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A tetrahedrization is a decomposition of a region in space into tetrahedra. It is not 

always possible to construct a tetrahedrization that contains prespecified facets. There is 

an unimplemented algorithm for producing a reasonably efficient approximate solution. 

Given points and triangles that intersect in (possibly empty) mutual faces, a binary space 

partition is used to define subregions of the convex hull of the input. The planar boundary 

faces of these subregions are triangulated with constraints, and the subregions are covered 

with tetrahedra that preserve the boundary triangles. The constraints are such that the set 

of tetrahedra is a tetrahedrization and the specified triangles are unions of facets of 

tetrahedra. An Object-Oriented analysis, an Object-Oriented design, and a C++ 

implementation of an algorithm to split the convex hull of a finite set of points by a plane 

is presented. 
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Chapter I 

INTRODUCTION 

1. Introduction 
In Hazlewood's paper[17] a method is described for constructing a 

tetrahedrization in three-dimensional Euclidean space that includes specified triangular 
regions as the union of facets of tetrahedra. It is not always possible to construct a 
tetrahedrization in which specified triangles appear as facets and the current methods to 
determine if such a tetrahedrization exists is considered an NP-hard problem. NP-hard 
problems do not have a solution that completes in polynomial running time, O(nk) for any 
constant k, and an optimal solution is intractable.[9] In an earlier paper by 
Hazlewood[l6] and Sun's thesis[29] a method is presented that uses an approximation 
algorithm to construct a tetrahedrization. An algorithm that returns near-optimal 
solutions in polynomial time (either worst case time or average case time) is considered an 
approximation algorithm.[9] Approximation algorithms or exponential running time 
algorithms (with small input sets) are both acceptable solutions for NP-hard problems. 
The algorithm presented in Hazlewood' s paper[l 7] theoretically can construct such a 
tetrahedrization in polynomial time and space. This thesis describes the implementation of 
the algorithm presented in Hazlewood's paper.[17] 

A tetrahedrization is a decomposition of a region in space into tetrahedra. 
Tetrahedrization algorithms are important for applications involving surface modeling, 
applications involving modeling 3D objects with non-convex boundaries, and modeling 
3D surfaces with discontinuities. The 2D analog to this problem has an O(n lg n) solution 
and a solution always exists, but the 3D problem does not always have a solution. A 
tetrahedrization of a finite set of points is a collection of tetrahedra that intersect in mutual 
(possibly empty) faces and cover the convex hull of the point set. It is not always possible 
to construct a tetrahedrization that contains prespecified facets. Presented in 
Hazlewood' s paper[ 17] there is an unimplemented algorithm for producing a reasonably 
efficient approximate solution. Given points and triangles that intersect in (possibly 
empty) mutual faces, a binary space partition is used to define subregions of the convex 
hull of the input. The subregions are covered with tetrahedra in such a way that the result 
is a tetrahedrization in which the specified triangles are unions of facets of tetrahedra. 
The pseudo code for this algorithm is presented in Chapter 4. This thesis concentrated on 
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the Object-Oriented Analysis, the Object-Oriented Design, the portable C++ 
implementation of the algorithm to split the convex hull of a finite set of points by a plane, 
and visualization in the Geomview[15] program. 

In Chapter 2 basic concepts and definitions are presented. In Chapter 3 a basic 
Object-Oriented analysis and a basic Object-Oriented design with classes designed to 
implement the algorithm is presented. In Chapter 4 a basic Object-Oriented programming 
implementation in C++ and sample program output in the Mathematica[36] and 
Geomview[l5] programs is presented. In Chapter 5 detailed information about convex 
hulls is presented. In Chapter 6 detailed information about BSP trees is presented. In 
Chapter 7 physical program implementation issues are presented. In the appendix, a 
detailed C++ implementation is presented. 
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Chapter II 

BACKGROUND 

2. Basic Definitions 

This chapter introduces the basic definitions and concepts of several key words 
that are used in chapter 3 through chapter 7. 

Computational Geometry The generation of efficient algorithms to solve geometric 
problems; or the systematic study of geometric algorithms. 

Object 

Class 

Class-&-Object 

An abstraction of something in a problem domain, reflecting 
the capabilities of a system to keep information about it, 
interact with it, or both; an encapsulation of Attribute values 
and their exclusive Services. (synonym: an Instance)[?] 

A description of one or more Objects with a uniform set of 
Attributes and Services, including a description of how to 
create new Objects in the Class.[7] 

A term meaning a Class and the Objects in that Class.[7] 

,, ..., ~ r 
Class Name 

Class Attribute, 

Class Services 
... ~ 

"'- ~ 

Figure 2-1- Class-&-Object Structure Notation 
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Base Class 

Derived Class 

00 

OOA 

OOD 

OOP 

Gen-Spec Structure 

A base class or super class is a root class from which other 
classes are derived from. The newly derived classes inherit the 
base class functionality and add their own additional 
functionality. 

A class that is derived from a base class or a super class. It has 
all of the inherited functionality from the parent class and it can 
add its own functionality. 

Object-Oriented. A methodology of analysis, design, and 
programming that subdivides a problem into classes that 
contain attributes and services that can act upon those classes. 
A class combines a data structure and the services to act upon 
that data structure into one reusable object. Object-Oriented 
systems encompass the ideas of: Encapsulation, Inheritance, 
Polymorphism, Dynamic Binding, and Generic Relationships. 

Object-Oriented Analysis, establishes the classes in the problem 
domain. It specifies what each object in each class needs to 
know and do, and it specifies object interactions all in one 
model.[7] 

Object-Oriented Design, adds design considerations to the 
OOA results. Mainly, OOD focuses on human interaction, 
data management, and task management classes. It includes 
additional detail on what each object in each class needs to 
know and do, and it specifies additional object interactions all 
in one model. [8] 

Object-Oriented Programming, the implementation in a 
programming language of the classes developed through the 
OOA and OOD processes.[ 6] 

A half circle symbol in Coad/Y ourdon design diagram which 
represents a generalization class - specialization class 
relationship. The Class-&-Object at the top of the half circle 
symbol is the generalization class and any Class-&-Object's at 
the bottom of the half circle symbol are the specialization 
classes. For example, a generalized "sensor" class might have 
a specialization "critical sensor" class and a specialization 
"standard sensor" class derived from it. 
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,, 
r 

"-

"· 

Whole-Part Structure 

,,. "I 
'I 

Generalizatior 1 

~ 
~ ... 

A 
'I~ 

fr ·~ 

r 

Specialization Specialization ~ 

... "-
...; ... .. 

Figure 2-2 - Gen-Spec Structure Notation [7) 

A triangle symbol in Coad/Y ourdon design diagram which 
represents a whole class - part class relationship. The Class-&­
Object at the top of the triangle symbol is the whole class and 
any Class-&-Object's at the bottom of the triangle symbol are 
the part classes. Numbers next to the whole class denote how 
many parts the whole class may have, and numbers next to the 
part classes denote how many whole classes the part class can 
belong to. For example, an "aircraft" class might have 1 or 
more engines, but an "engine" class would only belong to 1 
aircraft. 
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2D 

3D 

Convex Set 

Convex Hull 

Tetrahedrization 

BSPTree 

r 

'-. 

r .., 
Whole 

l,m l,m 

.., r .., 
Partl Part2 

~ '-. ~ 

Figure 2-3 - Whole-Part Structure Notation [7] 

2 Dimensional Space, E2 also known as Euclidean space. 

3 Dimensional Space, E3• 

d Dimensional Space, Ed. 

A set A is convex if for every pair of points p and q in set A, 
the line segment pq is in set A. See chapter 5 for a detailed 
explanation. 

The convex hull of a set of points P is the smallest convex set 
that contains P.[26] See section 3.2.3 and section 5.1 for a 
detailed explanation. 

A tetrahedrization of a finite set of points is a collection of 
tetrahedra that intersect in mutual (possibly empty) faces and 
cover the convex hull of the point set 

Binary Space Partition Tree - A BSP Tree is a data structure 
that represents a recursive, hierarchical subdivision of n­
dimensional space into convex subspaces.[33] See section 
3.2.4 and chapter 6 for a detailed explanation. 
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Plane Angle 

Coincident 

Spanning 

Hyperplane 

The angle between two planes is the angle between the two 
normals to the planes. See section 3.1.1, figure 6, for a 
detailed explanation. 

Two planes that lie in the exact same space are coincident 
planes. The angle between the two planes is exactly O degrees. 
See section 3.1.1, figure 4, for a detailed explanation. 

Two planes that intersect each other are spanning planes. The 
intersection between two non-coplanar planes is a line. The 
angle between the two planes is greater than O degrees. See 
section 3.1.3, figure 6, for a detailed explanation. 

In Ed dimensional space, a hyperplane is a Ed-t dimensional 
object that is used to divide Ed space into two half-spaces. In 
E3 a plane is a hyperplane, in E2 a line is a hyperplane. 
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Chapter Ill 

CLASS DESIGN 

3. Class Design 
The class design in this project followed common Object-Oriented (00) design 

principles. All Object-Oriented Analysis (OOA) and Object-Oriented Design (00D) were 
performed using the Coad/Y ourdon Object-Oriented Method.[6, 7 ,8] The Object­
Oriented Programming (OOP) implementation followed directly from the OOA and 00D 
processes and was done in the C++ programming language. The base classes of the 
problem domain were designed during the OOA phase of the project. Other classes were 
designed during the 00D phase of the project from the OOA base classes to solve the 
problem of implementing the Constrained Tetrahedrization algorithm as needed. 

3.1 OOA Base Classes 
The base classes were designed during the OOA phase of the project with the base 

objects of the problem in mind. The only true "base classes", by the Object-Oriented 
definition of the term, are the Point2 and Point3 classes which are self-contained classes 
and form the basis for all other class construction in the OOA phase of the project. The 
other classes that are built from the Point2 and Point3 classes are still called base classes 
for the terms of this project because they are classes that were designed during the OOA 
phase of the project and they are base objects for solving the problem in the Constrained 
Tetrahedrization algorithm. 

The five major activities of OOA are:[7] 

1. Subject Layer 
2. Class-&-Object Layer 
3. Structure Layer 
4. Attribute Layer 
5. Service Layer 

8 



A subject is a mechanism for guiding a reader through a large, complex model. 
Subjects are also helpful for organizing work packages based upon initial OOA 
investigation.[8] The subject layer for the problem domain was one simple task, so I 
decided to have one subject named Constrained Tetrahedrization which is the name of the 
program. The whole purpose of the program was to take in a set of points and a set of 
partitioning planes as input and to provide a set of partitioned convex hulls as output. 
The single purpose of the program only needed a single subject to represent it. 

The Class-&-Object layer for the problem domain started out in the realm of 2D 
and 3D geometry objects. The natural classes that fell out of the 2D analysis were objects 
like point2 and line_segment2, which represented a point in E2 and a line segment in E2• 

The natural classes that fell out of the 3D analysis were objects like point3, 
line_segment3, and plane, which represented a point in E3, a line segment in E3, and a 
plane in E3• Other classes that fell out of the analysis in this stage were objects like 
facet2, facet3, subfacet2, and subfacet3 which were subparts of a tetrahedron object. The 
tetrahedron object was not defined during the OOA phase of the project because it was a 
more complex object that needed further analysis and design. 

The Structure layer for the problem domain ended up being standard Geometric 
representations for the most part. In 3D, for example, a line segment is composed of two 
points, a plane is composed of three points, a facet has three points, and a subfacet has 
two points. In 2D, for example, a line segment is composed of two points, a facet has 
two points, and a subfacet has one point. 

The Attribute layer for the classes in the problem domain only consisted of the 
standard Geometric representations for the most part. In 3D, for example, a point had 3 
attributes X, Y, and Z. In 2D, for example, a point had 2 attributes X and Y. 

The Service layer for the classes in our problem domain only consisted of the 
standard constructors, destructors, and accessors at this point in the analysis which meant 
that there were no services defined in the design because these standard services are not 
denoted in the Coad/Y ourdon object model. The next sections describe the classes built 
during the OOA phase of the project on a class by class basis. 

3.1.1 Point2 Class 
The Point2 class is a representation of a point in 2D or Euclidean space. 

Internally it is represented with 2 double length floating point numbers labeled X and Y. 
Common constructors, destructors, and accessors are provided with the class to make the 
class as open and re-usable as possible, but they are not shown using the Coad/Y ourdon 
object model. Shown in Figure 3-1 is the object that this class represents and the Object­
&-Class diagram: 
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Point2 

X 
YAxis • p(x,y) y 

\. ,, 

XAxis 

Figure 3-1 - Point2 Class Representation and Object-&-Class Diagram 

3.1.2 Point3 Class 
The Point3 class is a representation of a point in 3D space. Internally it is 

represented with 3 double length floating point numbers labeled X, Y, and Z. Common 
constructors, destructors, and accessors are provided with the class to make the class as 
open and re-usable as possible, but they are not shown using the Coad/Y ourdon object 
model. Shown in Figure 3-2 is the object that this class represents and the Object-&-Class 
diagram: 

r ., 
Point3 

X 
YAxis • p(x,y ;z.) y 

z 

XAxis 

Figure 3-2 - Point3 Class Representation and Object-&-Class Diagram 

3.1.3 Plane Class 
The Plane class is a representation of a plane in 3D space. Internally it is 

represented with 3 points labeled Pl, P2, and P3. Internally it is also is represented with 4 
double length floating point numbers labeled A, B, C, and D. The plane coefficients 
(Ax+By+Cz+D=0) are calculated using Newell's Method.[5,30] Common constructors, 

10 



destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown 
in Figure 3-3 is the object that this class represents and the Object-&-Class diagram: 

r " Plane 

Pl 
P2 

YAxis P3 
,y,z) A 

B 
C 
D 

Classify _Polygon 
Classify _Polygon2 
Angle 
Normal 

... ~ 

3 

l 
r 

Point3 

X 
V 
z 

... ~ 

Figure 3-3 - Plane Class Representation and Object-&-Class Diagram 

The services that are shown in this class design were added during the 00D phase 
of the design. The Classify _Polygon service in this class takes the current plane object 
and a plane that is passed in as a parameter and it determines whether the parameter plane 
is coincident, in back of, in front of, or spanning the current plane. Shown in Figure 3-4 
are examples of coincident, in back of/ in front of, and spanning planes: 
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Y Axis 

Y Axis 

Coincident Planes 

Plane l & Plane2 

Parallel Planes 

Either (Planel is ln_Front_Of Plane2) 
Or (Plane2 is ln_Back_ Of Plane l) 
Depending on parameter order 

XAxis 

Spanning Planes 

Figure 3-4 - Examples of Coincident, In Front Of/ In Back Of, and Spanning Planes 
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The Classify _Polygon2 service in this class takes the current plane and a point that 
is passed in as a parameter and it returns whether the point is coincident, in back of, in 
front of, or spanning the current plane. Shown in Figure 3-5 are examples of a point 
coincident to a plane, a point in back of a plane, and a point in front of a plane: 

Y Axis 

Point Coincident to Plane 

YAxis • 

Point In Back Of Plane 

• 
Y Axis 

Point In Front Of Plane 

Figure 3-5 - Example of Point Coincident to, a Point In Back of, and a Point In Front of a Plane 
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The Angle service in this class takes the current plane and a plane that is passed in 
as a parameter and it returns the angle between the two spanning planes. The Normal 
service in this class returns the normal vector to the current plane. Shown in Figure 3-6 
are examples of the normal vector to a plane and the angle between two spanning planes: 

Normal Vector to Plane 

V Axis 

The Angle Between Two Planes is 
the Angle Between the Two Plane Normals 

YAxis 

XAxis 

Figure 3-6 - Example of the Normal Vector to the Plane and the Angle Between Two Planes 
' 

3.1.4 Line_Segment2 Class 
The Line_Segment2 class is a representation of a line segment in 2D space. 

Internally it is represented with 2 points labeled Pl and P2. Common constructors, 
destructors, and accessors are provided with the class to make the class as open and re-
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usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown 
in Figure 3-7 is the object that this class represents and the Object-&-Class diagram . 

, ., 
Line_Segment ~ 

Pl 

Y Axis p l(x,y) P2 

Intersection .. 
2 

XAxis Ii , "I 

Point2 

X 
y 

\. 

Figure 3-7 - Line_ Segment2 Class Representation and Object-&-Class Diagram 

The services that are shown in this class design were added during the OOD phase 
of the design. The Intersection service in this class takes the current line segment and a 
second line segment that is passed in as a parameter and it returns a point as the 
intersection point between the two line segments. If the line segments do not intersect in 
a single point then the origin (0,0) is returned. This error value should be sufficient for 
this project since all of the data resides in quadrant I. Adding in cases in the code to 
handle intersection error properly is left for future expansion of this thesis. Shown in 
Figure 3-8 are examples of a line segment intersecting, and not intersecting a second line 
segment: 

f 

15 



Y Axis 

Y Axis 

p2 

XAxis 

Line Segments Intersecting 
Intersection Point Returned 

XAxis 

Line Segments Not Intersecting 
Origin Point Returned 

Figure 3-8 • Example of a Line Segment Intersecting, and not Intersecting a Second Line Segment 

3.1.5 Line_Segment3 Class 
The Line_Segment3 class is a representation of a line segment in 3D space. 

Internally it is represented with 2 points labeled Pl and P2. Common constructors, 
destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. Shown 
in Figure 3-9 is the object that this class represents and the Object-&-Class diagram: 
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V Axis p l(x,y ;z) P2 

Intersection 
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2 

XAxis l1 
r ., 

Point3 
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V 
z 

"-

Figure 3-9 - Line_ Segment3 Class Representation and Object-&-Class Diagram 

The services that are shown in this class design were added during the OOD phase 
of the design. The Intersection service in this class takes the current line segment object 
and a plane that is passed in as a parameter and it returns a point as the intersection point 
between the line segment and the plane. If the line segment is coincident to the plane then 
the midpoint of the segment is returned. If the line segment is in back of or in front of the 
plane then the origin (0,0,0) is returned since there is no intersection to return. This error 
value should be sufficient for this project since all of the data resides in quadrant I. 
Adding in cases in the code to handle intersection error properly is left for future 
expansion of this thesis. Shown in Figure 3-10 are examples of a line segment spanning, 
coincident to, and in back of a plane: 
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YAxis 

YAxis 

YAxis 

p2 

Line Segment Spanning Plane 
Intersection Point Returned 

Line Segment Coincident to Plane 
Line Segment MidPoint Returned 

p 1 Line Segment In Back of Plane 
Origin Point Returned 

Figure 3-10 - Example of a Line Segment Spanning, Coincident to, and In Back Of a Plane 
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3.1.6 SubFacet2 Class 
The SubFacet2 class is a representation of a subfacet of a 2D tetrahedron. In 2D, 

three points are needed to define a tetrahedron, two points are needed to define a facet of 
a tetrahedron, and one point is needed to define a subfacet of a tetrahedron. Internally 
this class is derived from the Point2 class. Common constructors, destructors, and 
accessors are provided with the class to make the class as open and re-usable as possible, 
but they are not shown using the Coad/Y ourdon object model. The SubFacet2 class is 
derived from the Point2 class since it is very similar in structure. Shown in Figure 3-11 is 
the object that this class represents and the Object-&-Class diagram: 

SubFacet of a Tetrahedro------

/ 
YAxis ~ 

XAxis 

Point2 

X 
V 

SubFacet2 

Figure 3-11 - SubFacet2 Class Representation and Object-&-Class Diagram 

3.1. 7 SubFacet3 Class 
The SubFacet3 class is a representation of a subfacet of a 3D tetrahedron. In 3D, 

four points are needed to define a tetrahedron, three points are needed to define a facet of 
a tetrahedron, and two points are needed to define a subfacet of a tetrahedron. Internally 
this class is derived from the Line_Segment3 class. Common constructors, destructors, 
and accessors are provided with the class to make the class as open and re-usable as 
possible, but they are not shown using the Coad/Y ourdon object model. The SubFacet3 
class is derived from the Line_Segment3 class since it is very similar in structure. Shown 
in Figure 3-12 is the object that this class represents and the Object-&-Class diagram: 
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YAxis 

SubFacet of a Tetrahedr,._-----

/ 

XAxis 

Line_Segment 

Pl 
P2 

Intersection 

SubFacet3 

Figure 3-12 - SubFacet3 Class Representation and Object-&-Class Diagram 

3.1.8 Facet2 Class 
The Facet2 class is a representation of a facet of a 2D tetrahedron. In 2D, three 

points are needed to define a tetrahedron and two points are needed to define a facet of a 
tetrahedron. Internally this class is derived from the Llne_Segment2 class. Common 
constructors, destructors, and accessors are provided with the class to make the class as 
open and re-usable as possible, but they are not shown using the Coad/Y ourdon object 
model. The Facet2 class is derived from the Line_Segment2 class since it is very similar 
in structure. Shown in Figure 3-13 is the object that this class represents and the Object­
&-Class diagram: 
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Facet of a Tetrahedron 

YAxis 

XAxis 

Line_Segment 

Pl 
P2 

Intersection 

Facet2 

Figure 3-13 - Facet2 Class Representation and Object-&-Class Diagram 

3.1.9 Facet3 Class 
The Facet3 class is a representation of a facet of a 3D tetrahedron. In 3D, four 

points are needed to define a tetrahedron and three points are needed to define a facet of a 
tetrahedron. Internally this class is derived from the Plane class. Common constructors, 
destructors, and accessors are provided with the class to make the class as open and re­
usable as possible, but they are not shown using the Coad/Y ourdon object model. The 
Facet3 class is derived from the Plane class since it is very similar in structure. Shown in 
Figure 3-14 is the object that this class represents and the Object-&-Class diagram: 
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Facet of a Tetrahedron 

/ 
YAxis 

XAxis 

Pl 
P2 
P3 
A 
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Plane 

Classify _Polygo 
Classify _Polygo 
Angle 
Normal 

Facet3 

Figure 3-14 - Facet3 CI~ Representation and Object-&-Class Diagram 

3.1.10 OOA Model Diagram 
All of the Coad/Y ourdon OOA Layers that were developed during the OOA phase 

of the project are shown together on one diagram which forms an object model diagram. 
The Coad/Y ourdon OOA Object Model Diagram for the Constrained Tetrahedrization 
project follows: 
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Figure 3-15 - Coad/Yourdon OOA Object Model Diagram 
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3.2 OOD Derived Classes 
The derived classes were designed during the OOD phase of the project with the 

flushing out of the OOA design and the implementation of the Constrained 
Tetrahedrization algorithm in mind. The classes were designed to solve specific problems 
in the Constrained Tetrahedrization algorithm and were built using only the base classes 
that were designed during the OOA phase of the project. 

The four major activities of OOD are:[8] 

1. Problem Domain Component 
2. Human Interaction Component 
3. Task Management Component 
4. Data Management Component 

3.2.1 Problem Domain Component 
The problem domain component of OOD is the activity where the design modifies 

the OOA results to resolve a design consideration. In this activity you can also show the 
other three OOD components in a collapsed form. In the Constrained Tetrahedrization 
project there were some classes that were not discussed in the OOA results that were 
needed to solve some problems in the Constrained Tetrahedrization algorithm. The main 
Constrained Tetrahedrization algorithm as presented below contains none of the objects, 
except for Plane, that were created in the OOA phase of the project. This is where the 
OOD phase of the project was needed to complete the overall project design. The first 
object added was the Constrained_Tetrahedrization object which represented the main 
project class. 

constrain(P',F,T) 
begin 

end. 

construct B; 
construct C, the convex hull of P'; 
for j = 1 to k do 

Kj <- plane(fj) n C; 
for j = 1 to k do 

compute constraints for Kj; 
for j = 1 to k do 

triangulate Kj with constraints; 
triangulate facets of C with constraints; 
for i = 1 to 1 do 

Ti <- tetrahedrization of R1 ; 

T <- u Ti 

Figure 3-16 - Constrained Tetrahedrization Algorithm[17] 
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As parameters, P' is a set of points in E3, F is a set of k triangles which have 
vertices in P' and which intersect in (possibly empty) mutual faces, and Tis the output of 
the tetrahedrization. [17] The set of points P', since an unknown number of points could 
be entered, was represented by a generic List class. The set of k triangles F, since an 
unknown number of partitioning planes could be entered, was also represented by a 
generic List class. In the implementation, the three points that formed the "triangles" or 
partitioning planes did not come from the set of points in P', but they were randomly 
generated points. The implementation differed at this point from the paper[ 17] because 
the paper[l 7] stated that F is a set of k triangles which have vertices in P'. The theory of 
partitioning a polygon or a convex hull with a plane should not rely on the points of the 
plane also belonging to the points that form the polygon or convex hull. Any arbitrary 
plane should be able to partition a polygon or a convex hull. The next obvious classes 
that came from this level of the project were the Convex_Hull class and the BSP _Tree 
class which were explicitly called out in the algorithm. These four obvious classes formed 
the basis for a top-down OOD design. 

3.2.1.1 Constrained_ Tetrahedrization Class 
The Constrained_ Tetrahedrization class is a representation of the main 

Constrained Tetrahedrization class that is the OOA subject layer and the main 
implementation of the algorithm.[17] Common constructors, destructors, and accessors 
are provided with the class to make the class as open and re-usable as possible, but they 
are not shown using the Coad/Y ourdon object model. Shown in Figure 3-17 is the object 
that this class represents and the Object-&-Class diagram: 
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Figure 3-17 - Constrained_Tetrahedrization Class Representation and Object-&-Class Diagram 
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3.2.1.2 List Class 
The List class is a representation of a double linked list of objects. Common 

constructors, destructors, accessors, and standard list services are provided with the class 
to make the class as open and re-usable as possible, but they are not shown using the 
Coad/¥ ourdon object model. The List class comes in several instances: List<Point3>, 
List<Poina>, List<Facet3>, List<Facea>, List<SubFacet3>, List<SubFacea>, and 
List<Plane>. All of theses instances were implemented in the OOP phase of the project 
through the use of C++ generic templates. Shown in Figure 3-18 is the object that this 
class represents and the Object-&-Class diagram: 

List 
Head 
Tail 
Pfr 

., ' 

"'r "r "I., "'r "I 

List<Point3> List< ... > List<Facet3::: 

\. \. ~ 
b,. \. b,. 

Figure 3-18- List Class Representation and Object-&-Class Diagram 

3.2.1.3 Convex_Hull Class 
The Convex_Hull class is a representation of a geometric convex hull. A convex 

hull is represented geometrically by a list of facets which contain three vertices each. 
These facets are triangular and when they are all connected together they make up the 
facets or the outer surface of the convex hull. A more in depth explanation of convex 
hulls can be found in chapter 5. Common constructors, destructors, accessors, and 
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standard list services are provided with the class to make the class as open and re-usable 
as possible, but they are not shown using the Coad/Y ourdon object model. In the OOP 
phase of the project, a single service called Giftwrapping[ 6,26] was developed that takes a 
List<Point3> class and an address to a List<Facet3> class as parameters and then fills in 
the List<Facet3> class with the facets of the convex hull. This was an improper design, 
and the Giftwrapping service has been kept, but the Convex_Hull class keeps the list of 
Facet3's internally. The Convex_Hull class is derived from the List<Facet3> class. 
Shown in Figure 3-19 is the object that this class represents and the Object-&-Class 
diagram: 

r-r 'I~ 

List<Facet3: 

V Axis 

.J 
_.,i 

XAxis 

''r 'I ... 
Convex_Hull 

Giftwrapping 
\.: "-' 

Figure 3-19 - Convex_ Hull Class Representation and Object-&-Class Diagram 

3.2.1.4 BSP _ Tree Class 
The BSP Tree class is a representation of a special binary tree called a binary 

space partition (BSP) tree. A BSP Tree is a data structure that represents a recursive, 
hierarchical subdivision of n-dimensional space into convex subspaces. BSP tree 
construction is a process which takes a subspace and partitions it by any hyperplane that 
intersects the interior of that subspace. The result is two new subspaces that can be 
further partitioned by recursive application of the method.[33] A more in depth 
explanation of BSP trees can be found in chapter 6. Common constructors, destructors, 
accessors, and standard list services are provided with the class to make the class as open 
and re-usable as possible, but they are not shown using the Coad/Y ourdon object model. 
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Shown in Figure 3-20 and Figure 3-21 is an example of BSP tree construction in 2D and 
the Object-&-Class diagram: 
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Figure 3-20 - Example of a BSP Tree Construction in 2D.(33] 
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Figure 3-21 - BSP _ Tree Class Representation and Object-&-Class Diagram 

3.2.2 Human Interaction Component 
The human interaction component of 00D is the activity where the design takes 

graphical user interface issues into design consideration. The Constrained 
Tetrahedrization project was designed to operate as a single thread of execution task 
using the standard input and standard output which is common to UNIX programs. 
There was only one class that was considered during the human interaction component of 
00D which was a class that output geometric classes into to the standard OOOL output 
file format[23,32] so that they could later be displayed by the Geomview[l5] X-Windows 
based 3D graphics viewing program. 

3.2.2.1 OOGL Class 

The OOGL class is an output class that creates OOOL files for later use with the 
Geomview package.[15,23,32] In the 00D phase of the project only the existence of this 
class was known about, because there was a requirement to view the results in a graphical 
manner, but the exact services that would be needed were not known. In the OOP phase 
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of the project, three services were developed to output OOGL files for three specific 
objects in the problem. The three objects that are able to be output in OOGL format are 
the Convex_Hull (i.e. List<Facet3>) class, the Llst<Plane> class, and the BSP _Tree class. 

The first service, named Output_ Convex_Hull, talces a Llst<Point3> class and a 
Convex_Hull (i.e. Llst<Facet3>) class as parameters and outputs an OOGL file named 
chull. off that will represent the Convex Hull graphically. This service could be 
updated in the future to only take a Convex_Hull (i.e. List<Facet3>) class as a parameter 
and generate the point list internally. The format[23,32] of this file is as follows: 

OFF 
nP nf n. 
P1X P1Y P1Z 
. . . { np points } 
P.Px P.PY P.pz 
3 f1P1 f1P2 f1P3 
. . . {nt facets} 
3 f.tP1 f.tP2 f.tP3 

Figure 3-22 - Sample chull.off OOGL File Output 

Where np = number of points, nf = number of facets, ne = number of edges (set to 
0 since it's not used in the current version of Geomview), the first set of real numbers are 
the points in the facets of the convex hull, and the second set of integer numbers are the 
facets. The only points that have to be listed in the OOGL file are the points actually in 
the facets, but for the convex hull object all of the points were listed in the OOGL file not 
only the external points, but also the internal points. The facets are then listed as integers 
which refer to the position of the points in the list. 

The second service, named Output_ Triangles, takes a List<Plane> class as an 
argument and outputs an OOGL file, named triangs . off, that will represent all of the 
partition planes graphically. The format[23,32] of this file is as follows: 

LIST 
{=OFF 
3 1 0 
P1X P1Y P1Z 
P2X P2Y P2Z 
p3x PS p3z 
3 0 1 2 
} 
{=OFF 

... {repeat for each object in List<Plane> class} 

Figure 3-23 - Sample triangs.off OOGL File Output 

The third service, named Output_BSP _ Tree, takes a BSP _ Tree class and a 
Llst<Point3> class as arguments and outputs an OOGL file, named bspchull.off, that will 
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represent the BSP _Tree partition planes and the multiple convex hulls that are in the 
BSP _ Tree leaf nodes. The format[23,32] of this file is as follows: 

LIST 
{= OFF 

... {partition plane information} 
} 
{=OFF 

... {repeat for each partition plane in the BSP Tree class} 

= OFF 
... {convex hull information} 

} 
{=OFF 

•.. {repeat for each convex hull in the BSP_Tree class} 

Figure 3-24 - Sample bspchull.off OOGL File Output 

At the time of this writing, the third service has not been fully implemented 
because during the process in which the convex hull gets partitioned by the BSP tree, 
extra points, that are not in the original point set, are generated without point id's and are 
given a point id of 0 by default. The resulting output OOGL data, containing all of the 
extraneous points, is incorrect. A new service, much like the new service needed for the 
Output_ Convex_Hull service, will have to be created which will generate the point lists 
internally and generate the correct OOGL output. Sample display output from the OOGL 
classes will be shown in chapter 4. 

3.2.3 Task Management Component 
The task management component of OOD is the activity where the design takes 

multiple tasks or concurrent behavior into design consideration. All services in this 
project are implemented in a single task. No task management component design is 
needed in this project. 

3.2.4 Data Management Component 
The data management component of OOD is the activity where the design takes 

the storage and retrieval of user objects from a data management system such as a 
database into design consideration. All services in this project are implemented to keep 
all attributes in local memory, no data persistence is needed No data management 
component design is needed in this project. 
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Chapter IV 

PROGRAM DESIGN 

4. Program Design 
The Object-Oriented Programming (OOP) implementation [6] of the program in 

the C++ language follows directly from the OOA and 00D design specifications as they 
were presented previously in chapter 3. The first step in the OOP process was to 
implement the OOA base classes in the C++ language, then to implement the rest of the 
OOA classes that were derived from the OOA base classes. After the OOP 
implementation of the OOA classes was completed to satisfaction, the OOP 
implementation of the 00D classes began. The OOP implementation of the 00D classes 
was a tedious task and took a long time, due to the algorithm complexities, to implement 
the code of the classes and to test each class as it was being developed. The BSP _Tree 
class and the Convex_Hull class were the most challenging to develop because of the 
complexity of the data structures and the complexity of the algorithms in those classes. 
The internal design of those two classes were complex enough and were crucial enough to 
the implementation of the Constrained Tetrahedrization algorithm[l 7] to be presented in 
chapter 5 and chapter 6. This chapter further explains the OOP implementation issues of 
the program. 

4.1 OOA Base Class Program Implementation 
The OOA base class design was easy to implement and the C++ code was very 

straight forward. The basic implementation of the Point2, Point3, Line_Segment2, 
Line_Segment3, SubFacet2, SubFacet3, Facet2, and Facet3 classes was produced in 
about two days worth of effort for all of the classes. Basic testing of the classes took 
about one day worth of effort for each class. Some of the implementation and testing of 
services in the Plane class took several weeks to work through due to the complexity of 
the Vector Calculus needed in some of the algorithms. Shown in Table 4-1 are the OOA 
base classes that were implemented and their corresponding filenames, these files are 
included in the appendix of this thesis: 
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Cla~ 
Point2 

Implementation Filenames 
point2.h, point2.cc 

Point3 
Line_Segment2 
Line_Segment3 
SubFacet2 
SubFacet3 
Facet2 

point3.h, point3.cc 
lineseg2.h, lineseg2.cc 
lineseg3.h, lineseg3.cc 
sfacet2.h, sfacet2.cc 
sfacet3.h, sfacet3.cc 
facet2.h, facet2.cc 

Facet3 facet3.h, facet3.cc 

Table 4-1 - Table of OOA Base Classes and Implementation Filenames 

4.1.1 Standardized Implementation Style 
For the base classes a standardized Object-Oriented C++ class implementation was 

followed in all of the classes. Each class would have all class attributes private and have 
public accessor services to all of the attributes. For example, shown below is a standard 
point2.h file that defines the Point2 class: 

class Point2 
{ 

} ; 

public: 
& Destructors II Constructors 

Point2(); 
Point2(double, double); 
Point2(Point2&); 
~Point2 (); 

II Operators 

II Default Constructor 
II Secondary Constructor 
II Copy Constructor 
II Default Destructor 

Point2& operator=(const Point2&); 
int operator==(const Point2&); 
int operator!=(const Point2&); 
friend ostream& operator<<(ostream&,Point2); 

// Accessor Services 
double GetX(); 
void SetX(double); 
double GetY () ; 
void SetY(double); 
int Get ID() ; 
void SetID(int); 

II Services 
double Distance(Point2); II distance between 2 points 

private: 
II Attributes 
double X; 
double Y; 
int ID; 

Figure 4-1 Point2 Base Class OOP Implementation Example 
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Notice the common elements of style in the class design. All private attributes are 
explicitly declared as private and not defaulted to private. Constructors are provided for 
standard allocation with no parameters, allocation with parameters, and copy 
constructors. The entire class is also indented and plenty of whitespace and comments are 
included to make the code more readable and maintainable. The Point3, Line_Segment2, 
Line_Segment3, SubFacet2, SubFacet3, Facet2, and Facet3 classes were all implemented 
in a similar style. 

4.1.2 Plane Class Implementation 
The Plane class implementation was a major undertaking considering the limited 

design and lack of information about Planes in Calculus and Geometry books. From the 
OOA design and a few Calculus books[3,5,13,25] all that is known about a plane is that 
we are given three points in E3 to define the plane, and that the standard equation of a 
plane is Ax+By+Cz+D=O. 

4.1.2.1 Plane Equations 
The first problem that had to be overcome in the Plane class implementation was 

figuring out the standard equation of a plane given only 3 points that were in the plane. 
The first method that was implemented was Newell's Method, which was presented with 
implemented code in a Graphics Gems book[5,18]. For a first time quick implementation 
this seemed like it was the answer. It later turned out that the numbers produced by 
Newell's Method as implemented by the Graphics Gems book were not accurate enough 
for use by my project. Later on in the project a new method was developed that uses 
vectors to determine the plane equation. 

N 

Y Axis 

XAxis 
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Figure 4-2 - Sample Plane with Vectors 

The method of detennining the plane equation using vectors is: 

1. Form vectors P1P2 and P1P3. 
2. Form the Normal vector N which is the cross product of vectors P1P2 and 

P1P3 (i.e. P1P2 X P1P3). 
3. Given an arbitrary fourth point P in the plane, the dot product of vector PlP 

and N will be equal to O (i.e. PlP • (P1P2 X P1P3) = 0). 
4. Solve for A, B, C, and D of the plane equation. 

For example: 
Given the points { (0, 1, 1), (1, 1, 2), (-1, 2, -2)} 

PlP2 = (1-0)i + (1-l)j + (2-l)k 
P1P2 = li + 0j + lk 
P1P3 = (-1-0)i + (2-l)j + (-2-l)k 
P1P3 = -li + lj - 3k 
N = (P1P2 X P1P3) 
N = ((0) (-3)-(1) (l)]i - ((1) (-3)-(1) (-l)]j + ((1) (1)-(0) (-l)]k 
N = -li + lj - 3k 
PlP = (x-0)i + (y-l)j + (z-l)k 
<(x-0)i+(y-l)j+(z-l)k>•<-li+2j+lk> = 0 
-l(x-0)+2(y-l)+l(z-1) = 0 
-lx+0+2y-2+1z-1 = 0 
-lx+2y+lz-3 = 0 
The plane equation is: x-2y-lz+3 = 0 
A= 1, B = -2, C = -1, and D = 3 

Figure 4-3 - Example Plane Equation Calculation 

This vector method of finding the plane equation translated very easily into a C++ 
implementation. The C++ implementation can be found in the file plane.cc which is 
included in the appendix as a reference. 

4.1.2.2 Classify_ Polygon Service of Plane Class 
The Plane class contains two different types of Classify _Polygon services. These 

services take the current plane and either a second plane or a Point3 and determines if the 
second object is in front of, in back of, coincident to, or spanning the first plane object. 
These services have been described in some detail in section 3.1.3 and diagrams that 
graphically depict these two services are shown in Figure 3-4 and Figure 3-5. 

The first service was first implemented by testing the signed distance of each point 
in the second plane to the first plane and then categorically determining if the other plane 
was spanning (differing signs), in front (all signs positive), in back (all signs negative), or 
coincident (all distances= 0 ± a tolerance). This would be the correct method to 
determine how a polygon interacted with a plane, but this method does not work to 
determine how two planes interact with each other. If all of the points of the second 
plane are on one side of the second plane then either IN_FRONT or IN_BACK would 
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have been returned, but that does not guarantee that the two planes will not intersect 
further out in space. This first implementation method of the first service was abandoned 
in favor of another method. 

The first service determines if the second plane is parallel to the first plane. If the 
planes are parallel then the two planes are checked for coincidence. If the two planes are 
coincident then the value COINCIDENT is returned. If the two planes are parallel then 
the signed distance from one point in the second plane is tested from the first plane, and 
either IN_FRONT or IN_BACK is returned depending on the sign. Since planes are 
infinite in nature, if the planes are neither coincident nor parallel, then they must intersect 
somewhere so the value SPANNING is returned. 

The second service determines the signed distance from a point to the plane. If the 
sign of the distance is positive and the distance is greater than O (± a tolerance) then the 
value IN_FRONT is returned. If the sign of the distance is negative and the distance is 
greater than O (± a tolerance) then the value IN_BACK is returned. If the point lies in the 
plane(± a tolerance) then the value COINCIDENT is returned. The value SPANNING is 
not returned by this service because geometrically speaking a point can not span a plane. 

4.2 OOD Derived Class Program Implementation 
The 00D derived class design implementation in C++ code was of average 

difficulty and pretty straight forward. The first basic implementation of the 
Constrained_Tetrahedrization, List, Convex_Hull, BSP_Tree, and OOGL classes was 
produced in about three days worth of effort for each class. However, the basic testing of 
the classes took several weeks worth of effort. A lot of the services in these classes had 
major bugs in some of their implementations that needed to be fixed. Shown in Table 4-2 
are the 00D derived classes that were implemented and their corresponding filenames, 
these files are included in the appendix: 

Class 
Constrained_Tetrahedrization 
List 
Convex_Hull 
BSP_Tree 
OOGL 

Implementation Filenames 
ctz.h, ctz.cc 
list.h, list.cc 
chull.h, chull.cc 
bsptree.h, bsptree.cc 
oogl.h,oogl.cc 

Table 4-2 - Table of OOD Derived Cla~es and Implementation Filenames 

4.2.1 Constrained_ Tetrahedrization Class Implementation 
The Constrained_ Tetrahedrization class (CTZ) is the main class that is in charge 

of implementing the Constrained Tetrahedrization algorithm.[17] The design of this 
algorithm was discussed previously in section 3.2.1 and section 3.2.1.1 of this thesis. The 
CTZ class has one service called Constrain, which takes a List<Point3> class and a 
List<Plane> class as inputs and it implements the Constrained Tetrahedrization algorithm 
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producing a BSP Tree with partition planes in the inner nodes and convex hulls in the leaf 
nodes as an output. Presented in Figure 4-4 is the C++ style pseudocode for the 
Constrain service of the CTZ class: 

llconstrain(P', F, T) 
II begin 
I I 1. construct B, the BSP Tree of F; 

construct C, the convex hull of P'; 
for j = 1 to k do 

II 2. 
II 3. 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Kj <- plane(fj) intersect C; 
4. for j = 1 to k do 

compute constraints for Kj; 
5. for j = 1 to k do 

triangulate Kj with constraints; 
triangulate facets of C with constraints; 

6. for i = 1 to 1 do 
Ti<- tetrahedrization of Ri; 
T <- T union Ti; 

II end. 

Figure 4-4 - Constrain Service Pseudocode 

Currently, the CTZ class only implements a few steps of the Constrained 
Tetrahedrization algorithm. Step 1 is implemented by creating a new BSP _Tree class and 
constructing the BSP tree partition plane structure using the List<Plane> class that is 
passed into the CTZ class. The details of BSP tree construction are presented in chapter 
6. At this point in the algorithm the BSP tree leaf nodes are empty since the partitions are 
not partitioning any objects. Step 2 is implemented by creating a new Convex_Hull class 
and defining the facets of the convex hull using the Llst<Point3> class that is passed into 
the C1Z class. The details of convex hull construction are presented in chapter 5. Step 3 
is implemented by merging the convex hull into the BSP tree. The details of merging 
objects into a BSP tree are presented in chapter 6. After the merging is complete, the 
BSP tree leaf nodes will have convex hull's inside of them representing the part of the 
convex hull that resides in that space partition. Step 4 and beyond of the Constrained 
Tetrahedrization algorithm has not been completed due to time constraints on this thesis. 
The completion of this algorithm is left for future expansion. 

4.2.2 List Class Implementation 
The List class is the major container class in this project. Every major class in the 

project uses this class to store a list of objects as an attribute. This class was mainly 
developed as a specialized convex hull class because a convex hull is defined as a list of 
facets. It is also useful to hold onto a list of points instead of having to work with arrays 
which are not flexible enough due to fixed limits on array size. This List class was 
implemented using C++ templates to give it a generic behavior and allow it to store 
objects of any type. On future projects it is recommended that a pre-developed and pre­
tested list class be used instead of developing one from scratch. Possibly the list class that 
comes as part of the popular Standard Template Library (STL) tool kit would be enough. 
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4.2.3 Convex_Hull Class Implementation 
The Convex_Hull class is a major part of implementing the Constrained 

Tetrahedrization algorithm. This class was modified from a FORTRAN algorithm and an 
ANSI C algorithm which were developed during previous course work. The convex hull 
wasn't an original class in this project, but it existed as a specialized service called 
Giftwrapping. This Giftwrapping service was an algorithm adapted from previous course 
work and from the text book[26] for that course. It was later determined during the 
OOD phase of the project that a convex hull really was its own class, and it should be 
derived from List<Facet3> or List<Facet2> depending on if the convex hull was in 3D or 
2D space using the Giftwrapping routine as a service of the class. The details of convex 
hull construction are presented in chapter 5. This class was difficult to implement and 
test because of the plane equations discussed in section 4.1.2.1 and because of the method 
of determining the angle between two planes. Once the Plane class was fixed, the 
Convex_Hull class was easily debugged and tested. The convex hull that was generated 
by the Giftwrapping service was compared against the convex hull that the quickhull[28] 
program computed for the same point set. From 100 random point test data set, both 
programs generated the same 56 facet convex hull. 

4.2.4 BSP _ Tree Class Implementation 
The BSP _Tree class is a major part of implementing the Constrained 

Tetrahedrization algorithm. The BSP tree is a data structure that was first developed for 
the computer graphics field to partition graphical objects for hidden surface removal and 
therefore faster object rendering. The initial information about BSP trees was obtained 
from an ACM SIGGRAPH paper[22] and from the Internet at a site that maintains the 
BSP Tree FAQ[33]. The details of BSP tree construction are presented in chapter 6. 
This class was difficult to implement and test because by the initial class design the 
storage for the partitioning planes and the partitioned objects resided in the internal nodes 
of the tree. This design made the algorithms for tree traversal difficult and harder to 
implement, also the algorithms for convex hull partitioning were difficult and harder to 
implement. After researching the BSP tree material further, it was found that the 
partitioned objects should only reside in the leaf nodes of the tree while only the 
partitioning planes reside in the internal nodes of the tree. After redesigning the class 
appropriately, the implementation and testing became easier for the tree traversal and the 
convex hull partitioning routines. 

4.2.5 OOGL Class Implementation 

The OOGL class is the only class that fell into the Human Interaction Component 
of the OOD design. It is not a true Graphical User Interface (GUI) class because its job is 
to take geometric objects and output their description in the OOGL description 
language[23,32] which will then later be displayed by the Geomview program[15] which 
acts like the GUI. The design of this class really is not Object-Oriented, but it is more 
functional in nature. The idea of a class that has no attributes, but just has services that 
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take parameters in and give output is a functional design. This class should be removed 
and the services should be distributed to the classes that need them. For example the 
service OOGL::Output_Convex_Hull should be removed and it should become the 
service Convex_Hull::OOGL_Output which is a more Object-Oriented approach to the 
problem. This redesign will be left as an opportunity for future expansion. 

4.3 Other Implementation 
Other things that were implemented that were not included in the class design 

were the functional design services that are in the files general.h, general.cc, chsplith, and 
chsplitcc. The functions presented in general.h and general.cc that are interesting to the 

-design are functions that test float and double numbers within a tolerance to avoid round 
off error in calculations involving floating point numbers. Also of interest are several 
functions that do different matrix operations which are used by several services in the 
Plane class and the Convex_Hull class to assist in vector calculations. The chsplit.h and 
chsplit.cc files provide a service to the BSP _ Tree class that will take a Plane object and a 
Convex_Hull object as a parameter and it will split the Convex_Hull object into two 
halves. This particular function should be redesigned in an Object-Oriented manner and 
placed into either the Plane class or the BSP _Tree class. This redesign will be left as an 
opportunity for future expansion. 

4.4 Test Driver Implementation 
In general, the use of test drivers at the unit test phase of the project to test class 

implementations is extremely useful in an Object-Oriented system. In the classical 
functional systems a light unit test phase and a heavy integration testing phase is normal, 
but in the Object-Oriented world the heavy use of the unit test phase makes the 
integration testing phase much easier. Having worked on projects that have taken both 
approaches, the Object-Oriented approach to testing is greatly preferred. Those work 
experiences influenced the project setup to make heavy use of unit testing to simplify the 
integration testing phase of the project. This section describes some of the test drivers 
that were used to test some of the class implementations. 

4.4.1 Test_Pla Driver 
The Test_Pla driver tests the Plane class implementation by creating planes from 

three E3 coordinates and then testing the generated plane equation against the one 
obtained by hand using Calculus. It was very important to test the Plane class thoroughly 
since it is so heavily used in all of the other classes of the project. 
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4.4.2 Test_Lls Driver 
The Test_Lis driver tests the generic List class implementation by creating lists of 

integers and then testing the services of the class by inserting and deleting elements of the 
list at the head, tail, and middle of the list. It was very important to test the generic List 
class thoroughly since it is so heavily used in all of the other classes of the project for 
object storage needs. 

4.4.3 Test_Del Driver 
The Test_Del driver tests the Delaunay Triangulation module of the code by 

running several different sets of triangles through the module and testing the output 
against the expected Delaunay output which was computed by hand. The Delaunay 
Triangulation module of the code is used when splitting one large facet into two smaller 
facets. This method is used to generate new facets from split facets when the convex hull 
is being split by a partitioning plane in the BSP _Tree class. 

4.4.3.1 Delaunay Triangulation 
Delaunay triangulation is a method of arranging a network of non-overlapping 

triangles, which have shared sides, where no points in the triangulation network are 
enclosed by circumscribing circles of any triangle.(2,26,29] A singular triangle only has 
one unique Delaunay triangulation. In E2 a Delaunay triangulation is best represented by 
an illustration of two triangles that have one shared side. The joined triangles which share 
a long side which causes a circumscribed circle to enclose the last point of the other 
triangle is not a Delaunay triangulation. The joined triangles which share a short side 
which do not cause a circumscribed circle to enclose the last point of the other triangle is 
a Delaunay triangulation. Shown in Figure 4-5 is a graphical representation of a non­
Delaunay triangulation and a Delaunay triangulation. 
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Non-Delaunay Triangulation 
Circle around triangle A encloses third point from triangle B 
Circle around triangle B encloses third point from triangle A 

YAxis 

XAxis 

Delaunay Triangulation 
Circle around triangle A does not enclose third point from triangle B 
Circle around triangle B does not enclose third point from triangle A 

V Axis 

XAxis 

Figure 4-5 - Delaunay Triangulation 

4.4.4 Test_ Ctz Driver 
The Test_Ctz driver tests the Constrained_Tetrahedrization (CTZ) class 

implementation by running a list of 100 random points in 3D (x, y, and z range Oto 1) and 
5 random partition triangles (planes) (all points in range Oto 1) through the Constrain 
service of the class. Since the CTZ module is the main module of the code that 
implements the algorithm[l 7], this driver became the main means of running and testing 
the project output. The Test_ Ctz driver only requires two files as input, points.dat which 
contains a list of 3D points terminated by a origin point (0.0, 0.0, 0.0), and triangle.dat 
which contains a list of 3D triangles terminated by a zero triangle (three origin points). 
The Test_Ctz driver then creates a Constrained_Tetrahedrization class and calls the 

42 



Constrain service with the List<Point3> class and the Llst<Plane> class that were created 
from the input files as parameters. 

The actual data file that contains the list of points and the list of triangles are 
shown in the appendix for reference. The Mathematica program by Wolfram Research 
Inc. is a system of doing Mathematics by computer.[36] Mathematica is a computer 
program that was used to prove some of the equations used in some of the algorithms or 
that was used to show quick graphical output for visual purposes. Shown in Figure 4-6 
are the Mathematica commands and the Mathematica output that graphically show the 
100 random points and the 5 random partition triangles (planes) that were used to test the 
project implementation through the Test_Ctz driver: 

- In [1] := 
tl = ReadList["points.dat", Number, RecordLists->True]; 
pts = Map[Point,tl]; 
Show[Graphics3D[pts]] 

Out[l]= 

In[2] := 
t2 = ReadList["triangle.dat", Number]; 
t2 = Partition[t2,3]; 
t2 = Partition[t2,3]; 
tris = Map[Polygon,t2]; 
Show[Graphics3D[tris]] 

Out[2]= 
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In[3] := 
Show[Graphics3D[pts],Graphics3D[tris]] 

Out[3]= 

Figure 4-6 - Mathematica Graphical Output of Sample Project Input Data 

4.5 Final Implementation Testing 
All of the final implementation testing was done using the Geomview package[ 15] 

to view the OOGL files[23,32] that were produced by running the test_ctz test driver. 
Shown in Figure 4-7 is a sample screen of the Geomview program displaying a 
dodecahedron (12 sided polygon). 
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Figure 4-7 - Example Geom view screen [15] 

Shown in Figure 4-8 is a Geomview Camera of the five partition planes that were 
used to construct the BSP Tree and partition the convex hull that is shown in Figure 4-9. 
Shown in Figure 4-10 is the convex hull after being partitioned by one partition plane 
during testing. 
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Figure 4-8 - Geom view Camera View of the Five Partition Planes 
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Figure 4-9 - Geomview Camera View of the Convex Hull 

47 



Figure 4-10 - Geomview Camera View of the Convex Hull Split by One Plane 
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ChapterV 

Convex Hulls 

5. Convex Hulls 
The convex hull of a set of points P is the smallest convex set that contains 

P.[26,29] For example, if P = { vi, v2, V3, V4} in E2 where V4 is an interior point, then the 
convex hull of Pis a triangle containing the vertices vi, v2, and V3 as shown in Figure 5-1. 

Y Axis vl • 

v2 • 
• v4 

XAxis 

YAxis 

Set of Points P = {vl ,v2,v3,v4} 

XAxis 

Convex Hull of P 

Figure 5-1 - Example of a Set of Points Pin E2 and the Convex Hull of P 

By definition, the set of points P is a finite set. A good working concept of a 
convex hull in E2 can be illustrated by stretching a rubber band around all of the points in 
P and then letting go of the rubber band and letting the rubber band form around the 
outside of the points.[26] In E2, if the number of points n = 1, then the convex hull is the 
point itself. In E2, if the number of points n = 2, then the convex hull is the line segment 
joining the two points. In E2, if the number of points n = 3, then the convex hull is a 
triangle around the three points. In E2, if the number of points n > 3, then the convex hull 
is a convex polygon with the number of sides >= 3. For the purposes of this project, the 
minimum convex hull could only be computed with the number of points n >= 3 in E2. In 
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E2, a facet is a line segment and a subfacet is a point. Shown in Figure 5-2 is an example 
of a convex hull with n > 3 in E2• 

Y Axis 

XAxis 

Set of Points P = {vl , ... ,v8} 
Convex Hull of P 

Figure 5-2 - Example of a Convex Hull with n > 3 in E2 

5.1 Convex Sets 
Set A is convex if for every pair of points p and q in set A, the line segment pq is 

in set A.[29] For example in Figure 5-3, the set on the left is a convex set because the 
line segment pq resides entirely in set A. The set on the right is not a convex set because 
the line segment pq does not reside in set A. 

p q 

A 

Figure 5-3 - Example of a Convex Set and a Non-Convex Set 

5.2 Convex Hulls in Three Dimensions 
Convex hulls in three dimensions have the same basic definition as a convex hull in 

two dimensions. The convex hull of a set of points P is the smallest convex set that 
contains P.[26] By definition, the set of points Pis a finite set. A good working concept 
of a convex hull in E3 can be illustrated by stretching a piece of plastic wrap around all of 
the points in P and then shrink wrapping the plastic wrap around the outside of the points. 
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In E3, if the number of points n = 1, then the convex hull is the point itself. In E3, if the 
number of points n = 2, then the convex hull is the line segment joining the two points. In 
E3, if the number of points n = 3, then the convex hull is a triangle around the three 
points. In E3, if the number of points n > 3, then the convex hull is a convex polygon with 
the number of sides >= 3. For the purposes of this project, the minimum convex hull 
could only be computed with the number of points n >= 4 in E3• In E3, a facet is a 
triangle and a subfacet is a line segment Shown in Figure 5-4 is an example of a convex 
hull with n > 4 in E3• 

YAxis 

XAxis 

Figure 5-4 - Example Convex Hull with n > 4 in E3 

5.3 Convex Hull Algorithm 
The algorithm to compute a convex hull given a set of points in E3 was presented 

in Computational Geometry an Introduction and presented as the "gift-wrapping" 
method.[26] The algorithm is an extension of the standard beneath and beyond algorithm 
adapted to three dimensions by checking beneath and beyond on hyper-planes instead of 
individual points as in the two dimensional version of the algorithm. The basic idea is to 
proceed from a facet to an adjacent facet, in the guise in which one wraps a sheet around 
a plane-bounded object.[26] 

The algorithm starts out by finding the initial facet in the convex hull. After 
finding this initial facet, it then builds half-planes to the other points in the set that are not 
in the initial facet in order to find the half-plane which forms the largest angle to the initial 
facet. It then builds another facet with this half-plane and continues on from there 
building facets until the convex hull is an enclosed faceted polygon. 

The initial facet is built by first selecting the point of the least x, y, z value and 
calling it Pl of the initial facet. The hyperplane of maximum angle that is built from the 
first point Pl and orthogonal to vector n = <1,0,0> and vector a= <0,1,0> is used to find 
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the second point in the initial facet calling it P2. The Pl P2 line segment is called a 
subfacet of the initial convex hull facet The hyperplane that is built from the first 
subfacet and is orthogonal to vector new n and also to vector new a, which is re­
computed using the maximum angle and the new normal vector, is used to find the third 
point in the initial facet calling it P3. The Pl P2 P3 triangle is called the initial convex hull 
facet and each side of the facet are called subfacets of the initial convex hull facet The 
algorithm time to find the initial facet in a convex hull is O(N log N) + C for finding Pl, 
O(N) + C for finding P2 and O(N) + C for finding P3. This makes a total time for finding 
the initial facet of O(N log N) + O(2N) + C. According to an analysis shown in 
Preparata and Shamos[26] the time to build the initial facet should be O(Nd2) + O(Nd3) = 
O(Nd2) since N >= d. 

After the initial convex hull subfacet has been found, the building of the rest of the 
convex hull facets comes from there. By the nature of how triangular facets work, each 
subfacet in a convex hull facet can only be part of two facets. In the rest of the algorithm 
if a subfacet already belongs to two facets then it is considered completed and can never 
be revisited again. If the subfacet only belongs to one facet, then hyperplanes may be 
formed in the same manner as was done for finding P3 of the initial facet and selecting the 
hyperplane that has the maximum angle. Once the new facet is formed, the subfacet that 
was used to join the new facet to the original facet is considered complete and the two 
new subfacets that are formed are used to keep the algorithm going. The algorithm 
completes when there are no more subfacets to process. At this point every facet will 
have been formed and the convex hull will be an enclosed faceted polygon. According to 
an analysis shown in Preparata and Shamos[26] the time to build the convex hull of a set 
of N points in d-dimensional space using the gift-wrapping technique is O(N cpd_1)+ 0( cpd-
2log cpd_2) on average, where cpd-1 is the number of facets in the hull and cpd-Z is the number 
of subfacets in the hull, and O(N-d/2J+1)+ O(N-d/2J log N) on worst case. In E3 this 
translates to O(N2) + O(N log N), which simplifies to O(N2) on worst case. 

5.4 Splitting Convex Hulls 
One of the steps in the algorithm[l 7] involves merging a convex hull into a BSP 

tree. At the heart of this merging is to split the convex hull with the partition plane at 
each node of the BSP tree. The algorithm that recurses through the tree and does the 
splitting will be discussed in more detail in chapter 6. This section will discuss splitting a 
convex hull with a single plane. In order to more fully understand how to split a convex 
hull with a plane, we will start off with some simple two dimensional examples and move 
towards the more complex three dimensional examples. 

5.4.1 Splitting in E2 

In E2 the problem becomes how to split the convex hull with a line. The standard 
algorithm for splitting a convex hull is to test every facet against the partition and to lump 
the facets into one of four categories. These categories are: In Front, In Back, Spanning, 
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and Coincident. Both In Front and In Back mean that the facet lies entirely on one side or 
the other side of the partition. Spanning means that the facet is split by the partition and 
Coincident means that the facet lies inside of the partition. Once every facet is 
categorized, all of the In Front facets go into the front convex hull and all of the In Back 
facets go into the back convex hull. The facets that are Coincident go into both the front 
and the back convex hull. The facets that are Spanning need to be split by the partition 
and the part of the facet that is In Front goes into the front convex hull and the part of the 
facet that is In Back goes into the back convex hull. Once this entire categorization is 
completed any points that ended up inside of the partition because of splitting or 
Coincidence will become facets of both convex hulls. Shown in Figure 5-5 is an example 
of convex hulls in E2 with facets that are In Front or In Back, Spanning, and Coincident. 

Y Axis Convex Hull In Front of Partition 

XAxis 

YAxis Convex Hull Spanning Partition 

XAxis 

Convex Hull Coincident to Partition 
YAxis 

XAxis 
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Figure 5-5 - Examples of Partitioning Convex Hulls in E2 

The middle convex hull in Figure 5-5 depicts a convex hull that is Spanning the 
partition line. In this convex hull the categorization of the facets was that only two of the 
original convex hull facets are Spanning the partition line, two of the original convex hull 
facets were In Front of the partition, and two of the original convex hull facets were In 
Back of the partition. After the partitioning of this convex hull, the result is two new 
convex hulls, one in front of the partition and one in back of the partition. The front 
convex hull contains the two In Front facets of the original convex hull, plus three new 
facets to complete the front convex hull. The new facets are the two facets that are 
created by the partition plane splitting the facet in half and one facet that lies in the 

- partition plane. In like manner, the back convex hull contains the two In Back facets of 
the original convex hull, plus three new facets to complete the back convex hull. The new 
facets are the two facets that are created by the partition plane splitting the facet in half 
and one facet that lies in the partition plane. 

5.4.2 Splitting in E3 

In E3 the problem is a little more difficult than in E2 because the problem now 
becomes how to split the convex hull which looks like a faceted ball with a plane. 
Fortunately the standard algorithm for splitting a convex hull in E3 is the same as it is in 
E2• The standard algorithm for splitting a convex hull is to test every facet against the 
partition and to lump the facets into one of the four categories. The first thing that is 
different about convex hulls in E3 is that the facets are triangles instead of line segments 
like they are in E2• In E2 it is almost trivial to calculate the intersection of a line and a line 
segment, but in E3 the problem becomes how to compute the intersection of a plane with 
a triangle (almost like a plane) in E3• Shown in Figure 5-6 is an example of a plane and a 
single facet in E3 that is In Front or In Back, Spanning, and Coincident. 

54 



V Axis 

Facet In Front of Plane 

XAxis 

YAxis /4 Facet Spanning Plane 

XAxis 

V Axis 

Facet Coincident to Plane 

XAxis 

Figure 5-6 - Example of Partitioning a Facet in E3 
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As shown in Figure 5-7, in the splitting there are several special cases where one 
or two of the points of a facet lie inside of the partitioning plane. In these special cases 
the coincident points are kept in a special list along with all of the new points that were 
generated from splitting the convex hull facets. After all of the facets in the convex hull 
have been visited, this coincident list is formed and it then becomes necessary to take all 
of these points that are in the plane and Delaunay Triangulate[2,21,29] them to form new 
facets. Those newly generated facets are then put into both the front convex hull and the 
back hull. This special method of dealing with coincident points was not implemented in 
the code, it is left for future expansion of the algorithm[l 7]. The omission of these 
calculations means that the resulting hull will not be a convex hull in the true sense of the 
definition because it will be an open ended shell where the plane partitions it. This will 
not stop the determination of success or failure of the algorithm[ 17] because by using the 
Geomview package we can see if the convex hull is being split properly by the partition 
planes. 

YAxis 

Special Case # 1, Two Points Coincident 

XAxis 

YAxis Special Case #2, One Point Coincident 

XAxis 

Figure 5-7 - Example of Special Case Coincident Facets in E3 
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Shown in Figure 5-8 is an example of a convex hull in E3 with facets that were 
Spanning the partition plane. The front convex hull is the one on top of the partition 
plane and the back convex hull is the one on the bottom of the partition plane. Also 
shown in Figure 5-9 is a top view of what the Delaunay Triangulation of the points 
Coincident to the plane would produce with the front and back convex hulls cut away for 
clarity. 

YAxis 

XAxis 

Figure 5-8 - Example of a Convex Hull Spanning a Plane in E3 

YAxis 

XAxis 

Figure 5-9 - Example of a Delaunay Triangulation of Coincident Points 
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Chapter VI 

BSPTrees 

6. BSPTrees 
A Binary Space Partitioning (BSP) tree is a data structure that represents a 

recursive, hierarchical subdivision of n-dimensional space into convex subspaces.[33] 
BSP trees are built using hyperplanes (Ed-I objects) to subdivide Ed space. For example, 
in E3 a hyperplane would be an E2 object or a plane and in E2 a hyperplane would be an E1 

object or a line. The generic BSP tree is a typical tree that closely models a normal binary 
tree data structure or a k-d tree data structure. The added feature is that a BSP tree node 
contains a list of all polygons in that partition of the tree. For example: 

BSP Tree: 
plane partition 
list polygons 
BSP Tree *front, *back 
int-leaf node 

Shown in Figure 6-1 is an example BSP tree in E2 with two partitioning lines X 
and Y which subdivide the space into three subspaces D, E, and C [33]: 
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Figure 6-1 - Sample BSP Tree in E2 
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Notice, that in a BSP tree, if any points resided in subspace D that they would be 
contained in the node that represented that subspace in the tree. In this example, the 
internal nodes of the tree represent the partitioning lines and the leaf nodes of the tree 
represent the subspaces. 

6.1 BSP Tree Construction 

The method for building a BSP tree is to first select a partition plane, partition the 
set of polygons with the plane, and then recurse with each of the two new sets. The input 
for the project was a set of planes in E3 space that was going to be used as a partitioning 
set for the BSP tree. In the BSP _Tree class the construction process and the merging 
process were separated into two separate processes. The basic pseudocode algorithm for 
doing the recursive BSP tree construction is: 

procedure BSP Tree Build(BSP Tree *t, List<Plane> 1) 
List<Plane> front list, back list 
if 1 is not empty-then -

if tis null then 
t <- new BSP Tree 
t.partition plane<- 1 
while 1 is not empty do 

case (t.partition_plane and 1) 
parallel in front: add 1 to front list 
parallel in back: add 1 to back list 
coincident: ignore 1 
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spanning: add 1 to both front list and back list 
end case 

end while 
if front list is not empty then 

BSP Tree Build(t.front, front_list) 
else - -

t.front = new subspace 
end if 
if back list is not empty then 

BSP Tree Build(t.back, back_list) 
else - -

t.back = new subspace 
end if 

else 
ERROR tis not null 

end if 
end if 

end procedure 

Figure 6-2 - Pseudocode for BSP Tree Construction 

6.2 BSP Tree Merging 

The method for merging a convex hull into a BSP tree is to start at the root node 
of the tree with the convex hull, which is simply a list of facets, and to test each facet of 
the convex hull against the partition plane at that node. All of the facets will fall into one 
of four categories: 

• In Front of the plane 
•In Back of the plane 
•Coincident inside of the plane 
•Spanning across the plane 

For every facet, if the facet is In Front of the plane then place the facet in a 
temporary front facet list, or if the facet is In Back of the plane then place the facet in a 
temporary back facet list. If the facet is coincident then place all of the points of the facet 
into a temporary point list The last and most difficult case is if the facet is spanning the 
plane. If the facet is spanning the plane then the facet must be split into two separate 
facets and the new facets must be placed into their respective facet lists, the temporary 
front facet list and the temporary back facet list. The point(s) that are inside of the 
partition plane as the product of splitting the facet with the partition plane should also be 
added to the temporary point list. After all of the facets in the convex hull have been 
exhausted, the list of points that are inside of the partition plane need to be placed into 
new facets that form a Delaunay triangulation and then those new facets need to be added 
to both the temporary front facet list and the temporary back facet list. Then recurse 
down the front BSP sub-tree with the temporary front facet list and recurse down the 
back BSP sub-tree with the temporary back facet list. If the BSP tree node visited has a 
left or right sub-tree that is a leaf node, then the list of facets that belong in that subspace 
should be added to the facet list in that leaf node. The basic pseudocode algorithm for 
recursively merging a convex hull with the BSP tree is: 
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procedure Merge Convex Hull(BSP Tree *t, List<Facet> ch) 
List<Plane> temp front list,-temp back list 
List<Point3> temp point list - -
if ch is not empty then-

if tis not null then 
while ch is not empty do 

case (t.partition_plane and ch facet) 
in front: add ch facet to temp front list 
in back: add ch facet to temp back list 
coincident: add all three points of ch facet 

to temp_point_list 
spanning: split ch facet into two new facets 

add front new facet to temp front list 
add back new facet to temp back list 
add ch facet and plane intersection points 

to temp_point_list 
end case 

end while 
form temp point list into new facets 
put new facets into temp front list 
put new facets into temp-back list 
if t.front is not null then -

t.front.front list<- temp front list 
else - - -

Merge Convex Hull(t.front, temp front list) 
end if - - - -
if t.back is not null then 

t.back.back list<- temp back list 
else - - -

Merge Convex Hull(t.back, temp back_list) 
end if - -

else 
ERROR tis null 

end if 
end if 

end procedure 

Figure 6-3 - Pseudocode for Convex Hull Merge Into BSP Tree 
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Chapter VII 

PROGRAM IMPLEMENTATION 

7. Program Implementation 
The OOP implementation of the program design, that was described previously in 

chapter 4, had some physical implementation issues that were important to a successful 
implementation of the project. This chapter further explains those physical 
implementation issues. 

7.1 Compiler and Platform Choice 
The compiler that was originally chosen for this project was Turbo C++ v 1.5 for 

the MS-DOS platform. This compiler and platform were originally chosen because of the 
simplicity and speed of the compiler/platform combination. After the initial design of the 
project had already been started an additional requirement was added to the project that 
required the code to be compatible across a wide range of compilers and platforms. Due 
to this new requirement at this stage of the project, the development was being done on 
the PC platform, and also being tested on three different UNIX platforms running g++ 
(GNU C++) as the compiler. However, once the project got bigger the code no longer 
ran on the PC platform using the Turbo C++ compiler because the code segment was 
larger than 64K with the debugging information turned on. Under MS-DOS based PC 
architectures there is a limit of 64K for each code segment, data segment, and stack 
segment. In MS-DOS based PC architectures the way to compensate for this limitation is 
to change the memory model that the compiler compiles your code under. The tradeoff is 
that in your code the pointers must now be addressed as either "near" or "far'' pointers 
depending on how they are used and what they reference. The resulting code would 
definitely not be portable to any platforms other than a MS-DOS based PC, which would 
violate the new requirement. 
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7.1.1 Compiler Choice Alternative 
The alternative to moving to an entirely UNIX solution was to download the 

DJGPP package (GNU C++ ported to MS-DOS) [12] and to port the project entirely to 
the g++ compiler for both the UNIX and PC platforms. The DJGPP compiler supports a 
flat memory architecture like UNIX does through the use of a MS-DOS memory 
extender. This new compiler ultimately fulfilled the multiple platform requirement 
because the program could now be compiled under the standard g++ compiler for any 
platform. The programming implementation part of the project was carried to completion 
using the PC platform with the DJGPP g++ compiler for development and many different 
UNIX platforms with the standard g++ compiler for testing. 

7.1.2 Output and Final Considerations 
Towards the end of the project all of the testing had to be done on the DEC Alpha 

OSF/1 UNIX platform since that was the only platform that the Geomview package [15] 
supported at that time. Toward the end of the project, the network speed was just too 
slow to support remote X-Windows via modem or network. This meant that the ability to 
visually test my OOGL [23,32] output was lost, so the last platform that was added to the 
project was a Linux UNIX based PC platform also using the GNU g++ compiler. This 
new platform allowed all of the conveniences of a powerful UNIX workstation at the 
price of a PC in my own home which was extremely nice. It allowed compiling, testing, 
and viewing of the OOGL output in the Geomview package all on one machine. The 
Geometry Center [15] had just released the Linux version of the Geomview package at 
that time which made the whole development and testing system come together at the 
right time. 

7.2 Platforms 
In summary, the platforms that were mentioned in section 7 .1 were: 

1. IBM PC compatible, running MS-DOS v6.22 
2. Sun 3/60 workstation, running SunOS v4.1.1 UNIX 
3. Sun Sparc20 workstation, running Solaris v5.4 UNIX 
4. DEC Alpha workstation, running OSF/1 UNIX 
5. IBM PC compatible, running Linux UNIX 

7.2.1 IBM PC Compatible (MS-DOS) 

The IBM PC compatible machine running MS-DOS v6.22 was an excellent choice 
for a preliminary development platform. The physical machine was a 486-DX2/66 with 16 
MB RAM, 256K cache, and a built-in Math Co-Processor. The code was developed 
using the wide range of editors, compilers, and development tools that are available on the 
PC platform. As the project got larger the downside of the platform was that the MS­
DOS based compilers only supported a code segment, data segment, and stack segment of 
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64K. The code segment of the project was larger than 64K with the debugging flags 
turned on, so the project would not run on the platform. If the memory model was 
switched to the large or huge models to compensate for the small segment size, then the 
pointers didn't work because the PC uses "near" and "far'' pointers which would not 
make the code portable to UNIX platforms. After switching compilers to DJGPP (GNU 
C++ for MS-DOS), which supports a flat memory model like UNIX platforms do, then 
the code could be further developed and the code remained compatible with UNIX 
platforms throughout the development. 

7.2.2 Sun 3/60 

The Sun 3/60 workstation running SunOS v4.1.1 UNIX was a good platform 
choice at first to test the code that was developed on the PC because it gave the closest 
results that the PC code produced, and the speed was just a little bit faster than the PC on 
running the project. As the project got larger, the downsides of the machine became 
more evident. The machine was slow at compiling, ran out of memory often, and broke 
down on a regular basis. In the middle of the project the machine was rendered useless. 
It would have been nice to get some timing trials from this machine as well as the newer 
UNIX machines, but now that is not possible. This workstation was state of the art about 
10 years ago, but today it is really lacking in power. 

7 .2.3 Sun Sparc20 

The Sun Sparc20 workstation Solaris v5.4 UNIX was an excellent platform choice 
to take over where the old Sun 3/60 machine had left off. The machine was fast and 
seemed to run with exactly the same results as the old Sun 3/60 machine. Once we got a 
working C/C++ compiler on the machine, the project compiled with a few warnings that 
were quickly resolved, and the project moved on. Once everything was configured 
properly, the Sun Sparc20 is a full featured machine that is extremely fast. A lot of delay 
in development time could have been avoided if this machine had been available for use at 
the start of the project and was used as the sole development machine. As of the writing 
of this thesis, the Sun Sparc20 workstation is new considered a low end workstation and 
the new Sun Spare Ultra workstations are the top of the line. 

7 .2.4 DEC Alpha 

The DEC Alpha workstation running OSF/1 UNIX had problems right from the 
start of choosing the platform. The machine was extremely fast; however it had a lot of 
floating point problems that the Sun platforms and the PC platform never encountered. It 
was a real chore to find all of the floating point problems that the DEC Alpha machine 
kept pointing out. As it turned out, the DEC Alpha would catch floating point 
programming errors and inconsistencies that the Sun and PC platforms just ignored, 
rounded off, or simply could not catch. Toward the end of the project, this machine was 
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used exclusively for testing and viewing the OOGL output files because this was the only 
platform that the Geomview package was supported on at that time. 

7.2.5 IBM PC Compatible (Linux) 
The IBM PC compatible machine running the Linux UNIX operating system was 

added to the project at the last stages of development and testing. The physical machine 
was a 386-DX40 with 8 MB RAM, 128K cache, and a 387 Math Co-Processor. The 
benefits of this machine were that it ran the UNIX operating system, ran the X-Windows 
GUI, had the g++ compiler, and a version of the Geomview package for Linux was just 
released as this machine was being moved into the development and testing of the project. 
This machine proved to be invaluable because it was like having a powerful UNIX 
workstation on the desk at the cost of a cheap PC. The downsides of this platform were 
that the 386-DX40 is getting antiquated and the machine takes over 40 minutes to 
compile and link all of the source code files, while its workstation counterparts took 
between 1-2 minutes to compile and link the same source code files. 
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Files Included in this Appendix: 
1. bsp_tree.h 
2. chsplit.h 
3. chull2.h 
4. chu113.h 
5. ctz.h 
6. facet2.h 
7. facet3.h 
8. faceti.h 
9. general.h 
10. lineseg2.h 
1 1. lineseg3.h 
12. listh 
13. oogl.h 
14. plane.h 
15. point2.h 
16. point3.h 
17. subfacet2.h 
18. subfacet3.h 
19. template.h 
20. bsp_tree.cc 
21. chsplit.cc 
22. chull2.cc 
23. chull3.cc 
24. ctz.cc 
25. facet2.cc 
26. facet3.cc 
27. faceti.cc 
28. general.cc 
29. lineseg2.cc 
30. lineseg3.cc 
31. list.cc 
32. oogl.cc 
33. plane.cc 
34. point2.cc 
35. point3.cc 
36. subfacet2.cc 
37. subfacet3.cc 
38. test_ctz.cc 
39. test_del.cc 
40. test_lis.cc 
41. test_p2.cc 

APPENDIX 
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42. test_pla.cc 
43. proc_off.cc 
44. makefile.djg 
45. makefile.sol 
46. makefile.linux 
47. points.dat 
48. points2.dat 
49. triangle.dat 
50. triangle2.dat 
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/* bsp_tree.h */ 

#ifndef BSP TREE H 
#define BSP-TREE-H 1 
#ifdef _cpTusplus 

f:include "plane.h" 
iinclude "point3.h" 
#include "list.h" 
f:include "chull3.h" 

class BSP Tree 
{ 

public: 
BSP Tree(); 
~BSP Tree() ; 
voidBuild BSP Tree(List<Plane>); 
void Merge-Convex Hull(Convex Hull3); 
void Convex Hull Ynsert(List<Point3>&, Convex_Hull3); 
void OOGL Output(List<Point3>&); 
void Show() ; 

private: 
void Show Class(Poly Class); 
void R Build BSP Tree(BSP Tree*, List<Plane>); 
void R-Merge-Convex Hull(BSP Tree*, Convex Hul13); 
void R-Convex Hull Insert(List<Point3>&, BSP Tree*, 

Convex Hull3); - - -

} ; 

f:endif 
#endif 

void R OOGL Output(List<Point3>&, BSP_Tree*); 
void R=Show(BSP_Tree*); 

Plane partition; 
Convex Hull3 polygons; 
BSP Tree *front; 
BSP-Tree *back; 
int-leaf_node; 

/* chsplit.h */ 

#ifndef CONVEX HULL SPLIT 
f:define CONVEX-HULL-SPLIT 1 
iifdef _cplusplus -

f:include "faceti.h" 
#include "point2.h" 
#include "point3.h" 
iinclude "facet3.h" 
#include "plane.h" 
#include "list.h" 
#include "chull3.h" 

// Given 4 points in E3, return the Delaunay Triangulation 
void Delaunay Triangulate (Point3, Point3, Point3, Point3, 

- Facet3&, Facet3&); 

// Given n points in E3 and a plane that the points are contained in, 
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II return a Triangulation 
Convex_Hull3 Triangulate(List<Point3>&, Plane&); 

II Given n points in E2, return a Triangulation 
List<Facet Index> Triangulate2(List<Point2>&); 

II Given a Facet and a Plane, split the facet and put the 
II Convex Hull facets in the Convex Hull. Extra added points 
II will be added to the Point List. 
void Split Facet With Plane (List<Point3>&, 

- - - List<Point3>&, 
Facet3&, 
Plane&, 
Convex Hull3&, 
Convex=Hull3&); 

II Given a Facet and a Plane, split the facet and put the 
II Convex Hull facets in the Convex Hull. Extra added points 
II will be added to the new point List. Caller must add new 
II points back top on their own. 
void Split_Facet_With_Plane2 (List<Point3>& p, 

List<Point3>& new_points, 
Facet3 f, 
Plane partition_plane, 
Convex Hull3& front facets, 
Convex=Hull3& back_facets); 

II Given a Polygon represented as a Facet, split the polygon with 
II the plane and put the Convex Hull facets in the Convex Hull. 
void Split Polygon With Plane (Facet3&, 

- - - Plane&, 
Convex Hull3&, 
Convex=Hull3&); 

II Given a Convex Hull and a Plane, split the Convex Hull with the 
II Plane and put the new Convex Hull facets in each of the output 
II Convex Hulls. Extra added points will be added to the Point List. 
void Split Convex Hull With Plane (List<Point3>&, 

- - - - List<Point3>&, 

tendif 
tendif 
I* chull2.h - Convex Hull Class *I 

:j/,ifndef CONVEX HULL2 H 
:j/,define CONVEX-HULL2-H 1 
fifdef _cplusplus -

tinclude "list.h" 
!include "point2.h" 
tinclude "facet2.h" 

Convex Hull3&, 
Plane&; 
Convex Hull3&, 
Convex=Hull3&); 

class Convex Hull2 
{ 

public List<Facet2> 
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public: 
II Convex Hull - Gift Wrapping Method 
II Given n points pl .. pn E3 produces a convex hull 
II Represented by a list of facets fl .. fm. 

II Algorithm presented as pseudo-code in: 
II Computational Geometry an Introduction, 
II Franco P. Preparata and Michael Ian Shamos, 
II Springer-Verlag, 1985, pp 131-136. 

II This particular implementation was modified 
II from the original algorithm by Carol Hazlewood, PhD 
II and Brian Collins. 

void GiftWrapping (List<Point2>&); 

private: 
Facet2 Find Initial Facet (List<Point2>&); 

} ; 

#endif 
#endif 
I* chull.h - Convex Hull Class *I 

#ifndef CONVEX HULL3 H 
#define CONVEX-HULL3-H 1 
#ifdef _cplusplus 

#include "list.h" 
#include "point3.h" 
#ifdef DEBUG 
#include "facet3.h" 
#include "plane.h" 
#endif 

class Convex Hull3 
{ 

public List<Facet3> 

public: 
II Convex Hull - Gift Wrapping Method 
II Given n points pl .. pn E3 produces a convex hull 
II Represented by a list of facets fl .. fm. 

II Algorithm presented as pseudo-code in: 
II Computational Geometry an Introduction, 
II Franco P. Preparata and Michael Ian Shamos, 
II Springer-Verlag, 1985, pp 131-136. 

II This particular implementation was modified 
II from the original algorithm by Carol Hazlewood, PhD 
II and Brian Collins. 

void GiftWrapping (List<Point3>&); 
hfdef DEBUG 

int Verify Split Convex Hull (Plane&); 
#endif - - -

private: 
Facet3 Find_Initial_Facet (List<Point3>&); 

#ifdef DEBUG 
int Verify Initial Facet (List<Point3>&, Facet3&); 

#endif - -
} ; 
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fendif 
fendif 
/* ctz.h */ 

fifndef CTZ H 
fdefine CTZ-H 1 
fifdef _cpTusplus 

// Computing a Constrained Tetrahedrization 

//Algorithm presented in paper: 
// Hazlewood, Carol. Using Binary Space Paritions to 
// Approximate Constrained Tetrahedrizations. September 
// 18, 1993. 

finclude "list.h" 
finclude "point3.h" 
finclude "plane.h" 

// USAGE: 
// P' is a set of n points in EA3 
//Fis a set of k triangles which have vertices in P' 
// and which intersect in (possibly empty) mutual faces 

void Constrain (List<Point3>&, List<Plane>&); 

fendif 
fendif 
/* facet2.h - Facet2 Class*/ 

fifndef FACET2 H 
fdefine FACET2-H 1 
fifdef _cplusplus 

finclude <iostream.h> 
finclude "point2.h" 
finclude "lineseg2.h" 

// NOTE: 
// In 2D a facet is a line segment and a subfacet is a point. 

class Facet2 : public Line_Segment2 
{ 

} ; 

public: 
// Operators 
Facet2& operator=(const Facet2&); 
int sf equal(const Facet2&); 
friend-ostream& operator<<(ostream&,Facet2); 

// Accessors 
void SetFacet(Point2, Point2); 
void SetID (int); 
int Get ID (); 

// Services 
void Show(); 
void Show_Full(); 

private: 
// Attributes 
int id; 
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fendif 
fendif 
I* facet3.h - Facet3 Class *I 

fifndef FACET3 H 
fdefine FACET3-H 1 
fifdef _cplusplus 

finclude <iostream.h> 
finclude "plane.h" 
finclude "point3.h" 

class Facet3 : public Plane 
{ 

public: 
II Operators 
Facet3& operator=(const Facet3&); 
int sf equal(const Facet3&); 
friend-ostream& operator<<(ostream&,Facet3); 

II Accessors 
void SetFacet(Point3, Point3, Point3); 
void SetID(int); 

} ; 

int GetID () ; 

II Services 
void Show() ; 
void Show_Full(); 

private: 
II Attributes 
int id; 

fendif 
fendif 
I* faceti.h - Facet Index Class *I 

fifndef FACET INDEX H 
fdefine FACET-INDEX-H 1 
fifdef _cplusplus -

finclude <iostream.h> 

class Facet Index 
{ 

public: 
Facet Index(); 
Facet-Index(int,int,int); 
Facet-Index(const Facet Index&); 
~Facet_Index(); -

II Default Constructor 
II Secondary Constructor 
II Copy Constructor 
II Default Constructor 

void operator=(const Facet Index&); 
int operator!=(const Facet-Index&); 
int operator==(const Facet-Index&); 
friend ostream& operator<<(ostream&,Facet_Index); 

int GetPlindex(); 
int GetP2Index(); 
int GetP3Index(); 
void SetPlindex(int); 
void SetP2Index(int); 
void SetP3Index(int); 
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private: 

} ; 

tendif 
tendif 

int pl index; 
int p2-index; 
int p3=index; 

/* general.h */ 

#ifndef GENERAL H 
#define GENERAL-H 1 
tifdef _cpluspTus 

#define TOLER 0.000001 
#define MIN DOUBLE 1.0e-10 
#define MIN-FLOAT 1.0e-07 
#define MAX-DOUBLE 1.0e+l0 
#define MAX-FLOAT 1.0e+07 

typedef enum {COINCIDENT, IN_BACK_OF, IN_FRONT_OF, SPANNING} 
Poly_Class; 

/* Test if a double valuel is "near" another double value2 */ 
int DEQ (double valuel, double value2); 

/* Test if a float valuel is "near" another float value2 */ 
int FEQ (float valuel, float value2); 

/* Test if a double value is "near" 0.0 */ 
int DEQ0 (double value); 

/* Test if a float value is "near" 0.0 */ 
int FEQ0 (float value); 

/* Sign of a value returns: -1 = negative, 1 = positive, 0 
zero*/ 
int sgn (double value); 

/* Find the determant of a 2x2 matrix*/ 
double det2(double all, double a12, 

double a21, double a22); 

/* Find the determant of a 3x3 matrix*/ 
double det3(double all, double a12, double a13, 

double a21, double a22, double a23, 
double a31, double a32, double a33); 

/* Solve a system of 3 equations and 3 unknowns*/ 
void solve(double all, double a12, double a13, double a14, 

double a21, double a22, double a23, double a24, 
double a31, double a32, double a33, double a34, 
double &a, double &b, double &c, double &d); 

77 

"near" 



I* Standard Deviation of n doubles *I 
double standard_deviation(double X[], int n); 

:ftendif 
:ftendif 
I* lineseg2.h - Line_Segment2 Class *I 

:ftifndef LINE SEGEMENT2 H 
fdefine LINE-SEGEMENT2-H 1 
:ftifdef _cplusplus 

finclude "point2.h" 

class Line Segment2 
{ -

public: 
II Constructors & Destructors 
Line Segment2(); 
Line-Segment2(Point2, Point2); 
Line-Segment2(const Line Segment2&); 
~Line_Segment2(); -

II Operators 

II Default Constructor 
II Secondary Constructor 
II Copy Constructor 
II Default Destructor 

Line_Segment2& operator=(const Line_Segment2&); 

II Accessors 
void SetPl(Point2); 
Point2 GetPl () ; 
void SetP2(Point2); 
Point2 GetP2(); 
void SetSegment(Point2, Point2); 

II Services 
int Is On Line Segment(Point2); 
void Show() ; -

protected: 

} ; 

:ftendif 
:/f:endif 

II Attributes 
Point2 pl, p2; 

I* lineseg3.h - Line_Segment3 Class *I 

:ftifndef LINE SEGEMENT3 H 
#define LINE-SEGEMENT3-H 1 
:ftifdef _cplusplus 

#include "point3.h" 
#include "plane.h" 

class Line Segment3 
{ -

public: 
II Constructors & Destructors 
Line Segment3(); 
Line-Segment3(Point3, Point3); 
Line-Segment3(const Line Segment3&); 
~Line_Segment3(); -

II Operators 
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II Default Constructor 
II Secondary Constructor 
II Copy Constructor 
II Default Destructor 



Line_Segment3& operator=(const Line_Segment3&); 

II Accessors 
void SetPl(Point3); 
Point3 GetPl (); 
void SetP2(Point3); 
Point3 GetP2(); 
void SetSegment(Point3, Point3); 

II Services 
Point3 Intersection(Plane&); 
int Is On Line Segment(Point3); 
void Show() ; -

} ; 

protected: 
I I Attributes 
Point3 pl, p2; 

tendif 
tendif 
I* list.h *I 

Hfndef LIST H 
Jdefine LIST-H 1 
Jifdef _cplusplus 

Jinclude "facet3.h" 
function 
template<class T> 
class List 
{ 

public: 

List(); 
List(const List&); 
~List(); 

List& operator=(const List&); 
void Insert Head(const T); 
void Insert-Tail(const T); 
void Insert-At Pointer(const 
T Remove Head (f; 
T Remove-Tail(); 
T Remove-At Pointer(); 
T Peek Head() const; 
T Peek-Tail() const; 
T Peek-At Pointer() const; 
int Is-Empty(); 
void Clear(); 
void Reset Pointer(); 
int Increment Pointer(); 

0=failure -
int Decrement Pointer(); 

0=failure -

found 

void Show(); 
int Is Member(const T); 
int Find(const T); 

int Find2(const Facet3); 
List<Facet3> Only! 

int Num_Members(); 

T) ; 
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II Only needed for Find2 

II Default Constructor 
II Copy Constructor 
II Default Destructor 

II returns: l=yes, 0=no 

II returns: l=success, 

II returns: l=success, 

II returns: l=yes, 0=no 
II returns: l=found, 0=not 

II Special Find for 



private: 

struct list item; 
struct list-item 
{ 

} ; 

T data; 
struct list item *prev; 
struct list-item *next; 

typedef struct list item *lptr; 

} ; 

#endif 
#endif 

lptr head; 
lptr tail; 
lptr cur_ptr; 
int num_items; 

/* oogl.h */ 

Ufndef OOGL H 
:/tdefine OOGL-H 1 
#ifdef _cplusplus 

:/tinclude "list.h" 
#include "point3.h" 
#include "chull3.h" 
#include "plane.h" 
#include "bsp_tree.h" 

// Creates Output OOGL File: chull.off in current directory 
void Convex_Hull_2_OOGL (List<Point3>&, Convex_Hull3&); 

// Creates Output OOGL File: triangs.off in current directory 
void Triangles_2_OOGL (List<Plane>&); 

// Creates Output OOGL File: bspchull.off in current directory 
void BSP Tree w Convex Hulls_2_OOGL (List<Point3>&, BSP_Tree&); 

#endif 
#endif 
/* plane.h - Plane Class*/ 

#ifndef PLANE H 
#define PLANE-H 1 
#ifdef _cplusplus 

#include <iostream.h> 
#include "general.h" 
#include "point3.h" 

class Plane 
{ 

public: 
// Constructors & Destructors 
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plane 

Plane() ; 
Plane(Point3, Point3, Point3); 
Plane(const Plane&); 
~Plane(); 

II Operators 
Plane& operator=(const Plane&); 
int operator==(const Plane&); 
int operator!=(const Plane&); 

II Default Constructor 
II Secondary Constructor 
II Copy Constructor 
II Default Destructor 

friend ostream& operator<<(ostream&,Plane); 

II Accessors 
void SetPl(Point3); 
Point3 GetPl () ; 
void SetP2(Point3); 
Point3 GetP2 () ; 
void SetP3(Point3); 
Point3 GetP3 (); 
void SetPlane(Point3, Point3, Point3); 
double GetA(); 
double GetB(); 
double GetC(); 
double GetD(); 

II Services 
int Is Parallel(Plane&); 
int Is-Coincident(Plane&); 
double-Distance(Point3); 

int Is Point On Plane(Point3); 

II Distance between point and 

Poly Class Classify Polygon(Plane&); 
Poly-Class Classify-Polygon2(Point3); 
Poly-Class Classify-Polygon3(Plane&); 
double Angle(Plane&f; II Angle between 2 planes 
Point3 Normal(); II Normal vector to a plane 
void Show(); 
void Show_Full(); 

private: 
II Private Services 
void Calculate Equation(); 
void Newells_Method(); 

protected: 
II Attributes 
Point3 pl, p2, p3; 
double a, b, c, d; 

II planes are formed by three points 
II Ax+By+Cz+D=0 equation of a plane 

} ; 

fendif 
fendif 
I* point2.h - Point2 Class *I 

fifndef POINT2 H 
fdefine POINT2-H 1 
fifdef _cplusplus 

finclude <iostream.h> 

class Point2 
{ 

public: 
II Constructors & Destructors 
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} ; 

Point2(); 
Point2(double, double); 
Point2(const Point2&); 
~Point2 (); 

// Operators 

// Default Constructor 
// Secondary Constructor 
// Copy Constructor 
// Default Destructor 

Point2& operator=(const Point2&); 
int operator==(const Point2&); 
int operator!=(const Point2&); 
friend ostream& operator<<(ostream&,Point2); 

// Accessors 
void SetX(double); 
double GetX(); 
void SetY(double); 
double GetY () ; 
void SetID (int); 
int Get ID () ; 
void SetPoint(double, double); 

// Services 
double Distance(const Point2&); 
void Show Full(); 
void Show() ; 

protected: 
// Attributes 
double x, y; 
int id; 

:/tendif 
:/tendif 
/* point3.h - Point3 Class*/ 

:/tifndef POINT3 H 
:/tdefine POINT3-H 1 
:/tifdef _cplusplus 

:/tinclude <iostream.h> 

class Point3 
{ 

public: 
// Constructors & Destructors 
Point3(); 
Point3(double, double, double); 
Point3(const Point3&); 
~Point3 (); 

// Operators 
Point3& operator=(const Point3&); 
int operator==(const Point3&); 
int operator!=(const Point3&); 

// Default Constructor 
// Secondary Constructor 
// Copy Constructor 
// Default Destructor 

friend Point3 operator-(const Point3&, const Point3&); 
friend Point3 operator+(const Point3&, const Point3&); 
friend Point3 operator*(const Point3&, const double); 
friend ostream& operator<<(ostream&,Point3); 

// Accessors 
void SetX(double); 
double GetX(); 
void SetY(double); 
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double GetY(); 
void SetZ(double); 
double Get Z () ; 
void SetID (int); 
int Get ID() ; 
void SetPoint(double, double, double); 

// Services 
double Distance(const Point3&); 
double Dot Product(const Point3&); 
double Norin(); 
double Magnitude(const Point3&); // used when using points as 

vectors 
Point3 Cross(Point3&); 
double Rho(Point3&, Point3&, const Point3&); 
Point3 Compute New N(const double, Point3&); 
Point3 Compute=New=A(const Point3&, const Point3&, const 

Point3&); 
void Show Full(); 
void Show() ; 

private: 

} ; 

// Attributes 
double x, y, z; 
int id; 

:fl:endif 
:fl:endif 
/* subfacet2.h - SubFacet2 Class*/ 

:fl:ifndef SUBFACET2 H 
:fl:define SUBFACET2-H 1 
:fl:ifdef _cplusplus 

:fl:include "point2.h" 

// NOTE: 
// In 2D a facet is a line segment and a subfacet is a point. 

class SubFacet2 : public Point2 
{ 

public: 
// Operators 
int operator==(const SubFacet2&); 

// Accessors 
void SetSubFacet(Point2); 

} ; 

:fl:endif 
:fl:endif 
/* subfacet3.h - SubFacet3 Class*/ 

:fl:ifndef SUBFACET3 H 
:fl:define SUBFACET3-H 1 
:fl:ifdef _cplusplus 

:fl:include "lineseg3.h" 
:fl:include "point3.h" 

class SubFacet3 : public Line_Segment3 
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public: 
// Operators 
int operator==(const SubFacet3&); 

// Accessors 
void SetSubFacet(Point3, Point3); 

} ; 

:ftendif 
:ftendif 
II GCC and DJGPP Template File 

Hf defined (_DJGPP_) I I defined (_GNUC_) 

#include "list.h" 
#include "list.cc" 
#include "facet3.h" 
#include "point3.h" 
#include "point2.h" 
#include "faceti.h" 
#include "plane.h" 

template class List<Point3>; 
template class List<Point2>; 
template class List<Facet3>; 
template class List<Facet Index>; 
template class List<Plane>; 
template class List<int>; 

:ftendif 

/* bsp_tree.cc */ 

:ftifdef _cplusplus 

#include <fstream.h> 
#include <stddef.h> 
#include <iostream.h> 
#include <stdlib.h> 
#include "bsp tree.h" 
#include "facet3.h" 
#include "chsplit.h" 

BSP Tree::BSP Tree() 
{ - -

polygons.Clear(); 
front= (BSP Tree*)0; 
back= (BSP Tree*)0; 
leaf node =-0; 

BSP_Tree::~BSP_Tree() 
{ 

if (!polygons.Is Empty()) 
polygons.Clear(); 

if (front) 
delete(front); 

if (back) 
delete(back); 
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void BSP_Tree::Build_BSP_Tree(List<Plane> partition_list) 
{ 

List<Plane> front_list; 
cur plane 

List<Plane> back_list; 
cur plane 

if (!partition_list.Is_Empty()) 
{ 

// List of Planes in front of 

// List of Planes in back of 

partition= partition list.Remove Head(); 
while ( !partition list. Is Empty()) 
{ - -

switch 
- (partition.Classify Polygon3(partition list.Peek Head())) 

{ - - -
case IN FRONT OF: 

front list~Insert Tail(partition list.Remove Head()); 
break; - - -

case IN BACK OF: 
back-list~Insert Tail(partition list.Remove Head()); 
break; - - -

case COINCIDENT: 
// Don't add coincident planes to the tree 
break; 

case SPANNING: 
front list.Insert Tail(partition list.Peek Head()); 
back list.Insert Tail(partition list.Remove Head()); 
break; - - -

if (!front_list.Is_Empty()) 
{ 

front= new BSP Tree; 
R_Build_BSP_Tree(front, front_list); 

} 
else 
{ 

front= new BSP Tree; 
front->leaf_node = l; 

if (!back_list.Is_Empty()) 
{ 

back= new BSP Tree; 
R_Build_BSP_Tree(back, back_list); 

} 
else 
{ 

} 
else 
{ 

back= new BSP Tree; 
back->leaf node= l; 

cerr << "ERROR: Building BSP Tree with empty partition list"<< 
endl; 

exit(l); 
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void BSP Tree::Merge Convex Hull(Convex Hull3 convex_hull) 
{ - - - -

Convex Hull3 temp front list; 
Convex-Hull3 temp-back list; 
List<Point3> tempyoint_list; 
Facet3 temp_facet; 

if (!convex_hull.Is_Empty()) 
{ 

if (leaf_node == 1) 
{ 

// We made it to a leaf node, just copy the facets 
while (!convex hull.Is Empty()) 

polygons.Insert_Tail(convex_hull.Remove_Head()); 
} 
else 
{ 

// We made it to an internal node, test facets against 
partition 

while (!convex_hull.Is_Empty()) 
{ 

switch 
(partition.Classify Polygon(convex hull.Peek Head())) 

{ - - -
case IN FRONT OF: 

temp front list.Insert Tail(convex hull.Remove Head()); 
- - break; - -

points? 

facets 

} 
else 
{ 

case IN BACK OF: 
temp-back-list.Insert Tail(convex hull.Remove Head()); 
break; - - - -

case COINCIDENT: 
temp facet= convex hull.Remove Head(); 
tempyoint_list.Insert_Tail(temp_facet.GetPl()); 
temp point list.Insert Tail(temp facet.GetP2()); 
temp-point-list.Insert-Tail(temp-facet.GetP3()); 
break; - - -

case SPANNING: 
// TBD Add spanning split of facet here 
// Where are we going to put newly formed coincident 

break; 

// Form points inside plane into new facets 
if (!temp_point_list.Is_Empty()) 
{ 

// Need to figure out how to make points inside plane into 

// Add new facets to both lists 

if (!temp front list.Is Empty()) 
R Merge Convex Hull(front, temp front list); 

if (!temp back list. Is Empty () ) -
R_Merge_Convex_Hull(back, temp_back_list); 
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cerr << "WARNING: Merging an empty convex hull"<< endl; 

void BSP Tree::R Merge Convex Hull(BSP Tree *t, Convex Hull3 
convex hull) - - - -
{ -

// TBD, need to add recursive split code here 

void BSP Tree::Convex Hull Insert(List<Point3>& p, Convex Hull3 
convex hull) - -
{ -

Convex Hull3 temp front list; 
Convex-Hull3 temp-back list; 
List<Point3> tempyoint_list; 
Facet3 temp_facet; 

if (!convex_hull.Is_Empty()) 
{ 

if (leaf_node == 1) 
{ 

// We made it to a leaf node, just copy the facets 
while (!convex hull.Is Empty()) 

polygons.Insert_Tail(convex_hull.Remove_Head()); 
} 
else 
{ 

// We made it to an internal node, test facets against 
partition 

while (!convex_hull.Is_Empty()) 
{ 

switch 
(partition.Classify Polygon(convex hull.Peek Head())) 

{ - - -
case IN FRONT OF: 

temp front list.Insert Tail(convex hull.Remove Head()); 
- - break; - -

case IN BACK OF: 
temp-back-list.Insert Tail(convex hull.Remove Head()); 
break; - - - -

case COINCIDENT: 
temp facet= convex hull.Remove Head(); 
tempyoint_list.Insert_Tail(temp_facet.GetPl()); 
temp__point_list.Insert_Tail(temp_facet.GetP2()); 
temp__point_list.Insert_Tail(temp_facet.GetP3()); 
break; 

case SPANNING: 

partition plane 
// This service will split the facet with the 

// it will add new points and facets to our lists 
temp facet= convex hull.Remove Head(); 
Split Facet With Plane(p, -

- , - - temp__point_list, 

break; 
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temp facet, 
partTtion, 
temp front list, 
temp=back_Tist); 



them 

lists 

} 

// TBD take points in temp_point_list, Delaunay Triangulate 

// to form new facets and put them into both front and back 

if (!temp front list.Is Empty()) 
R Convex Hull Insert(p, front, temp_front_list); 

if (!temp back list.Is Empty()) 
R_Convex_Hull_Insert(p, back, temp_back_list); 

else 
{ 

cerr << "WARNING: Merging an empty convex hull"<< endl; 

void BSP_Tree::OOGL_Output(List<Point3>& p) 
{ 

Point3 tmp_point; 
Facet3 tmp facet; 
Point3 tmpyointl, tmp_point2, tmp_point3; 
Convex Hull3 tmp front; 
fstream fp; -

fp.open("bspchull.off", ios::app); 

if(fp.fail() I fp.bad()) 
{ 

cerr << "Error opening file bspchull.off for output."<< endl; 
exit(l); 

fp <<"LIST"<< endl; 

fp. close () ; 

if (!polygons.Is_Empty()) 
{ 

List<Point3> tmp_p(p); 
List<Point3> tmp_p2(p); 

fp. open ( "bspchull. off", ios: : app) ; 

if(fp.fail() I fp.bad()) 
{ 

cerr << "Error opening file bspchull.off for output."<< endl; 
exit(l); 

fp <<"{=OFF"<< endl; 
fp <<" 11 << p.Num Members() <<" "; 
fp << polygons .Num_Members () << " " << "0" << endl; 

// Output Points Part 
tmp p.Reset Pointer(); 
while ( !tmpy.Is_Empty()) 
{ 

tmp_point 
fp << II 

tmp_p.Remove_Head(); 
11 << tmp_point.GetX() << 11 " << tmp_point.GetY(); 
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fp << " " << tmp_point .Getz() << endl; 

// Output Front Convex Hull Part 
tmp front.Reset Pointer(); 
while (!tmp front.Is Empty()) 
{ - -

tmp facet= tmp front.Remove Head(); 
tmpyointl = t:mp_facet.GetPl(); 
tmp_point2 = tmp facet.GetP2(); 
tmp_point3 = tmp=facet.GetP3(); 
fp << " 3 " << tmp_pointl.GetID () - 1 << " "; 
fp << tmp _point2. Get ID() - 1 << " "; 
fp << tmp_point3.GetID() - 1 << endl; 

} 
fp << "}" << endl << endl; 

I* 
fp <<"{=OFF"<< endl; 
fp << " " << p. Num Members() << " "; 
fp << convex_hull_back_part->Num_Members () << " " << "0" << endl; 

// Output Points Part 
tmp_p2.Reset_Pointer(); 
while (!tmp_p2.Is_Empty()) 
{ 

tmp_point = tmp_p2.Remove Head(); 
fp << " " << tmp_point.GetX() << " " << tmp_point.GetY(); 
fp << " " << tmp_point .Getz() << endl; 

// Output Back Convex Hull Part 
tmp back.Reset Pointer(); 
while (!tmp back.Is Empty()) 
{ - -

tmp facet= tmp back.Remove Head(); 
tmpyointl = tmp facet.GetPl(); 
tmp_point2 = tmp=facet.GetP2(); 
tmp_point3 = tmp_facet.GetP3(); 
fp << " 3 n << tmp_pointl.GetID () - 1 << " "; 
fp << tmp_point2 .GetID () - 1 << " n; 
fp << tmp_point3.GetID() - 1 << endl; 

} 
fp << "}" << endl << endl; 

*I 

fp. close () ; 
} 
if (front != NULL) 

R OOGL Output(p, front); 
if (back T= NULL) 

R_OOGL_Output(p, back); 

void BSP Tree::R Build BSP Tree(BSP Tree *tree, List<Plane> 
partition list) - - - -
{ -

List<Plane> front_list; 
cur plane 

List<Plane> back_list; 
cur plane 
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if (!partition_list.Is_Empty()) 
{ 

tree->partition = partition list.Remove Head(); 
while ( !partition list. Is Empty ()) -
{ - -

switch (tree-
>partition.Classify Polygon3(partition list.Peek Head())) 

{ - - -

} 

} 

case IN FRONT OF: 
front list~Insert Tail(partition list.Remove Head()); 
break; - - -

case IN BACK OF: 
back-list~Insert Tail(partition list.Remove Head()); 
break; - - -

case COINCIDENT: 
// Don't add coincident planes to the tree 
break; 

case SPANNING: 
front list.Insert Tail(partition list.Peek Head()); 
back list.Insert Tail(partition list.Remove Head()); 
break; - - -

if (!front_list.Is_Empty()) 
{ 

tree->front = new BSP Tree; 
R_Build_BSP_Tree(tree=>front, front_list); 

} 
else 
{ 

tree->front = new BSP Tree; 
tree->front->leaf_node = 1; 

if (!back_list.Is_Empty()) 
{ 

tree->back = new BSP Tree; 
R_Build_BSP_Tree(tree->back, back_list); 

} 
else 
{ 

tree->back = new BSP Tree; 
tree->back->leaf node= 1; 

else 
{ 

cerr << "ERROR: Building BSP Tree with empty partition list"<< 
endl; 

exit(l); 

void BSP Tree::R Convex Hull Insert(List<Point3>& p, 
- - - - BSP Tree* tree, 

Convex Hull3 temp front list; 
Convex-Hull3 temp-back list; 
List<Point3> tempyoint_list; 
Facet3 temp_facet; 

Convex Hull3 convex_hull) 
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if (!convex_hull.Is_Empty()) 
{ 

if (tree->leaf_node == 1) 
{ 

// We made it to a leaf node, just copy the facets 
while (!convex hull.Is Empty()) 

tree->polygons.Insert_Tail(convex_hull.Remove_Head()); 
} 
else 
{ 

// We made it to an internal node, test facets against 
partition 

while (!convex_hull.Is_Empty()) 
{ 

switch (tree-
>partition.Classify Polygon(convex hull.Peek Head())) 

{ - - -
case IN FRONT OF: - -

temp front list.Insert Tail(convex hull.Remove Head()); 
- - break; - -

case IN BACK OF: 
temp-back-list.Insert Tail(convex hull.Remove Head()); 
break; - - - -

case COINCIDENT: 
temp facet= convex hull.Remove Head(); 
tempyoint_list.Insert_Tail(temp_facet.GetPl()); 
temp__point_list.Insert_Tail(temp_facet.GetP2()); 
temp__point_list.Insert_Tail(temp_facet.GetP3()); 
break; 

case SPANNING: 
// This service will split the facet with the 

partition plane 

them 

lists 

} 
else 
{ 

} 

// it will add new points and facets to our lists 
temp facet= convex hull.Remove Head(); 
Split Facet With Plane(p, -

- - - temp__point_list, 

break; 

temp facet, 
tree=>partition, 
temp front list, 
temp=back_Tist); 

// TBD take points in temp__point_list, Delaunay Triangulate 

// to form new facets and put them into both front and back 

if (!temp front list.Is Empty()) 
R Convex Hull Insert(p, tree->front, temp_front_list); 

if (!temp back lTst.Is Empty()) 
R_Convex_Hull_Insert(p, tree->back, temp_back_list); 

cerr << "WARNING: Merging an empty convex hull"<< endl; 
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void BSP Tree::R OOGL Output(List<Point3>& p, BSP Tree* t) 
{ - - -

Point3 tmp_point; 
Facet3 tmp facet; 
Point3 tmpyointl, tmp_point2, tmp_point3; 
£stream fp; 

if (!t->polygons.Is_Empty()) 
{ 

endl; 

List<Point3> tmp_p(p); 
List<Point3> tmp_p2(p); 
Convex Hull3 tmp front(t->polygons); 
//Convex_Hull3 tmp_back(*t->convex_hull_back_part); 

fp.open("bspchull.off", ios::app); 

if (fp. fail() I fp .bad()) 
{ 

cerr << "Error opening file bspchull.off for output."<< endl; 
exit(l); 

fp <<"{=OFF"<< endl; 
fp << " " << p. Num Members () << " "; 
fp << t->polygons .Num_Members () << " " << "0" << endl; 

// Output Points Part 
tmp_p.Reset Pointer(); 
while (!tmpy.Is_Empty()) 
{ 

tmp_point = tmp_p.Remove Head(); 
fp <<" 11 << tmp_point-:-GetX() <<" 11 << tmp_point.GetY(); 
fp <<" "<< tmp_point.GetZ() << endl; 

// Output Front Convex Hull Part 
tmp front.Reset Pointer(); 
while ( ! tmp front . Is Empty () ) 
{ - -

} 

tmp facet= tmp front.Remove Head(); 
tmpyointl = tmp facet.GetPl(); 
tmp_point2 = tmp-facet.GetP2(); 
tmp_point3 = tmp=facet.~etP3(); 
fp << " 3 " << tmp_pointl .GetID () - 1 << 11 11 ; 

fp << tmp_point2.GetID() - 1 << " "; 
fp << tmp_point3.GetID() - 1 << endl; 

fp << 11 }" << endl << endl; 

I* 
fp << 11 { =OFF"<< endl; 
fp << 11 " << p. Num Members() << 11 11 ; 

fp << t->convex_hull=back_part->Num_Members () << 11 11 << 11 011 << 

// Output Points Part 
tmp_p2.Reset_Pointer(); 
while (!tmp_p2.Is_Empty()) 
{ 

tmp_point = tmp_p2.Remove_Head(); 
fp << " " << tmp_point.GetX() << " 11 << tmp_point.GetY(); 
fp << " " << tmp_point .Getz() << endl; 
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// Output Back Convex Hull Part 
tmp back.Reset Pointer(); 
while ( ! tmp back. Is Empty () ) 
{ - -

tmp facet= tmp back.Remove Head(); 
tmpyointl = t:mp facet.GetPl(); 
tmpyoint2 = tmp-facet.GetP2(); 
tmpyoint3 = tmp-facet.GetP3(); 
fp << " 3 " <<-tmpyointl .GetID () - 1 << " "; 
fp << tmpyoint2 .GetID () - 1 << 11 11 ; 

fp << tmpyoint3.GetID() - 1 << endl; 
} 
fp << "}" << endl << endl; 
*I 

fp. close () ; 
} 
if (t->front != NULL) 

R OOGL Output(p, t->front); 
if (t->back != NULL) 

R_OOGL_Output(p, t->back); 

void BSP_Tree::Show() 
{ 

cout << "---" << endl; 
cout << "Root Node"<< endl; 
cout <<" Partition: "; 
partition.Show(); 
if (front != NULL) 

cout <<" Has front."<< endl; 
else 

cout <<" No front."<< endl; 
if (back!= NULL) 

cout <<" Has back."<< endl; 
else 

cout <<" No back."<< endl; 
if (leaf_node == 1) 
{ 

cout <<" Convex Hull: "; 
polygons.Show(); 

} 
else 
{ 

if (front != NULL) 
{ 

cout <<" Front: "; 
R_Show(front); 

} 
else 

cout <<" Front: NULL"<< endl; 
if (back != NULL) 
{ 

cout << " Back: "; 
R_Show(back); 

} 
else 

cout <<" Back: NULL"<< endl; 
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void BSP Tree::R Show(BSP Tree *tree) 
{ - - -

cout << "---" << endl; 
if (tree->leaf node== 0) 
{ -

cout <<" Partition: "; 
tree->partition.Show(); 
if (tree->front != NULL) 

cout <<" Has front."<< endl; 
else 

cout <<" 
if (tree->back 

cout <<" 
else 

No front."<< endl; 
!= NULL) 
Has back."<< endl; 

cout <<" No back."<< endl; 

if (tree->front != NULL) 
{ 

cout <<" Front: "; 
R_Show(tree->front); 

} 
else 

cout <<" 
if (tree->back 
{ 

Front: NULL"<< endl; 
!= NULL) 

cout << " Back: "; 
R_Show(tree->back); 

} 
else 

cout <<"Back: NULL"<< endl; 

} 
else 
{ 

cout << "Leaf Node"<< endl; 
cout <<" Convex Hull: "; 
tree->polygons.Show(); 

void BSP_Tree::Show_Class(Poly_Class p) 
{ 

switch (p) 
{ 

case COINCIDENT: 
cout << "COINCIDENT"; 
break; 

case IN BACK OF: 
cout-<< "IN BACK_OF"; 
break; 

case IN FRONT OF: 
cout-<< "IN FRONT_OF"; 
break; 

case SPANNING: 
cout << "SPANNING"; 
break; 
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tendif 
/* chsplit.cc */ 

tifdef _cplusplus 

finclude <stdlib.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 

#include "chsplit.h" 
#include "lineseg3.h" 
finclude "general.h" 

void Delaunay_Triangulate (Point3 pl, Point3 p2, Point3 p3, Point3 p4, 
Facet3& fl, Facet3& f2) 

Point3 A, B; 
Point3 center; 
double radius; 
double denom, n, m; 

// translate points to origin 
A= p2 - pl; 
B = p3 - pl; 

// calculate n & m 
denom = 2.0 * (A.Dot Product(B)*A.Dot Product(B) -

B.Dot-Product(B)*A.Dot-Product(A)); 
n = (B.Dot Product(A-- B)*A.Dot Product(A)) / denom; 
m = (B.Dot=Product(A - B)*B.Dot=Product(B)) / denom; 

// find center of circle and translate back to original position 
center= A*m + B*n + pl; 

// find radius of circle 
radius= pl.Distance(center); 

// find correct Delaunay triangulation 
if (p4.Distance(center) >= radius) 
{ 

fl.SetPlane(pl, p2, p3); 
f2.SetPlane(pl, p3, p4); 

} 
else 
{ 

fl.SetPlane(pl, p2, p4); 
f2.SetPlane(p2, p3, p4); 

} 

Convex Hull3 Triangulate(List<Point3>& newyoints, Plane& 
containerylane) 
{ 

List<Point3> p(new points); 
List<Point2> translated points; 
List<Facet Index> triangulated; 
double A, B, C, D; 
doubled, s, ex, cy, sx, sy; 
Point2 tmpyoint2; 
Point3 tmpyoint3; 
Facet Index tmp_facet_index; 
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Facet3 tmp facet; 
Convex Hull3 output convex hull; 
inti; -

// Translate and Rotate container plane to be the XY Plane 
// this will make it easy to translate to E2 coordinates 
// and call the triangulation of the points in E2 
A= containerylane.GetA(); 
B = containerylane.GetB(); 
C = containerylane.GetC(); 
D = container plane.GetD(); 
if (DEQ0 (C) ) -
{ 

// Plane is perpendicular to the Z axis 
} 
else 
{ 

// Translate container plane to Origin 

// Translation Matrix: 
// [1, 0, 0, 0] 
// [0, 1, 0, 0] 
// [0, 0, 1, 0] 
// [0, 0, d, 1] 

d = D / C; 
s = sqrt(A*A + B*B + C*C); 
ex= B/(s*sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C)))); 
cy = sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C))); 
sx = C/(s*sqrt(((B*B)/(A*A+B*B+C*C)) + ((C*C)/(A*A+B*B+C*C)))); 
sy = A/s; 

p.Reset Pointer(); 
while (!p.Is Empty()) 
{ -

tmpyoint3 = p.Remove Head(); 
tmpyoint2.SetX(cy*tmpyoint3.GetX() + 

(cx*(d+tmpyoint3.GetZ()) + 
tmpyoint3.GetY()*sx)*sy); 

tmpyoint2.SetY(cx*tmpyoint3.GetY() -
(d+tmpyoint3.GetZ())*sx); 

tmpyoint2.SetID(tmpyoint3.GetID()); 
translatedyoints.Insert_Tail(tmp_point2); 

} 

// Triangulate the points in E2 
triangulated= Triangulate2(translated_points); 

// Translate back to the points in E3 
triangulated.Reset Pointer(); 
while (!triangulated.Is Empty()) 
{ -

tmp facet index= triangulated.Remove Head(); 
newyoints.Reset_Pointer(); -
for(i=0; i<tmp facet index.GetPlindex(); i++) 

new_points.Yncrement_Pointer(); 
tmp_facet.SetPl(newyoints.Peek_At_Pointer()); 
new_points.Reset_Pointer(); 
for(i=0; i<tmp facet index.GetP2Index(); i++) 

new points.Increment Pointer(); 
tmp_facet.SetP2(new_points.Peek_At_Pointer()); 
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new__points.Reset_Pointer(); 
for(i=0; i<tmp facet index.GetP3Index(); i++) 

new__points.Yncrement_Pointer(); 
tmp_facet.SetP3(new__points.Peek_At_Pointer()); 
output_convex_hull.Insert_Tail(tmp_facet); 

return output_convex_hull; 

List<Facet Index> Triangulate2(List<Point2>& new__points) 
{ -

List<Point2> p(new__points); 
fstream fp; 
Point2 tmp__point; 
List<Facet Index> triangulation; 
int pl index, p2 index, p3 index; 
Facet_Index tmp_facet_index; 

fp.open("points.tmp", ios::out); 
if(fp.fail() I fp.bad()) 
{ 

cerr << "Error opening file points.tmp for output."<< endl; 
exit(l); 

p.Reset Pointer(); 
while (!p.Is Empty()) 
{ -

tmp__point = p.Remove Head(); 
fp << tmp__point .GetX() << " " << tmp__point .GetY () << endl; 

fp. close () ; 

system(".lvoronoi -t <points.tmp >points.tri"); 
system("echo ""0 0 0"" >> points.tri"); 

fp.open("points.tri", ios::in); 
if (fp. fail() I fp .bad()) 
{ 

cerr << "Error opening file points.tri for input."<< endl; 
exit (1); 

triangulation.Clear(); 
while (!fp.eof()) 
{ 

fp >> pl_index >> p2_index >> p3_index; 

II there is an aparent bug in many C++ implementations that 
II does not catch eof properly when reading multiple things 
II on a line, this line is a work around for that bug 
if ((pl index== 0) && (p2 index== 0) && (p3 index== 0)) 

break; - -

tmp facet index.SetPlindex(pl index); 
tmp-facet-index.SetP2Index(p2-index); 
tmp=facet=index.SetP3Index(p3=index); 

triangulation.Insert_Tail(tmp_facet_index); 
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fp.close(); 

return triangulation; 

void Split_Facet_With_Plane2 (List<Point3>& p, 
List<Point3>& new_points, 
Facet3 f, 
Plane partition_plane, 
Convex Hull3& front facets, 
Convex-Hull3& back_facets) 

Poly Class tmp class; 
Poly-Class pl class, p2 class, p3_class; 
Line-Segment3-sfl, sf2,-sf3; 
Point3 intersect sfl, intersect sf2, intersect sf3; 
Facet3 new facetl, new facet2, new facet3; -
Point3 tmpyoint; - -

tmp_class = partition_plane.Classify_Polygon(f); 
switch (tmp class) 
{ -

case IN FRONT OF: 
front facets.Insert_Tail(f); 

// Check for special case where 1 or 2 points are coincident 
// but facet is still considered In Front of partition plane 

pl_class = partition_plane.Classify_Polygon2(f.GetP1()); 
p2_class = partition_plane.Classify_Polygon2(f.GetP2()); 
~3_class = partition_plane.Classify_Polygon2(f.GetP3()); 
if (pl class== COINCIDENT) 

newyoints.Insert_Tail(f.GetPl()); 
if (p2 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP2()); 
if (p3 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP3()); 

break; 

case IN BACK OF: 
back-facets.Insert_Tail(f); 

// Check for special case where 1 or 2 points are coincident 
// but facet is still considered In Back of partition plane 

pl_class = partition_plane.Classify_Polygon2(f.GetPl()); 
p2_class = partition_plane.Classify_Polygon2(f.GetP2()); 
p3_class = partition_plane.Classify_Polygon2(f.GetP3()); 
if (pl class== COINCIDENT) 

newyoints.Insert_Tail(f.GetPl()); 
if (p2 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP2()); 
if (p3 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP3()); 

break; 

case COINCIDENT: 
front facets.Insert Tail(f); 
back_facets.Insert_Tail(f); 
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newyoints.Insert_Tail(f.GetPl()); 
newyoints.Insert_Tail(f.GetP2()); 
newyoints.Insert_Tail(f.GetP3()); 

break; 

case SPANNING: 
II What side of the plane are the points on? 
pl_class = partitionylane.Classify_Polygon2(f.GetP1()); 
p2_class = partitionylane.Classify_Polygon2(f.GetP2()); 
p3_class = partitionylane.Classify_Polygon2(f.GetP3()); 
sfl.SetSegment(f.GetPl(), f.GetP2()); 
sf2.SetSegment(f.GetP2(), f.GetP3()); 
sf3.SetSegment(f.GetP3(), f.GetPl()); 

if ((pl class== p2 class) && 
(pl-class != COINCIDENT) && 
(p2-class != COINCIDENT) && 
(p3=class != COINCIDENT)) 

} 

II Case 1: 
II pl and p2 are on one side & p3 is on the other side 

intersect_sf2 = sf2.Intersection(partitionylane); 
intersect sf3 = sf3.Intersection(partitionylane); 
intersect-sf2.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf2); 
newyoints.Insert_Tail(Tntersect_sf2); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
newyoints.Insert_Tail(Tntersect_sf3); 
new facetl.SetPl(f.GetP3()); 
new-facetl.SetP2(intersect sf2); 
new-facetl.SetP3(intersect-sf3); 
Delaunay Triangulate(f.GetPl(), 

- f.GetP2(), 
intersect sf2, 
intersect-sf3, 
new facet2, 
new-facet3); 

if (p3 class== IN_FRONT=OF) 
{ 

front facets.Insert Tail(new facetl); 
back facets.Insert Tail(new facet2); 
back=facets.Insert=Tail(new=facet3); 

} 
else 
{ 

back facets.Insert Tail(new facetl); 
front facets.Insert Tail(new facet2); 
front=facets.Insert=Tail(new=facet3); 

else if ((pl class -- p3 class) && 
(pl-class != COINCIDENT) && 
(p2-class != COINCIDENT) && 
(p3=class != COINCIDENT)) 

II Case 2: 
II pl and p3 are on one side & p2 is on the other side 

intersect sfl 
intersect-sf2 

sfl.Intersection(partitionylane); 
sf2.Intersection(partition_plane); 
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} 

intersect sfl.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sfl); 
new_points.Insert_Tail(Tntersect_sfl); 
intersect sf2.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf2); 
new_points.Insert_Tail(Tntersect_sf2); 
new facetl.SetPl(f.GetP2()); 
new-facetl.SetP2(intersect sfl); 
new-facetl.SetP3(intersect-sf2); 
Delaunay Triangulate(f.GetPl(), 

- intersect sfl, 
intersect-sf2, 
f.GetP3()~ 
new facet2, 
new-facet3); 

if (p2 class== IN_FRONT=OF) 
{ 

front facets.Insert Tail(new facetl); 
back facets.Insert Tail(new facet2); 
back=facets.Insert=Tail(new=facet3); 

} 
else 
{ 

back facets.Insert Tail(new facetl); 
front facets.Insert Tail(new facet2); 
front=facets.Insert=Tail(new=facet3); 

else if ((p2 class== p3 class) && 
(pl-class != COINCIDENT) && 
(p2-class != COINCIDENT) && 
(p3=class != COINCIDENT)) 

II Case 3: 
II p2 and p3 are on one side & pl is on the other side 

intersect_sfl = sfl.Intersection(partition_plane); 
intersect_sf3 = sf3.Intersection(partition_plane); 
intersect sfl.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sfl); 
new_points.Insert_Tail(Tntersect_sfl); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
new_points.Insert_Tail(Tntersect_sf3); 
new facetl.SetPl(f.GetPl()); 
new-facetl.SetP2(intersect sfl); 
new-facetl.SetP3(intersect-sf3); 
Delaunay Triangulate(f.GetP2(), 

- f.GetP3(), 
intersect sf3, 
intersect-sfl, 
new facet2, 
new-facet3); 

if (pl_class == IN_FRONT=OF) 
{ 

front facets.Insert Tail(new facetl); 
back facets.Insert Tail(new facet2); 
back=facets.Insert=Tail(new=facet3); 

} 
else 
{ 

back facets.Insert Tail(new facetl); 
front_facets.Insert_Tail(new_facet2); 
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front_facets.Insert_Tail(new_facet3); 

} 
else 
{ 

IN_BACK_OF)) 

// Case 4-6: 
// 1 point is coincident and the other two points 
// are on opposite sides of the plane 
if (pl_class == COINCIDENT) 
{ 

// Case 4: 
// pl is coincident, p2 and p3 are on opposite sides 
intersect_sf2 = sf2.Intersection(partitionylane); 
intersect sf2.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf2); 
newyoints.Insert_Tail(intersect_sf2); 
new facetl.SetPl(f.GetPl()); 
new-facetl.SetP2(f.GetP2()); 
new-facetl.SetP3(intersect sf2); 
new-facet2.SetPl(f.GetPl()); 
new-facet2.SetP2(f.GetP3()); 
new=facet2.SetP3(intersect_sf2); 

if ((p2_class == IN_FRONT_OF) && (p3_class == 

} 

front facets.Insert Tail(new facetl); 
back_facets.Insert_Tail(new_facet2); 

else if ((p2_class == IN_BACK_OF) && (p3_class == 
IN_FRONT_OF)) 

IN_BACK_OF)) 

} 

back facets.Insert Tail(new facetl); 
front_facets.Insert_Tail(new_facet2); 

} 
else 
{ 

// Error we are messed up somewhere 
cout << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

else if (p2_class == COINCIDENT) 
{ 

// Case 5: 
// p2 is coincident, pl and p3 are on opposite sides 
intersect_sf3 = sf3.Intersection(partitionylane); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
newyoints.Insert_Tail(intersect_sf3); 
new facetl.SetPl(f.GetP2()); 
new-facetl.SetP2(f.GetP3()); 
new-facetl.SetP3(intersect sf3); 
new-facet2.SetPl(f.GetP2()); 
new-facet2.SetP2(f.GetPl()); 
new=facet2.SetP3(intersect_sf3); 

if ((pl_class == IN_FRONT_OF) && (p3_class == 

back facets.Insert Tail(new facetl); 
front_facets.Insert_Tail(new_facet2); 
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else if ((pl_claaa == IN_BACK_OF) && (p3_claaa == 
IN_FRONT_OF)) 

IN_BACK_OF)) 

} 

} 
else 
{ 

front facets.Insert Tail(new facetl); 
back_faceta.Inaert_Tail(new_facet2); 

II Error we are messed up somewhere 
cerr << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

else if (p3_claaa == COINCIDENT) 
{ 

II Case 6: 
II p3 is coincident, p2 and pl are on opposite aides 
intersect afl = afl.Interaection(partitionylane); 
interaect-afl.SetID(p.Num Membera()+l); 
p.Insert Tail(interaect afl); 
newyointa.Inaert_Tail(Tnteraect_afl); 
new facetl.SetPl(f.GetP3()); 
new-facetl.SetP2(f.GetP2()); 
new-facetl.SetP3(intersect sfl); 
new-facet2.SetPl(f.GetP3()); 
new-facet2.SetP2(f.GetP1()); 
new=facet2.SetP3(intersect_sfl); 

if ((pl_claaa == IN_FRONT_OF) && (p2_claaa --

} 

back facets.Insert Tail(new facetl); 
front_facets.Inaert_Tail(new_facet2); 

else if ((pl_claaa == IN_BACK_OF) && (p2_class == 
IN_FRONT_OF)) 

front facets.Insert Tail(new facetl); 
back_facets.Insert_Tail(new_facet2); 

} 
else 
{ 

II Error we are messed up somewhere 
cerr << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

} 
else 
{ 

} 
break; 

II Why in the heck did we get here, we are out 
II of spanning cases to check 
cerr << "ERROR Out of spanning cases!"<< endl; 
exit(l); 

void Split_Facet_With_Plane (List<Point3>& p, 
List<Point3>& newyoints, 
Facet3& f, 
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Plane& partition_plane, 
Convex Hull3& front convex hull, 
Convex=Hull3& back_convex_hull) 

Poly Class tmp class; 
PolyClass pl class, p2 class, p3 class; 
Line-Segment3-sfl, sf2,-sf3; 
Point3 intersect sfl, intersect sf2, intersect sf3; 
Facet3 new facetl, new facet2, new facet3; -
Point3 tmpyoint; - -

tmp_class = partition_plane.Classify_Polygon(f); 
switch (tmp class) 
{ -

case IN FRONT OF: 
front convex_hull.Insert_Tail(f); 

// Check for special case where 1 or 2 points are coincident 
// but facet is still considered In Front of partition plane 

pl_class = partition_plane.Classify_Polygon2(f.GetPl()); 
p2 class= partition_plane.Classify Polygon2(f.GetP2()); 
p3=class = partition_plane.Classify=Polygon2(f.GetP3()); 
if (pl class== COINCIDENT) 

newyoints.Insert_Tail(f.GetPl()); 
if (p2 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP2()); 
if (p3 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP3()); 

break; 

case IN BACK OF: 
back-convex hull.Insert_Tail(f); 

// Check for special case where 1 or 2 points are coincident 
// but facet is still considered In Back of partition plane 

pl_class = partition_plane.Classify_Polygon2(f.GetPl()); 
p2_class = partition_plane.Classify_Polygon2(f.GetP2()); 
p3_class = partition_plane.Classify_Polygon2(f.GetP3()); 
if (pl class== COINCIDENT) 

newyoints.Insert_Tail(f.GetPl()); 
if (p2 class== COINCIDENT) 

newyoints.Insert_Tail(f.GetP2()); 
if (p3 class== COINCIDENT) 

new=points.Insert_Tail(f.GetP3()); 

break; 

case COINCIDENT: 
front convex hull.Insert Tail(f); 
back convex hull.Insert Tail(f); 
new_j,oints.Ynsert_Tail(f.GetPl()); 
new_points.Insert_Tail(f.GetP2()); 
new_points.Insert_Tail(f.GetP3()); 

break; 

case SPANNING: 
// What side of the plane are the points on? 
pl class= partition_plane.Classify_Polygon2(f.GetPl()); 
p2=class = partition_plane.Classify_Polygon2(f.GetP2()); 
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p3_class = partition_plane.Classify_Polygon2(f.GetP3()); 
sfl.SetSegment(f.GetPl(), f.GetP2()); 
sf2.SetSegment(f.GetP2(), f.GetP3()); 
sf3.SetSegment(f.GetP3(), f.GetPl()); 

if (pl_class == p2_class) 
{ 

// Case 1: 
// pl and p2 are on one side & p3 is on the other side 

intersect_sf2 = sf2.Intersection(partition_plane); 
intersect sf3 = sf3.Intersection(partition plane); 
intersect-sf2.SetID(p.Num Members()+l); -
p.Insert Tail(intersect sf2); 
new_points.Insert_Tail(Tntersect_sf2); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
new_points.Insert_Tail(Tntersect_sf3); 
new facetl.SetPl(f.GetP3()); 
new-facetl.SetP2(intersect sf2); 
new-facetl.SetP3(intersect-sf3); 
Delaunay Triangulate(f.GetPl(), 

- f.GetP2(), 
intersect sf2, 
intersect-sf3, 
new facet2, 
new-facet3); 

if (p3 class== IN_FRONT=OF) 
{ 

front convex hull.Insert Tail(new facetl); 
back convex hull.Insert Tail(new facet2); 
back=convex=hull.Insert=Tail(new=facet3); 

} 
else 
{ 

back convex hull.Insert Tail(new facetl); 
front convex hull.Insert Tail(new facet2); 
front=convex=hull.Insert=Tail(new=facet3); 

else if (pl_class 
{ 

p3_class) 

// Case 2: 
// pl and p3 are on one side & p2 is on the other side 

intersect_sfl = sfl.Intersection(partition_plane); 
intersect_sf2 = sf2.Intersection(partition_plane); 
intersect sfl.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sfl); 
new_points.Insert_Tail(Tntersect_sfl); 
intersect sf2.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf2); 
new points.Insert Tail(Tntersect sf2); 
new-facetl.SetPl(f.GetP2()); -
new-facetl.SetP2(intersect sfl); 
new-facetl.SetP3(intersect-sf2); 
Delaunay Triangulate(f.GetPl(), 

- intersect sfl, 
intersect-sf2, 
f.GetP3(); 
new facet2, 
new-facet3); 

if (p2_class IN_FRONT=OF) 
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} 

front convex hull.Insert Tail(new facetl); 
back convex hull.Insert Tail(new facet2); 
back=convex=hull.Insert=Tail(new=facet3); 

} 
else 
{ 

back convex hull.Insert Tail(new facetl); 
front convex hull.Insert Tail(new facet2); 
front=convex=hull.Insert=Tail(new=facet3); 

else if (p2_class == p3_class) 
{ 

II Case 3: 
II p2 and p3 are on one side & pl is on the other side 

intersect_sfl = sfl.Intersection(partition__plane); 
intersect sf3 = sf3.Intersection(partition__plane); 
intersect-sfl.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sfl); 
new__points.Insert_Tail(intersect_sfl); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
new__points.Insert_Tail(Tntersect_sf3); 
new facetl.SetPl(f.GetPl()); 
new-facetl.SetP2(intersect sfl); 
new-facetl.SetP3(intersect-sf3); 
Delaunay Triangulate(f.GetP2(), 

- f.GetP3(), 
intersect sf3, 
intersect-sfl, 
new facet2, 
new-facet3); 

if (pl class== IN_FRONT=OF) 
{ 

front convex hull.Insert Tail(new facetl); 
back convex hull.Insert Tail(new facet2); 
back=convex=hull.Insert=Tail(new=facet3); 

} 
else 
{ 

} 
else 
{ 

back convex hull.Insert Tail(new facetl); 
front convex hull.Insert Tail(new facet2); 
front=convex=hull.Insert=Tail(new=facet3); 

II Case 4-6: 
II 1 point is coincident and the other two points 
II are on opposite sides of the plane 
if (pl_class == COINCIDENT) 
{ 

II Case 4: 
II pl is coincident, p2 and p3 are on opposite sides 
intersect_sf2 = sf2.Intersection(partition__plane); 
intersect sf2.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf2); 
new points.Insert Tail(intersect sf2); 
new-facetl.SetPl(f.GetPl()); -
new-facetl.SetP2(f.GetP2()); 
new=facetl.SetP3(intersect_sf2); 
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new facet2.SetPl(f.GetPl()); 
new-facet2.SetP2(f.GetP3()); 
new=facet2.SetP3(intersect_sf2); 

if ((p2_class == IN_FRONT_OF) && (p3_class == 
IN_BACK_OF)) 

} 

front convex hull.Insert Tail(new facetl); 
back_convex_hull.Insert_Tail(new_facet2); 

else if ((p2_class == IN_BACK_OF) && (p3_class == 
IN _FRONT_ OF) ) 

IN_BACK_OF)) 

} 

back convex hull.Insert Tail(new facetl); 
front_convex_hull.Insert_Tail(new_facet2); 

} 
else 
{ 

II Error we are messed up somewhere 
cout << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

else if (p2_class == COINCIDENT) 
{ 

II Case 5: 
II p2 is coincident, pl and p3 are on opposite sides 
intersect_sf3 = sf3.Intersection(partition_plane); 
intersect sf3.SetID(p.Num Members()+l); 
p.Insert Tail(intersect sf3); 
new points.Insert Tail(Tntersect sf3); 
new-facetl.SetPl(f.GetP2()); -
new-facetl.SetP2(f.GetP3()); 
new-facetl.SetP3(intersect sf3); 
new-facet2.SetPl(f.GetP2()); 
new-facet2.SetP2(f.GetP1()); 
new=facet2.SetP3(intersect_sf3); 

if ((pl_class == IN_FRONT_OF) && (p3_class == 

} 

back convex hull.Insert Tail(new facetl); 
front_convex_hull.Insert_Tail(new_facet2); 

else if ((pl_class == IN_BACK_OF) && (p3_class 
IN _FRONT_ OF) ) 

} 

} 
else 
{ 

front convex hull.Insert Tail(new facetl); 
back_convex_hull.Insert_Tail(new_facet2); 

II Error we are messed up somewhere 
cerr << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

else if (p3_class == COINCIDENT) 
{ 

II Case 6: 
II p3 is coincident, p2 and pl are on opposite sides 
intersect sfl = sfl.Intersection(partition_plane); 
intersect=sfl.SetID(p.Num_Members()+l); 
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IN_BACK_OF)) 

p.Insert Tail(intersect sfl); 
newyoints.Insert_Tail(Tntersect_sfl); 
new facetl.SetPl(f.GetP3()); 
new-facetl.SetP2(f.GetP2()); 
new-facetl.SetP3(intersect sfl); 
new-facet2.SetPl(f.GetP3()); 
new-facet2.SetP2(f.GetP1()); 
new=facet2.SetP3(intersect_sfl); 

if ((pl_class == IN_FRONT_OF) && (p2_class == 

back convex hull.Insert Tail(new facetl); 
front_convex_hull.Insert_Tail(new_facet2); 

} 
else if ((pl_class == IN_BACK_OF) && (p2_class 

- IN_FRONT_OF)) 

front convex hull.Insert Tail(new facetl); 
back_convex_hull.Insert_Tail(new_facet2); 

} 
else 
{ 

// Error we are messed up somewhere 
cerr << "ERROR Messed up spanning cases!"<< endl; 
exit(l); 

} 
else 
{ 

break; 

// Why in the heck did we get here, we are out 
// of spanning cases to check 
cerr << "ERROR Out of spanning cases!"<< endl; 
exit(l); 

void Split_Polygon_With_Plane (Facet3& polygon, 

List<Point3> trashyoints; 
List<Point3> trashyoints2; 

Plane& partitionylane, 
Convex_Hull3& frontyiece, 
Convex Hull3& backyiece) 

Split_Facet_With_Plane(trashyoints, 
trashyoints2, 
polygon, 
partitionylane, 
frontyiece, 
backyiece); 

void Split_Convex_Hull_With_Plane (List<Point3>& p, 
List<Point3>& newyoints, 
Convex Hull3& convex hull, 
Plane&-partitionylane, 
Convex Hull3& front convex_hull, 
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Convex Hull3& back_convex_hull) 

Convex Hull3 tmp convex hull(convex hull); 
Facet3-tmp_facet; - -

tmp convex hull.Reset Pointer(); 
while ( ! tmp convex hull. Is Empty () ) 
{ - - -

tmp facet= tmp convex hull.Remove Head(); 
Split Facet With Plane(p, -

- - - new_points, 

fendif 
I* chull. cc * I 

#ifdef _cplusplus 

Hfdef DEBUG 
#include <iostream.h> 
#endif 
#include <assert.h> 

#include "chull2.h" 
#include "subfacet2.h" 
#include "general.h" 

II Convex Hull - Giftwrapping 
II 1. T <- 0 

tmp facet, 
partition_plane, 
front convex hull, 
back_convex_hull); 

II 2. F <- find an initial convex hull facet; 
II 3. Output F 
II 4. T <- subfacets of F; 
II 5. while (TI= 0) do 
II 6. F <- T (* copy of front element from list*); 
II 1. F' <- facet sharing e with F; (* giftwrapping *) 
II 8. Output F' 
II 9. Insert into Tall subfacets of F' not yet present 
II and delete all those already present. 
II 10. end while 

void Convex_Hull2::GiftWrapping (List<Point2>& p) 
{ 
} 

II Find initial convex hull facet 
Facet2 Convex Hull2::Find Initial Facet (List<Point2>& p) 
{ 

List<Point2> tmp_p(p); 
List<Point2> tmp_p2(p); 
Point2 pl, p2, n, a; 
Point2 temp point; 
Facet2 temp-facet; 
double max rho, r; 
inti, loc; 

Hfdef DEBUG 
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cout << n Finding Initial Facet"<< endl; 
f:endif 

// Must have 2 or more points to form a facet in E2 
assert(p.Num_Members() >= 2); 

//pl<- lexicographically smallest point in p 
tmp_p.Reset_Pointer(); 
pl= tmp_p.Remove Head(); 
while ( ! tmp _p. Is_ Empty () ) 
{ 

temp_point = tmp_p.Remove_Head(); 
if (temp_point.GetX() < pl.GetX()) 

pl= temp_point; 
else if (temp_point.GetX() == pl.GetX()) 

if (temp_point.GetY() < pl.GetY()) 
pl= temp_point; 

temp facet.SetPl(pl); 
n.SetX((double)l.0); 
a.SetY((double)l.0); 

#ifdef DEBUG 

// add vert 1 to facet 
// n = (1,0,0) 
//a= normal ton (0,1,0) 

cout <<" Initial facet pl="; 
pl . Show Full () ; 
cout <<-endl; 
cout <<" 
n.Show Full(); 
cout << endl; 
cout <<" 
a.Show Full(); 
cout << endl; 

f:endif 

n="; 

a="; 

// p2 = point of max rho 
max rho= -MAX DOUBLE; 
tmpy2.Reset Pointer(); 
while (!tmp__p2.Is_Empty()) 
{ 

temp_point = tmp_p2.Remove_Head(); 
if (temp_point != pl) 
{ 

//r = pl.Rho(a, n, temp_point); 
if (r > max rho) 
{ -

max rho= r; 
p2 ~ temp_point; 

temp_facet.SetP2(p2); 

if (DEQ0(max_rho)) 
{ 

temp_point = n; 
n a; 
a= temp_point; 

} 
else 
{ 

// add vert 2 to facet 

// swap n and a 

//n = n.Compute New N(max rho, a); 
//a= a.Compute=New=A(n, pl, p2); 
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Ufdef DEBUG 
cout <<" 
p2.Show Full(); 
cout <<-endl; 
cout <<" 

Initial facet p2="; 

cout <<" 
max rho="<< max rho<< endl; 
n="T 

n. Show Full() ; 
cout << endl; 
cout <<" 
a. Show Full () ; 
cout << endl; 

:/1:endif 

return temp_facet; 

#-endif 
I* chull. cc * I 

#-ifdef _cplusplus 

:/1:ifdef DEBUG 
://:include <iostream.h> 
#-endif 
#-include <assert.h> 

a="; 

#-include "chull3.h" 
#-include "subfacet3.h" 
#-include "general.h" 
#-include "plane.h" 

II Convex Hull - Giftwrapping 
II 1. T <- 0 
II 2. F <- find an initial convex hull facet; 
/I 3. Output F 
II 4. T <- subfacets of F; 
II 5. while (TI= 0) do 
II 6. F <- T (* copy of front element from list*); 
II 1. F' <- facet sharing e with F; (* giftwrapping *) 
II 8. Output F' 
II 9. Insert into Tall subfacets of F' not yet present 
II and delete all those already present. 
II 10. end while 

void Convex Hull3::GiftWrapping (List<Point3>& p) 
{ -

List<Facet3> T; II T really should be a SubFacet List, but the 
extra point 

Facet 

calculations 

Facet3 F; 

II is needed to carry along the third point of the 

II that the SubFacet belongs to for the angle 

II to be done in the future using this SubFacet. 

Facet3 SFl, SF2, SF3; 
II Current Facet 
II SubFacets of F 

Facet3 F_prime; II Next Facet 
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Facet3 SF4, SFS, SF6; II SubFacets of F' 

SubFacet3 temp sf; 
Point3 p_prime; 
double max angle; 
double min-angle; 
Point3 temp_point; 
double temp angle; 
Plane temp__plane; 
inti; 

II 1. T <- 0 
T .Clear(); 

II 2. F <- find an initial convex hull facet; 
F = Find Initial Facet(p); 
II 3. Output F -
i = 1; 
F • Set ID ( i) ; 
(*this) .Insert Tail(F); 

#ifdef DEBUG -
cout <<" Found facet"<< i << "· "; 
F .Show(); 
cout << endl; 

#endif 

II 4. T <- subfacets of F; 
SFl.SetPl(F.GetPl()); 
SF1.SetP2(F.GetP2()); 
SF1.SetP3(F.GetP3()); 
SF2.SetPl(F.GetP2()); 
SF2.SetP2(F.GetP3()); 
SF2.SetP3(F.GetP1()); 
SF3.SetPl(F.GetP3()); 
SF3.SetP2(F.GetP1()); 
SF3.SetP3(F.GetP2()); 
T.Insert Tail(SFl); 
T.Insert-Tail(SF2); 
T.Insert=Tail(SF3); 

II 5. while (TI= 0) do 
while (!T.Is Empty() && (i< 60)) 
{ -

List<Point3> tmp_p(p); 
II 6. F <- T (* extract front element from list*); 
F = T.Peek_Head(); 

II SubFacet we are interested in 
SFl.SetPl(F.GetPl()); 
SF1.SetP2(F.GetP2()); 
SF1.SetP3(F.GetP3()); 

II 7. F' <- facet sharing e with F; (* giftwrapping *) 

II F' shares SFl with F and p' is the point which forms 
II the greatest angle between the hyperplanes of F and F' 
min angle= MAX DOUBLE; 
tmpy.Reset_Pointer(); 
while (!tmp_p.Is_Empty()) 
{ ' 

temp_point = tmp_p.Remove_Head(); 
if ((temp_point != F.GetPl()) && 

(temp_point != F.GetP2()) && 
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(temp_yoint != F.GetP3())) 

temp plane.SetPlane(SFl.GetPl(), 
- SF1.GetP2(), 

temp_yoint); 
temp_angle = F.Angle(temp_ylane); 
if (temp angle< min angle) 
{ - -

min angle= temp angle; 
p_yrime = temp_yoint; 

} 
II Subfacets made from F' 
SF4.SetPl(SF1.GetP1()); 
SF4.SetP2(SF1.GetP2()); 
SF4.SetP3(p prime); 
SF5.SetPl(SF1.GetP2()); 
SF5.SetP2(p prime); 
SF5.SetP3(SF1.GetP1()); 
SF6.SetPl(p_yrime); 
SF6.SetP2(SF1.GetP1()); 
SF6.SetP3(SF1.GetP2()); 
II F' is facet sharing e with F 
F_yrime.SetPl(SFl.GetPl()); 
F prime.SetP2(SF1.GetP2()); 
Fyrime.SetP3(p_yrime); 
II a. Output F' 
i++; 
F_yrime.SetID(i); 
(*this) .Insert_Tail(F_yrime); 

Hfdef DEBUG 
cout <<" Found facet"<< i << "· "; 
F_yrime. Show(); 
cout << endl; 

#endif 

Insert into Tall II 9. 
II 
if 

and delete all 
(T.Find2(SF4)) 
T.Remove At Pointer(); 

else - -
T.Insert Tail(SF4); 

if (T.Find2(SF5)) 
T.Remove At Pointer(); 

else - -
T.Insert Tail(SFS); 

if (T.Find2(SF6)) 
T.Remove At Pointer(); 

else - -
T.Insert_Tail(SF6); 

II Find initial convex hull facet 

subfacets of F' not yet present 
those already present. 

Facet3 Convex Hull3::Find Initial Facet (List<Point3>& p) 
{ 

List<Point3> tmp_y(p); 
List<Point3> tmp_y2(p); 
List<Point3> tmp_y3(p); 
Point3 pl, p2, p3, n, a; 
Point3 temp_yoint; 
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Facet3 temp facet; 
double max rho, r; 
inti, loc; 

#ifdef DEBUG 
cout <<" Finding Initial Facet"<< endl; 

tendif 
// Must have 3 or more points to form a facet in E3 
assert(p.Num_Members() >= 3); 

//pl<- lexicographically smallest point in p 
tmp_p.Reset_Pointer(); 
pl= tmp_p.Remove Head(); 
while ( !tmp_p. Is_Empty()) 
{ 

temp_point = tmp_p.Remove_Head(); 
if (temp_point.GetX() < pl.GetX()) 

pl= temp_point; 
else if (tempyoint.GetX() == pl.GetX()) 

if (temp_point.GetY() < pl.GetY()) 
pl= temp_point; 

else if (temp_point.GetY() == pl.GetY()) 
if (temp_point.GetZ() < pl.GetZ()) 

pl= temp_point; 

temp facet.SetPl(pl); 
n.SetX((double)l.0); 
a.SetY((double)l.0); 

:j/: if def DEBUG 

// add vert 1 to facet 
// n = (1,0,0) 
//a= normal ton (0,1,0) 

cout <<" 
pl.Show Full(); 
cout <<-endl; 
cout <<" 

Initial facet pl="; 

n. Show Full () ; 
cout << endl; 
cout <<" 
a . Show Full () ; 
cout << endl; 

tendif 

n="; 

a="; 

// p2 = point of max rho 
max rho= -MAX DOUBLE; 
tmpy2.Reset Pointer(); 
while (!tmp_p2.Is_Empty()) 
{ 

temp_point = tmp_p2.Remove_Head(); 
if (temp_point != pl) 
{ 

r = pl.Rho(a, n, temp_point); 
if (r > max rho) 
{ -

max rho= r; 
p2 ;;- temp _point; 

temp_facet.SetP2(p2); 

if (DEQ0(max_rho)) 
{ 
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temp_point = n; 
n = a; 
a= temp_point; 

} 
else 
{ 

n = n.Compute New N(max rho, a); 
a= a.Compute=New=A(n, pl, p2); 

:/Hfdef DEBUG 

// swap n and a 

cout << n 

p2.Show Full(); 
cout <<-endl; 
cout <<" 

Initial facet p2="; 

cout << n 
max rho="<< max rho<< endl; 
n="; 

n. Show Full () ; 
cout << endl; 
cout <<" 
a.Show Full(); 
cout << endl; 

tendif 

a="; 

// p3 = point of max rho 
max rho= -MAX DOUBLE; 
tmpy3.Reset Pointer(); 
while (!tmp_j,3.Is_Empty()) 
{ 

temp_point = tmp_p3.Remove_Head(); 
if ((temp_point != pl) && (temp_point != p2)) 
{ 

r = pl.Rho(a, n, temp_point); 
if (r > max rho) 
{ -

max rho= r; 
p3 ~ temp_point; 

temp_facet.SetP3(p3); 

:/Hfdef DEBUG 

// add vert 3 to facet 

cout <<" Initial facet p3="; 
p3.Show Full(); 
cout <<-endl; 
cout <<" max rho="<< max rho<< endl; 
cout <<" Initial Facet f="; 
temp facet.Show(); 
cout-<< endl; 
if (Verify Initial Facet(p,temp facet)) 

cout <<-" - Initial Facet Verified"<< endl; 
else 

cout <<" Initial Facet NOT Verified"<< endl; 
tendif 

return temp_facet; 

:/Hfdef DEBUG 
// Verify Initial Facet Correctness 
int Convex_Hull3::Verify_Initial_Facet (List<Point3>& p, Facet3& f) 
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List<Point3> tmp p(p); 
int status; -
Point3 temp point; 
int front count, back count; 
Poly_Class temp_side;-

front count= 0; 
back count= 0; 
tmp__p.Reset Pointer(); 
while ( ! tmp - p. Is Empty () ) 
{ - -

temp__point = tmp__p.Remove_Head(); 
if ((temp__point != f.GetPl()) && 

(temp point != f.GetP2()) && 
(tempyoint != f.GetP3())) 

temp_side = f.Classify_Polygon2(temp__point); 
assert((temp side== IN FRONT OF) I I (temp side== 

IN BACK OF)); - - - -
- if (temp side== IN FRONT OF) 

front-count++; - -
else -

back count++; 

if (((front count 
( ( front - count 

status -1; 
else 

status= 0; 

return status; 

!= 0) && (back count 
0) && (back=count != 

O > ) I I 
0))) 

int Convex Hull3::Verify_Split_Convex_Hull (Plane& partition__plane) 
{ 

int status; 
Convex Hull3 tmp convex hull(*this); 
Facet3-tmp_facet; -

status= 1; 
tmp convex hull.Reset Pointer(); 
while(!tmp-convex hull.Is Empty()) 
{ - - -

tmp facet= tmp convex hull.Remove Head(); 
if (partition plane.Classify Polygon(tmp facet) == SPANNING) 
{ - - -

status= 0; 
cout << "Failed Facet: "<< tmp_facet << endl; 
cout << "Failed Plane: "; 
partition__plane.Show(); 
cout << endl; 

return status; 

4/:endif 

4/:endif 
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/* ctz.cc */ 

*ifdef _cplusplus 

// Computing a Constrained Tetrahedrization 

//Algorithm presented in paper: 
// Hazlewood, Carol. Using Binary Space Paritions to 
// Approximate Constrained Tetrahedrizations. September 
// 18, 1993. 

//constrain(P', F, T) 
// begin 
// construct B, the BSP Tree of F; 
// construct C, the convex hull of P'; 
// for j = 1 to k do 
// Kj <- plane(fj) intersect C; 
// for j = 1 to k do 
// compute constraints for Kj; 
// for j = 1 to k do 
// triangulate Kj with constraints; 
// triangulate facets of C with constraints; 
// for i = 1 to 1 do 
// Ti<- tetrahedrization of Ri; 
// T <- T union Ti; 
// end. 

*include- <iostream.h> 
*include "ctz.h" 
*include "bsp tree.h" 
*include "chull3.h" 
*include "oogl.h" 

void Constrain (List<Point3>& P_prime, List<Plane>& F) 
{ 

BSP Tree B; 
Convex_Hull3 C; 

// Construct BSP Tree B from F 

// BSP Tree B 
// Convex Hull C 

cout <<" Building BSP Tree ... "<< endl; 
B.Build BSP Tree(F); 

*ifdef DEBUG -
B. Show(); 

fendif 

// Construct Convex Hull C from P' 
cout <<" Building Convex Hull. .. "<< endl; 
C.GiftWrapping(P prime); 

*ifdef DEBUG -
C.Show (); 

*endif 

// for j = 1 to k do 
// Kj <- plane(fj) intersect C; 
// This has been changed from the original paper from a FOR loop 
// into a recursive tree algorithm 
cout <<" Merging Convex Hull Into BSP Tree ... "<< endl; 
B.Convex_Hull_Insert(P_prime, C); 
//B.Merge Convex Hull(C); 

*ifdef DEBUG- -
B.Show(); 

*endif 
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II FUTURE ALGORITHM EXPANSION NEEDED 
II for (j=0; j<k; j++) 
II compute constraints for Kj; 

for (j=0; j<k; j++) II 
II 
II 

Triangulate Kj with constraints; 
Triangulate facets of C with constraints; 

II for (i=0; i<k; i++) 
II Ti<- tetrahedrization of Ri; 
II T <- T union Ti; 

II Output OOGL File For Triangles 
cout <<" Outputing triangs.off file ... "<< endl; 
Triangles 2 OOGL(F); 
II Output-OOGL File For Convex Hull 
cout <<" Outputing chull.off file ... "<< endl; 
Convex_Hu11_2_OOGL(P__prime, C); 
II Output OOGL File For BSP Tree with Convex Hulls 
cout << " Outputing bspchull.off file ... " << endl; 
BSP_Tree_w_Convex_Hulls_2_OOGL(P_prime, B); 

#endif 
I* facet2.cc - Facet2 Class Implementation *I 

#ifdef _cplusplus 

#include "facet2.h" 

II Operators 
Facet2& Facet2::operator=(const Facet2 &rhs) 
{ 

if (this== &rhs) return *this; 
pl= rhs.pl; 
p2 = rhs.p2; 
id= rhs.id; 
return *this; 

int Facet2::sf equal(const Facet2& f2) 
{ -

return ( ( (pl -- f2 .pl) && (p2 f2 .p2)) I I 
((pl== f2.p2) && (p2 == f2.pl))); 

II '<<' IIO Stream Operator 
ostream& operator<<(ostream& s, Facet2 f) 
{ 

s << "{" << f.pl << 
returns; 

II Accessors 

II II , << f.p2 << "}"; 

void Facet2::SetFacet(Point2 Pl, Point2 P2) 
{ 
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SetSegment(Pl, P2); 

void Facet2::SetID(int ID) 
{ 

id= ID; 

int Facet2::GetID() 
{ 

return id; 

- II Services 

void Facet2: : Show () 
{ 

cout << 11 { 11 ; 

pl.Show(); 
cout << 11 , 11 ; 

p2 .Show(); 
cout << 11 } 11 ; 

void Facet2::Show_Full() 
{ 

cout << 11 { 11 ; 

pl.Show Full(); 
cout <<-", "; 
p2.Show Full(); 
cout <<-11 } 11 << endl; 

} 

:j/:endif 
I* facet3.cc - Facet3 Class Implementation *I 

:j/:ifdef _cplusplus 

-#:include "facet3.h" 

II Operators 

Facet3& Facet3::operator=(const Facet3 &rhs) 
{ 

if (this== &rhs) return *this; 
pl= rhs.pl; 
p2 = rhs.p2; 
p3 = rhs.p3; 
a= rhs.a; 
b = rhs.b; 
c = rhs.c; 
d = rhs.d; 
id= rhs.id; 
return *this; 
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int Facet3::sf equal(const Facet3& £2) 
{ -

return (( (pl == £2 .pl) && (p2 -- £2 .p2)) I I 
((pl== f2.p2) && (p2 == £2.pl))); 

// '<<' I/0 Stream Operator 
ostream& operator<<(ostream& s, Facet3 f) 
{ 

s << "{" << f.pl << 
returns; 

// Accessors 

II II 
I << f.p2 << II II 

I << f.p3 << 11 }"; 

void Facet3::SetFacet(Point3 Pl, Point3 P2, Point3 P3) 
{ 

SetPlane(Pl, P2, P3); 

void Facet3::SetID(int ID) 
{ 

id = ID; 

int Facet3::GetID() 
{ 

return id; 

// Services 

void Facet3::Show() 
{ 

cout << 11 { 11 ; 

pl.Show(); 
cout << 11 , 11 ; 

p2 .Show(); 
cout << ", "; 
p3 .Show(); 
cout << 11 }"; 

void Facet3::Show_Full() 
{ 

cout << 11 { 11 ; 

pl.Show Full(); 
cout <<-11 , "; 

p2.Show Full(); 
cout <<-", "; 
p3.Show Full(); 
cout <<-11 } 11 << endl; 

:ff:endif 
/* faceti.cc - Facet Index Class*/ 
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#ifdef _cplusplus 

#include "faceti.h" 

// Default Constructor 
Facet Index::Facet Index() 
{ - -

pl index = 0; 
p2-index O; 
p3=index = O; 

} 

// Secondary Constructor 
Facet Index::Facet Index(int Plindex, int P2Index, int P3Index) 
{ - -

pl index 
p2-index = 
p3=index = 

Plindex; 
P2Index; 
P3Index; 

// Copy Constructor 
Facet Index::Facet Index(const Facet Index& fi) 
{ - -

pl index 
p2-index 
p3=index 

fi.pl index; 
fi.p2-index; 
fi.p3=index; 

// Default Destructor 
Facet Index::~Facet Index() 
{ - -

pl index 0; 
p2-index = 0; 
p3=index = 0; 

// '=' Operator 
void Facet Index::operator=(const Facet Index& rhs) 
{ -

pl index 
p2-index 
p3=index = 

rhs.pl index; 
rhs.p2-index; 
rhs.p3=index; 

// '!=' Operator 
int Facet Index::operator!=(const Facet Index& rhs) 
{ -

return (! ((pl index== rhs.pl index) && 
(p2-index == rhs.p2-index) && 
(p3=index == rhs.p3=index))); 

// '==' Operator 
int Facet Index::operator==(const Facet Index& rhs) 
{ -
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return ( (pl index 
(p2-index 
(p3=index 

rhs.pl index) && 
rhs.p2-index) && 
rhs . p3= index) ) ; 

II '<<' IIO Stream Operator 
ostream& operator<<(ostream& s, Facet_Index f) 
{ 

s << "{" << f.pl_index << 
"}"; 

returns; 

II Accessors 

"," << f.p2_index << 

void Facet Index::SetPlindex(int Plindex) 
{ -

pl_index = Plindex; 

int Facet Index::GetPlindex() 
{ -

return pl_index; 

void Facet_Index::SetP2Index(int P2Index) 
{ 

p2_index = P2Index; 

int Facet Index::GetP2Index() 
{ -

return p2_index; 

void Facet_Index::SetP3Index(int P3Index) 
{ 

p3_index = P3Index; 

int Facet_Index::GetP3Index() 
{ 

return p3_index; 

#endif 
I* general. c * I 
#include <assert.h> 
#include <math.h> 

#include "general.h" 

II II 
I << f.p3_index << 

I* Test if a double valuel is "near" another double value2 */ 
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int DEQ (double valuel, double value2) 
{ 

int status; 

if (fabs(valuel - value2) >= (double)TOLER) 
status= 0; 

else 
status= 1; 

return status; 

/* Test if a float valuel is "near" another float value2 */ 
int FEQ (float valuel, float value2) 
{ 

int status; 

if (fabs((double) (valuel - value2)) >= (double)TOLER) 
status = 0; 

else 
status= 1; 

return status; 

/* Test if a double value is "near" 0.0 */ 
int DEQO (double value) 
{ 

int status; 

if (fabs(value) >= (double)TOLER) 
status= 0; 

else 
status= 1; 

return status; 

/* Test if a float value is "near" 0.0 */ 
int FEQO (float value) 
{ 

int status; 

if (fabs((double)value) >= (double)TOLER) 
status 0; 

else 
status= 1; 

return status; 

/* Sign of a value returns: -1 = negative, 1 = positive, 0 
zero*/ 
int sgn (double value) 
{ 

int status; 

if (value<= -TOLER) 
status= -1; 
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else if (value>= TOLER) 
status = 1; 

else 
{ 

assert(DEQ0(value)); 
status= 0; 

return status; 

/* Find the determant of a 2x2 matrix*/ 
double det2(double all, double a12, 

double a21, double a22) 

double det; 
det = all*a22 - a2l*a12; 
return det; 

/* Find the determant of a 3x3 matrix*/ 
double det3(double all, double a12, double a13, 

double a21, double a22, double a23, 
double a31, double a32, double a33) 

double det; 
det = all*a22*a33 + al2*a23*a31 + a13*a2l*a32 -

al3*a22*a31 - all*a23*a32 - a12*a21*a33; 
return det; 

void solve(double all, double al2, double a13, double al4, 
double a21, double a22, double a23, double a24, 
double a31, double a32, double a33, double a34, 
double &a, double &b, double &c, double &d) 

double old; 

// Step 1 - Pivot 1 at All 
old all; 
all 1.0; 
a12 a12/old; 
al3 al3/old; 
al4 a14/old; 

// Step 2 - 0 at A21 & A31 
old -a21; 
a21 0.0; 
a22 (old*a12)+a22; 
a23 (old*a13)+a23; 
a24 = (old*a14)+a24; 
old -a31; 
a31 0.0; 
a32 (old*a12)+a32; 
a33 (old*a13)+a33; 
a34 (old*a14)+a34; 

// Step 3 - Pivot 1 at A22 
old= a22; 
a22 = 1.0; 
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a23 = a23lold; 
a24 = a24lold; 

II Step 4 - 0 at A12 & A32 
old= -a12; 
a12 = 0.0; 
a13 = (old*a23)+a13; 
a14 = (old*a24)+al4; 
old= -a32; 
a32 = 0.0; 
a33 = (old*a23)+a33; 
a34 = (old*a24)+a34; 

II Step 5 - Pivot 1 at A33 
old= a33; 
a33 = 1.0; 
a34 = a34lold; 

II Step 6 - 0 at A13 & A23 
old= -a13; 
a13 == 0.0; 
a14 (old*a34)+a14; 
old= -a23; 
a23 0.0; 
a24 = (old*a34)+a24; 

d = 1.0; II ??? 
a a14*d; 
b = a24*d; 
C = a34*d; 

I* Standard Deviation of n doubles *I 
double standard deviation(double X[J, int n) 
{ -

inti; 
double sum; 
double Xa; 
double sd; 

sum = 0. 0; 
for (i=O; i<n; i++) 

sum= sum+ X[i]; 
Xa = sum I (double) n; 
sum= 0.0; 
for (i=0; i<n; i++) 

sum= sum+ (X[i] - Xa)*(X[i] - Xa); 
sd = sqrt(suml(double) (n-1)); 

return sd; 

I* lineseg2.cc - Line_Segment2 Class Implementation *I 

#ifdef _cplusplus 

#include <iostream.h> 
#include "lineseg2.h" 

II Constructors & Destructors 
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Line Segment2::Line Segment2() 
{ - -

pl.SetPoint(0.O, 0.0); 
p2.SetPoint(0.0, 0.0); 

II Default Constructor 

Line Segment2::Line Segment2(Point2 Pl, Point2 P2) 
Constructor -

II Secondary 

{ 
pl Pl; 
p2 = P2; 

Line Segment2::Line Segment2(const Line_Segment2& ls) 
Constructor -
{ 

pl ls.pl; 
p2 = ls.p2; 

Line_Segment2::~Line_Segment2() 
{ 

pl.SetPoint(0.0, 0.0); 
p2.SetPoint(0.0, 0.0); 

II Operators 

II Default Destructor 

II Copy 

Line Segment2& Line_Segment2::operator=(const Line_Segment2 &rhs) 
{ -

if (this== &rhs) return *this; 
pl= rhs.pl; 
p2 = rhs.p2; 
return *this; 

II Accessors 

void Line Segment2::SetPl(Point2 Pl) 
{ -

pl = Pl; 

Point2 Line_Segment2::GetPl() 
{ 

return pl; 

void Line_Segment2::SetP2(Point2 P2) 
{ 

p2 = P2; 

Point2 Line_Segment2::GetP2() 
{ 
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return p2; 

void Line_Segment2::SetSegment(Point2 Pl, Point2 P2) 
{ 

pl Pl; 
p2 = P2; 

II Services 

int Line Segment2::Is On Line Segment(Point2 q) 
{ - - -

II*** TBD don't forget about tolerances in this routine*** 

int status; 

II Form boundry box around end points to narrow down possibilities 

II Check X boundry 
if (((q.GetX() > pl.GetX()) && (q.GetX() > p2.GetX())) I I 

((q.GetX() < pl.GetX()) && (q.GetX() < pl.GetX()))) 

status= 0; 

else 
{ 

II Check Y boundry 
if (((q.GetY() > pl.GetY()) && (q.GetY() > p2.GetY())) I I 

((q.GetY() < pl.GetY()) && (q.GetY() < p2.GetY()))) 

status= 0; 
} 
else 
{ 

II It is inside of the boundry box 
II*** TBD decide how to find out if it is on the line segment 
status= 1; 

return status; 

void Line_Segment2::Show() 
{ 

cout << "{"; 
pl.Show Full(); 
cout <<-", "; 
p2.Show Full(); 
cout <<-"}"; 

f:endif 
I* lineseg3.cc - Line_Segment3 Class Implementation *I 

f:ifdef _cplusplus 

#include <iostream.h> 
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#include "lineseg3.h" 

// Constructors & Destructors 

Line Segment3::Line Segment3() 
{ - -

pl.SetPoint(0.0, 0.0, 0.0); 
p2.SetPoint(0.0, 0.0, 0.0); 

// Default Constructor 

Line Segment3::Line Segment3(Point3 Pl, Point3 P2) // Secondary 
Constructor -
{ 

pl= Pl; 
p2 = P2; 

Line Segment3::Line Segment3(const Line_Segment3& ls) 
Constructor -
{ 

pl== ls.pl; 
p2 = ls.p2; 

Line Segment3::~Line Segment3() 
{ - -

pl.SetPoint(0.0, 0.0, 0.0); 
p2.SetPoint(0.0, 0.0, 0.0); 

// Operators 

// Default Destructor 

// Copy 

Line Segment3& Line_Segment3::operator=(const Line_Segment3 &rhs) 
{ -

if (this== &rhs) return *this; 
pl= rhs.pl; 
p2 = rhs.p2; 
return *this; 

// Accessors 

void Line Segment3::SetPl(Point3 Pl) 
{ -

pl= Pl; 

Point3 Line_Segment3::GetPl() 
{ 

return pl; 

void Line_Segment3::SetP2(Point3 P2) 
{ 

p2 = P2; 
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Point3 Line Segment3::GetP2() 
{ -

return p2; 

void Line_Segment3::SetSegment(Point3 Pl, Point3 P2) 
{ 

pl Pl; 
p2 = P2; 

// Services 

void Line Segment3::Show() 
{ -

cout << "{"; 
pl.Show Full(); 
cout <<-", "; 
p2.Show Full(); 
cout <<-"}"; 

Point3 Line_Segment3::Intersection(Plane& P) 
{ 

Point3 tmp point; 
doublet; -
Poly_Class pl_side, p2_side; 

pl side= P.Classify Polygon2(pl); 
p2=side = P.Classify=Polygon2(p2); 

if ((pl_side == COINCIDENT) && ( p2_side == COINCIDENT)) 
{ 

} 

// Line Segment lies inside of plane 
// return midpoint of linesegment 
tmp_point.SetX((pl.GetX()+p2.GetX())/2.0); 
tmp_point.SetY((pl.GetY()+p2.GetY())/2.0); 
tmp_point.SetZ((pl.GetZ()+p2.GetZ())/2.0); 
cout << "**********" << endl; 
cout << "WARNING LineSegment lies in Plane"<< endl; 
(*this) • Show() ; 
cout << endl; 
P. Show Full () ; 
cout << "**********" << endl; 

else if (pl side== p2 side) 
{ - -

// Line Segment lies outside of plane 
// return (0,0,0) 
tmp_point.SetPoint(0.0, 0.0, 0.0); 
cout << "WARNING LineSegment does not intersect Plane"<< endl; 

} 
else 
{ 

t = - (P.GetA()*p2.GetX() + 
P.GetB()*p2.GetY() + 
P.GetC()*p2.GetZ() + 
P .GetD ()) / 
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(P.GetA()*(pl.GetX() - p2.GetX()) + 
P.GetB()*(pl.GetY() - p2.GetY()) + 
P.GetC()*(pl.GetZ() - p2.GetZ())); 

tmp_:point.SetX(t*pl.GetX() + (l-t)*p2.GetX()); 
tmp_:point.SetY(t*pl.GetY() + (l-t)*p2.GetY()); 
tmp_:point.SetZ(t*pl.GetZ() + (l-t)*p2.GetZ()); 

:fl: if def DEBUG 
if (!P.Is_Point_On_Plane(tmp_:point)) 

cout <<"ERROR Calculated Point is not in Plane!"<< endl; 
:fl:endif 

} 

return tmp_:point; 

int Line Segment3::Is On Line Segment(Point3 q) 
{ - - - -

I* 

int status; 
Point3 Vl, V2; 
double ml, m2 ; 
double n; 

II 3 space vectors 
II vector magnitude 
II vector normal 

II Form vectors plp2 and plq 
Vl.SetX(p2.GetX() - pl.GetX()); 
Vl.SetY(p2.GetY() - pl.GetX()); 
Vl.SetZ(p2.GetZ() - pl.GetZ()); 
V2.SetX(q.GetX() - pl.GetX()); 
V2.SetY(q.GetY() - pl.GetY()); 
V2.SetZ(q.GetZ() - pl.Getz()); 

II Get Magnitudes of Vectors 
ml= pl.Magnitude(p2); 
m2 = pl.Magnitude(q); 

II Normalize vectors 
n = Vl .Norm(); 
Vl.SetX(Vl.GetX()ln); 
Vl.SetY(Vl.GetY()ln); 
Vl.SetZ(Vl.GetZ()ln); 
n = V2 .Norm(); 
V2.SetX(V2.GetX()ln); 
V2.SetY(V2.GetY()ln); 
V2.SetZ(V2.GetZ()ln); 

II Test if q is on linesegment plp2 
if ((Vl.GetX()==V2.GetX())&& 

(Vl.GetY()==V2.GetY())&& 
(Vl.GetZ()==V2.GetZ())) 

if (m2<=ml) 
status=l; 

else 
status= 0; 

int status; 
doublet; 
double testx, testy, testz; 

if (!DEQ0(p2.GetX() - pl.GetX())) 
{ 

II Linesegment is not in the X hyperplane 
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} 

// Find a parametric t value 
t = (q.GetX() - pl.GetX()) / (p2.GetX() - pl.GetX()); 

if ((t > 1.0) 11 (t < 0.0)) 
{ 

} 

// Point is too far left or right of the Linesegment 
status= 0; 

else 
{ 

testy= pl.GetY() + t*(p2.GetY() - pl.GetY()); 
testz = pl.GetZ() + t*(p2.GetZ() - pl.GetZ()); 
if (DEQ(q.GetY(), testy) && DEQ(q.GetZ(), testz)) 
{ 

// Point is on the Linesegment 
status= 1; 

} 
else 
{ 

// Point is not on the Linesegment 
status= 0; 

else if (!DEQ0(p2.GetY() - pl.GetY())) 
{ 

// Linesegment is not in the Y hyperplane 

// Find a parametric t value 
t = (q.GetY() - pl.GetY()) / (p2.GetY() - pl.GetY()); 

if ((t > 1.0) 11 (t < 0.0)) 
{ 

} 

// Point is too far left or right of the Linesegment 
status= 0; 

else 
{ 

testx = pl.GetX() + t*(p2.GetX() - pl.GetX()); 
testz = pl.GetZ() + t*(p2.GetZ() - pl.GetZ()); 
if (DEQ(q.GetX(), testx) && DEQ(q.GetZ(), testz)) 
{ 

// Point is on the Linesegment 
status= 1; 

} 
else 
{ 

// Point is not on the Linesegment 
status= 0; 

else if (!DEQO(p2.GetZ() - pl.GetZ())) 
{ 

// Linesegment is not in the Z hyperplane 

// Find a parametric t value 
t = (q.GetZ() - pl.GetZ()) / (p2.GetZ() - pl.Getz()); 

if ((t > 1.0) 11 (t < 0.0)) 
{ 

// Point is too far left or right of the Linesegment 
status= 0; 
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} 
else 
{ 

testy= pl.GetY() + t*(p2.GetY() - pl.GetY()); 
testx = pl.GetX() + t*(p2.GetX() - pl.GetX()); 
if (DEQ(q.GetY(), testy) && DEQ(q.GetX(), testx)) 
{ 

// Point is on the Linesegment 
status= 1; 

} 
else 
{ 

// Point is not on the Linesegment 
status= 0; 

} 
else 
{ 

// Point is in all three hyperplanes! Must not be a proper 
Linesegment ! 

cerr << "ERROR! Undefined Line Segment!"<< endl; 
exit(l); 

*I 
return status; 

fendif 
/*list.cc*/ 

fifdef _cplusplus 

#include <iostream.h> 
#include <stdio.h> 
//fdefine NDEBUG //turnoff assertions 
#include <assert.h> 
finclude "list.h" 

// Default Constructor 
template<class T> 
List<T>: : List () 
{ 

head 
tail 
curytr 
num items 

(lptr)0; 
(lptr)0; 
(lptr) 0; 
0; 

// Copy Constructor 
template<class T> 
List<T>::List(const List& 1) 
{ 

lptr cur; 
lptr lcur; 

head 
tail 
curytr 
num items 

(lptr)0; 
(lptr)0; 
(lptr)0; 
O; 
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II Copy Contents of List 1 to our List 
lcur = l.head; 
while (lcur) 
{ 

cur= new list_item; 
assert(cur); 
cur->data = lcur->data; 

needed 
if (lcur == l.head) 
{ 

cur->prev = (lptr)0; 
head= cur; 

list 
cur_ptr = head; 

} 
else 
{ 

} 

cur->prev = cur_ptr; 
cur_ptr->next = cur; 
cur_ptr = cur_ptr->next; 

if (lcur == l.tail) 
{ 

cur->next = (lptr)0; 
tail= cur; 

list 

lcur lcur->next; 

cur_ptr = head; 
num items= l.num_items; 

II Default Destructor 
template<class T> 
List<T>: : -List () 
{ 

lptr cur; 
lptr next; 

if (head) 
{ 

cur= head; 
while (cur) 
{ 

} 

next= cur->next; 
delete cur; 
cur= next; 

head = (lptr)0; 
tail = (lptr)0; 
cur_ptr = (lptr)0; 
num items= 0; 

II Overloaded'=' Operator 
template<class T> 

II Error Out of Memory! 
II '=' Operator for class Tis 

II Set head to first item in 

II Place new item in list 

II Set tail to last item in 

List<T>& List<T>::operator=(const List &l) 
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lptr cur; 
lptr lcur; 
lptr next; 

if (this== &l) return *this; 

// Clear out Current List 
if (head) 
{ 

cur= head; 
while (cur) 
{ 

next= cur->next; 
delete cur; 
cur= next; 

} 
head 
tail 
cur_ptr = 
num items 

(lptr) 0; 
(lptr)0; 
(lptr)0; 
= 0; 

// Copy Contents of List 1 to ou~ list 
lcur = l.head; 
while (lcur) 
{ 

cur= new list_item; 
assert(cur); 
cur->data = lcur->data; 

needed 
if (lcur == l.head) 
{ 

cur->prev = (lptr)0; 
head= cur; 
cur_ptr = head; 

} 
else 
{ 

} 

cur->prev = cur_ptr; 
cur_ptr->next = cur; 
cur_ptr = cur_ptr->next; 

if (lcur == l.tail) 
{ 

} 

cur->next = (lptr)0; 
tail= cur; 

lcur = lcur->next; 

cur_ptr = head; 
num items= l.num items; 

return *this; 

// Insert Head 
template<class T> 

// Error Out of Memory! 
// '=' Operator for class Tis 

// Set head to first item in list 

// Place new item in list 

// Set tail to last item in list 

void List<T>::Insert Head(const T item) 
{ -

lptr cur; 
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cur= new list item; 
assert(cur); II Error Out of Memory! 
cur->data item; II I= I Operator for class T is 

needed 
cur->prev (lptr)0; 
cur->next = (lptr) 0; 

if ( !head) 
{ 

head cur; 
tail cur; 
cur_ptr head; 

} 
else 
{ 

cur->next = head; 
head->prev = cur; 
head= cur; 

} 
++num_items; 

II Insert Tail 
template<class T> 
void List<T>::Insert _Tail(const T item) 
{ 

lptr cur; 

cur= new list item; 
assert(cur); II Error Out of Memory! 
cur->data item; II '=' Operator for class T is 

needed 
cur->prev (lptr)0; 
cur->next (lptr) 0; 

if ( !head) 
{ 

head cur; 
tail cur; 
cur_ptr head; 

} 
else 
{ 

cur->prev = tail; 
tail->next = cur; 
tail= cur; 

} 
++num_items; 

II Insert at pointer 
template<class T> 
void List<T>::Insert _At_Pointer(const T item) 
{ 

lptr cur; 

cur= new list item; 
assert(cur); - II Error Out of Memory! 
cur->data item; II '=' Operator for class T is 

needed 
cur->prev (lptr)0; 
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cur->next = (lptr)0; 

if ( !head) 
{ 

} 

head 
tail 

cur; 
= cur; 

else if (cur_ptr == head) 
{ 

cur->next = head; 
head->prev = cur; 
head = cur; 

} 
else 
{ 

cur->prev 
cur->next 
cur_ptr->prev 

= cur_ptr->prev; 
= cur_ptr; 

cur _ptr = cur; 
++mun_ items; 

II Remove Head 
template<class T> 

cur; 

T List<T>::Remove_Head() 
{ 

lptr cur; 
T item; 

assert(head); 
Empty List! 

cur= head; 
item= cur->data; 

needed 
if ( ! cur->next) 
{ 

assert ( (head == cur) && (tail 
List!?!?! 

head 
tail 
cur_ptr 

} 
else 
{ 

(lptr) 0; 
(lptr) 0; 
(lptr)0; 

if (cur_ptr == head) 

} 

cur_ptr cur->next; 
head cur->next; 
head->prev = (lptr)0; 
cur->next = (lptr)0; 

--num items; 
delete cur; 
return item; 

I I Remove Tail 
template<class T> 
T List<T>::Remove_Tail() 
{ 

lptr cur; 
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T item; 

assert(tail); 
Empty List! 

cur= tail; 
item= cur->data; 

needed 
if ( ! cur->prev) 
{ 

assert ( (head == cur) && (tail 
List!?!?! 

head 
tail 
cur_;ptr 

= (lptr)0; 
= (lptr)0; 
= (lptr)0; 

} 
else 
{ 

} 

if (cur_;ptr == tail) 
cur_;ptr = cur->prev; 

tail = cur->prev; 
tail->next = (lptr)0; 
cur->prev = (lptr)0; 

--num items; 
delete cur; 
return item; 

II Remove At Pointer 
template<class T> 
T List<T>::Remove_At_Pointer() 
{ 

lptr cur; 
T item; 

assert(head && tail && cur_;ptr); 
Empty List! 

cur= cur ptr; 
item= cur->data; 

needed 
if ((!cur->prev) && (!cur->next)) 
{ 

II Error can't Remove from 

II '=' Operator for Class Tis 

II tail is last item in list 

-- cur)); II Error Messed up 

II Error can't Remove from 

II '=' Operator for Class Tis 

II cur_;ptr is last item in list 

assert ( (head == cur) && (tail== cur)); II Error Messed up 
List!?!?! 

head 
tail 
cur_;ptr 

= (lptr)0; 
= (lptr)0; 
= (lptr) 0; 

} 
else if (!cur->prev) 
{ 

} 

assert(head == cur); 
head = cur->next; 
head->prev = (lptr)0; 
cur->next = (lptr)0; 
cur_;ptr = head; 

else if (!cur->next) 
{ 

assert(tail == cur); 
tail cur->prev; 
tail->next (lptr)0; 
cur->prev = (lptr)0; 

II cur_;ptr = head 

II Error Messed up List!?!?! 

II cur_;ptr = tail 

II Error Messed up List!?!?! 
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cur_ytr 
} 
else 
{ 

= tail; 

cur->prev->next = 
cur->next->prev = 

cur->next; 
cur->prev; 

= cur->prev; 
= (lptr)O; 

} 

cur_ytr 
cur->prev 
cur->next 

--nwn items; 
delete cur; 
return item; 

// Peek Head 
template<class T> 

= (lptr)O; 

T List<T>::Peek Head() const 
{ -

assert(head); // Error can't Peek at Empty 
List! 

return head->data; 

// Peek Tail 
template<class T> 
T List<T>::Peek Tail() const 
{ -

assert(tail); // Error can't Peek at Empty 
List! 

return tail->data; 

// Peek at Pointer 
template<class T> 
T List<T>::Peek_At_Pointer() const 
{ 

assert(cur_ytr); // Error can't Peek at Empty 
List! 

return cur_ptr->data; 

// Is the List Empty? 
template<class T> 
int List<T>::Is Empty() 
{ -

int status; 

if ( !head) 
status= 1; 

else 
status= O; 

return status; 

// Nuke the List 
template<class T> 
void List<T>::Clear() 
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lptr cur; 
lptr next; 

if (head) 
{ 

cur= head; 
while (cur) 
{ 

} 

next= cur->next; 
delete cur; 
cur= next; 

head 
tail 
cur__ptr = 
num items 

= (lptr)0; 
(lptr)0; 
(lptr)0; 
= 0; 

// Reset pointer to head of List 
template<class T> 
void List<T>::Reset Pointer() 
{ -

if (head) 
cur__ptr = head; 

// Increment Pointer, Returns l=success 0=failure 
template<class T> 
int List<T>::Increment Pointer() 
{ -

int status; 

if (cur__ptr) 
{ 

if (cur__ptr->next) 
{ 

} 

cur__ptr = cur__ptr->next; 
status= 1; 

else 
status= 0; 

} 
else 

status= 0; 

return status; 

// Decrement Pointer, Returns l=success 0=failure 
template<class T> 
int List<T>::Decrement Pointer() 
{ -

int status; 

if (cur_ptr) 
{ 

if (cur__ptr->prev) 
{ 
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} 

cur__ptr = cur__ptr->prev; 
status= 1; 

else 
status 0; 

} 
else 

status= 0; 

return status; 

II Show what is in the List 
template<class T> 
void List<T>::Show() 
{ 

lptr cur; 

cout << "L -> "; 
if (head) 
{ 

cur= head; 
while (cur) 
{ 

if (cur__ptr == cur) 
cout << "*"; 

cout << cur->data <<" "; 
needed 

cur= cur->next; 

cout << endl; 
} 
else 

cout <<"EMPTY"<< endl; 

II Is this item a member of the List? 
template<class T> 
int List<T>::Is Member (canst T item) 
{ 

lptr cur; 
int found; 

found= 0; 
if (head) 
{ 

cur= head; 
while (cur && (!found)) 
{ 

if (cur->data == item) 
needed 

found= 1; 
cur= cur->next; 

return found; 

II ios::<< for Class Tis 

II '==' Operator for Class Tis 

II Find item in the List, status=l is found, status=0 is not found 
II Pointer is set to found item 
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template<class T> 
int List<T>::Find (const T item) 
{ 

lptr cur; 
int found; 

found = 0; 
if (head) 
{ 

cur= head; 
while (cur && (!found)) 
{ 

if (cur->data == item) 
needed 

} 

found = 1; 
cur_ptr = cur; 

cur= cur->next; 

return found; 

II '==' Operator for Class Tis 

II Set cur_ptr to found item 

II Find item in the List, status=l is found, status=0 is not found 
II Pointer is set to found item 
template<class T> 
int List<T>::Find2 (const Facet3 item) 
{ 

return 0; 

int List<Facet3>::Find2 (const Facet3 item) 
{ 

lptr cur; 
int found; 

found = 0; 
if (head) 
{ 

cur= head; 
while (cur && (!found)) 
{ 

if (cur->data.sf_equal(item)) 
{ 

} 

found = 1; 
cur_ptr = cur; 

cur= cur->next; 

return found; 

template<class T> 
int List<T>::Num Members() 
{ -

return num_items; 

:f/:endif 
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/* oogl. cc * / 

fifdef _cplusplus 

#include <iostream.h> 
#include <fstream.h> 
#include <stdlib.h> 
#include "oogl.h" 
#include "facet3.h" 

void Convex Hull 2 OOGL (List<Point3>& p, Convex Hull3& f) 
{ 

£stream fp; 
List<Point3> tmpy(p); 
Convex Hull3 tmp f(f); 
Point3-tmpyoint; 
Point3 tmpyointl, tmpyoint2, tmpyoint3; 
Facet3 tmp_facet; 

fp.open("chull.off", ios: :out); 

if(fp.fail() I fp.bad()) 
{ 

cerr << "Error opening file chull.off for output."<< endl; 
exit(l); 

fp <<"OFF"<< endl; 
fp << p.Num_Members () << n " << f.Num_Members () << " 0" << endl; 

tmpy.Reset Pointer(); 
while (!tmpy.Is_Empty()) 
{ 

tmpyoint = tmpy.Remove_Head(); 
fp << tmp yo int. GetX () << " " << tmp yo int. GetY () << " "; 
fp << tmpyoint.GetZ() << endl; 

tmp £.Reset Pointer(); 
while ( !tmp-f. Is Empty()) 
{ - -

tmp facet= tmp £.Remove Head(); 
tmpyointl = tmp_facet.GetPl(); 
tmpyoint2 = tmp_facet.GetP2(); 
tmpyoint3 = tmp_facet.GetP3(); 
fp << "3 " << tmpyointl .GetID () - 1 << " "; 
fp << tmpyoint2 .Get ID() - 1 << " "; 
fp << tmpyoint3.GetID() - 1 << endl; 

fp. close () ; 

void Triangles_2_00GL (List<Plane>& lp) 
{ 

List<Plane> tmp lp(lp); 
fstream fp; -
Plane tmpylane; 
Point3 tmpyointl, tmpyoint2, tmpyoint3; 

fp.open("triangs.off", ios::out); 
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if(fp.fail() I fp.bad()) 
{ 

cerr << "Error opening file triangs.off for output."<< endl; 
exit(l); 

fp <<"LIST"<< endl; 

tmp lp.Reset Pointer(); 
while ( ! tmp Ip. Is Empty() ) 
{ - -

tmp__pl~ne = tmp_lp.Remove_Head(); 
tmp__pointl = tmp__plane.GetPl(); 
tmp__point2 = tmp__plane.GetP2(); 
tmp__point3 = tmp__plane.GetP3(); 
fp <<"{=OFF"<< endl; 
fp <<" 3 1 0" << endl; 
fp << " " << tmp__pointl.GetX() << " " << tmp__pointl.GetY() << " 

II • , 
fp << tmp__pointl.GetZ() << endl; 
fp << II "<< tmp__point2.GetX() << II II<< tmp__point2.GetY() 

II • , 
fp << tmp__point2.GetZ() << endl; 
fp << II " << tmp __point3. GetX () << II 11 << tmp__point3 .GetY () 

II • , 
fp << tmp__point3.GetZ() << endl; 
fp << II 3 0 1 2" << endl; 
fp << II} II << endl; 

fp. close () ; 

void BSP Tree w Convex Hulls 2 OOGL (List<Point3>& p, BSP Tree& t) 
{ 

£stream fp; 

fp.open("bspchull.off", ios::out); 

if(fp.fail() I fp.bad()) 
{ 

<< II 

<< II 

cerr << "Error opening file bspchull.off for output."<< endl; 
exit(l); 

fp. close () ; 

t.OOGL_Output(p); 

:ftendif 
/*plane.cc*/ 

:ftifdef _cplusplus 

:ftinclude <math.h> 
:ftinclude <stdlib.h> 
:ftinclude "general.h" 
:ftinclude "plane.h" 
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Plane: :Plane() 
{ 

pl.SetPoint(O.O, 0.0, 0.0); 
pl. Set ID (-1); 
p2.SetPoint(O.O, 0.0, 0.0); 
p2.SetID(-l); 
p3.SetPoint(O.O, 0.0, 0.0); 
p3.SetID(-l); 
a= 0.0; 
b = 0.0; 
c=0.0; 
d==0.0; 

Plane::Plane(Point3 Pl, Point3 P2, Point3 P3) 
{ 

pl = Pl; 
p2 = P2; 
p3 = P3; 
Calculate_Equation(); 

Plane::Plane(const Plane &P2) 
{ 

pl = P2 .pl; 
p2 = P2.p2; 
p3 = P2.p3; 
Calculate_Equation(); 

Plane: : ~Plane() 
{ 

pl.SetPoint(O.O, 0.0, 0.0); 
pl. Set ID (-1); 
p2.SetPoint(O.O, 0.0, 0.0); 
p2. Set ID (-1); 
p3.SetPoint(O.O, 0.0, 0.0); 
p3. Set ID (-1); 
a= 0.0; 
b = 0.0; 
C = 0.0; 
d = 0.0; 

Plane& Plane::operator=(const Plane &rhs) 
{ 

if (this== &rhs) return *this; 
pl= rhs.pl; 
p2 = rhs.p2; 
p3 = rhs.p3; 
a= rhs.a; 
b = rhs.b; 
c = rhs.c; 
d = rhs.d; 
return *this; 
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int Plane::operator==(const Plane& rhs) 
{ 

return ( ( (pl === rhs .pl) && (p2 === rhs .p2) 
((pl == rhs .pl) && (p2 === rhs .p3) 
((pl == rhs.p2) && (p2 rhs .pl) 
((pl == rhs.p2) && (p2 -- rhs.p3) 
((pl === rhs.p3) && (p2 == rhs .pl) 
((pl === rhs.p3) && (p2 === rhs.p2) 

} 

int Plane::operator!=(const Plane& rhs) 
{ 

return (! ((*this) == rhs)); 

ostream& operator<<(ostream& s, Plane p) 
{ 

s << "{" << p.pl << 
returns; 

" " ' << p.p2 << 

void Plane::SetPl(Point3 Pl) 
{ 

pl = Pl; 
Calculate_Equation(); 

Point3 Plane::GetPl() 
{ 

return pl; 

void Plane::SetP2(Point3 P2) 
{ 

p2 = P2; 
Calculate_Equation(); 

Point3 Plane::GetP2() 
{ 

return p2; 

void Plane::SetP3(Point3 P3) 
{ 

p3 = P3; 
Calculate_Equation(); 

Point3 Plane::GetP3() 
{ 

return p3; 
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void Plane::SetPlane(Point3 Pl, Point3 P2, Point3 P3) 
{ 

pl= Pl; 
p2 = P2; 
p3 = P3; 
Calculate_Equation(); 

double Plane: : GetA () 
{ 

return a; 

double Plane::GetB() 
{ 

return b; 

double Plane::GetC() 
{ 

return c; 

double Plane::GetD() 
{ 

return d; 

// Are two planes parallel 
int Plane::Is Parallel(Plane &P2) 
{ -

return ((a==P2.a)&&(b==P2.b)&&(c==P2.c)); 

// Are two planes coincident 
int Plane::Is Coincident(Plane &P2) 
{ -

return ((a==P2.a)&&(b=P2.b)&&(c==P2.c)&&(d==P2.d)); 

// Distance between Point and Plane? 
// pg 832-833, Calculus - One and Several Variables 7th ed, Salas & 
Hille 
double Plane::Distance(Point3 P) 
{ 

double distance; 
double numer; 
double denom; 

numer = fabs(a*P.GetX() + b*P.GetY() + c*P.GetZ() + d); 
denom = sqrt(a*a + b*b + c*c); 
distance= numer/denom; 

return distance; 
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// Does the Point lie on the Plane? 
// pg 824, Calculus - One and Several Variables 7th ed, Salas & Hille 
int Plane::Is Point On Plane(Point3 P) 
{ - - -

int status; 

if (P != pl) 
{ 

if (DEQO(a*(P.GetX()-pl.GetX()) + 
b*(P.GetY()-pl.GetY()) + 
c*(P.GetZ()-pl.GetZ()))) 

status= 1; 
else 

status= 0; 
} 
else 
{ 

if (DEQO(a*(P.GetX()-p2.GetX()) + 
b*(P.GetY()-p2.GetY()) + 
c*(P.GetZ()-p2.GetZ()))) 

status 1; 
else 

status= 0; 

return status; 

Poly Class Plane::Classify Polygon(Plane& P2) 
{ - -

Poly Class return value; 
Poly=Class sl, s2; s3; 

sl = (*this) .Classify Polygon2(P2.GetP1()); 
s2 = (*this) .Classify-Polygon2(P2.GetP2()); 
s3 = (*this) .Classify=Polygon2(P2.GetP3()); 

if ((sl == COINCIDENT) && (s2 == COINCIDENT) && (s3 == COINCIDENT)) 
return value= COINCIDENT; 

else if ((sl == IN FRONT OF) && (s2 == IN FRONT OF) && (s3 == 
IN FRONT OF)) - - - -

- return value= IN FRONT OF; 
else if ((sl == IN_BACK_OF) && (s2 IN_BACK_OF) && (s3 == 

IN BACK OF)) 
- return value= IN BACK OF; 
else if ((sl == COINCIDENT) && (s2 == IN_FRONT_OF) && (s3 == 

IN FRONT OF) ) 
- return value= IN FRONT OF; 
else if ((sl == COINCIDENT) && (s2 == IN_BACK_OF) && (s3 == 

IN BACK OF)) 
- return value= IN BACK OF; 
else if ((s2 == COINCIDENT) && (sl == IN_FRONT_OF) && (s3 -­

IN FRONT OF) ) 
- return value= IN FRONT OF; 
else if ((s2 == COINCIDENT) && (sl -- IN_BACK_OF) && (s3 == 

IN BACK OF)) 
- return value= IN BACK OF; 
else if ((s3 == COINCIDENT) && (s2 == IN_FRONT_OF) && (sl 

IN FRONT OF) ) 
- return value= IN FRONT OF; 
else if ((s3 == COINCIDENT) && (s2 == IN_BACK_OF) && (sl == 

IN_BACK_OF)) 
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return value = IN BACK OF; 
else if ((sl == COINCIDENT) && (s2 -- COINCIDENT) 

IN FRONT OF)) 
- return value = IN FRONT OF; 
else if ((sl == COINCIDENT) && (s2 COINCIDENT) 

IN BACK OF)) 
- return value = IN BACK OF; 
else if ((s2 == COINCIDENT) && (s3 == COINCIDENT) 

IN FRONT OF) ) 
- return value = IN FRONT OF; 
else if ((s2 == COINCIDENT) && (s3 COINCIDENT) 

IN BACK OF)) 
- return value = IN BACK OF; 
else if ((sl == COINCIDENT) && (s3 -- COINCIDENT) 

IN FRONT OF) ) 
- return value = IN FRONT OF; 
else if ((sl == COINCIDENT) && (s3 -- COINCIDENT) 

IN BACK OF)) 
- return value IN_BACK_OF; 
else 

return value = SPANNING; 

return return_value; 

Poly Class Plane::Classify Polygon2(Point3 P) 
{ - -

Poly Class return value; 
double distance; -
double sl; 

distance= (*this) .Distance(P); 
if (DEQ0(distance)) 

return value= COINCIDENT; 
else -
{ 

sl = a*P.GetX() + b*P.GetY() + c*P.GetZ() + d; 
if (sl > 0.0) 

return value= IN FRONT OF; 
else if (sl < 0.0) - -

return value= IN BACK OF; 
else - -

cout << "ERROR in Classify Polygon 2"; 

return return_value; 

Poly_Class Plane::Classify_Polygon3(Plane &P2) 

Poly_Class return_value; 

&& (s3 

&& (s3 

&& (sl 

&& (sl 

&& (s2 

&& (s2 

II Since planes are infinite, if the two planes are not 

== 

== 

== 

=== 

== 

II parallel then they must be spanning. If the two planes 
II are parallel, then they might be coincident. 
if ((*this) .Is Parallel(P2)) 

if ((*this)~Is Coincident(P2)) 
return value= COINCIDENT; 

else -
{ 

II Check IN FRONT OF or IN BACK OF 
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return_value = (*this) .Classify_Polygon2(P2.pl); 
} 

else 
return_value = SPANNING; 

return return_value; 

II Angle between 2 planes 
double Plane::Angle(Plane &P2) 
{ 

double cosangle; 
Point3 ql, q2, q3, q4, vl, v2, v3, cl, c2; 

II find common edge and assign to ql and q2. 
II q3 is remaining point from calling plane 
II q4 is remaining point from plane P2 

if ((pl != P2.GetP1()) && 

} 

(pl != P2.GetP2()) && 
(pl != P2.GetP3())) 

II p2,p3 common 
ql = p2; 
q2 = p3; 
q3 pl; 

else if ((p2 != P2.GetPl()) && 
(p2 != P2.GetP2()) && 
(p2 != P2.GetP3())) 

II pl,p3 common 
ql = pl; 
q2 = p3; 
q3 = p2; 

} 
else 
{ 

II pl,p2 common 
ql = pl; 
q2 = p2; 
q3 = p3; 

II find remainin point in P2 

if ( (P2. GetPl () ! = ql) && 
(P2 .GetPl () ! = q2)) 

II pl not common 
q4 = P2 .GetPl (); 

} 
else if ((P2.GetP2() != ql) && 

(P2.GetP2() != q2)) 

II p2 not common 
q4 = P2 .GetP2 (); 

} 
else 
{ 

II p3 not common 
q4 = P2 .GetP3 (); 
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II find angle between planes 
v2 q2 - ql; 
vl = q3 - ql; 
v3 q4 - ql; 
cl= vl.Cross(v2); 
c2 = v3.Cross(v2); 
cosangle = cl.Dot_Product(c2)l(cl.Norm()*c2.Norm()); 

return cosangle; 

II double norml, norm2; 
II Point3 unl, un2; 
II double theta; 
II 

-II norml = 1.0lsqrt(a*a + b*b + c*c); 
II norm2 = 1.0lsqrt(P2.a*P2.a + P2.b*P2.b + P2.c*P2.c); 
II unl (*this) .Normal(); 
II un2 = P2.Normal(); 
II unl unl * norml; 
II un2 un2 * norm2; 
II theta acos(fabs(unl.Dot Product(un2))); 
II removed fabs() because we-want both acute and obtuse angles 
II theta= acos(unl.Dot_Product(un2)); 
II 
II return theta; 
} 

Point3 Plane: :Normal() 
{ 

Point3 n; 

n.SetPoint(a,b,c); 

return n; 

void Plane: : Show () 
{ 

cout << "{"; 
pl.Show Full(); 
cout <<-", "; 
p2.Show Full(); 
cout <<-", "; 
p3.Show Full(); 
cout <<-"}" << endl; 

void Plane::Show_Full() 
{ 

cout << "{"; 
pl.Show Full(); 
cout <<-", "; 
p2.Show Full(); 
cout <<-", "; 
p3.Show Full(); 
cout <<-"}" << endl; 
cout << "Equation (Ax+By+Cz+D=O): ("; 
cout <<a<<", "<< b << ", "<< c << ", "<< d << ")" << endl; 
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void Plane::Calculate_Equation() 
{ 

double p12i, p12j, p12k; 
double p13i, p13j, p13k; 
double ni, nj, nk; 

II Vector P1P2 = <P2x-Plx, P2y-Ply, 
p12i = p2.GetX() - pl.GetX(); 
p12j = p2.GetY() - pl.GetY(); 
p12k = p2.GetZ() - pl.GetZ(); 
II Vector P1P3 = <P3x-Plx, P3y-Ply, 
p13i = p3.GetX() - pl.GetX(); 
p13j = p3.GetY() - pl.GetY(); 
p13k = p3.GetZ() - pl.GetZ(); 
II Vector N = (P1P2 X P1P3) 
ni = p12j*p13k - p12k*pl3j; 
nj = -(p12i*p13k - p12k*p13i); 
nk = p12i*p13j - p12j*p13i; 
II PlP . (P1P2 X P1P3) = 0 
a ni; 
b = nj; 
c = nk; 

II Vector P1P2 
II Vector P1P3 
II Vector N 

P2z-Plz> 

P3z-Plz> 

d = (pl.GetX()*ni) + (pl.GetY()*nj) + (pl.GetZ()*nk); 
II if a is negative, factor out the negative 
if (a < 0.0) 
{ 

a -a; 
b = -b; 
C = -c; 
d = -d; 

II There are other ways of finding the equation of a plane 
II using a co-factor-minors method or using a marticies method. 
II Most of the methods leave the D coeficient = 1.0. 
II These methods are not accurate enough for this program, 
II so I had to resort to using Newell's Method. 
II Newell's Method is described in the book Graphics Gems III, 
II David Kirk, Academic Press, 1991, pp 231-232 & 517-518. 

//Newells_Method(); 

void Plane::Newells_Method() 
{ 

Point3 normal; 
Point3 refpt; 
Point3 u; 
Point3 v; 
double len; 

II compute the polygon normal and a reference point on the plane 
II unrolled for loop because this program is class based, not array 

based 
u = pl; 
V = p2; 
normal.SetX( (u.GetY() 
normal.SetY((u.GetZ() 
normal. Setz ( (u.GetX () 

- v.GetY()) * 
- v. Getz O ) * 
- v.GetX()) * 
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(u.GetX() + v.GetX())); 
(u.GetY() + v.GetY())); 



refpt.SetX(u.GetX()); 
refpt.SetY(u.GetY()); 
refpt.SetZ(u.GetZ()); 
u = p2; 
V = p3; 
normal.SetX(normal.GetX() + (u.GetY() - v.GetY()) * (u.GetZ() + 

v.GetZ ())); 
normal.SetY(normal.GetY() + (u.GetZ() - v.GetZ()) * (u.GetX() + 

v. GetX () ) ) ; 
normal.SetZ(normal.GetZ() + (u.GetX() - v.GetX()) * (u.GetY() + 

v. GetY () ) ) ; 
refpt.SetX(refpt.GetX() + u.GetX()); 
refpt.SetY(refpt.GetY() + u.GetY()); 
refpt.SetZ(refpt.GetZ() + u.GetZ()); 
u = p3; 
v = pl; 
normal.SetX(normal.GetX() + (u.GetY() - v.GetY()) * (u.GetZ() + 

v.GetZ ())); 
normal.SetY(normal.GetY() + (u.GetZ() - v.GetZ()) * (u.GetX() + 

v.GetX ())); 
normal.SetZ(normal.GetZ() + (u.GetX() - v.GetX()) * (u.GetY() + 

v. GetY () ) ) ; 
refpt.SetX(refpt.GetX() + u.GetX()); 
refpt.SetY(refpt.GetY() + u.GetY()); 
refpt.SetZ(refpt.GetZ() + u.GetZ()); 

// normalize the polygon normal to obtain the first 3 plane 
coefficients 

len = normal.Norm(); 
if ( !DEQ0 (len)) 
{ 

a normal. GetX () 
b = normal. GetY () 
C = normal. Getz () 

} 
else 
{ 

a = 0.0; 
b = 0.0; 
C = 0.0; 

} 

I len; 
I len; 
I len; 

// compute the last coefficient of the plane equation 
l.en = l.en * 3.0; 
if ( !DEQ0 (len)) 

d = -refpt.Dot_Product(normal) / len; 
else 

d = 0.0; 

:/tendif 
/* point2.cc - Point2 Class Implementation*/ 

:/tifdef _cplusplus 

:/tinclude <math.h> 
:/tinclude "point2.h" 

// Constructors & Destructors 

Point2::Point2() 
{ 

// Default Constructor 
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X 0.0; 
y = 0.0; 
id= -1; 

Point2::Point2(double X, double Y) 
{ 

X = X; 
y = Y; 
id= -1; 

Point2::Point2(const Point2& p) 
{ 

X = p.x; 
y = p.y; 
id= p.id; 

// Secondary Constructor 

// Copy Constructor 

Point2::~Point2() 
{ 

// Default Destructor 

X = 0.0; 
y = 0.0; 
id= -1; 

// Operators 

Point2& Point2::operator=(const Point2& rhs) 
{ 

if (this==&rhs) return *this; 
x rhs.x; 
y = rhs.y; 
id= rhs.id; 
return *this; 

int Point2::operator==(const Point2 &rhs) 
{ 

return ((x == rhs.x) && 
(y == rhs.y)); 

int Point2::operator!=(const Point2 &rhs) 
{ 

return (! ((x == rhs.x) && 
(y == rhs.y))); 

ostream& operator<<(ostream& s, Point2 p) 
{ 

s << p.id; 
returns; 
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// Accessors 

void Point2::SetX(double X) 
{ 

X = X; 

double Point2::GetX() 
{ 

return x; 

void Point2::SetY(double Y) 
{ 

y = Y; 

double Point2::GetY() 
{ 

return y; 

void Point2::SetID(int ID) 
{ 

id= ID; 

int Point2::GetID() 
{ 

return id; 

void Point2::SetPoint(double X, double Y) 
{ 

X = X; 
y = Y; 
id= -1; 

// Services 

// Distance Between Two Points 
double Point2::Distance(const Point2& p2) 
{ 

return sqrt((p2.x-x)*(p2.x-x) + 
(p2.y-y)*(p2.y-y)); 

void Point2::Show_Full() 
{ 

cout << "(" << x << "," << y << ")"; 

void Point2::Show() 
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cout << id; 

:ff:endif 
/* point3.cc - Point3 Class Implementation*/ 

:ff:ifdef _cplusplus 

finclude <math.h> 

:ftinclude "point3.h" 
:#:include "general.h" 

// Constructors & Destructors 

Point3: :Point3 () 
{ 

X = 0.0; 
y 0.0; 
z 0.0; 
id = -1; 

// Default Constructor 

Point3::Point3(double X, double Y, double Z) 
{ 

X = X; 
y Y; 
z = Z; 
id -1; 

// Secondary Constructor 

Point3::Point3(const Point3& p) 
{ 

// Copy Constructor 

X p.x; 
y = p.y; 
z = p. z; 
id p.id; 

Point3::~Point3() 
{ 

// Default Destructor 

X 0.0; 
y 0.0; 
z 0.0; 
id -1; 

// Operators 

Point3& Point3::operator=(const Point3& rhs) 
{ 

if (this== &rhs) return *this; 
x rhs.x; 
y = rhs.y; 
z = rhs.z; 
id= rhs.id; 
return *this; 
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int Point3::operator==(const Point3 &rhs) 
{ 

return ( (x 
(y 
(z 

rhs.x) && 
rhs.y) && 
rhs.z)); 

int Point3::operator!=(const Point3 &rhs) 
{ 

return ( ! ( (x 
(y 
(z 

rhs.x) && 
rhs.y) && 
rhs. z) ) ) ; 

Point3 operator-(const Point3& lhs, canst Point3& rhs) 
{ 

Point3 temp_yoint; 

temp_yoint.x 
temp_yoint.y 
temp point.z 
tempyoint.id 

lhs.x - rhs.x; 
lhs.y - rhs.y; 

= lhs.z - rhs.z; 
-1; 

return temp_yoint; 

Point3 operator+(const Point3& lhs, canst Point3& rhs) 
{ 

Point3 temp_yoint; 

temp point.x lhs.x + rhs.x; 
temp-point.y lhs.y + rhs.y; 
temp-point.z lhs.z + rhs.z; 
temp=point.id -1; 

return temp_yoint; 

Point3 operator*(const Point3& lhs, canst double rhs) 
{ 

Point3 temp_yoint; 

temp_yoint.x 
temp point.y 
tempyoint.z 
temp_yoint.id 

lhs.x * rhs; 
lhs.y * rhs; 
lhs.z * rhs; 
-1; 

return temp_yoint; 

ostream& operator<<(ostream& s, Point3 p) 
{ 

s << p.id; 
returns; 
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// Accessors 

void Point3::SetX(double X) 
{ 

X = X; 

double Point3::GetX() 
{ 

return x; 

void Point3::SetY(double Y) 
{ 

y = Y; 

double Point3::GetY() 
{ 

return y; 

void Point3::SetZ(double Z) 
{ 

z = Z; 

double Point3::GetZ() 
{ 

return z; 

void Point3::SetID(int ID) 
{ 

id= ID; 

int Point3::GetID() 
{ 

return id; 

void Point3::SetPoint(double X, double Y, double Z) 
{ 

X = X; 
y = Y; 
z = Z; 
id= -1; 

// Services 
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II Distance Between Two Points 
double Point3::Distance(const Point3& p2) 
{ 

return sqrt((p2.x-x)*(p2.x-x) + (p2.y-y)*(p2.y-y) + (p2.z-z)*(p2.z­
z)); 
} 

II Dot Product Between Two Points 
double Point3::Dot_Product(const Point3& p2) 
{ 

return x*p2.x + y*p2.y + z*p2.z; 

I I Normalized Point I Ip I I 
double Point3: :Norm() 
{ 

return sqrt(x*x + y*y + z*z); 

II Vector Magnitude 
double Point3::Magnitude(const Point3& p2) 
{ 

return sqrt((p2.x-x)*(p2.x-x) + (p2.y-y)*(p2.y-y) + (p2.z-z)*(p2.z­
z)); 
} 

II Cross Product Between Two Points 
Point3 Point3::Cross(Point3& b) 
{ 

Point3 c; 

c.SetX(y*b.GetZ() - z*b.GetY()); 
c.SetY(z*b.GetX() - x*b.GetZ()); 
c.SetZ(x*b.GetY() - y*b.GetX()); 

return c; 

II Rho Calculation used in Giftwrapping 
double Point3::Rho(Point3& a, Point3& n, canst Point3& p2) 
{ 

double numer, denom; 
Point3 diff; 

diff = p2 - (*this); 
numer = -a.Dot Product(diff); 
denom = n.Dot Product(diff); 
if (DEQ0 (denom)) 
{ 

if (numer < 0.0) 
return -MAX_DOUBLE; 

else 
return MAX_DOUBLE; 

else 
return (numerldenom); 
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// Compute New N Calculation used in Giftwrapping 
Point3 Point3::Compute New N(const double max rho, Point3& a) 
{ - - -

double S; 
Point3 temp__pointl, temp__point2; 

temp__pointl = ((*this) * max rho) + a; 
S = (double)l.0 / temp__pointl.Norm(); 
if (a.Dot_Product(temp__pointl) < 0.0) 

S = -S; 
temp__point2 = temp__pointl * S; 
return temp__point2; 

Point3 Point3::Compute New A(const Point3& n, const Point3& pl, const 
Point3& p2) - -
{ 

Point3 temp__pointl, temp__point2; 
double S; 
double a2, a3; 

a3 = -(p2.x - pl.x) / (p2.y - pl.y); 
a2 = -n.x / n.y; 
temp__pointl.SetPoint(l.0, a2, a3); 

S = (double)l.0 / temp__pointl.Norm(); 
if ((*this) .Dot_Product(temp__pointl) < 0.0) 

S = -S; 
temp__point2 = temp__pointl * S; 
return temp__point2; 

void Point3::Show_Full() 
{ 

cout << "(" << x << 

void Point3::Show() 
{ 

cout << id; 

:/tendif 

II II , << y << II II , << z << ")"; 

/* subfacet2.cc - SubFacet2 Class Implementation*/ 

#ifdef _cplusplus 

#include "subfacet2.h" 

// Operators 

int SubFacet2::operator==(const SubFacet2 &rhs) 
{ 

return ((x == rhs.x)&&(y == rhs.y)); 

// Accessors 
158 



void SubFacet2::SetSubFacet(Point2 Pl) 
{ 

x = Pl.GetX(); 
y = Pl.GetY (); 
id = Pl. Get ID() ; 

=1/:endif 
I* subfacet3.cc - SubFacet3 Class Implementation *I 

#ifdef _cplusplus 

#include "subfacet3.h" 

II Operators 

int SubFacet3::operator==(const SubFacet3 &rhs) 
{ 

return (((pl rhs.pl) && (p2 == rhs.p2)) I I 
((pl== rhs.p2) && (p2 == rhs.pl))); 

II Accessors 

void SubFacet3::SetSubFacet(Point3 Pl, Point3 P2) 
{ 

pl= Pl; 
p2 = P2; 

#endif 
I* test_ctz.cc *I 

#ifdef _cplusplus 

#include <iostream.h> 
#include <fstream.h> 
#include <stdlib.h> 

#include "point3.h" 
#include "list.h" 
#include "plane.h" 
#include "ctz.h" 
#include "template.h" 

main() 
{ 

fstream points file; 
fstream triangles file; 
List<Point3> point list; 
List<Plane> triangle list; 
int n, m; -
Point3 a_point; 
Plane a_plane; 
Point3 plane points[3]; 
float p [3]; -
float d[9]; 
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II file handle 
II List of points 
II List of triangles 



cout << "Reading Data Files ... "<< endl; 

cout <<" reading points"<< endl; 
points file.open("points.dat", ios::in); 
if (poTnts file.fail() !points file.bad()) 
{ - -

cout << 11 

exit(l); 
ERROR Reading points file"<< endl; 

n = 0; 
while (!points file.eof()) 
{ -

points_file >> p[0] >> p[l] >> p[2]; 

II there is an aparent bug in many C++ implementations that 
II does not catch eof properly when reading multiple things 
II on a line, this line is a work around for that bug 
if ( (p[0] == 0.0) && (p[l] == 0.0) && (p[2] == 0.0)) 

break; 

n++; 
a_yoint. SetPoint ( (double) p [OJ, (double) p [1], (double) p [2]); 
a_yoint.SetID(n); 
point_list.Insert_Tail(a_yoint); 

:/1:ifdef DEBUG 
cout <<" "<< n << "· "; 
a_yoint.Show_Full(); 
cout << endl; 

:/1:endif 
} 
points file.close(); 

:/1:ifdef DEBUG 
cout <<" 

:/1:endif 
"<< n <<"points read"<< endl; 

cout <<" reading triangles"<< endl; 
triangles file.open("triangle.dat", ios::in); 
if (points_file.fail() ltriangles_file.bad()) 
{ 

cout << 11 

exit(l); 
ERROR reading triangles file"<< endl; 

m=0; 
while (!triangles file.eof()) 
{ -

triangles file>> d[0] >> d[l] >> d[2] >> d[3] >> d[4] >> d[S] >> 
d[6] >> d[7] >>-d[8]; 

II there is an aparent bug in many C++ implementations that 
II does not catch eof properly when reading multiple things 
II on a line, this line is a work around for that bug 
if ((d[0] 0.0) && (d[l] 0.0) && (d[2] 0.0) && 

(d[3] -- 0.0) && (d[4] 0.0) && (d[S] == 0.0) && 
(d[6] == 0.0) && (d[7] == 0.0) && (d[8] == 0.0)) 

break; 

plane _yoints [ 0] . Set Point ( (double) d [ 0] , (double) d [ 1] , 
(double)d[2]); 

plane_yoints[l] .SetPoint((double)d[3), (double)d[4], 
(double)d[S]); 

plane_yoints [2] . SetPoint ( (double) d [ 6], (double) d [7], 
(double)d[8]); 
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a_ylane.SetPlane(plane points[0], plane_yoints[l], 
plane_yoints[2]); -

triangle_list.Insert_Tail(a_ylane); 
m++; 

#ifdef DEBUG 
cout <<" "<< m << " . " . , 

#endif 
} 

a_ylane.Show_Full(); 
cout << endl; 

triangles file.close(); 
#ifdef DEBUG-

cout <<" 
#endif 

"<< m <<"triangles read"<< endl; 

cout << "Running Constrained Tetrahedrizations Code"<< endl; 
Constrain(point list, triangle list); 
cout << "done."-<< endl; -

#endif 
/* test_del.cc - Test Delaunay Triangulation*/ 

#ifdef _cplusplus 

#include <iostream.h> 
#include "point3.h" 
#include "facet3.h" 
#include "chsplit.h" 
#include "template.h" 

main() 
{ 

Point3 pl, p2, p3, p4; 
Facet3 fl, f2; 
Facet3 test fl, test f2; 
int passed_testl, passed_test2; 

pl.SetPoint(2.0, 0.0, 1.0); 
p2.SetPoint(l.0, 1.0, 2.0); 
p3.SetPoint(3.0, 3.0, 1.0); 
p4.SetPoint(l.0, 20.0, 1.0); 
cout <<"pl="; 
pl.Show Full(); 
cout <<-endl; 
cout << "p2 = "; 
p2 . Show Full () ; 
cout <<-endl; 
cout << "p3 = "; 
p3.Show Full(); 
cout <<-endl; 
cout << "p4 = "; 
p4.Show Full(); 
cout <<-endl; 

cout << "Testing Delaunay Triangulation Code"<< endl; 
Delaunay Triangulate (pl, p2, p3, p4, fl, f2); 
cout << "Facet fl="; 
fl.Show Full(); 
cout <<-"Facet f2 = "; 
f2.Show_Full(); 

test_fl.SetFacet(pl, p2, p3); 
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if (fl== test fl) 
passed testl = 1; 

else -
passed_testl = 0; 

p3.SetPoint(20.0, 3.0, 1.0); 
p4.SetPoint(l.0, 4.0, 1.0); 
cout << endl; 
cout <<"pl="; 
pl.Show Full(); 
cout <<-endl; 
cout << "p2 = "; 
p2.Show Full(); 
cout <<-endl; 
cout << "p3 = "; 
p3.Show Full(); 
cout <<-endl; 
cout << "p4 = "; 
p4.Show Full(); 
cout <<-endl; 

cout << "Testing Delaunay Triangulation Code"<< endl; 
Delaunay Triangulate (pl, p2, p3, p4, fl, f2); 
cout << "Facet fl "; 
fl. Show Full(); 
cout <<-"Facet f2 = "; 
f2.Show_Full(); 

test f2.SetFacet(pl, p2, p4); 
if (fl== test f2) 

passed test2 1; 
else -

passed_test2 = 0; 

cout << endl; 
if (passed testl && passed test2) 

cout <<-"Passed Delaunay Triangulation Test"<< endl; 
else 

cout << "Failed Delaunay Triangulation Test"<< endl; 

:/1:endif 
/* test_lis.cc - Test List Class*/ 

#include "list.h" 
#include "template.h" 

int main() 
{ 

List<int> Ll; 
List<int> L2; 
int a; 

Ll.Insert At Pointer(4); 
Ll.Insert-Tail(S); 
Ll.Insert-Head(3); 
L2 = Ll; -
LI.Insert Tail(6); 
L2.Remove-Tail(); 
Ll.Show(); 
L2 .Show(); 

return 0; 
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} 
finclude <iostream.h> 
#include "point2.h" 
#include "template.h" 

int main() 
{ 

} 

Point2 a, b, c; 
Point2 temp; 

a.SetX(5.6); 
b . SetX ( 6 . 5) ; 
c . SetX (7 • 5) ; 
a • Show Full () ; 
b.Show-Full(); 
c.Show-Full (); 
cout << endl; 
temp= a; 
a= b; 
b = temp; 
a. Show Full () ; 
b. Show-Full() ; 
c.Show-Full(); 
cout << endl; 

return 0; 

finclude <iostream.h> 
finclude "general.h" 
#include "point3.h" 
#include "plane.h" 
#include "template.h" 

int main() 
{ 

Point3 pl, p2, p3; 
Plane Pl; 
Plane P2; 
double angle; 

// Set-Up Plane 
pl.SetPoint(0.O, 1.0, 1.0); 
p2.SetPoint(l.0, 1.0, 2.0); 
p3.SetPoint(-1.0, 2.0, -2.0); 
Pl.SetPlane(pl,p2,p3); 

// See What Final Plane Looks Like 
Pl.Show_Full(); 

// Check Final Outputs 
if (!DEQ(Pl.GetA(),1.0)) 

cout << "Error A should be 1.0 but it is " << Pl.GetA() << endl; 
else 

cout << "A is correct"<< endl; 
if (!DEQ(Pl.GetB(),-2.0)) 

cout << "Error B should be -2. 0 but it is " << Pl.GetB () << endl; 
else 

cout <<"Bis correct"<< endl; 
if (!DEQ(Pl.GetC(),-1.0)) 

cout << "Error C should be -1.0 but it is " << Pl.GetC() << endl; 
else 

cout << "C is correct"<< endl; 
if (!DEQ(Pl.GetD(),3.0)) 
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cout << "Error D should be 3. 0 but it is " << Pl.GetD () << endl; 
else 

cout <<"Dis correct"<< endl; 

// Set-Up Plane 
pl.SetPoint(0.0, 1.0, 1.0); 
p2.SetPoint(l.0, 0.0, 1.0); 
p3.SetPoint(l.0, 1.0, 0.0); 
P2.SetPlane(pl,p2,p3); 

// See What Final Plane Looks Like 
P2.Show_Full(); 

// Check Final Outputs 
if (!DEQ(P2.GetA(),1.0)) 

cout << "Error A should be 1.0 but it is " << P2.GetA() << endl; 
else 

cout << "A is correct"<< endl; 
if (!DEQ(P2.GetB(),1.0)) 

cout << "Error B should be 1. 0 but it is " << P2. GetB () << endl; 
else 

cout <<"Bis correct"<< endl; 
if (!DEQ(P2.GetC(),1.0)) 

cout << "Error C should be 1. 0 but it is " << P2 .GetC () << endl; 
else 

cout << "C is correct"<< endl; 
if (!DEQ(P2.GetD(),-2.0)) 

cout << "Error D should be -2.0 but it is"<< P2.GetD() << endl; 
else 

cout <<"Dis correct"<< endl; 

// Test Angle Between Planes 
angle= Pl.Angle(P2); 
cout << "Angle between Pl & P2: 11 <<angle<< endl; 
if (!DEQ(angle,1.079913648)) 

cout << "Error angle should be 1.079913648 but it is 11 << angle 
<< endl; 

else 
cout << "Angle is correct"<< endl; 

pl.SetPoint(l.0, 0.0, 2.0); 
p2.SetPoint(-1.0, 3.0, 4.0); 
p3.SetPoint(3.0, 5.0, 7.0); 
Pl.SetPlane(pl,p2,p3); 
Pl. Show_Full (); 

pl.SetPoint(2.0, 1.0, 3.0); 
p2.SetPoint(l.0, 3.0, 2.0); 
p3.SetPoint(-1.0, 2.0, 4.0); 
Pl.SetPlane(pl,p2,p3); 
Pl. Show_Full (); 

cout << endl << endl << endl; 

pl.SetPoint(0.689413, 0.511246, 0.373577); 
p2.SetPoint(0.742424, 0.623402, 0.398663); 
p3.SetPoint(0.127354, 0.371654, 0.908200); 
Pl.SetPlane(pl,p2,p3); 
Pl.Show_Full(); 

pl.SetPoint(0.691275, 0.866268, 0.560930); 
p2.SetPoint(0.305307, 0.982208, 0.574786); 
p3.SetPoint(0.494217, 0.909940, 0.644063); 
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} 

P2.SetPlane(pl,p2,p3); 
P2.Show_Full(); 

return 0; 

finclude <iostream.h> 
finclude <fstream.h> 
finclude <string.h> 
finclude <stdlib.h> 

int main() 
{ 

fstream fp in; 
fstream fp-out; 
int set count= 0; 
char line[80 + 1]; 

fp in.open("bspchull.off", ios::in); 
fp-in.getline(line,80); // burn off "LIST" line from .OFF file 
whTle(fp in.getline(line,80)) 
{ -

cout <<line<< endl; 
if (line[O] == '{') 
{ 

char fname[80]; 
set count++; 
strcpy(fname, "hull ff.off"); 
switch(set count) -
{ -

case 1: fname [5] = '0'; fname [6] 
case 2: fname[5] = IO I; fname [6] 
case 3: fname [5] = '0'; fname[6] 
case 4: fname [5] = '0'; fname[6] 
case 5: fname[5] = IO I; fname [6] 
case 6: fname[5] = IO I; fname [6] 
case 7: fname [5] = '0'; fname[6] 
case 8: fname[5] = '0'; fname [6] 
case 9: fname[5] = '0'; fname[6] 
default: 

= 
= 
= 
= 
= 
= 

= 

cout << "ERROR, need more cases 
exit(-1); 

} 
fp out.open(fname, ios::out); 
fp=out <<"LIST"<< endl; 

} 

} 
fp out<< line<< endl; 
if-(line[0] == '}') 
{ 

fp_out.close(); 

fp_in.close (); 

return 0; 

fmakefile.djg 
CC = gee 
CFLAGS = -£no-implicit-templates -c -g -DDEBUG 
fCFLAGS = -fno-implicit-templates -c 
ARFLAGS = -r 
CLFLAGS -£-no-implicit-templates -g -L. 
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'1'; break; 
I 2 I; break; 
I 3 I; break; 
'4'; break; 
I 5 I; break; 
I 6 I; break; 
I 7 I; break; 
I 8 I; break; 
I 9 I; break; 

in switch()!" << endl; 



#CLFLAGS = -£-no-implicit-templates -L. 

OBJS = general.o point2.o point3.o plane.o lineseg.o\ 
subfacet.o facet.o list.o 

OBJS2 = chull.o bsp_tree.o chsplit.o oogl.o ctz.o faceti.o 

all: libctz.a test_ctz test_del test_lis test_pla 

test_pla: test_pla.o libctz.a 
gxx $(CLFLAGS) -o test_pla test_pla.o -lctz -lm 

test_pla.o: template.h point3.h plane.h general.h test_pla.cc 
$(CC) $(CFLAGS) test_pla.cc 

test lis: test lis.o libctz.a 
- gxx $(CLFLAGS) -o test_lis test_lis.o -lctz -lm 

test lis.o: template.h list.h test lis.cc 
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a 
- gxx $(CLFLAGS) -o test_ctz test_ctz.o -lctz -lm 

test ctz.o: template.h point3.h plane.h list.h ctz.h test ctz.cc 
- $(CC) $(CFLAGS) test_ctz.cc 

test del: test del.o libctz.a 
- gxx $(CLFLAGS) -o test_del test_del.o -lctz -lm 

test del.o: template.h point3.h facet.h chsplit.h test del.cc 
- $(CC) $(CFLAGS) test_del.cc 

libctz.a: $(0BJS) $(0BJS2) 
ar $(ARFLAGS) libctz.a $(0BJS) 
ar $(ARFLAGS) libctz.a $(0BJS2) 
ranlib libctz.a 
del libctz.lis 
run --print-armap libctz.a > libctz.lis 

ctz.o: list.h point3.h plane.h ctz.h bsp_tree.h chull.h oogl.h ctz.cc 
$(CC) $(CFLAGS) ctz.cc 

faceti.o: faceti.h faceti.cc 
$(CC) $(CFLAGS) faceti.cc 

oogl.o: list.h point3.h chull.h plane.h bsp_tree.h oogl.h\ 
facet.h oogl.cc 

$(CC) $(CFLAGS) oogl.cc 

chsplit.o: point3.h facet.h plane.h list.h chull.h chsplit.h\ 
lineseg.h faceti.h chsplit.cc 

$(CC) $(CFLAGS) chsplit.cc 

bsp tree.o: plane.h point3.h list.h chull.h bsp_tree.h\ 
facet.h chsplit.h bsp tree.cc 

$(CC) $(CFLAGS) bsp_tree.cc 

chull.o: list.h facet.h point3.h chull.h subfacet.h general.h\ 
plane.h chull.cc 

$(CC) $(CFLAGS) chull.cc 

list.o: facet.h list.h list.cc 
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$(CC) $(CFLAGS) list.cc 

subfacet.o: lineseg.h point3.h subfacet.h subfacet.cc 
$(CC) $(CFLAGS) subfacet.cc 

facet.o: plane.h point3.h facet.h facet.cc 
$(CC) $(CFLAGS) facet.cc 

lineseg.o: point3.h plane.h lineseg.h general.h 
$(CC) $(CFLAGS) lineseg.cc 

plane.o: point3.h general.h plane.h plane.cc 
$(CC) $(CFLAGS) plane.cc 

point2.o: point2.h point2.cc 
$(CC) $(CFLAGS) point2.cc 

point3.o: point3.h general.h point3.cc 
$(CC) $(CFLAGS) point3.cc 

general.o: general.h general.cc 

clean: 

$(CC) $(CFLAGS) general.cc 

del test ctz 
del test-ctz.exe 
del test-de! 
del test-del.exe 
del test-lis 
del test-lis.exe 
del libctz.a 
del libctz.lis 
del * .o 

:#=makefile.sol 
cc = cc 
CFLAGS = -c -g -DDEBUG 
:ff:CFLAGS = -c 
ARFLAGS = -xar 
CLFLAGS = -g -L 
:ff:CLFLAGS = -L. 

OBJS = general.o point2.o point3.o plane.o lineseg.o\ 
subfacet.o facet.o list.o 

OBJS2 = chull.o bsp_tree.o chsplit.o oogl.o ctz.o faceti.o 

all: libctz.a test_ctz test_del test_lis test_pla 

test_pla: test_pla.o libctz.a 
$(CC) $(CLFLAGS) -o test_pla test__pla.o -lctz -lm 

test_pla.o: template.h point3.h plane.h general.h test_pla.cc 
$(CC) $(CFLAGS) test_pla.cc 

test lis: test lis.o libctz.a 
- $(CC) $(CLFLAGS) -o test_lis test lis.o -lctz -lm 

test lis.o: template.h list.h test !is.cc 
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a 
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$(CC) $(CLFLAGS) -a test_ctz test_ctz.a -lctz -lm 

test ctz.a: template.h paint3.h plane.h list.h ctz.h test ctz.cc 
- $(CC) $(CFLAGS) test_ctz.cc 

test del: test del.a libctz.a 
- $(CC) $(CLFLAGS) -a test_del test del.a -lctz -lm 

test del.a: template.h paint3.h facet.h chsplit.h test del.cc 
- $(CC) $(CFLAGS) test_del.cc 

libctz.a: $(0BJS) $(0BJS2) 
$(CC) $(ARFLAGS) -a libctz.a $(0BJS) $(0BJS2) 
rm -rf libctz.lis 
nm libctz.a > libctz.lis 

ctz.a: list.h paint3.h plane.h ctz.h bsp_tree.h chull.h aagl.h ctz.cc 
$(CC) $(CFLAGS) ctz.cc 

faceti.a: faceti.h faceti.cc 
$(CC) $(CFLAGS) faceti.cc 

aagl.a: list.h paint3.h chull.h plane.h bsp_tree.h aagl.h\ 
facet.h aagl.cc 

$(CC) $(CFLAGS) aagl.cc 

chsplit.a: paint3.h facet.h plane.h list.h chull.h chsplit.h\ 
lineseg.h faceti.h chsplit.cc 

$(CC) $(CFLAGS) chsplit.cc 

bsp tree.a: plane.h paint3.h list.h chull.h bsp_tree.h\ 
facet.h chsplit.h bsp tree.cc 

$(CC) $(CFLAGS) bsp_tree.cc 

chull.a: list.h facet.h paint3.h chull.h subfacet.h general.h\ 
plane.h chull.cc 

$(CC) $(CFLAGS) chull.cc 

list.a: facet.h list.h list.cc 
$(CC) $(CFLAGS) list.cc 

subfacet.a: lineseg.h paint3.h subfacet.h subfacet.cc 
$(CC) $(CFLAGS) subfacet.cc 

facet.a: plane.h paint3.h facet.h facet.cc 
$(CC) $(CFLAGS) facet.cc 

lineseg.a: paint3.h plane.h lineseg.h general.h lineseg.cc 
$(CC) $(CFLAGS) lineseg.cc 

plane.a: paint3.h general.h plane.h plane.cc 
$(CC) $(CFLAGS) plane.cc 

paint2.a: paint2.h paint2.cc 
$(CC) $(CFLAGS) paint2.cc 

paint3.a: paint3.h general.h paint3.cc 
$(CC) $(CFLAGS) paint3.cc 

general.a: general.h general.cc 
$(CC) $(CFLAGS) general.cc 

clean: 
168 



rm -rf test ctz test_del test_lis test_yla 
rm -rf libctz.a libctz.lis *.o Templates.DB core 

t makefile.linux 
cc = g++ 
CFLAGS = -£no-implicit-templates -c -g -DDEBUG 
#CFLAGS = -£no-implicit-templates -c 
ARFLAGS = -r 
CLFLAGS = -L. 
#CLFLAGS = -£-no-implicit-templates -L. 

OBJS = general.a plane.o list.o bsp tree.o\ 
chsplit.o oogl.o ctz.o faceti.o -

OBJS3 = point3.o lineseg3.o subfacet3.o facet3.o chull3.o 

OBJS2 = point2.o lineseg2.o subfacet2.o facet2.o chull2.o 

all: libctz.a test_ctz test_del test_lis test_yla test_y2 

test_y2: test_y2.o libctz.a 
$(CC) $(CLFLAGS) -o test_y2 test_y2.cc -lctz -lm 

test_y2.o: point2.h test_y2.cc 
$(CC) $(CFLAGS) test_y2.cc 

test_yla: test_yla.o libctz.a 
$(CC) $(CLFLAGS) -o test_yla test_yla.cc -lctz -lm 

test_yla.o: template.h point3.h plane.h general.h test_yla.cc 
$(CC) $(CFLAGS) test_yla.cc 

test lis: test lis.o libctz.a 
- $(CC) $(CLFLAGS) -o test_lis test !is.cc -lctz -lm 

test lis.o: template.h list.h test !is.cc 
- $(CC) $(CFLAGS) test_lis.cc -

test ctz: test ctz.o libctz.a 
- $(CC) $(CLFLAGS) -o test_ctz test_ctz.cc -lctz -lm 

test ctz.o: template.h point3.h plane.h list.h ctz.h test ctz.cc 
- $(CC) $(CFLAGS) test_ctz.cc 

test del: test del.o libctz.a 
- $(CC) $(CLFLAGS) -o test_del test del.cc -lctz -lm 

test del.o: template.h point3.h facet3.h chsplit.h test del.cc 
- $(CC) $(CFLAGS) test_del.cc 

libctz.a: $(0BJS) $(0BJS2) $(0BJS3) 
ar $(ARFLAGS) libctz.a $(0BJS) 
ar $(ARFLAGS) libctz.a $(0BJS2) 
ar $(ARFLAGS) libctz.a $(0BJS3) 
ranlib libctz.a 
rm -rf libctz.lis 
nm --print-armap libctz.a > libctz.lis 

ctz.o: list.h point3.h plane.h ctz.h bsp_tree.h chull3.h oogl.h ctz.cc 
$(CC) $(CFLAGS) ctz.cc 

faceti.o: faceti.h faceti.cc 
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$(CC) $(CFLAGS) faceti.cc 

oogl.o: list.h point3.h chull3.h plane.h bsp_tree.h oogl.h\ 
facet3.h oogl.cc 

$(CC) $(CFLAGS) oogl.cc 

chsplit.o: point3.h point2.h facet3.h plane.h list.h chull3.h 
chsplit.h\ 
lineseg3.h faceti.h chsplit.cc general.h 

$(CC) $(CFLAGS) chsplit.cc 

bsp tree.o: plane.h point3.h list.h chull3.h bsp_tree.h\ 
facet3.h chsplit.h bsp tree.cc 

$(CC) $(CFLAGS) bsp_tree.cc 

chull3.o: list.h facet3.h point3.h chull3.h subfacet3.h general.h\ 
plane.h chull3.cc 

$(CC) $(CFLAGS) chull3.cc 

chull2.o: list.h facet2.h point2.h chull2.h subfacet2.h general.h\ 
chull2.cc 

$(CC) $(CFLAGS) chull2.cc 

list.o: facet3.h list.h list.cc 
$(CC) $(CFLAGS) list.cc 

subfacet3.o: lineseg3.h point3.h subfacet3.h subfacet3.cc 
$(CC) $(CFLAGS) subfacet3.cc 

subfacet2.o: point2.h subfacet2.h subfacet2.cc 
$(CC) $(CFLAGS) subfacet2.cc 

facet3.o: plane.h point3.h facet3.h facet3.cc 
$(CC) $(CFLAGS) facet3.cc 

facet2.o: lineseg2.h point2.h facet2.h facet2.cc 
$(CC) $(CFLAGS) facet2.cc 

lineseg3.o: point3.h plane.h lineseg3.h lineseg3.cc 
$(CC) $(CFLAGS) lineseg3.cc 

lineseg2.o: point2.h lineseg2.h lineseg2.cc 
$(CC) $(CFLAGS) lineseg2.cc 

plane.o: point3.h general.h plane.h plane.cc subfacet2.h point2.h 
$(CC) $(CFLAGS) plane.cc 

point2.o: point2.h point2.cc 
$(CC) $(CFLAGS) point2.cc 

point3.o: point3.h general.h point3.cc 
$(CC) $(CFLAGS) point3.cc 

general.o: general.h general.cc 
$(CC) $(CFLAGS) general.cc 

clean: 
rm -rf test ctz 
rm -rf test -del 
rm -rf test lis 
rm -rf test=pla 
rm -rf test p2 
rm -rf libctz.a 
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rm -rf libctz.lis 
rm -rf *.o 
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0.668722 0.962065 0.440870 
0.905484 0.940886 0.560717 
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0.689413 0.511246 0.373577 
0.633869 0.946226 0.878170 
0.012421 0.085482 0.222449 
0.781884 0.490768 0.777581 
0.475814 0.141270 0.882168 
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0.679983 0.634907 0.897153 
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0.566637 0.592639 0.552446 
0.936003 0.809259 0.125828 
0.742424 0.623402 0.398663 
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0.998962 0.785424 0.945616 
0.584826 0.296823 0.414686 
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0.797998 0.506088 0.187933 
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173 
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0.494217 0.909940 0.644063 
0.229072 0.732383 0.527421 
0.184271 0.707511 0.773370 
0.621204 0.507767 0.520035 
0.691000 0.325327 0.406659 
0.527940 0.497940 0.108707 
0.856868 0.308634 0.129978 
0.503128 0.409284 0.966704 
0.737022 0.082949 0.935240 
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0.693228 0.332102 0.687246 
0.202795 0.187628 0.053407 
0.186285 0.826075 0.786523 
0.049867 0.200201 0.024689 
0.568224 0.527940 0.357311 

- 0.665181 0.365246 0.080905 
0.934751 0.076846 0.474044 
0.372692 0.420820 0.420454 
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0.100803 
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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