the
problem. This redesign will be left as an opportunity for future expansion.

4.3 Other Implementation
Other things that were implemented that were not included in the class design

were the functional design services that are in the files general.h, general.cc, chsplith, and
chsplitcc. The functions presented in general.h and general.cc that are interesting to the

-design are functions that test float and double numbers within a tolerance to avoid round
off error in calculations involving floating point numbers. Also of interest are several
functions that do different matrix operations which are used by several services in the
Plane class and the Convex_Hull class to assist in vector calculations. The chsplit.h and
chsplit.cc files provide a service to the BSP _ Tree class that will take a Plane object and a
Convex_Hull object as a parameter and it will split the Convex_Hull object into two
halves. This particular function should be redesigned in an Object-Oriented manner and
placed into either the Plane class or the BSP _Tree class. This redesign will be left as an
opportunity for future expansion.

4.4 Test Driver Implementation
In general, the use of test drivers at the unit test phase of the project to test class

implementations is extremely useful in an Object-Oriented system. In the classical
functional systems a light unit test phase and a heavy integration testing phase is normal,
but in the Object-Oriented world the heavy use of the unit test phase makes the
integration testing phase much easier. Having worked on projects that have taken both
approaches, the Object-Oriented approach to testing is greatly preferred. Those work
experiences influenced the project setup to make heavy use of unit testing to simplify the
integration testing phase of the project. This section describes some of the test drivers
that were used to test some of the class implementations.

4.4.1 Test_Pla Driver
The Test_Pla driver tests the Plane class implementation by creating planes from

three E3 coordinates and then testing the generated plane equation against the one
obtained by hand using Calculus. It was very important to test the Plane class thoroughly
since it is so heavily used in all of the other classes of the project.

40

4.4.2 Test_Lls Driver
The Test_Lis driver tests the generic List class implementation by creating lists of

integers and then testing the services of the class by inserting and deleting elements of the
list at the head, tail, and middle of the list. It was very important to test the generic List
class thoroughly since it is so heavily used in all of the other classes of the project for
object storage needs.

4.4.3 Test_Del Driver
The Test_Del driver tests the Delaunay Triangulation module of the code by

running several different sets of triangles through the module and testing the output
against the expected Delaunay output which was computed by hand. The Delaunay
Triangulation module of the code is used when splitting one large facet into two smaller
facets. This method is used to generate new facets from split facets when the convex hull
is being split by a partitioning plane in the BSP _Tree class.

4.4.3.1 Delaunay Triangulation
Delaunay triangulation is a method of arranging a network of non-overlapping

triangles, which have shared sides, where no points in the triangulation network are
enclosed by circumscribing circles of any triangle.(2,26,29] A singular triangle only has
one unique Delaunay triangulation. In E2 a Delaunay triangulation is best represented by
an illustration of two triangles that have one shared side. The joined triangles which share
a long side which causes a circumscribed circle to enclose the last point of the other
triangle is not a Delaunay triangulation. The joined triangles which share a short side
which do not cause a circumscribed circle to enclose the last point of the other triangle is
a Delaunay triangulation. Shown in Figure 4-5 is a graphical representation of a non­
Delaunay triangulation and a Delaunay triangulation.

41

Non-Delaunay Triangulation
Circle around triangle A encloses third point from triangle B
Circle around triangle B encloses third point from triangle A

YAxis

XAxis

Delaunay Triangulation
Circle around triangle A does not enclose third point from triangle B
Circle around triangle B does not enclose third point from triangle A

V Axis

XAxis

Figure 4-5 - Delaunay Triangulation

4.4.4 Test_ Ctz Driver
The Test_Ctz driver tests the Constrained_Tetrahedrization (CTZ) class

implementation by running a list of 100 random points in 3D (x, y, and z range Oto 1) and
5 random partition triangles (planes) (all points in range Oto 1) through the Constrain
service of the class. Since the CTZ module is the main module of the code that
implements the algorithm[l 7], this driver became the main means of running and testing
the project output. The Test_ Ctz driver only requires two files as input, points.dat which
contains a list of 3D points terminated by a origin point (0.0, 0.0, 0.0), and triangle.dat
which contains a list of 3D triangles terminated by a zero triangle (three origin points).
The Test_Ctz driver then creates a Constrained_Tetrahedrization class and calls the

42

Constrain service with the List<Point3> class and the Llst<Plane> class that were created
from the input files as parameters.

The actual data file that contains the list of points and the list of triangles are
shown in the appendix for reference. The Mathematica program by Wolfram Research
Inc. is a system of doing Mathematics by computer.[36] Mathematica is a computer
program that was used to prove some of the equations used in some of the algorithms or
that was used to show quick graphical output for visual purposes. Shown in Figure 4-6
are the Mathematica commands and the Mathematica output that graphically show the
100 random points and the 5 random partition triangles (planes) that were used to test the
project implementation through the Test_Ctz driver:

- In [1] :=
tl = ReadList["points.dat", Number, RecordLists->True];
pts = Map[Point,tl];
Show[Graphics3D[pts]]

Out[l]=

In[2] :=
t2 = ReadList["triangle.dat", Number];
t2 = Partition[t2,3];
t2 = Partition[t2,3];
tris = Map[Polygon,t2];
Show[Graphics3D[tris]]

Out[2]=

43

In[3] :=
Show[Graphics3D[pts],Graphics3D[tris]]

Out[3]=

Figure 4-6 - Mathematica Graphical Output of Sample Project Input Data

4.5 Final Implementation Testing
All of the final implementation testing was done using the Geomview package[15]

to view the OOGL files[23,32] that were produced by running the test_ctz test driver.
Shown in Figure 4-7 is a sample screen of the Geomview program displaying a
dodecahedron (12 sided polygon).

44

Figure 4-7 - Example Geom view screen [15]

Shown in Figure 4-8 is a Geomview Camera of the five partition planes that were
used to construct the BSP Tree and partition the convex hull that is shown in Figure 4-9.
Shown in Figure 4-10 is the convex hull after being partitioned by one partition plane
during testing.

45

Figure 4-8 - Geom view Camera View of the Five Partition Planes

46

Figure 4-9 - Geomview Camera View of the Convex Hull

47

Figure 4-10 - Geomview Camera View of the Convex Hull Split by One Plane

48

ChapterV

Convex Hulls

5. Convex Hulls
The convex hull of a set of points P is the smallest convex set that contains

P.[26,29] For example, if P = { vi, v2, V3, V4} in E2 where V4 is an interior point, then the
convex hull of Pis a triangle containing the vertices vi, v2, and V3 as shown in Figure 5-1.

Y Axis vl •

v2 •
• v4

XAxis

YAxis

Set of Points P = {vl ,v2,v3,v4}

XAxis

Convex Hull of P

Figure 5-1 - Example of a Set of Points Pin E2 and the Convex Hull of P

By definition, the set of points P is a finite set. A good working concept of a
convex hull in E2 can be illustrated by stretching a rubber band around all of the points in
P and then letting go of the rubber band and letting the rubber band form around the
outside of the points.[26] In E2, if the number of points n = 1, then the convex hull is the
point itself. In E2, if the number of points n = 2, then the convex hull is the line segment
joining the two points. In E2, if the number of points n = 3, then the convex hull is a
triangle around the three points. In E2, if the number of points n > 3, then the convex hull
is a convex polygon with the number of sides >= 3. For the purposes of this project, the
minimum convex hull could only be computed with the number of points n >= 3 in E2. In

49

E2, a facet is a line segment and a subfacet is a point. Shown in Figure 5-2 is an example
of a convex hull with n > 3 in E2•

Y Axis

XAxis

Set of Points P = {vl , ... ,v8}
Convex Hull of P

Figure 5-2 - Example of a Convex Hull with n > 3 in E2

5.1 Convex Sets
Set A is convex if for every pair of points p and q in set A, the line segment pq is

in set A.[29] For example in Figure 5-3, the set on the left is a convex set because the
line segment pq resides entirely in set A. The set on the right is not a convex set because
the line segment pq does not reside in set A.

p q

A

Figure 5-3 - Example of a Convex Set and a Non-Convex Set

5.2 Convex Hulls in Three Dimensions
Convex hulls in three dimensions have the same basic definition as a convex hull in

two dimensions. The convex hull of a set of points P is the smallest convex set that
contains P.[26] By definition, the set of points Pis a finite set. A good working concept
of a convex hull in E3 can be illustrated by stretching a piece of plastic wrap around all of
the points in P and then shrink wrapping the plastic wrap around the outside of the points.

50

In E3, if the number of points n = 1, then the convex hull is the point itself. In E3, if the
number of points n = 2, then the convex hull is the line segment joining the two points. In
E3, if the number of points n = 3, then the convex hull is a triangle around the three
points. In E3, if the number of points n > 3, then the convex hull is a convex polygon with
the number of sides >= 3. For the purposes of this project, the minimum convex hull
could only be computed with the number of points n >= 4 in E3• In E3, a facet is a
triangle and a subfacet is a line segment Shown in Figure 5-4 is an example of a convex
hull with n > 4 in E3•

YAxis

XAxis

Figure 5-4 - Example Convex Hull with n > 4 in E3

5.3 Convex Hull Algorithm
The algorithm to compute a convex hull given a set of points in E3 was presented

in Computational Geometry an Introduction and presented as the "gift-wrapping"
method.[26] The algorithm is an extension of the standard beneath and beyond algorithm
adapted to three dimensions by checking beneath and beyond on hyper-planes instead of
individual points as in the two dimensional version of the algorithm. The basic idea is to
proceed from a facet to an adjacent facet, in the guise in which one wraps a sheet around
a plane-bounded object.[26]

The algorithm starts out by finding the initial facet in the convex hull. After
finding this initial facet, it then builds half-planes to the other points in the set that are not
in the initial facet in order to find the half-plane which forms the largest angle to the initial
facet. It then builds another facet with this half-plane and continues on from there
building facets until the convex hull is an enclosed faceted polygon.

The initial facet is built by first selecting the point of the least x, y, z value and
calling it Pl of the initial facet. The hyperplane of maximum angle that is built from the
first point Pl and orthogonal to vector n = <1,0,0> and vector a= <0,1,0> is used to find

51

the second point in the initial facet calling it P2. The Pl P2 line segment is called a
subfacet of the initial convex hull facet The hyperplane that is built from the first
subfacet and is orthogonal to vector new n and also to vector new a, which is re­
computed using the maximum angle and the new normal vector, is used to find the third
point in the initial facet calling it P3. The Pl P2 P3 triangle is called the initial convex hull
facet and each side of the facet are called subfacets of the initial convex hull facet The
algorithm time to find the initial facet in a convex hull is O(N log N) + C for finding Pl,
O(N) + C for finding P2 and O(N) + C for finding P3. This makes a total time for finding
the initial facet of O(N log N) + O(2N) + C. According to an analysis shown in
Preparata and Shamos[26] the time to build the initial facet should be O(Nd2) + O(Nd3) =
O(Nd2) since N >= d.

After the initial convex hull subfacet has been found, the building of the rest of the
convex hull facets comes from there. By the nature of how triangular facets work, each
subfacet in a convex hull facet can only be part of two facets. In the rest of the algorithm
if a subfacet already belongs to two facets then it is considered completed and can never
be revisited again. If the subfacet only belongs to one facet, then hyperplanes may be
formed in the same manner as was done for finding P3 of the initial facet and selecting the
hyperplane that has the maximum angle. Once the new facet is formed, the subfacet that
was used to join the new facet to the original facet is considered complete and the two
new subfacets that are formed are used to keep the algorithm going. The algorithm
completes when there are no more subfacets to process. At this point every facet will
have been formed and the convex hull will be an enclosed faceted polygon. According to
an analysis shown in Preparata and Shamos[26] the time to build the convex hull of a set
of N points in d-dimensional space using the gift-wrapping technique is O(N cpd_1)+ 0(cpd-
2log cpd_2) on average, where cpd-1 is the number of facets in the hull and cpd-Z is the number
of subfacets in the hull, and O(N-d/2J+1)+ O(N-d/2J log N) on worst case. In E3 this
translates to O(N2) + O(N log N), which simplifies to O(N2) on worst case.

5.4 Splitting Convex Hulls
One of the steps in the algorithm[l 7] involves merging a convex hull into a BSP

tree. At the heart of this merging is to split the convex hull with the partition plane at
each node of the BSP tree. The algorithm that recurses through the tree and does the
splitting will be discussed in more detail in chapter 6. This section will discuss splitting a
convex hull with a single plane. In order to more fully understand how to split a convex
hull with a plane, we will start off with some simple two dimensional examples and move
towards the more complex three dimensional examples.

5.4.1 Splitting in E2

In E2 the problem becomes how to split the convex hull with a line. The standard
algorithm for splitting a convex hull is to test every facet against the partition and to lump
the facets into one of four categories. These categories are: In Front, In Back, Spanning,

52

and Coincident. Both In Front and In Back mean that the facet lies entirely on one side or
the other side of the partition. Spanning means that the facet is split by the partition and
Coincident means that the facet lies inside of the partition. Once every facet is
categorized, all of the In Front facets go into the front convex hull and all of the In Back
facets go into the back convex hull. The facets that are Coincident go into both the front
and the back convex hull. The facets that are Spanning need to be split by the partition
and the part of the facet that is In Front goes into the front convex hull and the part of the
facet that is In Back goes into the back convex hull. Once this entire categorization is
completed any points that ended up inside of the partition because of splitting or
Coincidence will become facets of both convex hulls. Shown in Figure 5-5 is an example
of convex hulls in E2 with facets that are In Front or In Back, Spanning, and Coincident.

Y Axis Convex Hull In Front of Partition

XAxis

YAxis Convex Hull Spanning Partition

XAxis

Convex Hull Coincident to Partition
YAxis

XAxis

53

Figure 5-5 - Examples of Partitioning Convex Hulls in E2

The middle convex hull in Figure 5-5 depicts a convex hull that is Spanning the
partition line. In this convex hull the categorization of the facets was that only two of the
original convex hull facets are Spanning the partition line, two of the original convex hull
facets were In Front of the partition, and two of the original convex hull facets were In
Back of the partition. After the partitioning of this convex hull, the result is two new
convex hulls, one in front of the partition and one in back of the partition. The front
convex hull contains the two In Front facets of the original convex hull, plus three new
facets to complete the front convex hull. The new facets are the two facets that are
created by the partition plane splitting the facet in half and one facet that lies in the

- partition plane. In like manner, the back convex hull contains the two In Back facets of
the original convex hull, plus three new facets to complete the back convex hull. The new
facets are the two facets that are created by the partition plane splitting the facet in half
and one facet that lies in the partition plane.

5.4.2 Splitting in E3

In E3 the problem is a little more difficult than in E2 because the problem now
becomes how to split the convex hull which looks like a faceted ball with a plane.
Fortunately the standard algorithm for splitting a convex hull in E3 is the same as it is in
E2• The standard algorithm for splitting a convex hull is to test every facet against the
partition and to lump the facets into one of the four categories. The first thing that is
different about convex hulls in E3 is that the facets are triangles instead of line segments
like they are in E2• In E2 it is almost trivial to calculate the intersection of a line and a line
segment, but in E3 the problem becomes how to compute the intersection of a plane with
a triangle (almost like a plane) in E3• Shown in Figure 5-6 is an example of a plane and a
single facet in E3 that is In Front or In Back, Spanning, and Coincident.

54

V Axis

Facet In Front of Plane

XAxis

YAxis /4 Facet Spanning Plane

XAxis

V Axis

Facet Coincident to Plane

XAxis

Figure 5-6 - Example of Partitioning a Facet in E3

55

As shown in Figure 5-7, in the splitting there are several special cases where one
or two of the points of a facet lie inside of the partitioning plane. In these special cases
the coincident points are kept in a special list along with all of the new points that were
generated from splitting the convex hull facets. After all of the facets in the convex hull
have been visited, this coincident list is formed and it then becomes necessary to take all
of these points that are in the plane and Delaunay Triangulate[2,21,29] them to form new
facets. Those newly generated facets are then put into both the front convex hull and the
back hull. This special method of dealing with coincident points was not implemented in
the code, it is left for future expansion of the algorithm[l 7]. The omission of these
calculations means that the resulting hull will not be a convex hull in the true sense of the
definition because it will be an open ended shell where the plane partitions it. This will
not stop the determination of success or failure of the algorithm[17] because by using the
Geomview package we can see if the convex hull is being split properly by the partition
planes.

YAxis

Special Case # 1, Two Points Coincident

XAxis

YAxis Special Case #2, One Point Coincident

XAxis

Figure 5-7 - Example of Special Case Coincident Facets in E3

56

Shown in Figure 5-8 is an example of a convex hull in E3 with facets that were
Spanning the partition plane. The front convex hull is the one on top of the partition
plane and the back convex hull is the one on the bottom of the partition plane. Also
shown in Figure 5-9 is a top view of what the Delaunay Triangulation of the points
Coincident to the plane would produce with the front and back convex hulls cut away for
clarity.

YAxis

XAxis

Figure 5-8 - Example of a Convex Hull Spanning a Plane in E3

YAxis

XAxis

Figure 5-9 - Example of a Delaunay Triangulation of Coincident Points

57

Chapter VI

BSPTrees

6. BSPTrees
A Binary Space Partitioning (BSP) tree is a data structure that represents a

recursive, hierarchical subdivision of n-dimensional space into convex subspaces.[33]
BSP trees are built using hyperplanes (Ed-I objects) to subdivide Ed space. For example,
in E3 a hyperplane would be an E2 object or a plane and in E2 a hyperplane would be an E1

object or a line. The generic BSP tree is a typical tree that closely models a normal binary
tree data structure or a k-d tree data structure. The added feature is that a BSP tree node
contains a list of all polygons in that partition of the tree. For example:

BSP Tree:
plane partition
list polygons
BSP Tree *front, *back
int-leaf node

Shown in Figure 6-1 is an example BSP tree in E2 with two partitioning lines X
and Y which subdivide the space into three subspaces D, E, and C [33]:

58

! !

X
' D ' I I

A B I C I -..---v--: C
I
I
I
I
I

@

Figure 6-1 - Sample BSP Tree in E2

I

E l
I
I

Notice, that in a BSP tree, if any points resided in subspace D that they would be
contained in the node that represented that subspace in the tree. In this example, the
internal nodes of the tree represent the partitioning lines and the leaf nodes of the tree
represent the subspaces.

6.1 BSP Tree Construction

The method for building a BSP tree is to first select a partition plane, partition the
set of polygons with the plane, and then recurse with each of the two new sets. The input
for the project was a set of planes in E3 space that was going to be used as a partitioning
set for the BSP tree. In the BSP _Tree class the construction process and the merging
process were separated into two separate processes. The basic pseudocode algorithm for
doing the recursive BSP tree construction is:

procedure BSP Tree Build(BSP Tree *t, List<Plane> 1)
List<Plane> front list, back list
if 1 is not empty-then -

if tis null then
t <- new BSP Tree
t.partition plane<- 1
while 1 is not empty do

case (t.partition_plane and 1)
parallel in front: add 1 to front list
parallel in back: add 1 to back list
coincident: ignore 1

59

spanning: add 1 to both front list and back list
end case

end while
if front list is not empty then

BSP Tree Build(t.front, front_list)
else - -

t.front = new subspace
end if
if back list is not empty then

BSP Tree Build(t.back, back_list)
else - -

t.back = new subspace
end if

else
ERROR tis not null

end if
end if

end procedure

Figure 6-2 - Pseudocode for BSP Tree Construction

6.2 BSP Tree Merging

The method for merging a convex hull into a BSP tree is to start at the root node
of the tree with the convex hull, which is simply a list of facets, and to test each facet of
the convex hull against the partition plane at that node. All of the facets will fall into one
of four categories:

• In Front of the plane
•In Back of the plane
•Coincident inside of the plane
•Spanning across the plane

For every facet, if the facet is In Front of the plane then place the facet in a
temporary front facet list, or if the facet is In Back of the plane then place the facet in a
temporary back facet list. If the facet is coincident then place all of the points of the facet
into a temporary point list The last and most difficult case is if the facet is spanning the
plane. If the facet is spanning the plane then the facet must be split into two separate
facets and the new facets must be placed into their respective facet lists, the temporary
front facet list and the temporary back facet list. The point(s) that are inside of the
partition plane as the product of splitting the facet with the partition plane should also be
added to the temporary point list. After all of the facets in the convex hull have been
exhausted, the list of points that are inside of the partition plane need to be placed into
new facets that form a Delaunay triangulation and then those new facets need to be added
to both the temporary front facet list and the temporary back facet list. Then recurse
down the front BSP sub-tree with the temporary front facet list and recurse down the
back BSP sub-tree with the temporary back facet list. If the BSP tree node visited has a
left or right sub-tree that is a leaf node, then the list of facets that belong in that subspace
should be added to the facet list in that leaf node. The basic pseudocode algorithm for
recursively merging a convex hull with the BSP tree is:

60

procedure Merge Convex Hull(BSP Tree *t, List<Facet> ch)
List<Plane> temp front list,-temp back list
List<Point3> temp point list - -
if ch is not empty then-

if tis not null then
while ch is not empty do

case (t.partition_plane and ch facet)
in front: add ch facet to temp front list
in back: add ch facet to temp back list
coincident: add all three points of ch facet

to temp_point_list
spanning: split ch facet into two new facets

add front new facet to temp front list
add back new facet to temp back list
add ch facet and plane intersection points

to temp_point_list
end case

end while
form temp point list into new facets
put new facets into temp front list
put new facets into temp-back list
if t.front is not null then -

t.front.front list<- temp front list
else - - -

Merge Convex Hull(t.front, temp front list)
end if - - - -
if t.back is not null then

t.back.back list<- temp back list
else - - -

Merge Convex Hull(t.back, temp back_list)
end if - -

else
ERROR tis null

end if
end if

end procedure

Figure 6-3 - Pseudocode for Convex Hull Merge Into BSP Tree

61

Chapter VII

PROGRAM IMPLEMENTATION

7. Program Implementation
The OOP implementation of the program design, that was described previously in

chapter 4, had some physical implementation issues that were important to a successful
implementation of the project. This chapter further explains those physical
implementation issues.

7.1 Compiler and Platform Choice
The compiler that was originally chosen for this project was Turbo C++ v 1.5 for

the MS-DOS platform. This compiler and platform were originally chosen because of the
simplicity and speed of the compiler/platform combination. After the initial design of the
project had already been started an additional requirement was added to the project that
required the code to be compatible across a wide range of compilers and platforms. Due
to this new requirement at this stage of the project, the development was being done on
the PC platform, and also being tested on three different UNIX platforms running g++
(GNU C++) as the compiler. However, once the project got bigger the code no longer
ran on the PC platform using the Turbo C++ compiler because the code segment was
larger than 64K with the debugging information turned on. Under MS-DOS based PC
architectures there is a limit of 64K for each code segment, data segment, and stack
segment. In MS-DOS based PC architectures the way to compensate for this limitation is
to change the memory model that the compiler compiles your code under. The tradeoff is
that in your code the pointers must now be addressed as either "near" or "far'' pointers
depending on how they are used and what they reference. The resulting code would
definitely not be portable to any platforms other than a MS-DOS based PC, which would
violate the new requirement.

62

7.1.1 Compiler Choice Alternative
The alternative to moving to an entirely UNIX solution was to download the

DJGPP package (GNU C++ ported to MS-DOS) [12] and to port the project entirely to
the g++ compiler for both the UNIX and PC platforms. The DJGPP compiler supports a
flat memory architecture like UNIX does through the use of a MS-DOS memory
extender. This new compiler ultimately fulfilled the multiple platform requirement
because the program could now be compiled under the standard g++ compiler for any
platform. The programming implementation part of the project was carried to completion
using the PC platform with the DJGPP g++ compiler for development and many different
UNIX platforms with the standard g++ compiler for testing.

7.1.2 Output and Final Considerations
Towards the end of the project all of the testing had to be done on the DEC Alpha

OSF/1 UNIX platform since that was the only platform that the Geomview package [15]
supported at that time. Toward the end of the project, the network speed was just too
slow to support remote X-Windows via modem or network. This meant that the ability to
visually test my OOGL [23,32] output was lost, so the last platform that was added to the
project was a Linux UNIX based PC platform also using the GNU g++ compiler. This
new platform allowed all of the conveniences of a powerful UNIX workstation at the
price of a PC in my own home which was extremely nice. It allowed compiling, testing,
and viewing of the OOGL output in the Geomview package all on one machine. The
Geometry Center [15] had just released the Linux version of the Geomview package at
that time which made the whole development and testing system come together at the
right time.

7.2 Platforms
In summary, the platforms that were mentioned in section 7 .1 were:

1. IBM PC compatible, running MS-DOS v6.22
2. Sun 3/60 workstation, running SunOS v4.1.1 UNIX
3. Sun Sparc20 workstation, running Solaris v5.4 UNIX
4. DEC Alpha workstation, running OSF/1 UNIX
5. IBM PC compatible, running Linux UNIX

7.2.1 IBM PC Compatible (MS-DOS)

The IBM PC compatible machine running MS-DOS v6.22 was an excellent choice
for a preliminary development platform. The physical machine was a 486-DX2/66 with 16
MB RAM, 256K cache, and a built-in Math Co-Processor. The code was developed
using the wide range of editors, compilers, and development tools that are available on the
PC platform. As the project got larger the downside of the platform was that the MS­
DOS based compilers only supported a code segment, data segment, and stack segment of

63

64K. The code segment of the project was larger than 64K with the debugging flags
turned on, so the project would not run on the platform. If the memory model was
switched to the large or huge models to compensate for the small segment size, then the
pointers didn't work because the PC uses "near" and "far'' pointers which would not
make the code portable to UNIX platforms. After switching compilers to DJGPP (GNU
C++ for MS-DOS), which supports a flat memory model like UNIX platforms do, then
the code could be further developed and the code remained compatible with UNIX
platforms throughout the development.

7.2.2 Sun 3/60

The Sun 3/60 workstation running SunOS v4.1.1 UNIX was a good platform
choice at first to test the code that was developed on the PC because it gave the closest
results that the PC code produced, and the speed was just a little bit faster than the PC on
running the project. As the project got larger, the downsides of the machine became
more evident. The machine was slow at compiling, ran out of memory often, and broke
down on a regular basis. In the middle of the project the machine was rendered useless.
It would have been nice to get some timing trials from this machine as well as the newer
UNIX machines, but now that is not possible. This workstation was state of the art about
10 years ago, but today it is really lacking in power.

7 .2.3 Sun Sparc20

The Sun Sparc20 workstation Solaris v5.4 UNIX was an excellent platform choice
to take over where the old Sun 3/60 machine had left off. The machine was fast and
seemed to run with exactly the same results as the old Sun 3/60 machine. Once we got a
working C/C++ compiler on the machine, the project compiled with a few warnings that
were quickly resolved, and the project moved on. Once everything was configured
properly, the Sun Sparc20 is a full featured machine that is extremely fast. A lot of delay
in development time could have been avoided if this machine had been available for use at
the start of the project and was used as the sole development machine. As of the writing
of this thesis, the Sun Sparc20 workstation is new considered a low end workstation and
the new Sun Spare Ultra workstations are the top of the line.

7 .2.4 DEC Alpha

The DEC Alpha workstation running OSF/1 UNIX had problems right from the
start of choosing the platform. The machine was extremely fast; however it had a lot of
floating point problems that the Sun platforms and the PC platform never encountered. It
was a real chore to find all of the floating point problems that the DEC Alpha machine
kept pointing out. As it turned out, the DEC Alpha would catch floating point
programming errors and inconsistencies that the Sun and PC platforms just ignored,
rounded off, or simply could not catch. Toward the end of the project, this machine was

64

used exclusively for testing and viewing the OOGL output files because this was the only
platform that the Geomview package was supported on at that time.

7.2.5 IBM PC Compatible (Linux)
The IBM PC compatible machine running the Linux UNIX operating system was

added to the project at the last stages of development and testing. The physical machine
was a 386-DX40 with 8 MB RAM, 128K cache, and a 387 Math Co-Processor. The
benefits of this machine were that it ran the UNIX operating system, ran the X-Windows
GUI, had the g++ compiler, and a version of the Geomview package for Linux was just
released as this machine was being moved into the development and testing of the project.
This machine proved to be invaluable because it was like having a powerful UNIX
workstation on the desk at the cost of a cheap PC. The downsides of this platform were
that the 386-DX40 is getting antiquated and the machine takes over 40 minutes to
compile and link all of the source code files, while its workstation counterparts took
between 1-2 minutes to compile and link the same source code files.

65

BIBLIOGRAPHY

[1] Alpert, Sherman R., and Lam, Richard B. 1997. The Ultimately Publishable
Computer Science Paper for the Latter '90s: A Tip for Authors. Communications
of the ACM, Vol. 40, No. 1, January 1997: 94.

[2] Banks, Dave. 1995. Gridomatic -A Hybrid Structured/Unstructured Grid
Generator Report, Delaunay Triangulation.
http://www-mae.engr.ucdavis.edu/CFD/dbanks/Hybrid/report/node7.html
http://www-mae.engr.ucdavis.edu/CFD/dbanks/Hybrid/report/node29.html
November 10, 1995.

[3] Cartesian Coordinates in Space. 1995. Geometry Formulas and Facts, excerpt
from CRC Standard Mathematical Tables and Formulas, 30th Ed. Boca Raton,
Florida: CRC Press, LLC. http://www.geom.umn.edu/docs/reference/CRC­
formulas/node39.html

[4] Chand, Donald R., and Kapur, Sham S. 1970. An Algorithm for Convex
Polytopes. Journal of the ACM, Vol. 17, No. 1, January 1970: 78-86.

[5] Chin, Norman. 1992. "Partitioning a 3-D Convex Polygon with an Arbitrary
Plane." Graphics Gems III. Academic Press, Inc. 219-222, 502-510.

[6] Coad, Peter, and Nicola, Jill. 1993. Object-Oriented Programming. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.

[7] Coad, Peter, and Yourdon, Edward. 1991. Objected-Oriented Analysis, 2nd Ed.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

[8] Coad, Peter, and Yourdon, Edward. 1991. Objected-Oriented Design.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

[9] Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. 1989.
Introduction to Algorithms. New York: McGraw-Hill Book Company.

[10] Clarkson, Ken. 1996. Hull: A Program for Convex Hulls. Lucent Technologies,
Bell Laboratories, Computing and Mathematical Sciences Research Division.
http://netlib.bell-labs.com/netlib/voronoi/hull.html. November 14, 1996.

[11] Direction Angles and Direction Cosines. 1995. Geometry Formulas and Facts,
excerpt from CRC Standard Mathematical Tables and Formulas, 30th Ed. Boca
Raton, Florida: CRC Press, LLC.
http://www.geom.umn.edu/docs/reference/CRC-formulas/node52.html

66

[12] DJGPP Gnu C++ Software Package for the IBM-PC Compatible Platform.
ftp://ftp.coast.net//SimTe]/vendors/djgpp

[13] Ellis, Robert, and Gulick, Denny. 1986. Calculus with Analytic Geometry, 3rd

Ed. New York: Harcourt Brace Jovanovich, Publishers.

[14] Fuchs, Henry, Kedem, Zvi M., and Naylor, Bruce F. 1980. On Visible Surface
Generation by a Priori Tree Structures. ACM Publication 0-89791-021-
4/80/0700-0124.

[15] Geomview: 3D Visualization Software. 1997. The Geometry Center: Center for
the Computation and Visualization of Geometric Structures, University of
Minnesota. http://www.geom.umn.edu/software/geomview/. April 29, 1997.

[16] Hazlewood, Carol. 1993. Approximating Constrained Tetrahedrizations.
Computer Aided Geometric Design 10. 67-87.

[17] Hazlewood, Carol. 1993. Using Binary Space Partitions to Approximate
Constrained Tetrahedrizations. September 18, 1993, Southwest Texas State
University.

[18] Kirk, David. 1992. Graphics Gems l/1. Academic Press, Inc. 393-407.

[19] Lines. 1995. Geometry Formulas and Facts, excerpt from CRC Standard
Mathematical Tables and Formulas, 30th Ed. Boca Raton, Florida: CRC Press,
LLC. http://www.geom.umn.edu/docs/reference/CRC-formu1as/node54.html

[20] Midtbo, Terje. 1993. Spatial Modelling by Delaunay Networks of Two and
Three Dimensions. February, 1993. http://www.iko.unit.no/tmp/term/node7.html

[21] Miicke, Ernst P. 1995. A Robust Implementation For Three-Dimensional
Delaunay Triangulations. April 12, 1995, Los Alamos National Laboratory.

[22] Naylor, Bruce F. 1994. Binary Space Partitioning Trees A Tutorial. ACM
SIGGRAPH 1994, Course Notes 23, Computational Representations of
Geometry.

[23] OOGL File Formats. 1996. The Geometry Center: Center for the Computation
and Visualization of Geometric Structures, University of Minnesota.
http://www.geom.umn.edu/software/geomview/ooglman.html. October 14, 1996.

[24] Paterson, Michael S., and Yao, Frances F. 1989. Binary Partitions with
Applications to Hidden-Surface Removal and Solid Modelling. ACM Publication
0-89791-318-3/89/0006/0023.

67

[25] Planes. 1995. Geometry Formulas and Facts, excerpt from CRC Standard
Mathematical Tables and Formulas, 30th Ed. Boca Raton, Florida: CRC Press,
LLC. http://www.geom.umn.edu/docs/reference/CRC-formulas/node53.html

[26] Preparata, Franco P., and Shamos, Michael Ian. 1985. Computational Geometry
An Introduction. New York: Springer-Verlag, Inc.

[27] Protter, Murray H., and Morrey, Charles B. Jr. 1966. Analytic Geometry. New
York: Addison-Wesley Publishing Company.

[28] Qhull Home Page. 1997. The Geometry Center: Center for the Computation and
Visualization of Geometric Structures, University of Minnesota.
http://www.geom.umn.edu:80/software/qhull/. April 14, 1997.

[29] Sun, Yichu E. 1994. Approximating Constrained Tetrahedrizations. M.S.
thesis., Southwest Texas State University.

[30] Sung, Kelvin, and Shirley, Peter. 1992. "Ray Tracing with the BSP Tree."
Graphics Gems III. Academic Press, Inc. 271-274, 538-546.

[31] Turabian, Kate L. 1996. A Manual/or Writers o/TermPapers, Theses, and
Dissertations, 6th Ed. Chicago: The University of Chicago Press.

[32] Tutorial: The OOGL Geom File Formats. 1996. The Geometry Center: Center
for the Computation and Visualization of Geometric Structures, University of
Minnesota. http://www.geom.umn.edu/software/geomview/oogltour.html.
October 14, 1996.

[33] Wade, Bretton. 1997. BSP Tree Frequently Asked Questions (FAQ).
comp.graphics.algorithms, http://reality.sgi.com/bspfaq/. Silicon Graphics, Inc.,
June 8, 1997.

[34] Watson, D. F. 1993. Computing the Delaunay Simplicial Complex.

[35] Watt, Alan. 1993. 3D Computer Graphics, 2nd Ed. New York: Addison-Wesley
Publishing Company.

[36] Wolfram, Stephen. 1991. Mathematica: A System/or Doing Mathematics by
Computer, 2nd Ed. New York: Addison-Wesley Publishing Company.

68

VITA

Brian James Collins was born in Wichita, Kansas, on April 12, 1968, the son of
Harold Edward Collins and Jeannette Almaira Collins. After completing his work at
McCollum High School, San Antonio, Texas, in 1986, he entered Southwest Texas State
University in San Marcos, Texas. He received the degree of Bachelor of Science with a
major in Computer Science and minor in Mathematics from Southwest Texas State
University in December, 1991. In September, 1992, he entered the Graduate School of
Southwest Texas State University, San Marcos, Texas on a full-time basis. In May, 1993,
he accepted a full-time position as a Software Engineer on the Combat Support Services
Training Simulation System (CSSTSS) project for a year and then on the Advanced
Tomahawk Weapons Control System (ATWCS) project for two years with the Lockheed
Martin Corporation, in Austin, Texas. During that time he entered the Graduate School
of Southwest Texas State University, San Marcos, Texas on a part-time basis while
working at the Lockheed Martin Corporation, Austin, Texas on a full-time basis. In
January, 1996, he left the Lockheed Martin Corporation to pursue his graduate studies at
Southwest Texas State University, San Marcos, Texas on a full-time basis. In September,
1996, he accepted a full-time position as a Software Engineer with Rockwell Collins
Incorporated, in Cedar Rapids, Iowa and finished working on his Masters thesis on a part­
time basis.

Permanent address: 1029 26th St., SE
Cedar Rapids, Iowa 52403

This thesis was typed by Brian James Collins.

69

Files Included in this Appendix:
1. bsp_tree.h
2. chsplit.h
3. chull2.h
4. chu113.h
5. ctz.h
6. facet2.h
7. facet3.h
8. faceti.h
9. general.h
10. lineseg2.h
1 1. lineseg3.h
12. listh
13. oogl.h
14. plane.h
15. point2.h
16. point3.h
17. subfacet2.h
18. subfacet3.h
19. template.h
20. bsp_tree.cc
21. chsplit.cc
22. chull2.cc
23. chull3.cc
24. ctz.cc
25. facet2.cc
26. facet3.cc
27. faceti.cc
28. general.cc
29. lineseg2.cc
30. lineseg3.cc
31. list.cc
32. oogl.cc
33. plane.cc
34. point2.cc
35. point3.cc
36. subfacet2.cc
37. subfacet3.cc
38. test_ctz.cc
39. test_del.cc
40. test_lis.cc
41. test_p2.cc

APPENDIX

70

42. test_pla.cc
43. proc_off.cc
44. makefile.djg
45. makefile.sol
46. makefile.linux
47. points.dat
48. points2.dat
49. triangle.dat
50. triangle2.dat

71

/* bsp_tree.h */

#ifndef BSP TREE H
#define BSP-TREE-H 1
#ifdef _cpTusplus

f:include "plane.h"
iinclude "point3.h"
#include "list.h"
f:include "chull3.h"

class BSP Tree
{

public:
BSP Tree();
~BSP Tree() ;
voidBuild BSP Tree(List<Plane>);
void Merge-Convex Hull(Convex Hull3);
void Convex Hull Ynsert(List<Point3>&, Convex_Hull3);
void OOGL Output(List<Point3>&);
void Show() ;

private:
void Show Class(Poly Class);
void R Build BSP Tree(BSP Tree*, List<Plane>);
void R-Merge-Convex Hull(BSP Tree*, Convex Hul13);
void R-Convex Hull Insert(List<Point3>&, BSP Tree*,

Convex Hull3); - - -

} ;

f:endif
#endif

void R OOGL Output(List<Point3>&, BSP_Tree*);
void R=Show(BSP_Tree*);

Plane partition;
Convex Hull3 polygons;
BSP Tree *front;
BSP-Tree *back;
int-leaf_node;

/* chsplit.h */

#ifndef CONVEX HULL SPLIT
f:define CONVEX-HULL-SPLIT 1
iifdef _cplusplus -

f:include "faceti.h"
#include "point2.h"
#include "point3.h"
iinclude "facet3.h"
#include "plane.h"
#include "list.h"
#include "chull3.h"

// Given 4 points in E3, return the Delaunay Triangulation
void Delaunay Triangulate (Point3, Point3, Point3, Point3,

- Facet3&, Facet3&);

// Given n points in E3 and a plane that the points are contained in,

72

II return a Triangulation
Convex_Hull3 Triangulate(List<Point3>&, Plane&);

II Given n points in E2, return a Triangulation
List<Facet Index> Triangulate2(List<Point2>&);

II Given a Facet and a Plane, split the facet and put the
II Convex Hull facets in the Convex Hull. Extra added points
II will be added to the Point List.
void Split Facet With Plane (List<Point3>&,

- - - List<Point3>&,
Facet3&,
Plane&,
Convex Hull3&,
Convex=Hull3&);

II Given a Facet and a Plane, split the facet and put the
II Convex Hull facets in the Convex Hull. Extra added points
II will be added to the new point List. Caller must add new
II points back top on their own.
void Split_Facet_With_Plane2 (List<Point3>& p,

List<Point3>& new_points,
Facet3 f,
Plane partition_plane,
Convex Hull3& front facets,
Convex=Hull3& back_facets);

II Given a Polygon represented as a Facet, split the polygon with
II the plane and put the Convex Hull facets in the Convex Hull.
void Split Polygon With Plane (Facet3&,

- - - Plane&,
Convex Hull3&,
Convex=Hull3&);

II Given a Convex Hull and a Plane, split the Convex Hull with the
II Plane and put the new Convex Hull facets in each of the output
II Convex Hulls. Extra added points will be added to the Point List.
void Split Convex Hull With Plane (List<Point3>&,

- - - - List<Point3>&,

tendif
tendif
I* chull2.h - Convex Hull Class *I

:j/,ifndef CONVEX HULL2 H
:j/,define CONVEX-HULL2-H 1
fifdef _cplusplus -

tinclude "list.h"
!include "point2.h"
tinclude "facet2.h"

Convex Hull3&,
Plane&;
Convex Hull3&,
Convex=Hull3&);

class Convex Hull2
{

public List<Facet2>

73

public:
II Convex Hull - Gift Wrapping Method
II Given n points pl .. pn E3 produces a convex hull
II Represented by a list of facets fl .. fm.

II Algorithm presented as pseudo-code in:
II Computational Geometry an Introduction,
II Franco P. Preparata and Michael Ian Shamos,
II Springer-Verlag, 1985, pp 131-136.

II This particular implementation was modified
II from the original algorithm by Carol Hazlewood, PhD
II and Brian Collins.

void GiftWrapping (List<Point2>&);

private:
Facet2 Find Initial Facet (List<Point2>&);

} ;

#endif
#endif
I* chull.h - Convex Hull Class *I

#ifndef CONVEX HULL3 H
#define CONVEX-HULL3-H 1
#ifdef _cplusplus

#include "list.h"
#include "point3.h"
#ifdef DEBUG
#include "facet3.h"
#include "plane.h"
#endif

class Convex Hull3
{

public List<Facet3>

public:
II Convex Hull - Gift Wrapping Method
II Given n points pl .. pn E3 produces a convex hull
II Represented by a list of facets fl .. fm.

II Algorithm presented as pseudo-code in:
II Computational Geometry an Introduction,
II Franco P. Preparata and Michael Ian Shamos,
II Springer-Verlag, 1985, pp 131-136.

II This particular implementation was modified
II from the original algorithm by Carol Hazlewood, PhD
II and Brian Collins.

void GiftWrapping (List<Point3>&);
hfdef DEBUG

int Verify Split Convex Hull (Plane&);
#endif - - -

private:
Facet3 Find_Initial_Facet (List<Point3>&);

#ifdef DEBUG
int Verify Initial Facet (List<Point3>&, Facet3&);

#endif - -
} ;

74

fendif
fendif
/* ctz.h */

fifndef CTZ H
fdefine CTZ-H 1
fifdef _cpTusplus

// Computing a Constrained Tetrahedrization

//Algorithm presented in paper:
// Hazlewood, Carol. Using Binary Space Paritions to
// Approximate Constrained Tetrahedrizations. September
// 18, 1993.

finclude "list.h"
finclude "point3.h"
finclude "plane.h"

// USAGE:
// P' is a set of n points in EA3
//Fis a set of k triangles which have vertices in P'
// and which intersect in (possibly empty) mutual faces

void Constrain (List<Point3>&, List<Plane>&);

fendif
fendif
/* facet2.h - Facet2 Class*/

fifndef FACET2 H
fdefine FACET2-H 1
fifdef _cplusplus

finclude <iostream.h>
finclude "point2.h"
finclude "lineseg2.h"

// NOTE:
// In 2D a facet is a line segment and a subfacet is a point.

class Facet2 : public Line_Segment2
{

} ;

public:
// Operators
Facet2& operator=(const Facet2&);
int sf equal(const Facet2&);
friend-ostream& operator<<(ostream&,Facet2);

// Accessors
void SetFacet(Point2, Point2);
void SetID (int);
int Get ID ();

// Services
void Show();
void Show_Full();

private:
// Attributes
int id;

75

fendif
fendif
I* facet3.h - Facet3 Class *I

fifndef FACET3 H
fdefine FACET3-H 1
fifdef _cplusplus

finclude <iostream.h>
finclude "plane.h"
finclude "point3.h"

class Facet3 : public Plane
{

public:
II Operators
Facet3& operator=(const Facet3&);
int sf equal(const Facet3&);
friend-ostream& operator<<(ostream&,Facet3);

II Accessors
void SetFacet(Point3, Point3, Point3);
void SetID(int);

} ;

int GetID () ;

II Services
void Show() ;
void Show_Full();

private:
II Attributes
int id;

fendif
fendif
I* faceti.h - Facet Index Class *I

fifndef FACET INDEX H
fdefine FACET-INDEX-H 1
fifdef _cplusplus -

finclude <iostream.h>

class Facet Index
{

public:
Facet Index();
Facet-Index(int,int,int);
Facet-Index(const Facet Index&);
~Facet_Index(); -

II Default Constructor
II Secondary Constructor
II Copy Constructor
II Default Constructor

void operator=(const Facet Index&);
int operator!=(const Facet-Index&);
int operator==(const Facet-Index&);
friend ostream& operator<<(ostream&,Facet_Index);

int GetPlindex();
int GetP2Index();
int GetP3Index();
void SetPlindex(int);
void SetP2Index(int);
void SetP3Index(int);

76

private:

} ;

tendif
tendif

int pl index;
int p2-index;
int p3=index;

/* general.h */

#ifndef GENERAL H
#define GENERAL-H 1
tifdef _cpluspTus

#define TOLER 0.000001
#define MIN DOUBLE 1.0e-10
#define MIN-FLOAT 1.0e-07
#define MAX-DOUBLE 1.0e+l0
#define MAX-FLOAT 1.0e+07

typedef enum {COINCIDENT, IN_BACK_OF, IN_FRONT_OF, SPANNING}
Poly_Class;

/* Test if a double valuel is "near" another double value2 */
int DEQ (double valuel, double value2);

/* Test if a float valuel is "near" another float value2 */
int FEQ (float valuel, float value2);

/* Test if a double value is "near" 0.0 */
int DEQ0 (double value);

/* Test if a float value is "near" 0.0 */
int FEQ0 (float value);

/* Sign of a value returns: -1 = negative, 1 = positive, 0
zero*/
int sgn (double value);

/* Find the determant of a 2x2 matrix*/
double det2(double all, double a12,

double a21, double a22);

/* Find the determant of a 3x3 matrix*/
double det3(double all, double a12, double a13,

double a21, double a22, double a23,
double a31, double a32, double a33);

/* Solve a system of 3 equations and 3 unknowns*/
void solve(double all, double a12, double a13, double a14,

double a21, double a22, double a23, double a24,
double a31, double a32, double a33, double a34,
double &a, double &b, double &c, double &d);

77

"near"

I* Standard Deviation of n doubles *I
double standard_deviation(double X[], int n);

:ftendif
:ftendif
I* lineseg2.h - Line_Segment2 Class *I

:ftifndef LINE SEGEMENT2 H
fdefine LINE-SEGEMENT2-H 1
:ftifdef _cplusplus

finclude "point2.h"

class Line Segment2
{ -

public:
II Constructors & Destructors
Line Segment2();
Line-Segment2(Point2, Point2);
Line-Segment2(const Line Segment2&);
~Line_Segment2(); -

II Operators

II Default Constructor
II Secondary Constructor
II Copy Constructor
II Default Destructor

Line_Segment2& operator=(const Line_Segment2&);

II Accessors
void SetPl(Point2);
Point2 GetPl () ;
void SetP2(Point2);
Point2 GetP2();
void SetSegment(Point2, Point2);

II Services
int Is On Line Segment(Point2);
void Show() ; -

protected:

} ;

:ftendif
:/f:endif

II Attributes
Point2 pl, p2;

I* lineseg3.h - Line_Segment3 Class *I

:ftifndef LINE SEGEMENT3 H
#define LINE-SEGEMENT3-H 1
:ftifdef _cplusplus

#include "point3.h"
#include "plane.h"

class Line Segment3
{ -

public:
II Constructors & Destructors
Line Segment3();
Line-Segment3(Point3, Point3);
Line-Segment3(const Line Segment3&);
~Line_Segment3(); -

II Operators
78

II Default Constructor
II Secondary Constructor
II Copy Constructor
II Default Destructor

Line_Segment3& operator=(const Line_Segment3&);

II Accessors
void SetPl(Point3);
Point3 GetPl ();
void SetP2(Point3);
Point3 GetP2();
void SetSegment(Point3, Point3);

II Services
Point3 Intersection(Plane&);
int Is On Line Segment(Point3);
void Show() ; -

} ;

protected:
I I Attributes
Point3 pl, p2;

tendif
tendif
I* list.h *I

Hfndef LIST H
Jdefine LIST-H 1
Jifdef _cplusplus

Jinclude "facet3.h"
function
template<class T>
class List
{

public:

List();
List(const List&);
~List();

List& operator=(const List&);
void Insert Head(const T);
void Insert-Tail(const T);
void Insert-At Pointer(const
T Remove Head (f;
T Remove-Tail();
T Remove-At Pointer();
T Peek Head() const;
T Peek-Tail() const;
T Peek-At Pointer() const;
int Is-Empty();
void Clear();
void Reset Pointer();
int Increment Pointer();

0=failure -
int Decrement Pointer();

0=failure -

found

void Show();
int Is Member(const T);
int Find(const T);

int Find2(const Facet3);
List<Facet3> Only!

int Num_Members();

T) ;

79

II Only needed for Find2

II Default Constructor
II Copy Constructor
II Default Destructor

II returns: l=yes, 0=no

II returns: l=success,

II returns: l=success,

II returns: l=yes, 0=no
II returns: l=found, 0=not

II Special Find for

private:

struct list item;
struct list-item
{

} ;

T data;
struct list item *prev;
struct list-item *next;

typedef struct list item *lptr;

} ;

#endif
#endif

lptr head;
lptr tail;
lptr cur_ptr;
int num_items;

/* oogl.h */

Ufndef OOGL H
:/tdefine OOGL-H 1
#ifdef _cplusplus

:/tinclude "list.h"
#include "point3.h"
#include "chull3.h"
#include "plane.h"
#include "bsp_tree.h"

// Creates Output OOGL File: chull.off in current directory
void Convex_Hull_2_OOGL (List<Point3>&, Convex_Hull3&);

// Creates Output OOGL File: triangs.off in current directory
void Triangles_2_OOGL (List<Plane>&);

// Creates Output OOGL File: bspchull.off in current directory
void BSP Tree w Convex Hulls_2_OOGL (List<Point3>&, BSP_Tree&);

#endif
#endif
/* plane.h - Plane Class*/

#ifndef PLANE H
#define PLANE-H 1
#ifdef _cplusplus

#include <iostream.h>
#include "general.h"
#include "point3.h"

class Plane
{

public:
// Constructors & Destructors

80

plane

Plane() ;
Plane(Point3, Point3, Point3);
Plane(const Plane&);
~Plane();

II Operators
Plane& operator=(const Plane&);
int operator==(const Plane&);
int operator!=(const Plane&);

II Default Constructor
II Secondary Constructor
II Copy Constructor
II Default Destructor

friend ostream& operator<<(ostream&,Plane);

II Accessors
void SetPl(Point3);
Point3 GetPl () ;
void SetP2(Point3);
Point3 GetP2 () ;
void SetP3(Point3);
Point3 GetP3 ();
void SetPlane(Point3, Point3, Point3);
double GetA();
double GetB();
double GetC();
double GetD();

II Services
int Is Parallel(Plane&);
int Is-Coincident(Plane&);
double-Distance(Point3);

int Is Point On Plane(Point3);

II Distance between point and

Poly Class Classify Polygon(Plane&);
Poly-Class Classify-Polygon2(Point3);
Poly-Class Classify-Polygon3(Plane&);
double Angle(Plane&f; II Angle between 2 planes
Point3 Normal(); II Normal vector to a plane
void Show();
void Show_Full();

private:
II Private Services
void Calculate Equation();
void Newells_Method();

protected:
II Attributes
Point3 pl, p2, p3;
double a, b, c, d;

II planes are formed by three points
II Ax+By+Cz+D=0 equation of a plane

} ;

fendif
fendif
I* point2.h - Point2 Class *I

fifndef POINT2 H
fdefine POINT2-H 1
fifdef _cplusplus

finclude <iostream.h>

class Point2
{

public:
II Constructors & Destructors

81

} ;

Point2();
Point2(double, double);
Point2(const Point2&);
~Point2 ();

// Operators

// Default Constructor
// Secondary Constructor
// Copy Constructor
// Default Destructor

Point2& operator=(const Point2&);
int operator==(const Point2&);
int operator!=(const Point2&);
friend ostream& operator<<(ostream&,Point2);

// Accessors
void SetX(double);
double GetX();
void SetY(double);
double GetY () ;
void SetID (int);
int Get ID () ;
void SetPoint(double, double);

// Services
double Distance(const Point2&);
void Show Full();
void Show() ;

protected:
// Attributes
double x, y;
int id;

:/tendif
:/tendif
/* point3.h - Point3 Class*/

:/tifndef POINT3 H
:/tdefine POINT3-H 1
:/tifdef _cplusplus

:/tinclude <iostream.h>

class Point3
{

public:
// Constructors & Destructors
Point3();
Point3(double, double, double);
Point3(const Point3&);
~Point3 ();

// Operators
Point3& operator=(const Point3&);
int operator==(const Point3&);
int operator!=(const Point3&);

// Default Constructor
// Secondary Constructor
// Copy Constructor
// Default Destructor

friend Point3 operator-(const Point3&, const Point3&);
friend Point3 operator+(const Point3&, const Point3&);
friend Point3 operator*(const Point3&, const double);
friend ostream& operator<<(ostream&,Point3);

// Accessors
void SetX(double);
double GetX();
void SetY(double);

82

double GetY();
void SetZ(double);
double Get Z () ;
void SetID (int);
int Get ID() ;
void SetPoint(double, double, double);

// Services
double Distance(const Point3&);
double Dot Product(const Point3&);
double Norin();
double Magnitude(const Point3&); // used when using points as

vectors
Point3 Cross(Point3&);
double Rho(Point3&, Point3&, const Point3&);
Point3 Compute New N(const double, Point3&);
Point3 Compute=New=A(const Point3&, const Point3&, const

Point3&);
void Show Full();
void Show() ;

private:

} ;

// Attributes
double x, y, z;
int id;

:fl:endif
:fl:endif
/* subfacet2.h - SubFacet2 Class*/

:fl:ifndef SUBFACET2 H
:fl:define SUBFACET2-H 1
:fl:ifdef _cplusplus

:fl:include "point2.h"

// NOTE:
// In 2D a facet is a line segment and a subfacet is a point.

class SubFacet2 : public Point2
{

public:
// Operators
int operator==(const SubFacet2&);

// Accessors
void SetSubFacet(Point2);

} ;

:fl:endif
:fl:endif
/* subfacet3.h - SubFacet3 Class*/

:fl:ifndef SUBFACET3 H
:fl:define SUBFACET3-H 1
:fl:ifdef _cplusplus

:fl:include "lineseg3.h"
:fl:include "point3.h"

class SubFacet3 : public Line_Segment3

83

public:
// Operators
int operator==(const SubFacet3&);

// Accessors
void SetSubFacet(Point3, Point3);

} ;

:ftendif
:ftendif
II GCC and DJGPP Template File

Hf defined (_DJGPP_) I I defined (_GNUC_)

#include "list.h"
#include "list.cc"
#include "facet3.h"
#include "point3.h"
#include "point2.h"
#include "faceti.h"
#include "plane.h"

template class List<Point3>;
template class List<Point2>;
template class List<Facet3>;
template class List<Facet Index>;
template class List<Plane>;
template class List<int>;

:ftendif

/* bsp_tree.cc */

:ftifdef _cplusplus

#include <fstream.h>
#include <stddef.h>
#include <iostream.h>
#include <stdlib.h>
#include "bsp tree.h"
#include "facet3.h"
#include "chsplit.h"

BSP Tree::BSP Tree()
{ - -

polygons.Clear();
front= (BSP Tree*)0;
back= (BSP Tree*)0;
leaf node =-0;

BSP_Tree::~BSP_Tree()
{

if (!polygons.Is Empty())
polygons.Clear();

if (front)
delete(front);

if (back)
delete(back);

84

void BSP_Tree::Build_BSP_Tree(List<Plane> partition_list)
{

List<Plane> front_list;
cur plane

List<Plane> back_list;
cur plane

if (!partition_list.Is_Empty())
{

// List of Planes in front of

// List of Planes in back of

partition= partition list.Remove Head();
while (!partition list. Is Empty())
{ - -

switch
- (partition.Classify Polygon3(partition list.Peek Head()))

{ - - -
case IN FRONT OF:

front list~Insert Tail(partition list.Remove Head());
break; - - -

case IN BACK OF:
back-list~Insert Tail(partition list.Remove Head());
break; - - -

case COINCIDENT:
// Don't add coincident planes to the tree
break;

case SPANNING:
front list.Insert Tail(partition list.Peek Head());
back list.Insert Tail(partition list.Remove Head());
break; - - -

if (!front_list.Is_Empty())
{

front= new BSP Tree;
R_Build_BSP_Tree(front, front_list);

}
else
{

front= new BSP Tree;
front->leaf_node = l;

if (!back_list.Is_Empty())
{

back= new BSP Tree;
R_Build_BSP_Tree(back, back_list);

}
else
{

}
else
{

back= new BSP Tree;
back->leaf node= l;

cerr << "ERROR: Building BSP Tree with empty partition list"<<
endl;

exit(l);

85

void BSP Tree::Merge Convex Hull(Convex Hull3 convex_hull)
{ - - - -

Convex Hull3 temp front list;
Convex-Hull3 temp-back list;
List<Point3> tempyoint_list;
Facet3 temp_facet;

if (!convex_hull.Is_Empty())
{

if (leaf_node == 1)
{

// We made it to a leaf node, just copy the facets
while (!convex hull.Is Empty())

polygons.Insert_Tail(convex_hull.Remove_Head());
}
else
{

// We made it to an internal node, test facets against
partition

while (!convex_hull.Is_Empty())
{

switch
(partition.Classify Polygon(convex hull.Peek Head()))

{ - - -
case IN FRONT OF:

temp front list.Insert Tail(convex hull.Remove Head());
- - break; - -

points?

facets

}
else
{

case IN BACK OF:
temp-back-list.Insert Tail(convex hull.Remove Head());
break; - - - -

case COINCIDENT:
temp facet= convex hull.Remove Head();
tempyoint_list.Insert_Tail(temp_facet.GetPl());
temp point list.Insert Tail(temp facet.GetP2());
temp-point-list.Insert-Tail(temp-facet.GetP3());
break; - - -

case SPANNING:
// TBD Add spanning split of facet here
// Where are we going to put newly formed coincident

break;

// Form points inside plane into new facets
if (!temp_point_list.Is_Empty())
{

// Need to figure out how to make points inside plane into

// Add new facets to both lists

if (!temp front list.Is Empty())
R Merge Convex Hull(front, temp front list);

if (!temp back list. Is Empty ()) -
R_Merge_Convex_Hull(back, temp_back_list);

86

cerr << "WARNING: Merging an empty convex hull"<< endl;

void BSP Tree::R Merge Convex Hull(BSP Tree *t, Convex Hull3
convex hull) - - - -
{ -

// TBD, need to add recursive split code here

void BSP Tree::Convex Hull Insert(List<Point3>& p, Convex Hull3
convex hull) - -
{ -

Convex Hull3 temp front list;
Convex-Hull3 temp-back list;
List<Point3> tempyoint_list;
Facet3 temp_facet;

if (!convex_hull.Is_Empty())
{

if (leaf_node == 1)
{

// We made it to a leaf node, just copy the facets
while (!convex hull.Is Empty())

polygons.Insert_Tail(convex_hull.Remove_Head());
}
else
{

// We made it to an internal node, test facets against
partition

while (!convex_hull.Is_Empty())
{

switch
(partition.Classify Polygon(convex hull.Peek Head()))

{ - - -
case IN FRONT OF:

temp front list.Insert Tail(convex hull.Remove Head());
- - break; - -

case IN BACK OF:
temp-back-list.Insert Tail(convex hull.Remove Head());
break; - - - -

case COINCIDENT:
temp facet= convex hull.Remove Head();
tempyoint_list.Insert_Tail(temp_facet.GetPl());
temp__point_list.Insert_Tail(temp_facet.GetP2());
temp__point_list.Insert_Tail(temp_facet.GetP3());
break;

case SPANNING:

partition plane
// This service will split the facet with the

// it will add new points and facets to our lists
temp facet= convex hull.Remove Head();
Split Facet With Plane(p, -

- , - - temp__point_list,

break;

87

temp facet,
partTtion,
temp front list,
temp=back_Tist);

them

lists

}

// TBD take points in temp_point_list, Delaunay Triangulate

// to form new facets and put them into both front and back

if (!temp front list.Is Empty())
R Convex Hull Insert(p, front, temp_front_list);

if (!temp back list.Is Empty())
R_Convex_Hull_Insert(p, back, temp_back_list);

else
{

cerr << "WARNING: Merging an empty convex hull"<< endl;

void BSP_Tree::OOGL_Output(List<Point3>& p)
{

Point3 tmp_point;
Facet3 tmp facet;
Point3 tmpyointl, tmp_point2, tmp_point3;
Convex Hull3 tmp front;
fstream fp; -

fp.open("bspchull.off", ios::app);

if(fp.fail() I fp.bad())
{

cerr << "Error opening file bspchull.off for output."<< endl;
exit(l);

fp <<"LIST"<< endl;

fp. close () ;

if (!polygons.Is_Empty())
{

List<Point3> tmp_p(p);
List<Point3> tmp_p2(p);

fp. open ("bspchull. off", ios: : app) ;

if(fp.fail() I fp.bad())
{

cerr << "Error opening file bspchull.off for output."<< endl;
exit(l);

fp <<"{=OFF"<< endl;
fp <<" 11 << p.Num Members() <<" ";
fp << polygons .Num_Members () << " " << "0" << endl;

// Output Points Part
tmp p.Reset Pointer();
while (!tmpy.Is_Empty())
{

tmp_point
fp << II

tmp_p.Remove_Head();
11 << tmp_point.GetX() << 11 " << tmp_point.GetY();

88

fp << " " << tmp_point .Getz() << endl;

// Output Front Convex Hull Part
tmp front.Reset Pointer();
while (!tmp front.Is Empty())
{ - -

tmp facet= tmp front.Remove Head();
tmpyointl = t:mp_facet.GetPl();
tmp_point2 = tmp facet.GetP2();
tmp_point3 = tmp=facet.GetP3();
fp << " 3 " << tmp_pointl.GetID () - 1 << " ";
fp << tmp _point2. Get ID() - 1 << " ";
fp << tmp_point3.GetID() - 1 << endl;

}
fp << "}" << endl << endl;

I*
fp <<"{=OFF"<< endl;
fp << " " << p. Num Members() << " ";
fp << convex_hull_back_part->Num_Members () << " " << "0" << endl;

// Output Points Part
tmp_p2.Reset_Pointer();
while (!tmp_p2.Is_Empty())
{

tmp_point = tmp_p2.Remove Head();
fp << " " << tmp_point.GetX() << " " << tmp_point.GetY();
fp << " " << tmp_point .Getz() << endl;

// Output Back Convex Hull Part
tmp back.Reset Pointer();
while (!tmp back.Is Empty())
{ - -

tmp facet= tmp back.Remove Head();
tmpyointl = tmp facet.GetPl();
tmp_point2 = tmp=facet.GetP2();
tmp_point3 = tmp_facet.GetP3();
fp << " 3 n << tmp_pointl.GetID () - 1 << " ";
fp << tmp_point2 .GetID () - 1 << " n;
fp << tmp_point3.GetID() - 1 << endl;

}
fp << "}" << endl << endl;

*I

fp. close () ;
}
if (front != NULL)

R OOGL Output(p, front);
if (back T= NULL)

R_OOGL_Output(p, back);

void BSP Tree::R Build BSP Tree(BSP Tree *tree, List<Plane>
partition list) - - - -
{ -

List<Plane> front_list;
cur plane

List<Plane> back_list;
cur plane

89

// List of Planes in front of

// List of Planes in back of

if (!partition_list.Is_Empty())
{

tree->partition = partition list.Remove Head();
while (!partition list. Is Empty ()) -
{ - -

switch (tree-
>partition.Classify Polygon3(partition list.Peek Head()))

{ - - -

}

}

case IN FRONT OF:
front list~Insert Tail(partition list.Remove Head());
break; - - -

case IN BACK OF:
back-list~Insert Tail(partition list.Remove Head());
break; - - -

case COINCIDENT:
// Don't add coincident planes to the tree
break;

case SPANNING:
front list.Insert Tail(partition list.Peek Head());
back list.Insert Tail(partition list.Remove Head());
break; - - -

if (!front_list.Is_Empty())
{

tree->front = new BSP Tree;
R_Build_BSP_Tree(tree=>front, front_list);

}
else
{

tree->front = new BSP Tree;
tree->front->leaf_node = 1;

if (!back_list.Is_Empty())
{

tree->back = new BSP Tree;
R_Build_BSP_Tree(tree->back, back_list);

}
else
{

tree->back = new BSP Tree;
tree->back->leaf node= 1;

else
{

cerr << "ERROR: Building BSP Tree with empty partition list"<<
endl;

exit(l);

void BSP Tree::R Convex Hull Insert(List<Point3>& p,
- - - - BSP Tree* tree,

Convex Hull3 temp front list;
Convex-Hull3 temp-back list;
List<Point3> tempyoint_list;
Facet3 temp_facet;

Convex Hull3 convex_hull)

90

if (!convex_hull.Is_Empty())
{

if (tree->leaf_node == 1)
{

// We made it to a leaf node, just copy the facets
while (!convex hull.Is Empty())

tree->polygons.Insert_Tail(convex_hull.Remove_Head());
}
else
{

// We made it to an internal node, test facets against
partition

while (!convex_hull.Is_Empty())
{

switch (tree-
>partition.Classify Polygon(convex hull.Peek Head()))

{ - - -
case IN FRONT OF: - -

temp front list.Insert Tail(convex hull.Remove Head());
- - break; - -

case IN BACK OF:
temp-back-list.Insert Tail(convex hull.Remove Head());
break; - - - -

case COINCIDENT:
temp facet= convex hull.Remove Head();
tempyoint_list.Insert_Tail(temp_facet.GetPl());
temp__point_list.Insert_Tail(temp_facet.GetP2());
temp__point_list.Insert_Tail(temp_facet.GetP3());
break;

case SPANNING:
// This service will split the facet with the

partition plane

them

lists

}
else
{

}

// it will add new points and facets to our lists
temp facet= convex hull.Remove Head();
Split Facet With Plane(p, -

- - - temp__point_list,

break;

temp facet,
tree=>partition,
temp front list,
temp=back_Tist);

// TBD take points in temp__point_list, Delaunay Triangulate

// to form new facets and put them into both front and back

if (!temp front list.Is Empty())
R Convex Hull Insert(p, tree->front, temp_front_list);

if (!temp back lTst.Is Empty())
R_Convex_Hull_Insert(p, tree->back, temp_back_list);

cerr << "WARNING: Merging an empty convex hull"<< endl;

91

void BSP Tree::R OOGL Output(List<Point3>& p, BSP Tree* t)
{ - - -

Point3 tmp_point;
Facet3 tmp facet;
Point3 tmpyointl, tmp_point2, tmp_point3;
£stream fp;

if (!t->polygons.Is_Empty())
{

endl;

List<Point3> tmp_p(p);
List<Point3> tmp_p2(p);
Convex Hull3 tmp front(t->polygons);
//Convex_Hull3 tmp_back(*t->convex_hull_back_part);

fp.open("bspchull.off", ios::app);

if (fp. fail() I fp .bad())
{

cerr << "Error opening file bspchull.off for output."<< endl;
exit(l);

fp <<"{=OFF"<< endl;
fp << " " << p. Num Members () << " ";
fp << t->polygons .Num_Members () << " " << "0" << endl;

// Output Points Part
tmp_p.Reset Pointer();
while (!tmpy.Is_Empty())
{

tmp_point = tmp_p.Remove Head();
fp <<" 11 << tmp_point-:-GetX() <<" 11 << tmp_point.GetY();
fp <<" "<< tmp_point.GetZ() << endl;

// Output Front Convex Hull Part
tmp front.Reset Pointer();
while (! tmp front . Is Empty ())
{ - -

}

tmp facet= tmp front.Remove Head();
tmpyointl = tmp facet.GetPl();
tmp_point2 = tmp-facet.GetP2();
tmp_point3 = tmp=facet.~etP3();
fp << " 3 " << tmp_pointl .GetID () - 1 << 11 11 ;

fp << tmp_point2.GetID() - 1 << " ";
fp << tmp_point3.GetID() - 1 << endl;

fp << 11 }" << endl << endl;

I*
fp << 11 { =OFF"<< endl;
fp << 11 " << p. Num Members() << 11 11 ;

fp << t->convex_hull=back_part->Num_Members () << 11 11 << 11 011 <<

// Output Points Part
tmp_p2.Reset_Pointer();
while (!tmp_p2.Is_Empty())
{

tmp_point = tmp_p2.Remove_Head();
fp << " " << tmp_point.GetX() << " 11 << tmp_point.GetY();
fp << " " << tmp_point .Getz() << endl;

92

// Output Back Convex Hull Part
tmp back.Reset Pointer();
while (! tmp back. Is Empty ())
{ - -

tmp facet= tmp back.Remove Head();
tmpyointl = t:mp facet.GetPl();
tmpyoint2 = tmp-facet.GetP2();
tmpyoint3 = tmp-facet.GetP3();
fp << " 3 " <<-tmpyointl .GetID () - 1 << " ";
fp << tmpyoint2 .GetID () - 1 << 11 11 ;

fp << tmpyoint3.GetID() - 1 << endl;
}
fp << "}" << endl << endl;
*I

fp. close () ;
}
if (t->front != NULL)

R OOGL Output(p, t->front);
if (t->back != NULL)

R_OOGL_Output(p, t->back);

void BSP_Tree::Show()
{

cout << "---" << endl;
cout << "Root Node"<< endl;
cout <<" Partition: ";
partition.Show();
if (front != NULL)

cout <<" Has front."<< endl;
else

cout <<" No front."<< endl;
if (back!= NULL)

cout <<" Has back."<< endl;
else

cout <<" No back."<< endl;
if (leaf_node == 1)
{

cout <<" Convex Hull: ";
polygons.Show();

}
else
{

if (front != NULL)
{

cout <<" Front: ";
R_Show(front);

}
else

cout <<" Front: NULL"<< endl;
if (back != NULL)
{

cout << " Back: ";
R_Show(back);

}
else

cout <<" Back: NULL"<< endl;

93

void BSP Tree::R Show(BSP Tree *tree)
{ - - -

cout << "---" << endl;
if (tree->leaf node== 0)
{ -

cout <<" Partition: ";
tree->partition.Show();
if (tree->front != NULL)

cout <<" Has front."<< endl;
else

cout <<"
if (tree->back

cout <<"
else

No front."<< endl;
!= NULL)
Has back."<< endl;

cout <<" No back."<< endl;

if (tree->front != NULL)
{

cout <<" Front: ";
R_Show(tree->front);

}
else

cout <<"
if (tree->back
{

Front: NULL"<< endl;
!= NULL)

cout << " Back: ";
R_Show(tree->back);

}
else

cout <<"Back: NULL"<< endl;

}
else
{

cout << "Leaf Node"<< endl;
cout <<" Convex Hull: ";
tree->polygons.Show();

void BSP_Tree::Show_Class(Poly_Class p)
{

switch (p)
{

case COINCIDENT:
cout << "COINCIDENT";
break;

case IN BACK OF:
cout-<< "IN BACK_OF";
break;

case IN FRONT OF:
cout-<< "IN FRONT_OF";
break;

case SPANNING:
cout << "SPANNING";
break;

94

tendif
/* chsplit.cc */

tifdef _cplusplus

finclude <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <math.h>

#include "chsplit.h"
#include "lineseg3.h"
finclude "general.h"

void Delaunay_Triangulate (Point3 pl, Point3 p2, Point3 p3, Point3 p4,
Facet3& fl, Facet3& f2)

Point3 A, B;
Point3 center;
double radius;
double denom, n, m;

// translate points to origin
A= p2 - pl;
B = p3 - pl;

// calculate n & m
denom = 2.0 * (A.Dot Product(B)*A.Dot Product(B) -

B.Dot-Product(B)*A.Dot-Product(A));
n = (B.Dot Product(A-- B)*A.Dot Product(A)) / denom;
m = (B.Dot=Product(A - B)*B.Dot=Product(B)) / denom;

// find center of circle and translate back to original position
center= A*m + B*n + pl;

// find radius of circle
radius= pl.Distance(center);

// find correct Delaunay triangulation
if (p4.Distance(center) >= radius)
{

fl.SetPlane(pl, p2, p3);
f2.SetPlane(pl, p3, p4);

}
else
{

fl.SetPlane(pl, p2, p4);
f2.SetPlane(p2, p3, p4);

}

Convex Hull3 Triangulate(List<Point3>& newyoints, Plane&
containerylane)
{

List<Point3> p(new points);
List<Point2> translated points;
List<Facet Index> triangulated;
double A, B, C, D;
doubled, s, ex, cy, sx, sy;
Point2 tmpyoint2;
Point3 tmpyoint3;
Facet Index tmp_facet_index;

95

Facet3 tmp facet;
Convex Hull3 output convex hull;
inti; -

// Translate and Rotate container plane to be the XY Plane
// this will make it easy to translate to E2 coordinates
// and call the triangulation of the points in E2
A= containerylane.GetA();
B = containerylane.GetB();
C = containerylane.GetC();
D = container plane.GetD();
if (DEQ0 (C)) -
{

// Plane is perpendicular to the Z axis
}
else
{

// Translate container plane to Origin

// Translation Matrix:
// [1, 0, 0, 0]
// [0, 1, 0, 0]
// [0, 0, 1, 0]
// [0, 0, d, 1]

d = D / C;
s = sqrt(A*A + B*B + C*C);
ex= B/(s*sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C))));
cy = sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C)));
sx = C/(s*sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C))));
sy = A/s;

p.Reset Pointer();
while (!p.Is Empty())
{ -

tmpyoint3 = p.Remove Head();
tmpyoint2.SetX(cy*tmpyoint3.GetX() +

(cx*(d+tmpyoint3.GetZ()) +
tmpyoint3.GetY()*sx)*sy);

tmpyoint2.SetY(cx*tmpyoint3.GetY() -
(d+tmpyoint3.GetZ())*sx);

tmpyoint2.SetID(tmpyoint3.GetID());
translatedyoints.Insert_Tail(tmp_point2);

}

// Triangulate the points in E2
triangulated= Triangulate2(translated_points);

// Translate back to the points in E3
triangulated.Reset Pointer();
while (!triangulated.Is Empty())
{ -

tmp facet index= triangulated.Remove Head();
newyoints.Reset_Pointer(); -
for(i=0; i<tmp facet index.GetPlindex(); i++)

new_points.Yncrement_Pointer();
tmp_facet.SetPl(newyoints.Peek_At_Pointer());
new_points.Reset_Pointer();
for(i=0; i<tmp facet index.GetP2Index(); i++)

new points.Increment Pointer();
tmp_facet.SetP2(new_points.Peek_At_Pointer());

96

new__points.Reset_Pointer();
for(i=0; i<tmp facet index.GetP3Index(); i++)

new__points.Yncrement_Pointer();
tmp_facet.SetP3(new__points.Peek_At_Pointer());
output_convex_hull.Insert_Tail(tmp_facet);

return output_convex_hull;

List<Facet Index> Triangulate2(List<Point2>& new__points)
{ -

List<Point2> p(new__points);
fstream fp;
Point2 tmp__point;
List<Facet Index> triangulation;
int pl index, p2 index, p3 index;
Facet_Index tmp_facet_index;

fp.open("points.tmp", ios::out);
if(fp.fail() I fp.bad())
{

cerr << "Error opening file points.tmp for output."<< endl;
exit(l);

p.Reset Pointer();
while (!p.Is Empty())
{ -

tmp__point = p.Remove Head();
fp << tmp__point .GetX() << " " << tmp__point .GetY () << endl;

fp. close () ;

system(".lvoronoi -t <points.tmp >points.tri");
system("echo ""0 0 0"" >> points.tri");

fp.open("points.tri", ios::in);
if (fp. fail() I fp .bad())
{

cerr << "Error opening file points.tri for input."<< endl;
exit (1);

triangulation.Clear();
while (!fp.eof())
{

fp >> pl_index >> p2_index >> p3_index;

II there is an aparent bug in many C++ implementations that
II does not catch eof properly when reading multiple things
II on a line, this line is a work around for that bug
if ((pl index== 0) && (p2 index== 0) && (p3 index== 0))

break; - -

tmp facet index.SetPlindex(pl index);
tmp-facet-index.SetP2Index(p2-index);
tmp=facet=index.SetP3Index(p3=index);

triangulation.Insert_Tail(tmp_facet_index);

97

fp.close();

return triangulation;

void Split_Facet_With_Plane2 (List<Point3>& p,
List<Point3>& new_points,
Facet3 f,
Plane partition_plane,
Convex Hull3& front facets,
Convex-Hull3& back_facets)

Poly Class tmp class;
Poly-Class pl class, p2 class, p3_class;
Line-Segment3-sfl, sf2,-sf3;
Point3 intersect sfl, intersect sf2, intersect sf3;
Facet3 new facetl, new facet2, new facet3; -
Point3 tmpyoint; - -

tmp_class = partition_plane.Classify_Polygon(f);
switch (tmp class)
{ -

case IN FRONT OF:
front facets.Insert_Tail(f);

// Check for special case where 1 or 2 points are coincident
// but facet is still considered In Front of partition plane

pl_class = partition_plane.Classify_Polygon2(f.GetP1());
p2_class = partition_plane.Classify_Polygon2(f.GetP2());
~3_class = partition_plane.Classify_Polygon2(f.GetP3());
if (pl class== COINCIDENT)

newyoints.Insert_Tail(f.GetPl());
if (p2 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP2());
if (p3 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP3());

break;

case IN BACK OF:
back-facets.Insert_Tail(f);

// Check for special case where 1 or 2 points are coincident
// but facet is still considered In Back of partition plane

pl_class = partition_plane.Classify_Polygon2(f.GetPl());
p2_class = partition_plane.Classify_Polygon2(f.GetP2());
p3_class = partition_plane.Classify_Polygon2(f.GetP3());
if (pl class== COINCIDENT)

newyoints.Insert_Tail(f.GetPl());
if (p2 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP2());
if (p3 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP3());

break;

case COINCIDENT:
front facets.Insert Tail(f);
back_facets.Insert_Tail(f);

98

newyoints.Insert_Tail(f.GetPl());
newyoints.Insert_Tail(f.GetP2());
newyoints.Insert_Tail(f.GetP3());

break;

case SPANNING:
II What side of the plane are the points on?
pl_class = partitionylane.Classify_Polygon2(f.GetP1());
p2_class = partitionylane.Classify_Polygon2(f.GetP2());
p3_class = partitionylane.Classify_Polygon2(f.GetP3());
sfl.SetSegment(f.GetPl(), f.GetP2());
sf2.SetSegment(f.GetP2(), f.GetP3());
sf3.SetSegment(f.GetP3(), f.GetPl());

if ((pl class== p2 class) &&
(pl-class != COINCIDENT) &&
(p2-class != COINCIDENT) &&
(p3=class != COINCIDENT))

}

II Case 1:
II pl and p2 are on one side & p3 is on the other side

intersect_sf2 = sf2.Intersection(partitionylane);
intersect sf3 = sf3.Intersection(partitionylane);
intersect-sf2.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf2);
newyoints.Insert_Tail(Tntersect_sf2);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
newyoints.Insert_Tail(Tntersect_sf3);
new facetl.SetPl(f.GetP3());
new-facetl.SetP2(intersect sf2);
new-facetl.SetP3(intersect-sf3);
Delaunay Triangulate(f.GetPl(),

- f.GetP2(),
intersect sf2,
intersect-sf3,
new facet2,
new-facet3);

if (p3 class== IN_FRONT=OF)
{

front facets.Insert Tail(new facetl);
back facets.Insert Tail(new facet2);
back=facets.Insert=Tail(new=facet3);

}
else
{

back facets.Insert Tail(new facetl);
front facets.Insert Tail(new facet2);
front=facets.Insert=Tail(new=facet3);

else if ((pl class -- p3 class) &&
(pl-class != COINCIDENT) &&
(p2-class != COINCIDENT) &&
(p3=class != COINCIDENT))

II Case 2:
II pl and p3 are on one side & p2 is on the other side

intersect sfl
intersect-sf2

sfl.Intersection(partitionylane);
sf2.Intersection(partition_plane);

99

}

intersect sfl.SetID(p.Num Members()+l);
p.Insert Tail(intersect sfl);
new_points.Insert_Tail(Tntersect_sfl);
intersect sf2.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf2);
new_points.Insert_Tail(Tntersect_sf2);
new facetl.SetPl(f.GetP2());
new-facetl.SetP2(intersect sfl);
new-facetl.SetP3(intersect-sf2);
Delaunay Triangulate(f.GetPl(),

- intersect sfl,
intersect-sf2,
f.GetP3()~
new facet2,
new-facet3);

if (p2 class== IN_FRONT=OF)
{

front facets.Insert Tail(new facetl);
back facets.Insert Tail(new facet2);
back=facets.Insert=Tail(new=facet3);

}
else
{

back facets.Insert Tail(new facetl);
front facets.Insert Tail(new facet2);
front=facets.Insert=Tail(new=facet3);

else if ((p2 class== p3 class) &&
(pl-class != COINCIDENT) &&
(p2-class != COINCIDENT) &&
(p3=class != COINCIDENT))

II Case 3:
II p2 and p3 are on one side & pl is on the other side

intersect_sfl = sfl.Intersection(partition_plane);
intersect_sf3 = sf3.Intersection(partition_plane);
intersect sfl.SetID(p.Num Members()+l);
p.Insert Tail(intersect sfl);
new_points.Insert_Tail(Tntersect_sfl);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
new_points.Insert_Tail(Tntersect_sf3);
new facetl.SetPl(f.GetPl());
new-facetl.SetP2(intersect sfl);
new-facetl.SetP3(intersect-sf3);
Delaunay Triangulate(f.GetP2(),

- f.GetP3(),
intersect sf3,
intersect-sfl,
new facet2,
new-facet3);

if (pl_class == IN_FRONT=OF)
{

front facets.Insert Tail(new facetl);
back facets.Insert Tail(new facet2);
back=facets.Insert=Tail(new=facet3);

}
else
{

back facets.Insert Tail(new facetl);
front_facets.Insert_Tail(new_facet2);

100

front_facets.Insert_Tail(new_facet3);

}
else
{

IN_BACK_OF))

// Case 4-6:
// 1 point is coincident and the other two points
// are on opposite sides of the plane
if (pl_class == COINCIDENT)
{

// Case 4:
// pl is coincident, p2 and p3 are on opposite sides
intersect_sf2 = sf2.Intersection(partitionylane);
intersect sf2.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf2);
newyoints.Insert_Tail(intersect_sf2);
new facetl.SetPl(f.GetPl());
new-facetl.SetP2(f.GetP2());
new-facetl.SetP3(intersect sf2);
new-facet2.SetPl(f.GetPl());
new-facet2.SetP2(f.GetP3());
new=facet2.SetP3(intersect_sf2);

if ((p2_class == IN_FRONT_OF) && (p3_class ==

}

front facets.Insert Tail(new facetl);
back_facets.Insert_Tail(new_facet2);

else if ((p2_class == IN_BACK_OF) && (p3_class ==
IN_FRONT_OF))

IN_BACK_OF))

}

back facets.Insert Tail(new facetl);
front_facets.Insert_Tail(new_facet2);

}
else
{

// Error we are messed up somewhere
cout << "ERROR Messed up spanning cases!"<< endl;
exit(l);

else if (p2_class == COINCIDENT)
{

// Case 5:
// p2 is coincident, pl and p3 are on opposite sides
intersect_sf3 = sf3.Intersection(partitionylane);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
newyoints.Insert_Tail(intersect_sf3);
new facetl.SetPl(f.GetP2());
new-facetl.SetP2(f.GetP3());
new-facetl.SetP3(intersect sf3);
new-facet2.SetPl(f.GetP2());
new-facet2.SetP2(f.GetPl());
new=facet2.SetP3(intersect_sf3);

if ((pl_class == IN_FRONT_OF) && (p3_class ==

back facets.Insert Tail(new facetl);
front_facets.Insert_Tail(new_facet2);

101

else if ((pl_claaa == IN_BACK_OF) && (p3_claaa ==
IN_FRONT_OF))

IN_BACK_OF))

}

}
else
{

front facets.Insert Tail(new facetl);
back_faceta.Inaert_Tail(new_facet2);

II Error we are messed up somewhere
cerr << "ERROR Messed up spanning cases!"<< endl;
exit(l);

else if (p3_claaa == COINCIDENT)
{

II Case 6:
II p3 is coincident, p2 and pl are on opposite aides
intersect afl = afl.Interaection(partitionylane);
interaect-afl.SetID(p.Num Membera()+l);
p.Insert Tail(interaect afl);
newyointa.Inaert_Tail(Tnteraect_afl);
new facetl.SetPl(f.GetP3());
new-facetl.SetP2(f.GetP2());
new-facetl.SetP3(intersect sfl);
new-facet2.SetPl(f.GetP3());
new-facet2.SetP2(f.GetP1());
new=facet2.SetP3(intersect_sfl);

if ((pl_claaa == IN_FRONT_OF) && (p2_claaa --

}

back facets.Insert Tail(new facetl);
front_facets.Inaert_Tail(new_facet2);

else if ((pl_claaa == IN_BACK_OF) && (p2_class ==
IN_FRONT_OF))

front facets.Insert Tail(new facetl);
back_facets.Insert_Tail(new_facet2);

}
else
{

II Error we are messed up somewhere
cerr << "ERROR Messed up spanning cases!"<< endl;
exit(l);

}
else
{

}
break;

II Why in the heck did we get here, we are out
II of spanning cases to check
cerr << "ERROR Out of spanning cases!"<< endl;
exit(l);

void Split_Facet_With_Plane (List<Point3>& p,
List<Point3>& newyoints,
Facet3& f,

102

Plane& partition_plane,
Convex Hull3& front convex hull,
Convex=Hull3& back_convex_hull)

Poly Class tmp class;
PolyClass pl class, p2 class, p3 class;
Line-Segment3-sfl, sf2,-sf3;
Point3 intersect sfl, intersect sf2, intersect sf3;
Facet3 new facetl, new facet2, new facet3; -
Point3 tmpyoint; - -

tmp_class = partition_plane.Classify_Polygon(f);
switch (tmp class)
{ -

case IN FRONT OF:
front convex_hull.Insert_Tail(f);

// Check for special case where 1 or 2 points are coincident
// but facet is still considered In Front of partition plane

pl_class = partition_plane.Classify_Polygon2(f.GetPl());
p2 class= partition_plane.Classify Polygon2(f.GetP2());
p3=class = partition_plane.Classify=Polygon2(f.GetP3());
if (pl class== COINCIDENT)

newyoints.Insert_Tail(f.GetPl());
if (p2 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP2());
if (p3 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP3());

break;

case IN BACK OF:
back-convex hull.Insert_Tail(f);

// Check for special case where 1 or 2 points are coincident
// but facet is still considered In Back of partition plane

pl_class = partition_plane.Classify_Polygon2(f.GetPl());
p2_class = partition_plane.Classify_Polygon2(f.GetP2());
p3_class = partition_plane.Classify_Polygon2(f.GetP3());
if (pl class== COINCIDENT)

newyoints.Insert_Tail(f.GetPl());
if (p2 class== COINCIDENT)

newyoints.Insert_Tail(f.GetP2());
if (p3 class== COINCIDENT)

new=points.Insert_Tail(f.GetP3());

break;

case COINCIDENT:
front convex hull.Insert Tail(f);
back convex hull.Insert Tail(f);
new_j,oints.Ynsert_Tail(f.GetPl());
new_points.Insert_Tail(f.GetP2());
new_points.Insert_Tail(f.GetP3());

break;

case SPANNING:
// What side of the plane are the points on?
pl class= partition_plane.Classify_Polygon2(f.GetPl());
p2=class = partition_plane.Classify_Polygon2(f.GetP2());

103

p3_class = partition_plane.Classify_Polygon2(f.GetP3());
sfl.SetSegment(f.GetPl(), f.GetP2());
sf2.SetSegment(f.GetP2(), f.GetP3());
sf3.SetSegment(f.GetP3(), f.GetPl());

if (pl_class == p2_class)
{

// Case 1:
// pl and p2 are on one side & p3 is on the other side

intersect_sf2 = sf2.Intersection(partition_plane);
intersect sf3 = sf3.Intersection(partition plane);
intersect-sf2.SetID(p.Num Members()+l); -
p.Insert Tail(intersect sf2);
new_points.Insert_Tail(Tntersect_sf2);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
new_points.Insert_Tail(Tntersect_sf3);
new facetl.SetPl(f.GetP3());
new-facetl.SetP2(intersect sf2);
new-facetl.SetP3(intersect-sf3);
Delaunay Triangulate(f.GetPl(),

- f.GetP2(),
intersect sf2,
intersect-sf3,
new facet2,
new-facet3);

if (p3 class== IN_FRONT=OF)
{

front convex hull.Insert Tail(new facetl);
back convex hull.Insert Tail(new facet2);
back=convex=hull.Insert=Tail(new=facet3);

}
else
{

back convex hull.Insert Tail(new facetl);
front convex hull.Insert Tail(new facet2);
front=convex=hull.Insert=Tail(new=facet3);

else if (pl_class
{

p3_class)

// Case 2:
// pl and p3 are on one side & p2 is on the other side

intersect_sfl = sfl.Intersection(partition_plane);
intersect_sf2 = sf2.Intersection(partition_plane);
intersect sfl.SetID(p.Num Members()+l);
p.Insert Tail(intersect sfl);
new_points.Insert_Tail(Tntersect_sfl);
intersect sf2.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf2);
new points.Insert Tail(Tntersect sf2);
new-facetl.SetPl(f.GetP2()); -
new-facetl.SetP2(intersect sfl);
new-facetl.SetP3(intersect-sf2);
Delaunay Triangulate(f.GetPl(),

- intersect sfl,
intersect-sf2,
f.GetP3();
new facet2,
new-facet3);

if (p2_class IN_FRONT=OF)

104

}

front convex hull.Insert Tail(new facetl);
back convex hull.Insert Tail(new facet2);
back=convex=hull.Insert=Tail(new=facet3);

}
else
{

back convex hull.Insert Tail(new facetl);
front convex hull.Insert Tail(new facet2);
front=convex=hull.Insert=Tail(new=facet3);

else if (p2_class == p3_class)
{

II Case 3:
II p2 and p3 are on one side & pl is on the other side

intersect_sfl = sfl.Intersection(partition__plane);
intersect sf3 = sf3.Intersection(partition__plane);
intersect-sfl.SetID(p.Num Members()+l);
p.Insert Tail(intersect sfl);
new__points.Insert_Tail(intersect_sfl);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
new__points.Insert_Tail(Tntersect_sf3);
new facetl.SetPl(f.GetPl());
new-facetl.SetP2(intersect sfl);
new-facetl.SetP3(intersect-sf3);
Delaunay Triangulate(f.GetP2(),

- f.GetP3(),
intersect sf3,
intersect-sfl,
new facet2,
new-facet3);

if (pl class== IN_FRONT=OF)
{

front convex hull.Insert Tail(new facetl);
back convex hull.Insert Tail(new facet2);
back=convex=hull.Insert=Tail(new=facet3);

}
else
{

}
else
{

back convex hull.Insert Tail(new facetl);
front convex hull.Insert Tail(new facet2);
front=convex=hull.Insert=Tail(new=facet3);

II Case 4-6:
II 1 point is coincident and the other two points
II are on opposite sides of the plane
if (pl_class == COINCIDENT)
{

II Case 4:
II pl is coincident, p2 and p3 are on opposite sides
intersect_sf2 = sf2.Intersection(partition__plane);
intersect sf2.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf2);
new points.Insert Tail(intersect sf2);
new-facetl.SetPl(f.GetPl()); -
new-facetl.SetP2(f.GetP2());
new=facetl.SetP3(intersect_sf2);

105

new facet2.SetPl(f.GetPl());
new-facet2.SetP2(f.GetP3());
new=facet2.SetP3(intersect_sf2);

if ((p2_class == IN_FRONT_OF) && (p3_class ==
IN_BACK_OF))

}

front convex hull.Insert Tail(new facetl);
back_convex_hull.Insert_Tail(new_facet2);

else if ((p2_class == IN_BACK_OF) && (p3_class ==
IN _FRONT_ OF))

IN_BACK_OF))

}

back convex hull.Insert Tail(new facetl);
front_convex_hull.Insert_Tail(new_facet2);

}
else
{

II Error we are messed up somewhere
cout << "ERROR Messed up spanning cases!"<< endl;
exit(l);

else if (p2_class == COINCIDENT)
{

II Case 5:
II p2 is coincident, pl and p3 are on opposite sides
intersect_sf3 = sf3.Intersection(partition_plane);
intersect sf3.SetID(p.Num Members()+l);
p.Insert Tail(intersect sf3);
new points.Insert Tail(Tntersect sf3);
new-facetl.SetPl(f.GetP2()); -
new-facetl.SetP2(f.GetP3());
new-facetl.SetP3(intersect sf3);
new-facet2.SetPl(f.GetP2());
new-facet2.SetP2(f.GetP1());
new=facet2.SetP3(intersect_sf3);

if ((pl_class == IN_FRONT_OF) && (p3_class ==

}

back convex hull.Insert Tail(new facetl);
front_convex_hull.Insert_Tail(new_facet2);

else if ((pl_class == IN_BACK_OF) && (p3_class
IN _FRONT_ OF))

}

}
else
{

front convex hull.Insert Tail(new facetl);
back_convex_hull.Insert_Tail(new_facet2);

II Error we are messed up somewhere
cerr << "ERROR Messed up spanning cases!"<< endl;
exit(l);

else if (p3_class == COINCIDENT)
{

II Case 6:
II p3 is coincident, p2 and pl are on opposite sides
intersect sfl = sfl.Intersection(partition_plane);
intersect=sfl.SetID(p.Num_Members()+l);

106

IN_BACK_OF))

p.Insert Tail(intersect sfl);
newyoints.Insert_Tail(Tntersect_sfl);
new facetl.SetPl(f.GetP3());
new-facetl.SetP2(f.GetP2());
new-facetl.SetP3(intersect sfl);
new-facet2.SetPl(f.GetP3());
new-facet2.SetP2(f.GetP1());
new=facet2.SetP3(intersect_sfl);

if ((pl_class == IN_FRONT_OF) && (p2_class ==

back convex hull.Insert Tail(new facetl);
front_convex_hull.Insert_Tail(new_facet2);

}
else if ((pl_class == IN_BACK_OF) && (p2_class

- IN_FRONT_OF))

front convex hull.Insert Tail(new facetl);
back_convex_hull.Insert_Tail(new_facet2);

}
else
{

// Error we are messed up somewhere
cerr << "ERROR Messed up spanning cases!"<< endl;
exit(l);

}
else
{

break;

// Why in the heck did we get here, we are out
// of spanning cases to check
cerr << "ERROR Out of spanning cases!"<< endl;
exit(l);

void Split_Polygon_With_Plane (Facet3& polygon,

List<Point3> trashyoints;
List<Point3> trashyoints2;

Plane& partitionylane,
Convex_Hull3& frontyiece,
Convex Hull3& backyiece)

Split_Facet_With_Plane(trashyoints,
trashyoints2,
polygon,
partitionylane,
frontyiece,
backyiece);

void Split_Convex_Hull_With_Plane (List<Point3>& p,
List<Point3>& newyoints,
Convex Hull3& convex hull,
Plane&-partitionylane,
Convex Hull3& front convex_hull,

107

Convex Hull3& back_convex_hull)

Convex Hull3 tmp convex hull(convex hull);
Facet3-tmp_facet; - -

tmp convex hull.Reset Pointer();
while (! tmp convex hull. Is Empty ())
{ - - -

tmp facet= tmp convex hull.Remove Head();
Split Facet With Plane(p, -

- - - new_points,

fendif
I* chull. cc * I

#ifdef _cplusplus

Hfdef DEBUG
#include <iostream.h>
#endif
#include <assert.h>

#include "chull2.h"
#include "subfacet2.h"
#include "general.h"

II Convex Hull - Giftwrapping
II 1. T <- 0

tmp facet,
partition_plane,
front convex hull,
back_convex_hull);

II 2. F <- find an initial convex hull facet;
II 3. Output F
II 4. T <- subfacets of F;
II 5. while (TI= 0) do
II 6. F <- T (* copy of front element from list*);
II 1. F' <- facet sharing e with F; (* giftwrapping *)
II 8. Output F'
II 9. Insert into Tall subfacets of F' not yet present
II and delete all those already present.
II 10. end while

void Convex_Hull2::GiftWrapping (List<Point2>& p)
{
}

II Find initial convex hull facet
Facet2 Convex Hull2::Find Initial Facet (List<Point2>& p)
{

List<Point2> tmp_p(p);
List<Point2> tmp_p2(p);
Point2 pl, p2, n, a;
Point2 temp point;
Facet2 temp-facet;
double max rho, r;
inti, loc;

Hfdef DEBUG

108

cout << n Finding Initial Facet"<< endl;
f:endif

// Must have 2 or more points to form a facet in E2
assert(p.Num_Members() >= 2);

//pl<- lexicographically smallest point in p
tmp_p.Reset_Pointer();
pl= tmp_p.Remove Head();
while (! tmp _p. Is_ Empty ())
{

temp_point = tmp_p.Remove_Head();
if (temp_point.GetX() < pl.GetX())

pl= temp_point;
else if (temp_point.GetX() == pl.GetX())

if (temp_point.GetY() < pl.GetY())
pl= temp_point;

temp facet.SetPl(pl);
n.SetX((double)l.0);
a.SetY((double)l.0);

#ifdef DEBUG

// add vert 1 to facet
// n = (1,0,0)
//a= normal ton (0,1,0)

cout <<" Initial facet pl=";
pl . Show Full () ;
cout <<-endl;
cout <<"
n.Show Full();
cout << endl;
cout <<"
a.Show Full();
cout << endl;

f:endif

n=";

a=";

// p2 = point of max rho
max rho= -MAX DOUBLE;
tmpy2.Reset Pointer();
while (!tmp__p2.Is_Empty())
{

temp_point = tmp_p2.Remove_Head();
if (temp_point != pl)
{

//r = pl.Rho(a, n, temp_point);
if (r > max rho)
{ -

max rho= r;
p2 ~ temp_point;

temp_facet.SetP2(p2);

if (DEQ0(max_rho))
{

temp_point = n;
n a;
a= temp_point;

}
else
{

// add vert 2 to facet

// swap n and a

//n = n.Compute New N(max rho, a);
//a= a.Compute=New=A(n, pl, p2);

109

Ufdef DEBUG
cout <<"
p2.Show Full();
cout <<-endl;
cout <<"

Initial facet p2=";

cout <<"
max rho="<< max rho<< endl;
n="T

n. Show Full() ;
cout << endl;
cout <<"
a. Show Full () ;
cout << endl;

:/1:endif

return temp_facet;

#-endif
I* chull. cc * I

#-ifdef _cplusplus

:/1:ifdef DEBUG
://:include <iostream.h>
#-endif
#-include <assert.h>

a=";

#-include "chull3.h"
#-include "subfacet3.h"
#-include "general.h"
#-include "plane.h"

II Convex Hull - Giftwrapping
II 1. T <- 0
II 2. F <- find an initial convex hull facet;
/I 3. Output F
II 4. T <- subfacets of F;
II 5. while (TI= 0) do
II 6. F <- T (* copy of front element from list*);
II 1. F' <- facet sharing e with F; (* giftwrapping *)
II 8. Output F'
II 9. Insert into Tall subfacets of F' not yet present
II and delete all those already present.
II 10. end while

void Convex Hull3::GiftWrapping (List<Point3>& p)
{ -

List<Facet3> T; II T really should be a SubFacet List, but the
extra point

Facet

calculations

Facet3 F;

II is needed to carry along the third point of the

II that the SubFacet belongs to for the angle

II to be done in the future using this SubFacet.

Facet3 SFl, SF2, SF3;
II Current Facet
II SubFacets of F

Facet3 F_prime; II Next Facet
110

Facet3 SF4, SFS, SF6; II SubFacets of F'

SubFacet3 temp sf;
Point3 p_prime;
double max angle;
double min-angle;
Point3 temp_point;
double temp angle;
Plane temp__plane;
inti;

II 1. T <- 0
T .Clear();

II 2. F <- find an initial convex hull facet;
F = Find Initial Facet(p);
II 3. Output F -
i = 1;
F • Set ID (i) ;
(*this) .Insert Tail(F);

#ifdef DEBUG -
cout <<" Found facet"<< i << "· ";
F .Show();
cout << endl;

#endif

II 4. T <- subfacets of F;
SFl.SetPl(F.GetPl());
SF1.SetP2(F.GetP2());
SF1.SetP3(F.GetP3());
SF2.SetPl(F.GetP2());
SF2.SetP2(F.GetP3());
SF2.SetP3(F.GetP1());
SF3.SetPl(F.GetP3());
SF3.SetP2(F.GetP1());
SF3.SetP3(F.GetP2());
T.Insert Tail(SFl);
T.Insert-Tail(SF2);
T.Insert=Tail(SF3);

II 5. while (TI= 0) do
while (!T.Is Empty() && (i< 60))
{ -

List<Point3> tmp_p(p);
II 6. F <- T (* extract front element from list*);
F = T.Peek_Head();

II SubFacet we are interested in
SFl.SetPl(F.GetPl());
SF1.SetP2(F.GetP2());
SF1.SetP3(F.GetP3());

II 7. F' <- facet sharing e with F; (* giftwrapping *)

II F' shares SFl with F and p' is the point which forms
II the greatest angle between the hyperplanes of F and F'
min angle= MAX DOUBLE;
tmpy.Reset_Pointer();
while (!tmp_p.Is_Empty())
{ '

temp_point = tmp_p.Remove_Head();
if ((temp_point != F.GetPl()) &&

(temp_point != F.GetP2()) &&

111

(temp_yoint != F.GetP3()))

temp plane.SetPlane(SFl.GetPl(),
- SF1.GetP2(),

temp_yoint);
temp_angle = F.Angle(temp_ylane);
if (temp angle< min angle)
{ - -

min angle= temp angle;
p_yrime = temp_yoint;

}
II Subfacets made from F'
SF4.SetPl(SF1.GetP1());
SF4.SetP2(SF1.GetP2());
SF4.SetP3(p prime);
SF5.SetPl(SF1.GetP2());
SF5.SetP2(p prime);
SF5.SetP3(SF1.GetP1());
SF6.SetPl(p_yrime);
SF6.SetP2(SF1.GetP1());
SF6.SetP3(SF1.GetP2());
II F' is facet sharing e with F
F_yrime.SetPl(SFl.GetPl());
F prime.SetP2(SF1.GetP2());
Fyrime.SetP3(p_yrime);
II a. Output F'
i++;
F_yrime.SetID(i);
(*this) .Insert_Tail(F_yrime);

Hfdef DEBUG
cout <<" Found facet"<< i << "· ";
F_yrime. Show();
cout << endl;

#endif

Insert into Tall II 9.
II
if

and delete all
(T.Find2(SF4))
T.Remove At Pointer();

else - -
T.Insert Tail(SF4);

if (T.Find2(SF5))
T.Remove At Pointer();

else - -
T.Insert Tail(SFS);

if (T.Find2(SF6))
T.Remove At Pointer();

else - -
T.Insert_Tail(SF6);

II Find initial convex hull facet

subfacets of F' not yet present
those already present.

Facet3 Convex Hull3::Find Initial Facet (List<Point3>& p)
{

List<Point3> tmp_y(p);
List<Point3> tmp_y2(p);
List<Point3> tmp_y3(p);
Point3 pl, p2, p3, n, a;
Point3 temp_yoint;

112

Facet3 temp facet;
double max rho, r;
inti, loc;

#ifdef DEBUG
cout <<" Finding Initial Facet"<< endl;

tendif
// Must have 3 or more points to form a facet in E3
assert(p.Num_Members() >= 3);

//pl<- lexicographically smallest point in p
tmp_p.Reset_Pointer();
pl= tmp_p.Remove Head();
while (!tmp_p. Is_Empty())
{

temp_point = tmp_p.Remove_Head();
if (temp_point.GetX() < pl.GetX())

pl= temp_point;
else if (tempyoint.GetX() == pl.GetX())

if (temp_point.GetY() < pl.GetY())
pl= temp_point;

else if (temp_point.GetY() == pl.GetY())
if (temp_point.GetZ() < pl.GetZ())

pl= temp_point;

temp facet.SetPl(pl);
n.SetX((double)l.0);
a.SetY((double)l.0);

:j/: if def DEBUG

// add vert 1 to facet
// n = (1,0,0)
//a= normal ton (0,1,0)

cout <<"
pl.Show Full();
cout <<-endl;
cout <<"

Initial facet pl=";

n. Show Full () ;
cout << endl;
cout <<"
a . Show Full () ;
cout << endl;

tendif

n=";

a=";

// p2 = point of max rho
max rho= -MAX DOUBLE;
tmpy2.Reset Pointer();
while (!tmp_p2.Is_Empty())
{

temp_point = tmp_p2.Remove_Head();
if (temp_point != pl)
{

r = pl.Rho(a, n, temp_point);
if (r > max rho)
{ -

max rho= r;
p2 ;;- temp _point;

temp_facet.SetP2(p2);

if (DEQ0(max_rho))
{

113

// add vert 2 to facet

temp_point = n;
n = a;
a= temp_point;

}
else
{

n = n.Compute New N(max rho, a);
a= a.Compute=New=A(n, pl, p2);

:/Hfdef DEBUG

// swap n and a

cout << n

p2.Show Full();
cout <<-endl;
cout <<"

Initial facet p2=";

cout << n
max rho="<< max rho<< endl;
n=";

n. Show Full () ;
cout << endl;
cout <<"
a.Show Full();
cout << endl;

tendif

a=";

// p3 = point of max rho
max rho= -MAX DOUBLE;
tmpy3.Reset Pointer();
while (!tmp_j,3.Is_Empty())
{

temp_point = tmp_p3.Remove_Head();
if ((temp_point != pl) && (temp_point != p2))
{

r = pl.Rho(a, n, temp_point);
if (r > max rho)
{ -

max rho= r;
p3 ~ temp_point;

temp_facet.SetP3(p3);

:/Hfdef DEBUG

// add vert 3 to facet

cout <<" Initial facet p3=";
p3.Show Full();
cout <<-endl;
cout <<" max rho="<< max rho<< endl;
cout <<" Initial Facet f=";
temp facet.Show();
cout-<< endl;
if (Verify Initial Facet(p,temp facet))

cout <<-" - Initial Facet Verified"<< endl;
else

cout <<" Initial Facet NOT Verified"<< endl;
tendif

return temp_facet;

:/Hfdef DEBUG
// Verify Initial Facet Correctness
int Convex_Hull3::Verify_Initial_Facet (List<Point3>& p, Facet3& f)

114

List<Point3> tmp p(p);
int status; -
Point3 temp point;
int front count, back count;
Poly_Class temp_side;-

front count= 0;
back count= 0;
tmp__p.Reset Pointer();
while (! tmp - p. Is Empty ())
{ - -

temp__point = tmp__p.Remove_Head();
if ((temp__point != f.GetPl()) &&

(temp point != f.GetP2()) &&
(tempyoint != f.GetP3()))

temp_side = f.Classify_Polygon2(temp__point);
assert((temp side== IN FRONT OF) I I (temp side==

IN BACK OF)); - - - -
- if (temp side== IN FRONT OF)

front-count++; - -
else -

back count++;

if (((front count
((front - count

status -1;
else

status= 0;

return status;

!= 0) && (back count
0) && (back=count !=

O >) I I
0)))

int Convex Hull3::Verify_Split_Convex_Hull (Plane& partition__plane)
{

int status;
Convex Hull3 tmp convex hull(*this);
Facet3-tmp_facet; -

status= 1;
tmp convex hull.Reset Pointer();
while(!tmp-convex hull.Is Empty())
{ - - -

tmp facet= tmp convex hull.Remove Head();
if (partition plane.Classify Polygon(tmp facet) == SPANNING)
{ - - -

status= 0;
cout << "Failed Facet: "<< tmp_facet << endl;
cout << "Failed Plane: ";
partition__plane.Show();
cout << endl;

return status;

4/:endif

4/:endif

115

/* ctz.cc */

*ifdef _cplusplus

// Computing a Constrained Tetrahedrization

//Algorithm presented in paper:
// Hazlewood, Carol. Using Binary Space Paritions to
// Approximate Constrained Tetrahedrizations. September
// 18, 1993.

//constrain(P', F, T)
// begin
// construct B, the BSP Tree of F;
// construct C, the convex hull of P';
// for j = 1 to k do
// Kj <- plane(fj) intersect C;
// for j = 1 to k do
// compute constraints for Kj;
// for j = 1 to k do
// triangulate Kj with constraints;
// triangulate facets of C with constraints;
// for i = 1 to 1 do
// Ti<- tetrahedrization of Ri;
// T <- T union Ti;
// end.

*include- <iostream.h>
*include "ctz.h"
*include "bsp tree.h"
*include "chull3.h"
*include "oogl.h"

void Constrain (List<Point3>& P_prime, List<Plane>& F)
{

BSP Tree B;
Convex_Hull3 C;

// Construct BSP Tree B from F

// BSP Tree B
// Convex Hull C

cout <<" Building BSP Tree ... "<< endl;
B.Build BSP Tree(F);

*ifdef DEBUG -
B. Show();

fendif

// Construct Convex Hull C from P'
cout <<" Building Convex Hull. .. "<< endl;
C.GiftWrapping(P prime);

*ifdef DEBUG -
C.Show ();

*endif

// for j = 1 to k do
// Kj <- plane(fj) intersect C;
// This has been changed from the original paper from a FOR loop
// into a recursive tree algorithm
cout <<" Merging Convex Hull Into BSP Tree ... "<< endl;
B.Convex_Hull_Insert(P_prime, C);
//B.Merge Convex Hull(C);

*ifdef DEBUG- -
B.Show();

*endif

116

II FUTURE ALGORITHM EXPANSION NEEDED
II for (j=0; j<k; j++)
II compute constraints for Kj;

for (j=0; j<k; j++) II
II
II

Triangulate Kj with constraints;
Triangulate facets of C with constraints;

II for (i=0; i<k; i++)
II Ti<- tetrahedrization of Ri;
II T <- T union Ti;

II Output OOGL File For Triangles
cout <<" Outputing triangs.off file ... "<< endl;
Triangles 2 OOGL(F);
II Output-OOGL File For Convex Hull
cout <<" Outputing chull.off file ... "<< endl;
Convex_Hu11_2_OOGL(P__prime, C);
II Output OOGL File For BSP Tree with Convex Hulls
cout << " Outputing bspchull.off file ... " << endl;
BSP_Tree_w_Convex_Hulls_2_OOGL(P_prime, B);

#endif
I* facet2.cc - Facet2 Class Implementation *I

#ifdef _cplusplus

#include "facet2.h"

II Operators
Facet2& Facet2::operator=(const Facet2 &rhs)
{

if (this== &rhs) return *this;
pl= rhs.pl;
p2 = rhs.p2;
id= rhs.id;
return *this;

int Facet2::sf equal(const Facet2& f2)
{ -

return (((pl -- f2 .pl) && (p2 f2 .p2)) I I
((pl== f2.p2) && (p2 == f2.pl)));

II '<<' IIO Stream Operator
ostream& operator<<(ostream& s, Facet2 f)
{

s << "{" << f.pl <<
returns;

II Accessors

II II , << f.p2 << "}";

void Facet2::SetFacet(Point2 Pl, Point2 P2)
{

117

SetSegment(Pl, P2);

void Facet2::SetID(int ID)
{

id= ID;

int Facet2::GetID()
{

return id;

- II Services

void Facet2: : Show ()
{

cout << 11 { 11 ;

pl.Show();
cout << 11 , 11 ;

p2 .Show();
cout << 11 } 11 ;

void Facet2::Show_Full()
{

cout << 11 { 11 ;

pl.Show Full();
cout <<-", ";
p2.Show Full();
cout <<-11 } 11 << endl;

}

:j/:endif
I* facet3.cc - Facet3 Class Implementation *I

:j/:ifdef _cplusplus

-#:include "facet3.h"

II Operators

Facet3& Facet3::operator=(const Facet3 &rhs)
{

if (this== &rhs) return *this;
pl= rhs.pl;
p2 = rhs.p2;
p3 = rhs.p3;
a= rhs.a;
b = rhs.b;
c = rhs.c;
d = rhs.d;
id= rhs.id;
return *this;

118

int Facet3::sf equal(const Facet3& £2)
{ -

return (((pl == £2 .pl) && (p2 -- £2 .p2)) I I
((pl== f2.p2) && (p2 == £2.pl)));

// '<<' I/0 Stream Operator
ostream& operator<<(ostream& s, Facet3 f)
{

s << "{" << f.pl <<
returns;

// Accessors

II II
I << f.p2 << II II

I << f.p3 << 11 }";

void Facet3::SetFacet(Point3 Pl, Point3 P2, Point3 P3)
{

SetPlane(Pl, P2, P3);

void Facet3::SetID(int ID)
{

id = ID;

int Facet3::GetID()
{

return id;

// Services

void Facet3::Show()
{

cout << 11 { 11 ;

pl.Show();
cout << 11 , 11 ;

p2 .Show();
cout << ", ";
p3 .Show();
cout << 11 }";

void Facet3::Show_Full()
{

cout << 11 { 11 ;

pl.Show Full();
cout <<-11 , ";

p2.Show Full();
cout <<-", ";
p3.Show Full();
cout <<-11 } 11 << endl;

:ff:endif
/* faceti.cc - Facet Index Class*/

119

#ifdef _cplusplus

#include "faceti.h"

// Default Constructor
Facet Index::Facet Index()
{ - -

pl index = 0;
p2-index O;
p3=index = O;

}

// Secondary Constructor
Facet Index::Facet Index(int Plindex, int P2Index, int P3Index)
{ - -

pl index
p2-index =
p3=index =

Plindex;
P2Index;
P3Index;

// Copy Constructor
Facet Index::Facet Index(const Facet Index& fi)
{ - -

pl index
p2-index
p3=index

fi.pl index;
fi.p2-index;
fi.p3=index;

// Default Destructor
Facet Index::~Facet Index()
{ - -

pl index 0;
p2-index = 0;
p3=index = 0;

// '=' Operator
void Facet Index::operator=(const Facet Index& rhs)
{ -

pl index
p2-index
p3=index =

rhs.pl index;
rhs.p2-index;
rhs.p3=index;

// '!=' Operator
int Facet Index::operator!=(const Facet Index& rhs)
{ -

return (! ((pl index== rhs.pl index) &&
(p2-index == rhs.p2-index) &&
(p3=index == rhs.p3=index)));

// '==' Operator
int Facet Index::operator==(const Facet Index& rhs)
{ -

120

return ((pl index
(p2-index
(p3=index

rhs.pl index) &&
rhs.p2-index) &&
rhs . p3= index)) ;

II '<<' IIO Stream Operator
ostream& operator<<(ostream& s, Facet_Index f)
{

s << "{" << f.pl_index <<
"}";

returns;

II Accessors

"," << f.p2_index <<

void Facet Index::SetPlindex(int Plindex)
{ -

pl_index = Plindex;

int Facet Index::GetPlindex()
{ -

return pl_index;

void Facet_Index::SetP2Index(int P2Index)
{

p2_index = P2Index;

int Facet Index::GetP2Index()
{ -

return p2_index;

void Facet_Index::SetP3Index(int P3Index)
{

p3_index = P3Index;

int Facet_Index::GetP3Index()
{

return p3_index;

#endif
I* general. c * I
#include <assert.h>
#include <math.h>

#include "general.h"

II II
I << f.p3_index <<

I* Test if a double valuel is "near" another double value2 */

121

int DEQ (double valuel, double value2)
{

int status;

if (fabs(valuel - value2) >= (double)TOLER)
status= 0;

else
status= 1;

return status;

/* Test if a float valuel is "near" another float value2 */
int FEQ (float valuel, float value2)
{

int status;

if (fabs((double) (valuel - value2)) >= (double)TOLER)
status = 0;

else
status= 1;

return status;

/* Test if a double value is "near" 0.0 */
int DEQO (double value)
{

int status;

if (fabs(value) >= (double)TOLER)
status= 0;

else
status= 1;

return status;

/* Test if a float value is "near" 0.0 */
int FEQO (float value)
{

int status;

if (fabs((double)value) >= (double)TOLER)
status 0;

else
status= 1;

return status;

/* Sign of a value returns: -1 = negative, 1 = positive, 0
zero*/
int sgn (double value)
{

int status;

if (value<= -TOLER)
status= -1;

122

"near"

else if (value>= TOLER)
status = 1;

else
{

assert(DEQ0(value));
status= 0;

return status;

/* Find the determant of a 2x2 matrix*/
double det2(double all, double a12,

double a21, double a22)

double det;
det = all*a22 - a2l*a12;
return det;

/* Find the determant of a 3x3 matrix*/
double det3(double all, double a12, double a13,

double a21, double a22, double a23,
double a31, double a32, double a33)

double det;
det = all*a22*a33 + al2*a23*a31 + a13*a2l*a32 -

al3*a22*a31 - all*a23*a32 - a12*a21*a33;
return det;

void solve(double all, double al2, double a13, double al4,
double a21, double a22, double a23, double a24,
double a31, double a32, double a33, double a34,
double &a, double &b, double &c, double &d)

double old;

// Step 1 - Pivot 1 at All
old all;
all 1.0;
a12 a12/old;
al3 al3/old;
al4 a14/old;

// Step 2 - 0 at A21 & A31
old -a21;
a21 0.0;
a22 (old*a12)+a22;
a23 (old*a13)+a23;
a24 = (old*a14)+a24;
old -a31;
a31 0.0;
a32 (old*a12)+a32;
a33 (old*a13)+a33;
a34 (old*a14)+a34;

// Step 3 - Pivot 1 at A22
old= a22;
a22 = 1.0;

123

a23 = a23lold;
a24 = a24lold;

II Step 4 - 0 at A12 & A32
old= -a12;
a12 = 0.0;
a13 = (old*a23)+a13;
a14 = (old*a24)+al4;
old= -a32;
a32 = 0.0;
a33 = (old*a23)+a33;
a34 = (old*a24)+a34;

II Step 5 - Pivot 1 at A33
old= a33;
a33 = 1.0;
a34 = a34lold;

II Step 6 - 0 at A13 & A23
old= -a13;
a13 == 0.0;
a14 (old*a34)+a14;
old= -a23;
a23 0.0;
a24 = (old*a34)+a24;

d = 1.0; II ???
a a14*d;
b = a24*d;
C = a34*d;

I* Standard Deviation of n doubles *I
double standard deviation(double X[J, int n)
{ -

inti;
double sum;
double Xa;
double sd;

sum = 0. 0;
for (i=O; i<n; i++)

sum= sum+ X[i];
Xa = sum I (double) n;
sum= 0.0;
for (i=0; i<n; i++)

sum= sum+ (X[i] - Xa)*(X[i] - Xa);
sd = sqrt(suml(double) (n-1));

return sd;

I* lineseg2.cc - Line_Segment2 Class Implementation *I

#ifdef _cplusplus

#include <iostream.h>
#include "lineseg2.h"

II Constructors & Destructors

124

Line Segment2::Line Segment2()
{ - -

pl.SetPoint(0.O, 0.0);
p2.SetPoint(0.0, 0.0);

II Default Constructor

Line Segment2::Line Segment2(Point2 Pl, Point2 P2)
Constructor -

II Secondary

{
pl Pl;
p2 = P2;

Line Segment2::Line Segment2(const Line_Segment2& ls)
Constructor -
{

pl ls.pl;
p2 = ls.p2;

Line_Segment2::~Line_Segment2()
{

pl.SetPoint(0.0, 0.0);
p2.SetPoint(0.0, 0.0);

II Operators

II Default Destructor

II Copy

Line Segment2& Line_Segment2::operator=(const Line_Segment2 &rhs)
{ -

if (this== &rhs) return *this;
pl= rhs.pl;
p2 = rhs.p2;
return *this;

II Accessors

void Line Segment2::SetPl(Point2 Pl)
{ -

pl = Pl;

Point2 Line_Segment2::GetPl()
{

return pl;

void Line_Segment2::SetP2(Point2 P2)
{

p2 = P2;

Point2 Line_Segment2::GetP2()
{

125

return p2;

void Line_Segment2::SetSegment(Point2 Pl, Point2 P2)
{

pl Pl;
p2 = P2;

II Services

int Line Segment2::Is On Line Segment(Point2 q)
{ - - -

II*** TBD don't forget about tolerances in this routine***

int status;

II Form boundry box around end points to narrow down possibilities

II Check X boundry
if (((q.GetX() > pl.GetX()) && (q.GetX() > p2.GetX())) I I

((q.GetX() < pl.GetX()) && (q.GetX() < pl.GetX())))

status= 0;

else
{

II Check Y boundry
if (((q.GetY() > pl.GetY()) && (q.GetY() > p2.GetY())) I I

((q.GetY() < pl.GetY()) && (q.GetY() < p2.GetY())))

status= 0;
}
else
{

II It is inside of the boundry box
II*** TBD decide how to find out if it is on the line segment
status= 1;

return status;

void Line_Segment2::Show()
{

cout << "{";
pl.Show Full();
cout <<-", ";
p2.Show Full();
cout <<-"}";

f:endif
I* lineseg3.cc - Line_Segment3 Class Implementation *I

f:ifdef _cplusplus

#include <iostream.h>

126

#include "lineseg3.h"

// Constructors & Destructors

Line Segment3::Line Segment3()
{ - -

pl.SetPoint(0.0, 0.0, 0.0);
p2.SetPoint(0.0, 0.0, 0.0);

// Default Constructor

Line Segment3::Line Segment3(Point3 Pl, Point3 P2) // Secondary
Constructor -
{

pl= Pl;
p2 = P2;

Line Segment3::Line Segment3(const Line_Segment3& ls)
Constructor -
{

pl== ls.pl;
p2 = ls.p2;

Line Segment3::~Line Segment3()
{ - -

pl.SetPoint(0.0, 0.0, 0.0);
p2.SetPoint(0.0, 0.0, 0.0);

// Operators

// Default Destructor

// Copy

Line Segment3& Line_Segment3::operator=(const Line_Segment3 &rhs)
{ -

if (this== &rhs) return *this;
pl= rhs.pl;
p2 = rhs.p2;
return *this;

// Accessors

void Line Segment3::SetPl(Point3 Pl)
{ -

pl= Pl;

Point3 Line_Segment3::GetPl()
{

return pl;

void Line_Segment3::SetP2(Point3 P2)
{

p2 = P2;

127

Point3 Line Segment3::GetP2()
{ -

return p2;

void Line_Segment3::SetSegment(Point3 Pl, Point3 P2)
{

pl Pl;
p2 = P2;

// Services

void Line Segment3::Show()
{ -

cout << "{";
pl.Show Full();
cout <<-", ";
p2.Show Full();
cout <<-"}";

Point3 Line_Segment3::Intersection(Plane& P)
{

Point3 tmp point;
doublet; -
Poly_Class pl_side, p2_side;

pl side= P.Classify Polygon2(pl);
p2=side = P.Classify=Polygon2(p2);

if ((pl_side == COINCIDENT) && (p2_side == COINCIDENT))
{

}

// Line Segment lies inside of plane
// return midpoint of linesegment
tmp_point.SetX((pl.GetX()+p2.GetX())/2.0);
tmp_point.SetY((pl.GetY()+p2.GetY())/2.0);
tmp_point.SetZ((pl.GetZ()+p2.GetZ())/2.0);
cout << "**********" << endl;
cout << "WARNING LineSegment lies in Plane"<< endl;
(*this) • Show() ;
cout << endl;
P. Show Full () ;
cout << "**********" << endl;

else if (pl side== p2 side)
{ - -

// Line Segment lies outside of plane
// return (0,0,0)
tmp_point.SetPoint(0.0, 0.0, 0.0);
cout << "WARNING LineSegment does not intersect Plane"<< endl;

}
else
{

t = - (P.GetA()*p2.GetX() +
P.GetB()*p2.GetY() +
P.GetC()*p2.GetZ() +
P .GetD ()) /

128

(P.GetA()*(pl.GetX() - p2.GetX()) +
P.GetB()*(pl.GetY() - p2.GetY()) +
P.GetC()*(pl.GetZ() - p2.GetZ()));

tmp_:point.SetX(t*pl.GetX() + (l-t)*p2.GetX());
tmp_:point.SetY(t*pl.GetY() + (l-t)*p2.GetY());
tmp_:point.SetZ(t*pl.GetZ() + (l-t)*p2.GetZ());

:fl: if def DEBUG
if (!P.Is_Point_On_Plane(tmp_:point))

cout <<"ERROR Calculated Point is not in Plane!"<< endl;
:fl:endif

}

return tmp_:point;

int Line Segment3::Is On Line Segment(Point3 q)
{ - - - -

I*

int status;
Point3 Vl, V2;
double ml, m2 ;
double n;

II 3 space vectors
II vector magnitude
II vector normal

II Form vectors plp2 and plq
Vl.SetX(p2.GetX() - pl.GetX());
Vl.SetY(p2.GetY() - pl.GetX());
Vl.SetZ(p2.GetZ() - pl.GetZ());
V2.SetX(q.GetX() - pl.GetX());
V2.SetY(q.GetY() - pl.GetY());
V2.SetZ(q.GetZ() - pl.Getz());

II Get Magnitudes of Vectors
ml= pl.Magnitude(p2);
m2 = pl.Magnitude(q);

II Normalize vectors
n = Vl .Norm();
Vl.SetX(Vl.GetX()ln);
Vl.SetY(Vl.GetY()ln);
Vl.SetZ(Vl.GetZ()ln);
n = V2 .Norm();
V2.SetX(V2.GetX()ln);
V2.SetY(V2.GetY()ln);
V2.SetZ(V2.GetZ()ln);

II Test if q is on linesegment plp2
if ((Vl.GetX()==V2.GetX())&&

(Vl.GetY()==V2.GetY())&&
(Vl.GetZ()==V2.GetZ()))

if (m2<=ml)
status=l;

else
status= 0;

int status;
doublet;
double testx, testy, testz;

if (!DEQ0(p2.GetX() - pl.GetX()))
{

II Linesegment is not in the X hyperplane

129

}

// Find a parametric t value
t = (q.GetX() - pl.GetX()) / (p2.GetX() - pl.GetX());

if ((t > 1.0) 11 (t < 0.0))
{

}

// Point is too far left or right of the Linesegment
status= 0;

else
{

testy= pl.GetY() + t*(p2.GetY() - pl.GetY());
testz = pl.GetZ() + t*(p2.GetZ() - pl.GetZ());
if (DEQ(q.GetY(), testy) && DEQ(q.GetZ(), testz))
{

// Point is on the Linesegment
status= 1;

}
else
{

// Point is not on the Linesegment
status= 0;

else if (!DEQ0(p2.GetY() - pl.GetY()))
{

// Linesegment is not in the Y hyperplane

// Find a parametric t value
t = (q.GetY() - pl.GetY()) / (p2.GetY() - pl.GetY());

if ((t > 1.0) 11 (t < 0.0))
{

}

// Point is too far left or right of the Linesegment
status= 0;

else
{

testx = pl.GetX() + t*(p2.GetX() - pl.GetX());
testz = pl.GetZ() + t*(p2.GetZ() - pl.GetZ());
if (DEQ(q.GetX(), testx) && DEQ(q.GetZ(), testz))
{

// Point is on the Linesegment
status= 1;

}
else
{

// Point is not on the Linesegment
status= 0;

else if (!DEQO(p2.GetZ() - pl.GetZ()))
{

// Linesegment is not in the Z hyperplane

// Find a parametric t value
t = (q.GetZ() - pl.GetZ()) / (p2.GetZ() - pl.Getz());

if ((t > 1.0) 11 (t < 0.0))
{

// Point is too far left or right of the Linesegment
status= 0;

130

}
else
{

testy= pl.GetY() + t*(p2.GetY() - pl.GetY());
testx = pl.GetX() + t*(p2.GetX() - pl.GetX());
if (DEQ(q.GetY(), testy) && DEQ(q.GetX(), testx))
{

// Point is on the Linesegment
status= 1;

}
else
{

// Point is not on the Linesegment
status= 0;

}
else
{

// Point is in all three hyperplanes! Must not be a proper
Linesegment !

cerr << "ERROR! Undefined Line Segment!"<< endl;
exit(l);

*I
return status;

fendif
/*list.cc*/

fifdef _cplusplus

#include <iostream.h>
#include <stdio.h>
//fdefine NDEBUG //turnoff assertions
#include <assert.h>
finclude "list.h"

// Default Constructor
template<class T>
List<T>: : List ()
{

head
tail
curytr
num items

(lptr)0;
(lptr)0;
(lptr) 0;
0;

// Copy Constructor
template<class T>
List<T>::List(const List& 1)
{

lptr cur;
lptr lcur;

head
tail
curytr
num items

(lptr)0;
(lptr)0;
(lptr)0;
O;

131

II Copy Contents of List 1 to our List
lcur = l.head;
while (lcur)
{

cur= new list_item;
assert(cur);
cur->data = lcur->data;

needed
if (lcur == l.head)
{

cur->prev = (lptr)0;
head= cur;

list
cur_ptr = head;

}
else
{

}

cur->prev = cur_ptr;
cur_ptr->next = cur;
cur_ptr = cur_ptr->next;

if (lcur == l.tail)
{

cur->next = (lptr)0;
tail= cur;

list

lcur lcur->next;

cur_ptr = head;
num items= l.num_items;

II Default Destructor
template<class T>
List<T>: : -List ()
{

lptr cur;
lptr next;

if (head)
{

cur= head;
while (cur)
{

}

next= cur->next;
delete cur;
cur= next;

head = (lptr)0;
tail = (lptr)0;
cur_ptr = (lptr)0;
num items= 0;

II Overloaded'=' Operator
template<class T>

II Error Out of Memory!
II '=' Operator for class Tis

II Set head to first item in

II Place new item in list

II Set tail to last item in

List<T>& List<T>::operator=(const List &l)

132

lptr cur;
lptr lcur;
lptr next;

if (this== &l) return *this;

// Clear out Current List
if (head)
{

cur= head;
while (cur)
{

next= cur->next;
delete cur;
cur= next;

}
head
tail
cur_ptr =
num items

(lptr) 0;
(lptr)0;
(lptr)0;
= 0;

// Copy Contents of List 1 to ou~ list
lcur = l.head;
while (lcur)
{

cur= new list_item;
assert(cur);
cur->data = lcur->data;

needed
if (lcur == l.head)
{

cur->prev = (lptr)0;
head= cur;
cur_ptr = head;

}
else
{

}

cur->prev = cur_ptr;
cur_ptr->next = cur;
cur_ptr = cur_ptr->next;

if (lcur == l.tail)
{

}

cur->next = (lptr)0;
tail= cur;

lcur = lcur->next;

cur_ptr = head;
num items= l.num items;

return *this;

// Insert Head
template<class T>

// Error Out of Memory!
// '=' Operator for class Tis

// Set head to first item in list

// Place new item in list

// Set tail to last item in list

void List<T>::Insert Head(const T item)
{ -

lptr cur;

133

cur= new list item;
assert(cur); II Error Out of Memory!
cur->data item; II I= I Operator for class T is

needed
cur->prev (lptr)0;
cur->next = (lptr) 0;

if (!head)
{

head cur;
tail cur;
cur_ptr head;

}
else
{

cur->next = head;
head->prev = cur;
head= cur;

}
++num_items;

II Insert Tail
template<class T>
void List<T>::Insert _Tail(const T item)
{

lptr cur;

cur= new list item;
assert(cur); II Error Out of Memory!
cur->data item; II '=' Operator for class T is

needed
cur->prev (lptr)0;
cur->next (lptr) 0;

if (!head)
{

head cur;
tail cur;
cur_ptr head;

}
else
{

cur->prev = tail;
tail->next = cur;
tail= cur;

}
++num_items;

II Insert at pointer
template<class T>
void List<T>::Insert _At_Pointer(const T item)
{

lptr cur;

cur= new list item;
assert(cur); - II Error Out of Memory!
cur->data item; II '=' Operator for class T is

needed
cur->prev (lptr)0;

134

cur->next = (lptr)0;

if (!head)
{

}

head
tail

cur;
= cur;

else if (cur_ptr == head)
{

cur->next = head;
head->prev = cur;
head = cur;

}
else
{

cur->prev
cur->next
cur_ptr->prev

= cur_ptr->prev;
= cur_ptr;

cur _ptr = cur;
++mun_ items;

II Remove Head
template<class T>

cur;

T List<T>::Remove_Head()
{

lptr cur;
T item;

assert(head);
Empty List!

cur= head;
item= cur->data;

needed
if (! cur->next)
{

assert ((head == cur) && (tail
List!?!?!

head
tail
cur_ptr

}
else
{

(lptr) 0;
(lptr) 0;
(lptr)0;

if (cur_ptr == head)

}

cur_ptr cur->next;
head cur->next;
head->prev = (lptr)0;
cur->next = (lptr)0;

--num items;
delete cur;
return item;

I I Remove Tail
template<class T>
T List<T>::Remove_Tail()
{

lptr cur;

135

II cur_ptr is at head

II Error can't Remove from

II '=' Operator for Class Tis

II head is last item in list

cur)); II Error Messed up

T item;

assert(tail);
Empty List!

cur= tail;
item= cur->data;

needed
if (! cur->prev)
{

assert ((head == cur) && (tail
List!?!?!

head
tail
cur_;ptr

= (lptr)0;
= (lptr)0;
= (lptr)0;

}
else
{

}

if (cur_;ptr == tail)
cur_;ptr = cur->prev;

tail = cur->prev;
tail->next = (lptr)0;
cur->prev = (lptr)0;

--num items;
delete cur;
return item;

II Remove At Pointer
template<class T>
T List<T>::Remove_At_Pointer()
{

lptr cur;
T item;

assert(head && tail && cur_;ptr);
Empty List!

cur= cur ptr;
item= cur->data;

needed
if ((!cur->prev) && (!cur->next))
{

II Error can't Remove from

II '=' Operator for Class Tis

II tail is last item in list

-- cur)); II Error Messed up

II Error can't Remove from

II '=' Operator for Class Tis

II cur_;ptr is last item in list

assert ((head == cur) && (tail== cur)); II Error Messed up
List!?!?!

head
tail
cur_;ptr

= (lptr)0;
= (lptr)0;
= (lptr) 0;

}
else if (!cur->prev)
{

}

assert(head == cur);
head = cur->next;
head->prev = (lptr)0;
cur->next = (lptr)0;
cur_;ptr = head;

else if (!cur->next)
{

assert(tail == cur);
tail cur->prev;
tail->next (lptr)0;
cur->prev = (lptr)0;

II cur_;ptr = head

II Error Messed up List!?!?!

II cur_;ptr = tail

II Error Messed up List!?!?!

136

cur_ytr
}
else
{

= tail;

cur->prev->next =
cur->next->prev =

cur->next;
cur->prev;

= cur->prev;
= (lptr)O;

}

cur_ytr
cur->prev
cur->next

--nwn items;
delete cur;
return item;

// Peek Head
template<class T>

= (lptr)O;

T List<T>::Peek Head() const
{ -

assert(head); // Error can't Peek at Empty
List!

return head->data;

// Peek Tail
template<class T>
T List<T>::Peek Tail() const
{ -

assert(tail); // Error can't Peek at Empty
List!

return tail->data;

// Peek at Pointer
template<class T>
T List<T>::Peek_At_Pointer() const
{

assert(cur_ytr); // Error can't Peek at Empty
List!

return cur_ptr->data;

// Is the List Empty?
template<class T>
int List<T>::Is Empty()
{ -

int status;

if (!head)
status= 1;

else
status= O;

return status;

// Nuke the List
template<class T>
void List<T>::Clear()

137

lptr cur;
lptr next;

if (head)
{

cur= head;
while (cur)
{

}

next= cur->next;
delete cur;
cur= next;

head
tail
cur__ptr =
num items

= (lptr)0;
(lptr)0;
(lptr)0;
= 0;

// Reset pointer to head of List
template<class T>
void List<T>::Reset Pointer()
{ -

if (head)
cur__ptr = head;

// Increment Pointer, Returns l=success 0=failure
template<class T>
int List<T>::Increment Pointer()
{ -

int status;

if (cur__ptr)
{

if (cur__ptr->next)
{

}

cur__ptr = cur__ptr->next;
status= 1;

else
status= 0;

}
else

status= 0;

return status;

// Decrement Pointer, Returns l=success 0=failure
template<class T>
int List<T>::Decrement Pointer()
{ -

int status;

if (cur_ptr)
{

if (cur__ptr->prev)
{

138

}

cur__ptr = cur__ptr->prev;
status= 1;

else
status 0;

}
else

status= 0;

return status;

II Show what is in the List
template<class T>
void List<T>::Show()
{

lptr cur;

cout << "L -> ";
if (head)
{

cur= head;
while (cur)
{

if (cur__ptr == cur)
cout << "*";

cout << cur->data <<" ";
needed

cur= cur->next;

cout << endl;
}
else

cout <<"EMPTY"<< endl;

II Is this item a member of the List?
template<class T>
int List<T>::Is Member (canst T item)
{

lptr cur;
int found;

found= 0;
if (head)
{

cur= head;
while (cur && (!found))
{

if (cur->data == item)
needed

found= 1;
cur= cur->next;

return found;

II ios::<< for Class Tis

II '==' Operator for Class Tis

II Find item in the List, status=l is found, status=0 is not found
II Pointer is set to found item

139

template<class T>
int List<T>::Find (const T item)
{

lptr cur;
int found;

found = 0;
if (head)
{

cur= head;
while (cur && (!found))
{

if (cur->data == item)
needed

}

found = 1;
cur_ptr = cur;

cur= cur->next;

return found;

II '==' Operator for Class Tis

II Set cur_ptr to found item

II Find item in the List, status=l is found, status=0 is not found
II Pointer is set to found item
template<class T>
int List<T>::Find2 (const Facet3 item)
{

return 0;

int List<Facet3>::Find2 (const Facet3 item)
{

lptr cur;
int found;

found = 0;
if (head)
{

cur= head;
while (cur && (!found))
{

if (cur->data.sf_equal(item))
{

}

found = 1;
cur_ptr = cur;

cur= cur->next;

return found;

template<class T>
int List<T>::Num Members()
{ -

return num_items;

:f/:endif
140

/* oogl. cc * /

fifdef _cplusplus

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include "oogl.h"
#include "facet3.h"

void Convex Hull 2 OOGL (List<Point3>& p, Convex Hull3& f)
{

£stream fp;
List<Point3> tmpy(p);
Convex Hull3 tmp f(f);
Point3-tmpyoint;
Point3 tmpyointl, tmpyoint2, tmpyoint3;
Facet3 tmp_facet;

fp.open("chull.off", ios: :out);

if(fp.fail() I fp.bad())
{

cerr << "Error opening file chull.off for output."<< endl;
exit(l);

fp <<"OFF"<< endl;
fp << p.Num_Members () << n " << f.Num_Members () << " 0" << endl;

tmpy.Reset Pointer();
while (!tmpy.Is_Empty())
{

tmpyoint = tmpy.Remove_Head();
fp << tmp yo int. GetX () << " " << tmp yo int. GetY () << " ";
fp << tmpyoint.GetZ() << endl;

tmp £.Reset Pointer();
while (!tmp-f. Is Empty())
{ - -

tmp facet= tmp £.Remove Head();
tmpyointl = tmp_facet.GetPl();
tmpyoint2 = tmp_facet.GetP2();
tmpyoint3 = tmp_facet.GetP3();
fp << "3 " << tmpyointl .GetID () - 1 << " ";
fp << tmpyoint2 .Get ID() - 1 << " ";
fp << tmpyoint3.GetID() - 1 << endl;

fp. close () ;

void Triangles_2_00GL (List<Plane>& lp)
{

List<Plane> tmp lp(lp);
fstream fp; -
Plane tmpylane;
Point3 tmpyointl, tmpyoint2, tmpyoint3;

fp.open("triangs.off", ios::out);
141

if(fp.fail() I fp.bad())
{

cerr << "Error opening file triangs.off for output."<< endl;
exit(l);

fp <<"LIST"<< endl;

tmp lp.Reset Pointer();
while (! tmp Ip. Is Empty())
{ - -

tmp__pl~ne = tmp_lp.Remove_Head();
tmp__pointl = tmp__plane.GetPl();
tmp__point2 = tmp__plane.GetP2();
tmp__point3 = tmp__plane.GetP3();
fp <<"{=OFF"<< endl;
fp <<" 3 1 0" << endl;
fp << " " << tmp__pointl.GetX() << " " << tmp__pointl.GetY() << "

II • ,
fp << tmp__pointl.GetZ() << endl;
fp << II "<< tmp__point2.GetX() << II II<< tmp__point2.GetY()

II • ,
fp << tmp__point2.GetZ() << endl;
fp << II " << tmp __point3. GetX () << II 11 << tmp__point3 .GetY ()

II • ,
fp << tmp__point3.GetZ() << endl;
fp << II 3 0 1 2" << endl;
fp << II} II << endl;

fp. close () ;

void BSP Tree w Convex Hulls 2 OOGL (List<Point3>& p, BSP Tree& t)
{

£stream fp;

fp.open("bspchull.off", ios::out);

if(fp.fail() I fp.bad())
{

<< II

<< II

cerr << "Error opening file bspchull.off for output."<< endl;
exit(l);

fp. close () ;

t.OOGL_Output(p);

:ftendif
/*plane.cc*/

:ftifdef _cplusplus

:ftinclude <math.h>
:ftinclude <stdlib.h>
:ftinclude "general.h"
:ftinclude "plane.h"

142

Plane: :Plane()
{

pl.SetPoint(O.O, 0.0, 0.0);
pl. Set ID (-1);
p2.SetPoint(O.O, 0.0, 0.0);
p2.SetID(-l);
p3.SetPoint(O.O, 0.0, 0.0);
p3.SetID(-l);
a= 0.0;
b = 0.0;
c=0.0;
d==0.0;

Plane::Plane(Point3 Pl, Point3 P2, Point3 P3)
{

pl = Pl;
p2 = P2;
p3 = P3;
Calculate_Equation();

Plane::Plane(const Plane &P2)
{

pl = P2 .pl;
p2 = P2.p2;
p3 = P2.p3;
Calculate_Equation();

Plane: : ~Plane()
{

pl.SetPoint(O.O, 0.0, 0.0);
pl. Set ID (-1);
p2.SetPoint(O.O, 0.0, 0.0);
p2. Set ID (-1);
p3.SetPoint(O.O, 0.0, 0.0);
p3. Set ID (-1);
a= 0.0;
b = 0.0;
C = 0.0;
d = 0.0;

Plane& Plane::operator=(const Plane &rhs)
{

if (this== &rhs) return *this;
pl= rhs.pl;
p2 = rhs.p2;
p3 = rhs.p3;
a= rhs.a;
b = rhs.b;
c = rhs.c;
d = rhs.d;
return *this;

143

int Plane::operator==(const Plane& rhs)
{

return (((pl === rhs .pl) && (p2 === rhs .p2)
((pl == rhs .pl) && (p2 === rhs .p3)
((pl == rhs.p2) && (p2 rhs .pl)
((pl == rhs.p2) && (p2 -- rhs.p3)
((pl === rhs.p3) && (p2 == rhs .pl)
((pl === rhs.p3) && (p2 === rhs.p2)

}

int Plane::operator!=(const Plane& rhs)
{

return (! ((*this) == rhs));

ostream& operator<<(ostream& s, Plane p)
{

s << "{" << p.pl <<
returns;

" " ' << p.p2 <<

void Plane::SetPl(Point3 Pl)
{

pl = Pl;
Calculate_Equation();

Point3 Plane::GetPl()
{

return pl;

void Plane::SetP2(Point3 P2)
{

p2 = P2;
Calculate_Equation();

Point3 Plane::GetP2()
{

return p2;

void Plane::SetP3(Point3 P3)
{

p3 = P3;
Calculate_Equation();

Point3 Plane::GetP3()
{

return p3;

144

II II

'

&& (p3 == rhs .p3)) 11
&& (p3 == rhs .p2)) II
&& (p3 rhs .p3)) II
&& (p3 == rhs.pl)) II
&& (p3 === rhs.p2)) II
&& (p3 -- rhs.pl)));

void Plane::SetPlane(Point3 Pl, Point3 P2, Point3 P3)
{

pl= Pl;
p2 = P2;
p3 = P3;
Calculate_Equation();

double Plane: : GetA ()
{

return a;

double Plane::GetB()
{

return b;

double Plane::GetC()
{

return c;

double Plane::GetD()
{

return d;

// Are two planes parallel
int Plane::Is Parallel(Plane &P2)
{ -

return ((a==P2.a)&&(b==P2.b)&&(c==P2.c));

// Are two planes coincident
int Plane::Is Coincident(Plane &P2)
{ -

return ((a==P2.a)&&(b=P2.b)&&(c==P2.c)&&(d==P2.d));

// Distance between Point and Plane?
// pg 832-833, Calculus - One and Several Variables 7th ed, Salas &
Hille
double Plane::Distance(Point3 P)
{

double distance;
double numer;
double denom;

numer = fabs(a*P.GetX() + b*P.GetY() + c*P.GetZ() + d);
denom = sqrt(a*a + b*b + c*c);
distance= numer/denom;

return distance;

145

// Does the Point lie on the Plane?
// pg 824, Calculus - One and Several Variables 7th ed, Salas & Hille
int Plane::Is Point On Plane(Point3 P)
{ - - -

int status;

if (P != pl)
{

if (DEQO(a*(P.GetX()-pl.GetX()) +
b*(P.GetY()-pl.GetY()) +
c*(P.GetZ()-pl.GetZ())))

status= 1;
else

status= 0;
}
else
{

if (DEQO(a*(P.GetX()-p2.GetX()) +
b*(P.GetY()-p2.GetY()) +
c*(P.GetZ()-p2.GetZ())))

status 1;
else

status= 0;

return status;

Poly Class Plane::Classify Polygon(Plane& P2)
{ - -

Poly Class return value;
Poly=Class sl, s2; s3;

sl = (*this) .Classify Polygon2(P2.GetP1());
s2 = (*this) .Classify-Polygon2(P2.GetP2());
s3 = (*this) .Classify=Polygon2(P2.GetP3());

if ((sl == COINCIDENT) && (s2 == COINCIDENT) && (s3 == COINCIDENT))
return value= COINCIDENT;

else if ((sl == IN FRONT OF) && (s2 == IN FRONT OF) && (s3 ==
IN FRONT OF)) - - - -

- return value= IN FRONT OF;
else if ((sl == IN_BACK_OF) && (s2 IN_BACK_OF) && (s3 ==

IN BACK OF))
- return value= IN BACK OF;
else if ((sl == COINCIDENT) && (s2 == IN_FRONT_OF) && (s3 ==

IN FRONT OF))
- return value= IN FRONT OF;
else if ((sl == COINCIDENT) && (s2 == IN_BACK_OF) && (s3 ==

IN BACK OF))
- return value= IN BACK OF;
else if ((s2 == COINCIDENT) && (sl == IN_FRONT_OF) && (s3 -­

IN FRONT OF))
- return value= IN FRONT OF;
else if ((s2 == COINCIDENT) && (sl -- IN_BACK_OF) && (s3 ==

IN BACK OF))
- return value= IN BACK OF;
else if ((s3 == COINCIDENT) && (s2 == IN_FRONT_OF) && (sl

IN FRONT OF))
- return value= IN FRONT OF;
else if ((s3 == COINCIDENT) && (s2 == IN_BACK_OF) && (sl ==

IN_BACK_OF))
146

return value = IN BACK OF;
else if ((sl == COINCIDENT) && (s2 -- COINCIDENT)

IN FRONT OF))
- return value = IN FRONT OF;
else if ((sl == COINCIDENT) && (s2 COINCIDENT)

IN BACK OF))
- return value = IN BACK OF;
else if ((s2 == COINCIDENT) && (s3 == COINCIDENT)

IN FRONT OF))
- return value = IN FRONT OF;
else if ((s2 == COINCIDENT) && (s3 COINCIDENT)

IN BACK OF))
- return value = IN BACK OF;
else if ((sl == COINCIDENT) && (s3 -- COINCIDENT)

IN FRONT OF))
- return value = IN FRONT OF;
else if ((sl == COINCIDENT) && (s3 -- COINCIDENT)

IN BACK OF))
- return value IN_BACK_OF;
else

return value = SPANNING;

return return_value;

Poly Class Plane::Classify Polygon2(Point3 P)
{ - -

Poly Class return value;
double distance; -
double sl;

distance= (*this) .Distance(P);
if (DEQ0(distance))

return value= COINCIDENT;
else -
{

sl = a*P.GetX() + b*P.GetY() + c*P.GetZ() + d;
if (sl > 0.0)

return value= IN FRONT OF;
else if (sl < 0.0) - -

return value= IN BACK OF;
else - -

cout << "ERROR in Classify Polygon 2";

return return_value;

Poly_Class Plane::Classify_Polygon3(Plane &P2)

Poly_Class return_value;

&& (s3

&& (s3

&& (sl

&& (sl

&& (s2

&& (s2

II Since planes are infinite, if the two planes are not

==

==

==

===

==

II parallel then they must be spanning. If the two planes
II are parallel, then they might be coincident.
if ((*this) .Is Parallel(P2))

if ((*this)~Is Coincident(P2))
return value= COINCIDENT;

else -
{

II Check IN FRONT OF or IN BACK OF

147

return_value = (*this) .Classify_Polygon2(P2.pl);
}

else
return_value = SPANNING;

return return_value;

II Angle between 2 planes
double Plane::Angle(Plane &P2)
{

double cosangle;
Point3 ql, q2, q3, q4, vl, v2, v3, cl, c2;

II find common edge and assign to ql and q2.
II q3 is remaining point from calling plane
II q4 is remaining point from plane P2

if ((pl != P2.GetP1()) &&

}

(pl != P2.GetP2()) &&
(pl != P2.GetP3()))

II p2,p3 common
ql = p2;
q2 = p3;
q3 pl;

else if ((p2 != P2.GetPl()) &&
(p2 != P2.GetP2()) &&
(p2 != P2.GetP3()))

II pl,p3 common
ql = pl;
q2 = p3;
q3 = p2;

}
else
{

II pl,p2 common
ql = pl;
q2 = p2;
q3 = p3;

II find remainin point in P2

if ((P2. GetPl () ! = ql) &&
(P2 .GetPl () ! = q2))

II pl not common
q4 = P2 .GetPl ();

}
else if ((P2.GetP2() != ql) &&

(P2.GetP2() != q2))

II p2 not common
q4 = P2 .GetP2 ();

}
else
{

II p3 not common
q4 = P2 .GetP3 ();

148

II find angle between planes
v2 q2 - ql;
vl = q3 - ql;
v3 q4 - ql;
cl= vl.Cross(v2);
c2 = v3.Cross(v2);
cosangle = cl.Dot_Product(c2)l(cl.Norm()*c2.Norm());

return cosangle;

II double norml, norm2;
II Point3 unl, un2;
II double theta;
II

-II norml = 1.0lsqrt(a*a + b*b + c*c);
II norm2 = 1.0lsqrt(P2.a*P2.a + P2.b*P2.b + P2.c*P2.c);
II unl (*this) .Normal();
II un2 = P2.Normal();
II unl unl * norml;
II un2 un2 * norm2;
II theta acos(fabs(unl.Dot Product(un2)));
II removed fabs() because we-want both acute and obtuse angles
II theta= acos(unl.Dot_Product(un2));
II
II return theta;
}

Point3 Plane: :Normal()
{

Point3 n;

n.SetPoint(a,b,c);

return n;

void Plane: : Show ()
{

cout << "{";
pl.Show Full();
cout <<-", ";
p2.Show Full();
cout <<-", ";
p3.Show Full();
cout <<-"}" << endl;

void Plane::Show_Full()
{

cout << "{";
pl.Show Full();
cout <<-", ";
p2.Show Full();
cout <<-", ";
p3.Show Full();
cout <<-"}" << endl;
cout << "Equation (Ax+By+Cz+D=O): (";
cout <<a<<", "<< b << ", "<< c << ", "<< d << ")" << endl;

149

void Plane::Calculate_Equation()
{

double p12i, p12j, p12k;
double p13i, p13j, p13k;
double ni, nj, nk;

II Vector P1P2 = <P2x-Plx, P2y-Ply,
p12i = p2.GetX() - pl.GetX();
p12j = p2.GetY() - pl.GetY();
p12k = p2.GetZ() - pl.GetZ();
II Vector P1P3 = <P3x-Plx, P3y-Ply,
p13i = p3.GetX() - pl.GetX();
p13j = p3.GetY() - pl.GetY();
p13k = p3.GetZ() - pl.GetZ();
II Vector N = (P1P2 X P1P3)
ni = p12j*p13k - p12k*pl3j;
nj = -(p12i*p13k - p12k*p13i);
nk = p12i*p13j - p12j*p13i;
II PlP . (P1P2 X P1P3) = 0
a ni;
b = nj;
c = nk;

II Vector P1P2
II Vector P1P3
II Vector N

P2z-Plz>

P3z-Plz>

d = (pl.GetX()*ni) + (pl.GetY()*nj) + (pl.GetZ()*nk);
II if a is negative, factor out the negative
if (a < 0.0)
{

a -a;
b = -b;
C = -c;
d = -d;

II There are other ways of finding the equation of a plane
II using a co-factor-minors method or using a marticies method.
II Most of the methods leave the D coeficient = 1.0.
II These methods are not accurate enough for this program,
II so I had to resort to using Newell's Method.
II Newell's Method is described in the book Graphics Gems III,
II David Kirk, Academic Press, 1991, pp 231-232 & 517-518.

//Newells_Method();

void Plane::Newells_Method()
{

Point3 normal;
Point3 refpt;
Point3 u;
Point3 v;
double len;

II compute the polygon normal and a reference point on the plane
II unrolled for loop because this program is class based, not array

based
u = pl;
V = p2;
normal.SetX((u.GetY()
normal.SetY((u.GetZ()
normal. Setz ((u.GetX ()

- v.GetY()) *
- v. Getz O) *
- v.GetX()) *

150

(u.GetZ () + v.Getz ()));
(u.GetX() + v.GetX()));
(u.GetY() + v.GetY()));

refpt.SetX(u.GetX());
refpt.SetY(u.GetY());
refpt.SetZ(u.GetZ());
u = p2;
V = p3;
normal.SetX(normal.GetX() + (u.GetY() - v.GetY()) * (u.GetZ() +

v.GetZ ()));
normal.SetY(normal.GetY() + (u.GetZ() - v.GetZ()) * (u.GetX() +

v. GetX ())) ;
normal.SetZ(normal.GetZ() + (u.GetX() - v.GetX()) * (u.GetY() +

v. GetY ())) ;
refpt.SetX(refpt.GetX() + u.GetX());
refpt.SetY(refpt.GetY() + u.GetY());
refpt.SetZ(refpt.GetZ() + u.GetZ());
u = p3;
v = pl;
normal.SetX(normal.GetX() + (u.GetY() - v.GetY()) * (u.GetZ() +

v.GetZ ()));
normal.SetY(normal.GetY() + (u.GetZ() - v.GetZ()) * (u.GetX() +

v.GetX ()));
normal.SetZ(normal.GetZ() + (u.GetX() - v.GetX()) * (u.GetY() +

v. GetY ())) ;
refpt.SetX(refpt.GetX() + u.GetX());
refpt.SetY(refpt.GetY() + u.GetY());
refpt.SetZ(refpt.GetZ() + u.GetZ());

// normalize the polygon normal to obtain the first 3 plane
coefficients

len = normal.Norm();
if (!DEQ0 (len))
{

a normal. GetX ()
b = normal. GetY ()
C = normal. Getz ()

}
else
{

a = 0.0;
b = 0.0;
C = 0.0;

}

I len;
I len;
I len;

// compute the last coefficient of the plane equation
l.en = l.en * 3.0;
if (!DEQ0 (len))

d = -refpt.Dot_Product(normal) / len;
else

d = 0.0;

:/tendif
/* point2.cc - Point2 Class Implementation*/

:/tifdef _cplusplus

:/tinclude <math.h>
:/tinclude "point2.h"

// Constructors & Destructors

Point2::Point2()
{

// Default Constructor

151

X 0.0;
y = 0.0;
id= -1;

Point2::Point2(double X, double Y)
{

X = X;
y = Y;
id= -1;

Point2::Point2(const Point2& p)
{

X = p.x;
y = p.y;
id= p.id;

// Secondary Constructor

// Copy Constructor

Point2::~Point2()
{

// Default Destructor

X = 0.0;
y = 0.0;
id= -1;

// Operators

Point2& Point2::operator=(const Point2& rhs)
{

if (this==&rhs) return *this;
x rhs.x;
y = rhs.y;
id= rhs.id;
return *this;

int Point2::operator==(const Point2 &rhs)
{

return ((x == rhs.x) &&
(y == rhs.y));

int Point2::operator!=(const Point2 &rhs)
{

return (! ((x == rhs.x) &&
(y == rhs.y)));

ostream& operator<<(ostream& s, Point2 p)
{

s << p.id;
returns;

152

// Accessors

void Point2::SetX(double X)
{

X = X;

double Point2::GetX()
{

return x;

void Point2::SetY(double Y)
{

y = Y;

double Point2::GetY()
{

return y;

void Point2::SetID(int ID)
{

id= ID;

int Point2::GetID()
{

return id;

void Point2::SetPoint(double X, double Y)
{

X = X;
y = Y;
id= -1;

// Services

// Distance Between Two Points
double Point2::Distance(const Point2& p2)
{

return sqrt((p2.x-x)*(p2.x-x) +
(p2.y-y)*(p2.y-y));

void Point2::Show_Full()
{

cout << "(" << x << "," << y << ")";

void Point2::Show()
153

cout << id;

:ff:endif
/* point3.cc - Point3 Class Implementation*/

:ff:ifdef _cplusplus

finclude <math.h>

:ftinclude "point3.h"
:#:include "general.h"

// Constructors & Destructors

Point3: :Point3 ()
{

X = 0.0;
y 0.0;
z 0.0;
id = -1;

// Default Constructor

Point3::Point3(double X, double Y, double Z)
{

X = X;
y Y;
z = Z;
id -1;

// Secondary Constructor

Point3::Point3(const Point3& p)
{

// Copy Constructor

X p.x;
y = p.y;
z = p. z;
id p.id;

Point3::~Point3()
{

// Default Destructor

X 0.0;
y 0.0;
z 0.0;
id -1;

// Operators

Point3& Point3::operator=(const Point3& rhs)
{

if (this== &rhs) return *this;
x rhs.x;
y = rhs.y;
z = rhs.z;
id= rhs.id;
return *this;

154

int Point3::operator==(const Point3 &rhs)
{

return ((x
(y
(z

rhs.x) &&
rhs.y) &&
rhs.z));

int Point3::operator!=(const Point3 &rhs)
{

return (! ((x
(y
(z

rhs.x) &&
rhs.y) &&
rhs. z))) ;

Point3 operator-(const Point3& lhs, canst Point3& rhs)
{

Point3 temp_yoint;

temp_yoint.x
temp_yoint.y
temp point.z
tempyoint.id

lhs.x - rhs.x;
lhs.y - rhs.y;

= lhs.z - rhs.z;
-1;

return temp_yoint;

Point3 operator+(const Point3& lhs, canst Point3& rhs)
{

Point3 temp_yoint;

temp point.x lhs.x + rhs.x;
temp-point.y lhs.y + rhs.y;
temp-point.z lhs.z + rhs.z;
temp=point.id -1;

return temp_yoint;

Point3 operator*(const Point3& lhs, canst double rhs)
{

Point3 temp_yoint;

temp_yoint.x
temp point.y
tempyoint.z
temp_yoint.id

lhs.x * rhs;
lhs.y * rhs;
lhs.z * rhs;
-1;

return temp_yoint;

ostream& operator<<(ostream& s, Point3 p)
{

s << p.id;
returns;

155

// Accessors

void Point3::SetX(double X)
{

X = X;

double Point3::GetX()
{

return x;

void Point3::SetY(double Y)
{

y = Y;

double Point3::GetY()
{

return y;

void Point3::SetZ(double Z)
{

z = Z;

double Point3::GetZ()
{

return z;

void Point3::SetID(int ID)
{

id= ID;

int Point3::GetID()
{

return id;

void Point3::SetPoint(double X, double Y, double Z)
{

X = X;
y = Y;
z = Z;
id= -1;

// Services

156

II Distance Between Two Points
double Point3::Distance(const Point3& p2)
{

return sqrt((p2.x-x)*(p2.x-x) + (p2.y-y)*(p2.y-y) + (p2.z-z)*(p2.z­
z));
}

II Dot Product Between Two Points
double Point3::Dot_Product(const Point3& p2)
{

return x*p2.x + y*p2.y + z*p2.z;

I I Normalized Point I Ip I I
double Point3: :Norm()
{

return sqrt(x*x + y*y + z*z);

II Vector Magnitude
double Point3::Magnitude(const Point3& p2)
{

return sqrt((p2.x-x)*(p2.x-x) + (p2.y-y)*(p2.y-y) + (p2.z-z)*(p2.z­
z));
}

II Cross Product Between Two Points
Point3 Point3::Cross(Point3& b)
{

Point3 c;

c.SetX(y*b.GetZ() - z*b.GetY());
c.SetY(z*b.GetX() - x*b.GetZ());
c.SetZ(x*b.GetY() - y*b.GetX());

return c;

II Rho Calculation used in Giftwrapping
double Point3::Rho(Point3& a, Point3& n, canst Point3& p2)
{

double numer, denom;
Point3 diff;

diff = p2 - (*this);
numer = -a.Dot Product(diff);
denom = n.Dot Product(diff);
if (DEQ0 (denom))
{

if (numer < 0.0)
return -MAX_DOUBLE;

else
return MAX_DOUBLE;

else
return (numerldenom);

157

// Compute New N Calculation used in Giftwrapping
Point3 Point3::Compute New N(const double max rho, Point3& a)
{ - - -

double S;
Point3 temp__pointl, temp__point2;

temp__pointl = ((*this) * max rho) + a;
S = (double)l.0 / temp__pointl.Norm();
if (a.Dot_Product(temp__pointl) < 0.0)

S = -S;
temp__point2 = temp__pointl * S;
return temp__point2;

Point3 Point3::Compute New A(const Point3& n, const Point3& pl, const
Point3& p2) - -
{

Point3 temp__pointl, temp__point2;
double S;
double a2, a3;

a3 = -(p2.x - pl.x) / (p2.y - pl.y);
a2 = -n.x / n.y;
temp__pointl.SetPoint(l.0, a2, a3);

S = (double)l.0 / temp__pointl.Norm();
if ((*this) .Dot_Product(temp__pointl) < 0.0)

S = -S;
temp__point2 = temp__pointl * S;
return temp__point2;

void Point3::Show_Full()
{

cout << "(" << x <<

void Point3::Show()
{

cout << id;

:/tendif

II II , << y << II II , << z << ")";

/* subfacet2.cc - SubFacet2 Class Implementation*/

#ifdef _cplusplus

#include "subfacet2.h"

// Operators

int SubFacet2::operator==(const SubFacet2 &rhs)
{

return ((x == rhs.x)&&(y == rhs.y));

// Accessors
158

void SubFacet2::SetSubFacet(Point2 Pl)
{

x = Pl.GetX();
y = Pl.GetY ();
id = Pl. Get ID() ;

=1/:endif
I* subfacet3.cc - SubFacet3 Class Implementation *I

#ifdef _cplusplus

#include "subfacet3.h"

II Operators

int SubFacet3::operator==(const SubFacet3 &rhs)
{

return (((pl rhs.pl) && (p2 == rhs.p2)) I I
((pl== rhs.p2) && (p2 == rhs.pl)));

II Accessors

void SubFacet3::SetSubFacet(Point3 Pl, Point3 P2)
{

pl= Pl;
p2 = P2;

#endif
I* test_ctz.cc *I

#ifdef _cplusplus

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#include "point3.h"
#include "list.h"
#include "plane.h"
#include "ctz.h"
#include "template.h"

main()
{

fstream points file;
fstream triangles file;
List<Point3> point list;
List<Plane> triangle list;
int n, m; -
Point3 a_point;
Plane a_plane;
Point3 plane points[3];
float p [3]; -
float d[9];

159

II file handle
II file handle
II List of points
II List of triangles

cout << "Reading Data Files ... "<< endl;

cout <<" reading points"<< endl;
points file.open("points.dat", ios::in);
if (poTnts file.fail() !points file.bad())
{ - -

cout << 11

exit(l);
ERROR Reading points file"<< endl;

n = 0;
while (!points file.eof())
{ -

points_file >> p[0] >> p[l] >> p[2];

II there is an aparent bug in many C++ implementations that
II does not catch eof properly when reading multiple things
II on a line, this line is a work around for that bug
if ((p[0] == 0.0) && (p[l] == 0.0) && (p[2] == 0.0))

break;

n++;
a_yoint. SetPoint ((double) p [OJ, (double) p [1], (double) p [2]);
a_yoint.SetID(n);
point_list.Insert_Tail(a_yoint);

:/1:ifdef DEBUG
cout <<" "<< n << "· ";
a_yoint.Show_Full();
cout << endl;

:/1:endif
}
points file.close();

:/1:ifdef DEBUG
cout <<"

:/1:endif
"<< n <<"points read"<< endl;

cout <<" reading triangles"<< endl;
triangles file.open("triangle.dat", ios::in);
if (points_file.fail() ltriangles_file.bad())
{

cout << 11

exit(l);
ERROR reading triangles file"<< endl;

m=0;
while (!triangles file.eof())
{ -

triangles file>> d[0] >> d[l] >> d[2] >> d[3] >> d[4] >> d[S] >>
d[6] >> d[7] >>-d[8];

II there is an aparent bug in many C++ implementations that
II does not catch eof properly when reading multiple things
II on a line, this line is a work around for that bug
if ((d[0] 0.0) && (d[l] 0.0) && (d[2] 0.0) &&

(d[3] -- 0.0) && (d[4] 0.0) && (d[S] == 0.0) &&
(d[6] == 0.0) && (d[7] == 0.0) && (d[8] == 0.0))

break;

plane _yoints [0] . Set Point ((double) d [0] , (double) d [1] ,
(double)d[2]);

plane_yoints[l] .SetPoint((double)d[3), (double)d[4],
(double)d[S]);

plane_yoints [2] . SetPoint ((double) d [6], (double) d [7],
(double)d[8]);

160

a_ylane.SetPlane(plane points[0], plane_yoints[l],
plane_yoints[2]); -

triangle_list.Insert_Tail(a_ylane);
m++;

#ifdef DEBUG
cout <<" "<< m << " . " . ,

#endif
}

a_ylane.Show_Full();
cout << endl;

triangles file.close();
#ifdef DEBUG-

cout <<"
#endif

"<< m <<"triangles read"<< endl;

cout << "Running Constrained Tetrahedrizations Code"<< endl;
Constrain(point list, triangle list);
cout << "done."-<< endl; -

#endif
/* test_del.cc - Test Delaunay Triangulation*/

#ifdef _cplusplus

#include <iostream.h>
#include "point3.h"
#include "facet3.h"
#include "chsplit.h"
#include "template.h"

main()
{

Point3 pl, p2, p3, p4;
Facet3 fl, f2;
Facet3 test fl, test f2;
int passed_testl, passed_test2;

pl.SetPoint(2.0, 0.0, 1.0);
p2.SetPoint(l.0, 1.0, 2.0);
p3.SetPoint(3.0, 3.0, 1.0);
p4.SetPoint(l.0, 20.0, 1.0);
cout <<"pl=";
pl.Show Full();
cout <<-endl;
cout << "p2 = ";
p2 . Show Full () ;
cout <<-endl;
cout << "p3 = ";
p3.Show Full();
cout <<-endl;
cout << "p4 = ";
p4.Show Full();
cout <<-endl;

cout << "Testing Delaunay Triangulation Code"<< endl;
Delaunay Triangulate (pl, p2, p3, p4, fl, f2);
cout << "Facet fl=";
fl.Show Full();
cout <<-"Facet f2 = ";
f2.Show_Full();

test_fl.SetFacet(pl, p2, p3);

161

if (fl== test fl)
passed testl = 1;

else -
passed_testl = 0;

p3.SetPoint(20.0, 3.0, 1.0);
p4.SetPoint(l.0, 4.0, 1.0);
cout << endl;
cout <<"pl=";
pl.Show Full();
cout <<-endl;
cout << "p2 = ";
p2.Show Full();
cout <<-endl;
cout << "p3 = ";
p3.Show Full();
cout <<-endl;
cout << "p4 = ";
p4.Show Full();
cout <<-endl;

cout << "Testing Delaunay Triangulation Code"<< endl;
Delaunay Triangulate (pl, p2, p3, p4, fl, f2);
cout << "Facet fl ";
fl. Show Full();
cout <<-"Facet f2 = ";
f2.Show_Full();

test f2.SetFacet(pl, p2, p4);
if (fl== test f2)

passed test2 1;
else -

passed_test2 = 0;

cout << endl;
if (passed testl && passed test2)

cout <<-"Passed Delaunay Triangulation Test"<< endl;
else

cout << "Failed Delaunay Triangulation Test"<< endl;

:/1:endif
/* test_lis.cc - Test List Class*/

#include "list.h"
#include "template.h"

int main()
{

List<int> Ll;
List<int> L2;
int a;

Ll.Insert At Pointer(4);
Ll.Insert-Tail(S);
Ll.Insert-Head(3);
L2 = Ll; -
LI.Insert Tail(6);
L2.Remove-Tail();
Ll.Show();
L2 .Show();

return 0;
162

}
finclude <iostream.h>
#include "point2.h"
#include "template.h"

int main()
{

}

Point2 a, b, c;
Point2 temp;

a.SetX(5.6);
b . SetX (6 . 5) ;
c . SetX (7 • 5) ;
a • Show Full () ;
b.Show-Full();
c.Show-Full ();
cout << endl;
temp= a;
a= b;
b = temp;
a. Show Full () ;
b. Show-Full() ;
c.Show-Full();
cout << endl;

return 0;

finclude <iostream.h>
finclude "general.h"
#include "point3.h"
#include "plane.h"
#include "template.h"

int main()
{

Point3 pl, p2, p3;
Plane Pl;
Plane P2;
double angle;

// Set-Up Plane
pl.SetPoint(0.O, 1.0, 1.0);
p2.SetPoint(l.0, 1.0, 2.0);
p3.SetPoint(-1.0, 2.0, -2.0);
Pl.SetPlane(pl,p2,p3);

// See What Final Plane Looks Like
Pl.Show_Full();

// Check Final Outputs
if (!DEQ(Pl.GetA(),1.0))

cout << "Error A should be 1.0 but it is " << Pl.GetA() << endl;
else

cout << "A is correct"<< endl;
if (!DEQ(Pl.GetB(),-2.0))

cout << "Error B should be -2. 0 but it is " << Pl.GetB () << endl;
else

cout <<"Bis correct"<< endl;
if (!DEQ(Pl.GetC(),-1.0))

cout << "Error C should be -1.0 but it is " << Pl.GetC() << endl;
else

cout << "C is correct"<< endl;
if (!DEQ(Pl.GetD(),3.0))

163

cout << "Error D should be 3. 0 but it is " << Pl.GetD () << endl;
else

cout <<"Dis correct"<< endl;

// Set-Up Plane
pl.SetPoint(0.0, 1.0, 1.0);
p2.SetPoint(l.0, 0.0, 1.0);
p3.SetPoint(l.0, 1.0, 0.0);
P2.SetPlane(pl,p2,p3);

// See What Final Plane Looks Like
P2.Show_Full();

// Check Final Outputs
if (!DEQ(P2.GetA(),1.0))

cout << "Error A should be 1.0 but it is " << P2.GetA() << endl;
else

cout << "A is correct"<< endl;
if (!DEQ(P2.GetB(),1.0))

cout << "Error B should be 1. 0 but it is " << P2. GetB () << endl;
else

cout <<"Bis correct"<< endl;
if (!DEQ(P2.GetC(),1.0))

cout << "Error C should be 1. 0 but it is " << P2 .GetC () << endl;
else

cout << "C is correct"<< endl;
if (!DEQ(P2.GetD(),-2.0))

cout << "Error D should be -2.0 but it is"<< P2.GetD() << endl;
else

cout <<"Dis correct"<< endl;

// Test Angle Between Planes
angle= Pl.Angle(P2);
cout << "Angle between Pl & P2: 11 <<angle<< endl;
if (!DEQ(angle,1.079913648))

cout << "Error angle should be 1.079913648 but it is 11 << angle
<< endl;

else
cout << "Angle is correct"<< endl;

pl.SetPoint(l.0, 0.0, 2.0);
p2.SetPoint(-1.0, 3.0, 4.0);
p3.SetPoint(3.0, 5.0, 7.0);
Pl.SetPlane(pl,p2,p3);
Pl. Show_Full ();

pl.SetPoint(2.0, 1.0, 3.0);
p2.SetPoint(l.0, 3.0, 2.0);
p3.SetPoint(-1.0, 2.0, 4.0);
Pl.SetPlane(pl,p2,p3);
Pl. Show_Full ();

cout << endl << endl << endl;

pl.SetPoint(0.689413, 0.511246, 0.373577);
p2.SetPoint(0.742424, 0.623402, 0.398663);
p3.SetPoint(0.127354, 0.371654, 0.908200);
Pl.SetPlane(pl,p2,p3);
Pl.Show_Full();

pl.SetPoint(0.691275, 0.866268, 0.560930);
p2.SetPoint(0.305307, 0.982208, 0.574786);
p3.SetPoint(0.494217, 0.909940, 0.644063);

164

}

P2.SetPlane(pl,p2,p3);
P2.Show_Full();

return 0;

finclude <iostream.h>
finclude <fstream.h>
finclude <string.h>
finclude <stdlib.h>

int main()
{

fstream fp in;
fstream fp-out;
int set count= 0;
char line[80 + 1];

fp in.open("bspchull.off", ios::in);
fp-in.getline(line,80); // burn off "LIST" line from .OFF file
whTle(fp in.getline(line,80))
{ -

cout <<line<< endl;
if (line[O] == '{')
{

char fname[80];
set count++;
strcpy(fname, "hull ff.off");
switch(set count) -
{ -

case 1: fname [5] = '0'; fname [6]
case 2: fname[5] = IO I; fname [6]
case 3: fname [5] = '0'; fname[6]
case 4: fname [5] = '0'; fname[6]
case 5: fname[5] = IO I; fname [6]
case 6: fname[5] = IO I; fname [6]
case 7: fname [5] = '0'; fname[6]
case 8: fname[5] = '0'; fname [6]
case 9: fname[5] = '0'; fname[6]
default:

=
=
=
=
=
=

=

cout << "ERROR, need more cases
exit(-1);

}
fp out.open(fname, ios::out);
fp=out <<"LIST"<< endl;

}

}
fp out<< line<< endl;
if-(line[0] == '}')
{

fp_out.close();

fp_in.close ();

return 0;

fmakefile.djg
CC = gee
CFLAGS = -£no-implicit-templates -c -g -DDEBUG
fCFLAGS = -fno-implicit-templates -c
ARFLAGS = -r
CLFLAGS -£-no-implicit-templates -g -L.

165

'1'; break;
I 2 I; break;
I 3 I; break;
'4'; break;
I 5 I; break;
I 6 I; break;
I 7 I; break;
I 8 I; break;
I 9 I; break;

in switch()!" << endl;

#CLFLAGS = -£-no-implicit-templates -L.

OBJS = general.o point2.o point3.o plane.o lineseg.o\
subfacet.o facet.o list.o

OBJS2 = chull.o bsp_tree.o chsplit.o oogl.o ctz.o faceti.o

all: libctz.a test_ctz test_del test_lis test_pla

test_pla: test_pla.o libctz.a
gxx $(CLFLAGS) -o test_pla test_pla.o -lctz -lm

test_pla.o: template.h point3.h plane.h general.h test_pla.cc
$(CC) $(CFLAGS) test_pla.cc

test lis: test lis.o libctz.a
- gxx $(CLFLAGS) -o test_lis test_lis.o -lctz -lm

test lis.o: template.h list.h test lis.cc
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a
- gxx $(CLFLAGS) -o test_ctz test_ctz.o -lctz -lm

test ctz.o: template.h point3.h plane.h list.h ctz.h test ctz.cc
- $(CC) $(CFLAGS) test_ctz.cc

test del: test del.o libctz.a
- gxx $(CLFLAGS) -o test_del test_del.o -lctz -lm

test del.o: template.h point3.h facet.h chsplit.h test del.cc
- $(CC) $(CFLAGS) test_del.cc

libctz.a: $(0BJS) $(0BJS2)
ar $(ARFLAGS) libctz.a $(0BJS)
ar $(ARFLAGS) libctz.a $(0BJS2)
ranlib libctz.a
del libctz.lis
run --print-armap libctz.a > libctz.lis

ctz.o: list.h point3.h plane.h ctz.h bsp_tree.h chull.h oogl.h ctz.cc
$(CC) $(CFLAGS) ctz.cc

faceti.o: faceti.h faceti.cc
$(CC) $(CFLAGS) faceti.cc

oogl.o: list.h point3.h chull.h plane.h bsp_tree.h oogl.h\
facet.h oogl.cc

$(CC) $(CFLAGS) oogl.cc

chsplit.o: point3.h facet.h plane.h list.h chull.h chsplit.h\
lineseg.h faceti.h chsplit.cc

$(CC) $(CFLAGS) chsplit.cc

bsp tree.o: plane.h point3.h list.h chull.h bsp_tree.h\
facet.h chsplit.h bsp tree.cc

$(CC) $(CFLAGS) bsp_tree.cc

chull.o: list.h facet.h point3.h chull.h subfacet.h general.h\
plane.h chull.cc

$(CC) $(CFLAGS) chull.cc

list.o: facet.h list.h list.cc
166

$(CC) $(CFLAGS) list.cc

subfacet.o: lineseg.h point3.h subfacet.h subfacet.cc
$(CC) $(CFLAGS) subfacet.cc

facet.o: plane.h point3.h facet.h facet.cc
$(CC) $(CFLAGS) facet.cc

lineseg.o: point3.h plane.h lineseg.h general.h
$(CC) $(CFLAGS) lineseg.cc

plane.o: point3.h general.h plane.h plane.cc
$(CC) $(CFLAGS) plane.cc

point2.o: point2.h point2.cc
$(CC) $(CFLAGS) point2.cc

point3.o: point3.h general.h point3.cc
$(CC) $(CFLAGS) point3.cc

general.o: general.h general.cc

clean:

$(CC) $(CFLAGS) general.cc

del test ctz
del test-ctz.exe
del test-de!
del test-del.exe
del test-lis
del test-lis.exe
del libctz.a
del libctz.lis
del * .o

:#=makefile.sol
cc = cc
CFLAGS = -c -g -DDEBUG
:ff:CFLAGS = -c
ARFLAGS = -xar
CLFLAGS = -g -L
:ff:CLFLAGS = -L.

OBJS = general.o point2.o point3.o plane.o lineseg.o\
subfacet.o facet.o list.o

OBJS2 = chull.o bsp_tree.o chsplit.o oogl.o ctz.o faceti.o

all: libctz.a test_ctz test_del test_lis test_pla

test_pla: test_pla.o libctz.a
$(CC) $(CLFLAGS) -o test_pla test__pla.o -lctz -lm

test_pla.o: template.h point3.h plane.h general.h test_pla.cc
$(CC) $(CFLAGS) test_pla.cc

test lis: test lis.o libctz.a
- $(CC) $(CLFLAGS) -o test_lis test lis.o -lctz -lm

test lis.o: template.h list.h test !is.cc
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a
167

$(CC) $(CLFLAGS) -a test_ctz test_ctz.a -lctz -lm

test ctz.a: template.h paint3.h plane.h list.h ctz.h test ctz.cc
- $(CC) $(CFLAGS) test_ctz.cc

test del: test del.a libctz.a
- $(CC) $(CLFLAGS) -a test_del test del.a -lctz -lm

test del.a: template.h paint3.h facet.h chsplit.h test del.cc
- $(CC) $(CFLAGS) test_del.cc

libctz.a: $(0BJS) $(0BJS2)
$(CC) $(ARFLAGS) -a libctz.a $(0BJS) $(0BJS2)
rm -rf libctz.lis
nm libctz.a > libctz.lis

ctz.a: list.h paint3.h plane.h ctz.h bsp_tree.h chull.h aagl.h ctz.cc
$(CC) $(CFLAGS) ctz.cc

faceti.a: faceti.h faceti.cc
$(CC) $(CFLAGS) faceti.cc

aagl.a: list.h paint3.h chull.h plane.h bsp_tree.h aagl.h\
facet.h aagl.cc

$(CC) $(CFLAGS) aagl.cc

chsplit.a: paint3.h facet.h plane.h list.h chull.h chsplit.h\
lineseg.h faceti.h chsplit.cc

$(CC) $(CFLAGS) chsplit.cc

bsp tree.a: plane.h paint3.h list.h chull.h bsp_tree.h\
facet.h chsplit.h bsp tree.cc

$(CC) $(CFLAGS) bsp_tree.cc

chull.a: list.h facet.h paint3.h chull.h subfacet.h general.h\
plane.h chull.cc

$(CC) $(CFLAGS) chull.cc

list.a: facet.h list.h list.cc
$(CC) $(CFLAGS) list.cc

subfacet.a: lineseg.h paint3.h subfacet.h subfacet.cc
$(CC) $(CFLAGS) subfacet.cc

facet.a: plane.h paint3.h facet.h facet.cc
$(CC) $(CFLAGS) facet.cc

lineseg.a: paint3.h plane.h lineseg.h general.h lineseg.cc
$(CC) $(CFLAGS) lineseg.cc

plane.a: paint3.h general.h plane.h plane.cc
$(CC) $(CFLAGS) plane.cc

paint2.a: paint2.h paint2.cc
$(CC) $(CFLAGS) paint2.cc

paint3.a: paint3.h general.h paint3.cc
$(CC) $(CFLAGS) paint3.cc

general.a: general.h general.cc
$(CC) $(CFLAGS) general.cc

clean:
168

rm -rf test ctz test_del test_lis test_yla
rm -rf libctz.a libctz.lis *.o Templates.DB core

t makefile.linux
cc = g++
CFLAGS = -£no-implicit-templates -c -g -DDEBUG
#CFLAGS = -£no-implicit-templates -c
ARFLAGS = -r
CLFLAGS = -L.
#CLFLAGS = -£-no-implicit-templates -L.

OBJS = general.a plane.o list.o bsp tree.o\
chsplit.o oogl.o ctz.o faceti.o -

OBJS3 = point3.o lineseg3.o subfacet3.o facet3.o chull3.o

OBJS2 = point2.o lineseg2.o subfacet2.o facet2.o chull2.o

all: libctz.a test_ctz test_del test_lis test_yla test_y2

test_y2: test_y2.o libctz.a
$(CC) $(CLFLAGS) -o test_y2 test_y2.cc -lctz -lm

test_y2.o: point2.h test_y2.cc
$(CC) $(CFLAGS) test_y2.cc

test_yla: test_yla.o libctz.a
$(CC) $(CLFLAGS) -o test_yla test_yla.cc -lctz -lm

test_yla.o: template.h point3.h plane.h general.h test_yla.cc
$(CC) $(CFLAGS) test_yla.cc

test lis: test lis.o libctz.a
- $(CC) $(CLFLAGS) -o test_lis test !is.cc -lctz -lm

test lis.o: template.h list.h test !is.cc
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a
- $(CC) $(CLFLAGS) -o test_ctz test_ctz.cc -lctz -lm

test ctz.o: template.h point3.h plane.h list.h ctz.h test ctz.cc
- $(CC) $(CFLAGS) test_ctz.cc

test del: test del.o libctz.a
- $(CC) $(CLFLAGS) -o test_del test del.cc -lctz -lm

test del.o: template.h point3.h facet3.h chsplit.h test del.cc
- $(CC) $(CFLAGS) test_del.cc

libctz.a: $(0BJS) $(0BJS2) $(0BJS3)
ar $(ARFLAGS) libctz.a $(0BJS)
ar $(ARFLAGS) libctz.a $(0BJS2)
ar $(ARFLAGS) libctz.a $(0BJS3)
ranlib libctz.a
rm -rf libctz.lis
nm --print-armap libctz.a > libctz.lis

ctz.o: list.h point3.h plane.h ctz.h bsp_tree.h chull3.h oogl.h ctz.cc
$(CC) $(CFLAGS) ctz.cc

faceti.o: faceti.h faceti.cc
169

$(CC) $(CFLAGS) faceti.cc

oogl.o: list.h point3.h chull3.h plane.h bsp_tree.h oogl.h\
facet3.h oogl.cc

$(CC) $(CFLAGS) oogl.cc

chsplit.o: point3.h point2.h facet3.h plane.h list.h chull3.h
chsplit.h\
lineseg3.h faceti.h chsplit.cc general.h

$(CC) $(CFLAGS) chsplit.cc

bsp tree.o: plane.h point3.h list.h chull3.h bsp_tree.h\
facet3.h chsplit.h bsp tree.cc

$(CC) $(CFLAGS) bsp_tree.cc

chull3.o: list.h facet3.h point3.h chull3.h subfacet3.h general.h\
plane.h chull3.cc

$(CC) $(CFLAGS) chull3.cc

chull2.o: list.h facet2.h point2.h chull2.h subfacet2.h general.h\
chull2.cc

$(CC) $(CFLAGS) chull2.cc

list.o: facet3.h list.h list.cc
$(CC) $(CFLAGS) list.cc

subfacet3.o: lineseg3.h point3.h subfacet3.h subfacet3.cc
$(CC) $(CFLAGS) subfacet3.cc

subfacet2.o: point2.h subfacet2.h subfacet2.cc
$(CC) $(CFLAGS) subfacet2.cc

facet3.o: plane.h point3.h facet3.h facet3.cc
$(CC) $(CFLAGS) facet3.cc

facet2.o: lineseg2.h point2.h facet2.h facet2.cc
$(CC) $(CFLAGS) facet2.cc

lineseg3.o: point3.h plane.h lineseg3.h lineseg3.cc
$(CC) $(CFLAGS) lineseg3.cc

lineseg2.o: point2.h lineseg2.h lineseg2.cc
$(CC) $(CFLAGS) lineseg2.cc

plane.o: point3.h general.h plane.h plane.cc subfacet2.h point2.h
$(CC) $(CFLAGS) plane.cc

point2.o: point2.h point2.cc
$(CC) $(CFLAGS) point2.cc

point3.o: point3.h general.h point3.cc
$(CC) $(CFLAGS) point3.cc

general.o: general.h general.cc
$(CC) $(CFLAGS) general.cc

clean:
rm -rf test ctz
rm -rf test -del
rm -rf test lis
rm -rf test=pla
rm -rf test p2
rm -rf libctz.a

170

rm -rf libctz.lis
rm -rf *.o

0.928495 0.926298 0.020661
0.802545 0.684286 0.855251
0.902036 0.744560 0.479446
0.158940 0.434187 0.919797
0.901578 0.132847 0.135655
0.691275 0.866268 0.560930
0.000580 0.891781 0.059420
0.217658 0.434126 0.963897
0.170415 0.294626 0.150792
0.133213 0.885189 0.093905
0.254402 0.208655 0.107730
0.833247 0.218543 0.103061
0.379101 0.906125 0.985839
0.668722 0. 962065 0.440870
0.905484 0.940886 0. 560717
0.502091 0.727226 0.383129
0.143773 0.778466 0.370769
0.228767 0.839808 0.100803
0.689413 0.511246 0.373577
0.633869 0.946226 0.878170
0.012421 0.085482 0.222449
0.781884 0.490768 0.777581
0.475814 0.141270 0.882168
0.921506 0.468123 0.067507
0. 887143 0.943052 0.280831
0.748161 0.506088 0.199255
0. 637104 0.083468 0.565386
0.932218 0.749474 0.168096
0.065950 0.802332 0.911405
0.212317 0.822810 0.846004
0.551866 0.996582 0.364238
0.200354 0.971648 0.452834
0.559771 0.439711 0.479781
0.466781 0.945158 0.866970
0.149480 0.494369 0.213446
0.603595 0.911618 0.086550
0.840968 0.822779 0.204962
0.916135 0.316385 0.968200
0.902066 0.399945 0.942808
0.303415 0. 728782 0.511155
0.679983 0.634907 0.897153
0.873989 0.997009 0.552446
0.169622 0.735893 0.203131
0.031373 0.073885 0.910367
0.226051 0. 739311 0.486648
0.284036 0.306009 0.892117
0.305307 0.982208 0.574786
0.002258 0.426618 0.786035
0.988342 0. 363720 0.750175
0.895779 0.581347 0.616565
0.426466 0.633137 0.513169
0.235664 0.067751 0.177129
0.873379 0.287088 0.140446
0. 926725 0.715598 0.295419
0.257942 0.584063 0. 289071
0.566637 0. 592639 0.552446
0.936003 0.809259 0.125828
0.742424 0.623402 0.398663
0.954192 0.379498 0. 578997
0.127354 0.371654 0.908200

171

0.998962 0.785424 0.945616
0.584826 0.296823 0.414686
0.305673 0.854091 0.862239
0.580767 0.864345 0.102237
0. 797998 0.506088 0.187933
0.881222 0.604694 0.408246
0 .236793 0.196844 0.280923
0.887020 0.193182 0.955870
0.808802 0.704062 0.095981
0.164098 0.492447 0.798883
0.000671 0. 971191 0 .119175
0.884945 0.883663 0.154027
0. 411481 0.469527 0.009033
0.133976 0.738731 0.641224
0.977752 0.120579 0.557573
0.468734 0.176092 0.476363
0.549547 0.354747 0.844630
0. 895718 0.924558 0.188635
0. 483718 0.492386 0.859279
0.641865 0.816645 0.388562
0.539018 0.449324 0.027619
0.899960 0. 771935 0.021332
0.494217 0.909940 0.644063
0 .229072 0.732383 0.527421
0 .184271 0.707511 0.773370
0.621204 0.507767 0.520035
0.691000 0.325327 0.406659
0.527940 0.497940 0.108707
0.856868 0.308634 0 .129978
0.503128 0.409284 0.966704
0.737022 0.082949 0.935240
0.680990 0.999145 0.790887
0.693228 0.332102 0. 687246
0.202795 0.187628 0.053407
0.186285 0.826075 0.786523
0.049867 0.200201 0.024689
0.568224 0.527940 0.357311
0.665181 0.365246 0.080905
0.934751 0.076846 0.474044
0.372692 0.420820 0.420454
0.0 0.0 0.0

3
100
0.928495 0.926298 0.020661
0.802545 0.684286 0.855251
0.902036 0.744560 0.479446
0.158940 0.434187 0.919797
0.901578 0.132847 0.135655
0.691275 0.866268 0.560930
0.000580 0.891781 0.059420
0.217658 0.434126 0.963897
0.170415 0. 294626 0.150792
0.133213 0.885189 0.093905
0.254402 0.208655 0.107730
0.833247 0.218543 0.103061
0.379101 0.906125 0.985839
0.668722 0.962065 0.440870
0.905484 0.940886 0.560717
0.502091 o. 727226 0.383129
0.143773 0.778466 0.370769
0.228767 0.839808 0.100803

172

0.689413 0.511246 0.373577
0.633869 0.946226 0.878170
0.012421 0.085482 0.222449
0.781884 0.490768 0.777581
0.475814 0.141270 0.882168
0.921506 0.468123 0.067507
0.887143 0.943052 0.280831
0.748161 0.506088 0.199255
0.637104 0.083468 0.565386
0.932218 0.749474 0.168096
0.065950 0.802332 0. 911405
0.212317 0.822810 0.846004
0.551866 0.996582 0.364238
0.200354 0. 971648 0.452834
0.559771 0.439711 0.479781
0.466781 0.945158 0.866970
0.149480 0.494369 0.213446
0.603595 0.911618 0.086550
0.840968 0.822779 0.204962
0.916135 0.316385 0.968200
0.902066 0.399945 0.942808
0.303415 0. 728782 0 .511155
0.679983 0.634907 0.897153
0.873989 0.997009 0.552446
0.169622 0.735893 0.203131
0.031373 0.073885 0.910367
0.226051 0.739311 0.486648
0.284036 0.306009 0.892117
0.305307 0.982208 0.574786
0.002258 0.426618 0.786035
0.988342 0.363720 0.750175
0. 895779 0.581347 0.616565
0.426466 0.633137 0.513169
0.235664 0.067751 0 .177129
0.873379 0.287088 0.140446
0.926725 0.715598 0.295419
0.257942 0.584063 0.289071
0.566637 0.592639 0.552446
0.936003 0.809259 0.125828
0.742424 0.623402 0.398663
0.954192 0.379498 0.578997
0.127354 0.371654 0.908200
0.998962 0.785424 0.945616
0.584826 0.296823 0.414686
0.305673 0.854091 0.862239
0.580767 0.864345 0.102237
0.797998 0.506088 0.187933
0.881222 0.604694 0.408246
0.236793 0.196844 0. 280923
0.887020 0.193182 0.955870
0.808802 0.704062 0.095981
0.164098 0.492447 0.798883
0.000671 0.971191 0.119175
0.884945 0.883663 0.154027
0.411481 0.469527 0.009033
0.133976 0.738731 0.641224
0.977752 0.120579 0.557573
0.468734 0.176092 0.476363
0.549547 0.354747 0.844630
0.895718 0.924558 0.188635
0.483718 0.492386 0.859279
0.641865 0.816645 0.388562
0.539018 0.449324 0.027619

173

0.899960 0.771935 0.021332
0.494217 0.909940 0.644063
0.229072 0.732383 0.527421
0.184271 0.707511 0.773370
0.621204 0.507767 0.520035
0.691000 0.325327 0.406659
0.527940 0.497940 0.108707
0.856868 0.308634 0.129978
0.503128 0.409284 0.966704
0.737022 0.082949 0.935240
0.680990 0.999145 0.790887
0.693228 0.332102 0.687246
0.202795 0.187628 0.053407
0.186285 0.826075 0.786523
0.049867 0.200201 0.024689
0.568224 0.527940 0.357311

- 0.665181 0.365246 0.080905
0.934751 0.076846 0.474044
0.372692 0.420820 0.420454

0.954192 0.379498 0.578997 0.633869 0.946226 0.878170 0.568224 0.527940
0.357311
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.954192 0.379498 0.578997 0.633869 0.946226 0.878170 0.568224 0.527940
0 .357311
0.689413 0.511246 0.373577 0.742424 0.623402 0.398663 0.127354 0 .371654
0.908200
0.873379 0.287088 0.140466 0.833247 0.218543 0.103061 0.228767 0.839808
0.100803
0.691275 0.866268 0.560930 0.305307 0.982208 0.574786 0.494217 0.909940
0.644063
0.921506 0.468123 0.067507 0. 637104 0.083468 0.565386 0.680990 0.999145
0.790887
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

174

