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DIRICHLET-NEUMANN BRACKETING FOR
BOUNDARY-VALUE PROBLEMS ON GRAPHS

SONJA CURRIE, BRUCE A. WATSON

Abstract. We consider the spectral structure of second order boundary-value
problems on graphs. A variational formulation for boundary-value problems on

graphs is given. As a consequence we can formulate an analogue of Dirichlet-

Neumann bracketing for boundary-value problems on graphs. This in turn
gives rise to eigenvalue and eigenfunction asymptotic approximations.

1. Introduction

Let G be an oriented graph with finitely many edges, each of finite length. We
consider the second-order differential equation

ly := −d
2y

dx2
+ q(x)y = λy, (1.1)

on G, where q is real valued and essentially bounded on G. At the vertices or nodes
of G we impose formally self-adjoint boundary conditions, see [3] for more details
regarding the self-adjointness of boundary conditions.

We give a variational formulation for a class of self-adjoint boundary-value prob-
lems on graphs, Lemma 3.1, and hence a max-min principle for Sturm-Liouville
boundary-value problems on directed graphs, Theorem 4.1. In turn, this enables us
to develop one of our two main results, an analogue of Dirchlet-Neumann bracket-
ing for the eigenvalues of the boundary-value problem, in Corollary 5.1. Corollary
5.1 forms a theoretical structure for our second main result, Theorem 6.1, in which
spectral asymptotics are found. In amongst the above noted results we show the
differential operator associated with the boundary-value problem to be lower semi-
bounded, see Theorem 2.1.

It should be noted that, a self-adjoint boundary-value problem on a graph is not
necessarily regular in the sense of [10] and [11]. For the case of regular boundary
conditions many of the results in this paper are well known. In fact many of the
more important classes of boundary conditions for boundary-value problems on
graphs fail to meet these regularity conditions, for example “Kirchhoff” boundary
conditions.
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In parallel to the variational aspects of boundary-value problems on graphs stud-
ied here and on trees in [15], the work of Pokornyi and Pryadiev, and Pokornyi,
Pryadiev and Al-Obeid, in [12] and [13], should be noted for the extension of Stur-
mian oscillation theory to second order operators on graphs. The idea of approxi-
mating the behaviour of eigenfunctions and eigenvalues for a boundary-value prob-
lem on a graph by the behaviour of associated problems on the individual edges,
used here, appeared previously in [16].

An extensive survey of the physical systems giving rise to boundary-value prob-
lems on graphs can be found in [9] and the bibliography thereof. Second order
boundary-value problems on finite graphs arise naturally in quantum mechanics and
circuit theory, [2, 6]. Multi-point boundary-value problems and periodic boundary-
value problems can be considered as particular cases of boundary-value problems
on graphs, [4].

In Section 2 the boundary-value problem, which forms the topic of this paper,
is stated and allowable boundary conditions discussed. An operator formulation
is given along with definitions of the various function spaces used in the paper.
Following this, we show the operator associated with the boundary-value problem
to be lower semibounded.

A variational reformulation of the boundary-value problem is given in Section 3.
This leads to a max-min characterization of the eigenvalues of the boundary-value
problem and hence to a type of Dirichlet-Neumann bracketing of the eigenvalues.
For the analogue in the case of partial differential equations we refer the reader to
[5].

2. Preliminaries

Let G denote a directed graph with a finite number of edges, say K, each of
finite length and having the path-length metric. Each edge, ei, of length say li can
thus be considered as the interval [0, li], where 0 is identified with the initial point
of ei and li with the terminal point.

The following classes of function spaces will be used in this paper, the first three
of which are Hilbert spaces when given Sobolev norms:

L2(G) :=
K⊕

i=1

L2(0, li),

Hm(G) :=
K⊕

i=1

Hm(0, li), m = 0, 1, 2, . . . ,

Hm
o (G) :=

K⊕
i=1

Hm
o (0, li), m = 0, 1, 2, . . . ,

Cω(G) :=
K⊕

i=1

Cω(0, li), ω = ∞, 0, 1, 2, . . . ,

Cω
o (G) :=

K⊕
i=1

Cω
o (0, li), ω = ∞, 0, 1, 2, . . . .
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The inner product on Hm(G), denoted (·, ·)m, is defined by

(f, g)m :=
K∑

i=1

m∑
j=0

∫ li

0

f |(j)ei
ḡ|(j)ei

dt =:
m∑

j=0

∫
G

f (j) g(j) dt. (2.1)

The inner products on L2(G) and Hm
o (G) follow from noting that L2(G) = H0(G)

and Hm
o (G) ⊂ Hm(G). For brevity we will write (·, ·) = (·, ·)0, ‖f‖2m = (f, f)m and

‖f‖ = ‖f‖0. Reasoning componentwise we obtain immediate analogues of both
Rellich’s Theorem, [19, page 114], and the Sobolev Embedding Theorem, [19, page
107]. In particular the embedding of Hm(G) in Hn(G) for n < m is a compact map
and for each f ∈ Hm(G) there exists g ∈ Cn(G) such that f (k) = g(k) a.e. on G for
all k = 0, . . . , n. Making this identification, we have

Hm(G) ⊂ Cn(G), n < m,

and there exists a constant C(G,m) > 0 such that

sup
G
|f (k)| ≤ C(G,m)‖f‖m for all f ∈ Hm(G), k < m.

Since Rellich’s Theorem holds, the abstract Ehrling Lemma, [19, page 114] applies
and yields a concrete Ehrling Lemma, i.e. for each ε > 0 there exists a constant
C(G,m) > 0 such that

‖f‖m−1 ≤ ε‖f‖m + C(G,m)‖f‖0 for all f ∈ Hm(G).

The differential equation (1.1) on the graph G can now be considered as the system
of equations

−d
2yi

dx2
+ qi(x)yi = λyi, x ∈ [0, li], i = 1, . . . ,K, (2.2)

where qi and yi denote q|ei
and y|ei

.
The boundary conditions at the node ν are specified in terms of the values of y

and y′ at ν on each of the incident edges. In particular if the edges which start at ν
are ei, i ∈ Λs(ν) and the edges which end at ν are ei, i ∈ Λe(ν) then the boundary
conditions at ν can be expressed as∑

j∈Λs(ν)

[
αijyj + βijy

′
j

]
(0) +

∑
j∈Λe(ν)

[
γijyj + δijy

′
j

]
(lj) = 0, i = 1, . . . , N(ν),

(2.3)
where N(ν) is the number of linearly independent boundary conditions at node
ν. For formally self-adjoint boundary conditions N(ν) = ](Λs(ν)) + ](Λe(ν)) and∑

ν N(ν) = 2K, see [3, 11] for more details.
Let αij = 0 = βij for i = 1, . . . , N(ν) and j 6∈ Λs(ν) and similarly let γij = 0 =

δij for i = 1, . . . , N(ν) and j 6∈ Λe(ν). The boundary conditions (2.3) considered
over all nodes ν, after possible relabelling, may thus be written as

K∑
j=1

[
αijyj + βijy

′
j

]
(0) +

K∑
j=1

[
γijyj + δijy

′
j

]
(lj) = 0, i = 1, . . . , 2K, (2.4)

where 2K is the total number of linearly independent boundary conditions. It
should be noted that the complete geometry of the graph G (other than the number
of and length of the edges) is encapsulated in the boundary conditions.



4 S. CURRIE, B. A. WATSON EJDE-2005/93

The boundary-value problem (2.2)-(2.3) on G can be formulated as an operator
eigenvalue problem in L2(G), [1, 3, 14], for the closed densely defined operator

Lf := −f ′′ + qf (2.5)

with domain

D(L) = {f | f, f ′ ∈ AC,Lf ∈ L2(G), f obeying (2.3) }. (2.6)

The formal self-adjointness of (2.2)-(2.3) ensures that L is a closed densely defined
self-adjoint operator in L2(G), see [8, 11, 17].

Theorem 2.1. The operator L is lower semibounded.

Proof. From [17, page 247, Corollary 2] as L is self adjoint, we need only show that
L is lower semibounded on C∞o (G). Let f ∈ C∞o (G). Then

(Lf, f) =
∫

G

(−f ′′f̄ + q|f |2) dx =
∫

G

(|f ′|2 + q|f |2) dx ≥ −‖f‖2 ess sup |q|.

�

3. Variational Formulation

In this section we give an H1(G), variational formulation for the boundary-value
problem (2.2)-(2.3) or equivalently for the eigenvalue problem associated with the
operator L defined in (2.5)-(2.6). For details in the setting of partial differential
equations we refer the reader to [5]. The variational formulation gives rise to a
max-min characterization of the eigenvalues and eigenfunctions of the boundary-
value problem, developed in the next section. We conclude the section by proving
that the H1(G) eigenfunctions are in fact regular, i.e. are in H2(G).

Without loss of generality, we assume the boundary conditions (2.4) to be in the
form

K∑
j=1

[αijyj(0) + γijyj(lj)] = 0, i = 1, . . . , J, (3.1)

K∑
j=1

[αijyj(0) + βijy
′
j(0) + γijyj(lj) + δijy

′
j(lj)] = 0, i = J + 1, . . . , 2K, (3.2)

where we take yi := y|ei
. Here all possible Dirichlet-like terms are in (3.1), i.e. if

(3.2) is written in matrix form then Gauss-Jordan reduction will not allow any pure
Dirichlet conditions linearly independent of (3.1) to be extracted.

Let F (x, y) to be the sesquilinear form given by

F (x, y) :=
∫

∂G

fxy dσ +
∫

G

(x′y′ + xqy) dt, (3.3)

with domain D(F ) = {y ∈ H1(G) | y obeys (3.1)}, where∫
∂G

y dσ :=
K∑

i=1

[yi(li)− yi(0)] =
∫

G

y′ dt.
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Definition. We say that the boundary conditions on a graph are co-normal with
respect to l if there exists f defined on ∂G, such that x ∈ D(F ) has∫

∂G

fxy dσ =
∫

∂G

x′y dσ, for all y ∈ D(F )

if and only if x obeys (3.2).
We remark that co-normal boundary conditions on a graph correspond in na-

ture to co-normal (non-oblique) boundary conditions for elliptic partial differential
operators.

Most physically interesting boundary conditions on graphs fall into the co-normal
category. In particular, ‘Kirchhoff’, Dirichlet, Neumann and periodic boundary con-
ditions are all co-normal, but this class does not include all self-adjoint boundary-
value problems on graphs. For example consider a single loop, i.e. the interval [0, 1]
where the boundary conditions at 0 and at 1 are connected as follows y(0) = y′(1)
and y(1) = −y′(0). These boundary conditions give a self-adjoint boundary-value
problem with non co-normal boundary conditions.

The following lemma shows that a function is a variational eigenfunction if and
only if it is a classical eigenfunction.

Lemma 3.1. Suppose that (3.1)-(3.2) are co-normal boundary conditions with re-
spect to l of (1.1). Then u ∈ D(F ) satisfies F (u, v) = λ(u, v) for all v ∈ D(F ) if
and only if u ∈ H2(G) and u obeys (1.1), (3.1)-(3.2).

Proof. Assume that u ∈ H2(G) and u obeys (1.1), (3.1)-(3.2). Then for each
v ∈ D(F )

F (u, v) =
∫

∂G

fuv dσ +
∫

G

(u′v′ + quv) dt

=
∫

∂G

fuv dσ +
∫

G

((u′v)′ − u′′v + quv) dt

=
∫

∂G

fuv dσ +
∫

G

(u′v)′ dt+ λ(u, v)

=
∫

∂G

(fu+ u′)v dσ + λ(u, v).

The assumption that (3.1)-(3.2) are co-normal boundary conditions with respect to
l gives that u ∈ D(F ) and∫

∂G

(fu+ u′)v dσ = 0, for all v ∈ D(F ),

completing the proof this in case.
Now assume u ∈ D(F ) satisfies F (u, v) = λ(u, v) for all v ∈ D(F ). As C∞o (G) ⊂

D(F ), it follows that

F (u, v) = λ(u, v), for all v ∈ C∞0 (G).

Hence F (u, ·) can be extended to a continuous linear functional on L2(G). In
particular this gives that

∂u′ ∈ L2(G) ⊂ L1
loc(G)

where ∂ denotes the distributional derivative. Then, by [14, Theorem 1.6, page 44],
u′ ∈ AC and u′′ ∈ L1

loc(G) allowing integration by parts. Thus

lu = −u′′ + qu ∈ L1
loc(G)
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and consequently lu = λu ∈ L2(G). Now q ∈ L∞(G) and D(F ) ⊂ L2(G), giving
u, u′′ ∈ L2(G) and hence u ∈ H2(G).

The definition of D(F ) ensures that (3.1) holds. Integration by parts gives∫
∂G

(fu+ u′)ȳ dσ = 0, for all y ∈ D(F ),

which, from the definition of f and the constraints on the class of boundary condi-
tions allowed, is equivalent to u obeying (3.2). �

4. Max-Min Property

In this section we give a maximum-minimum characterization for the eigenvalues
of boundary-value problems on graphs. We refer the reader to [5, page 406] and
[18] where boundary-value problems for partial differential operators are considered,
and analogous results for such eigenvalues developed.

In the following theorem {v0, . . . , vn−1}⊥ will denote the orthogonal complement
in L2(G) of {v0, . . . , vn−1}. In addition, as is customary, it will be assumed that the
eigenvalues, λn, are listed in increasing order and repeated according to multiplicity,
and that the eigenfunctions, yn, are chosen so as to form a complete orthonormal
family in L2(G). In this case it is easily verified that F (yi, yj) = λiδi,j .

Theorem 4.1. For vj ∈ L2(G), j = 0, 1, . . . , let

dn(v0, . . . , vn−1) = inf
{
F (ϕ,ϕ)
||ϕ||2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩D(F ) \ {0}
}
. (4.1)

Then

λn = sup {dn(v0, . . . , vn−1) | v0, . . . , vn−1 ∈ L2(G)}, for n = 0, 1, . . . ,

and this maximum-minimum is attained for ϕ = yn and vi = yi, i = 0, . . . , n− 1.

Proof. Let v0, . . . , vn−1 ∈ L2(G). As span{y0, . . . , yn} is n + 1 dimensional and
span{v0, . . . , vn−1} is at most n dimensional there exists ϕ in span{y0, . . . , yn}\{0}
having

(ϕ, vi) = 0, for all i = 0, . . . , n− 1.
In particular, this ensures that ϕ ∈ D(F ) as each yi is in D(F ).

Denote ϕ =
∑n

k=0 ckyk, then

F (ϕ,ϕ) =
n∑

i,k=0

cic̄kF (yi, yk) =
n∑

i,k=0

cic̄kλiδi,j =
n∑

i=0

|ci|2λi ≤ λn

n∑
i=0

|ci|2 = λn‖ϕ‖2,

thus showing that

dn(v0, . . . , vn−1) ≤ λn for all v0, . . . , vn−1 ∈ L2(G).

For brevity denote

m := sup {dn(v0, . . . , vn−1) | v0, . . . , vn−1 ∈ L2(G)}.
The above reasoning has shown that m ≤ λn.

In order to complete the proof we require that there exists ϕ ∈ D(F ) with
‖ϕ‖ = 1 and (ϕ, vi) = 0 for all i = 0, . . . , n−1 such that F (ϕ,ϕ) = dn(v0, . . . , vn−1).
From the definition of dn(v0, . . . , vn−1), there exists a sequence (uk) ⊂ D(F ) with
‖uk‖ = 1 and (uk, vi) = 0 for all i = 0, . . . , n− 1 and k ∈ N such that

lim
k→∞

F (uk, uk) = dn(v0, . . . , vn−1).
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As H1(G) is compactly embedded in L2(G), see [14, page 64], there exists a subse-
quence of (uk), which we again denote by (uk) which converges in L2(G) to say u
with ‖u‖ = 1.

To show that u ∈ H1(G) we need only show that the distribution ∂u is in L2(G).
For each ψ ∈ C∞o (G) ⊂ D(F ),

∂u(ψ) = −
∫

G

uψ′ dt = − lim
k→∞

∫
G

ukψ
′ dt = lim

k→∞

∫
G

u′kψ dt.

Thus

|∂u(ψ)| ≤ lim sup ‖u′k‖‖ψ‖ ≤ [dn(v0, . . . , vn−1) + ess sup |q|]1/2‖ψ‖

and ∂u can be extended to a continuous linear functional on L2(G). By the Riesz-
Fischer Theorem this gives ∂u ∈ L2(G) and then by [14, Theorem 1.6, page 44],
u ∈ AC with

‖u′‖2 ≤ dn(v0, . . . , vn−1) + ess sup |q|.
Thus u ∈ H1(G) and as

(u′k, ψ) = −(uk, ψ
′) → −(u, ψ′) = (u′, ψ), for all ψ ∈ C∞o (G),

it follows, by [1] applied componentwise, that uk → u in H1(G).
Hence there exists u ∈ D(F )∩{v0, . . . , vn−1}⊥\{0} with F (u, u) = dn(v0, . . . , vn−1)

and ‖u‖ = 1. We now show that such a u is an eigenfunction of (1.1), (3.1)-(3.2)
with eigenvalue λ = dn(v0, . . . , vn−1).

Let

J(ϕ, ε) =
F (u+ εϕ)
‖u+ εϕ‖2

for all ϕ ∈ C∞0 (G), ε ∈ R.

Differentiation with respect to ε of J(ϕ, ε) gives

0 =
∂

∂ε
J(ϕ, ε)|ε=0 = 2<[F (ϕ, u)− dn(v0, . . . , vn−1)(ϕ, u)],

for all ϕ ∈ C∞0 (G). Thus u is a variational eigenfunction with eigenvalue λ =
dn(v0, . . . , vn−1). Lemma 3.1 now gives that u is in H2(G), obeys boundary con-
ditions (3.1)-(3.2) and equation (1.1) with λ = dn(v0, . . . , vn−1), making u and
eigenfunction of (1.1), (3.1)-(3.2) with eigenvalue λ.

In the case of n = 0, d0 does not depend on any vi and d0 is an eigenvalue having
m = d0 ≤ λ0. Thus, in this case, m = d0 = λ0.

In general we have shown dn(v0, . . . , vn−1) to be an eigenvalue less than or equal
to λn and m ≤ λn. But if vi = yi, i = 0, . . . , n − 1, then for u to be orthogonal to
v0, . . . , vn−1 and an eigenfunction to an eigenvalue, µ, less than or equal to λn forces
µ = λn and u to be in the eigenspace of λn and orthogonal to y0, . . . , yn−1. �

5. Eigenvalue Bracketing

If the boundary conditions (2.4) are replaced by the Dirichlet condition y = 0 at
each node of G, i.e.

yi(li) = 0 and yi(0) = 0, i = 1, . . . ,K, (5.1)

then the graph G becomes disconnected with each edge ei becoming a component
sub-graph, Gi, with Dirichlet boundary conditions at its two nodes (ends). The
boundary-value problem on each sub-graph Gi is equivalent to a Sturm-Liouville
boundary-value problem on a compact interval with Dirichlet boundary conditions.
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Denote by A(λ) the number of eigenvalues less than λ, counted according to
multiplicity, of (1.1), (3.1)-(3.2). Let AD(λ) be the number of eigenvalues less
than λ of (1.1) but with (3.1)-(3.2) replaced by Dirichlet boundary conditions as
discussed above, and let AD

j (λ) be the number of eigenvalues less than λ of (1.1)
on Gj with Dirichlet boundary conditions. Then

K∑
j=1

AD
j (λ) = AD(λ), λ ∈ R.

Denote by λD
n the eigenvalues of (1.1) with Dirichlet boundary conditions, as dis-

cussed above.
Consider the boundary-value problem (1.1), (3.1)-(3.2) with the boundary con-

ditions (3.1)-(3.2) replaced by the non-Dirichlet conditions

y′i(li) = f(li)yi(li) and y′i(0) = f(0)yi(0), i = 1, . . . ,K (5.2)

where f is given in (3.3), then, as in the Dirichlet case above, G decomposes into
a union of disconnected graphs G1, . . . , GK . Let λN

n denote the eigenvalues of
(1.1), (5.2) and AN (λ) the number of eigenvalues less than λ counted according to
multiplicity.

Let AN
i (λ) denote the number of eigenvalues less than λ of (1.1) on Gi with

boundary conditions

y′i(li) = f(li)yi(li) and y′i(0) = f(0)yi(0).

Then
K∑

i=1

AN
i (λ) = AN (λ).

In the case of co-normal boundary conditions, Theorem 4.1 has as a consequence
that the spectral counting functions defined above are related by

K∑
i=1

AD
i (λ) = AD(λ) ≤ A(λ) ≤ AN (λ) =

K∑
i=1

AN
i (λ), λ ∈ R, (5.3)

and hence the eigenvalues are ordered by

λN
n ≤ λn ≤ λD

n , n = 0, 1, . . . . (5.4)

These results are the content of the following corollary to Theorem 4.1 which gives
an analogue of [5, pages 407-410] for graphs.

Corollary 5.1. If the boundary conditions (3.1)-(3.2) are co-normal with respect
to l, then the the spectral counting functions for (1.1), (3.1)-(3.2) and the related
boundary-value problems with the Dirichlet and non-Dirichlet boundary conditions
given in (5.1) and (5.2) are related by (5.3) and their spectra are related by (5.4).

Proof. Denote by FD the restriction of F to H1
o(G) and by FN the continuous

extension (with respect to the H1(G) norm) of F to H1(G). As H1
o(G) ⊂ D(F ) ⊂



EJDE-2005/93 DIRICHLET-NEUMANN BRACKETING 9

H1(G) it follows that{
FD(ϕ,ϕ)
‖ϕ‖2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩H1
o(G)\{0}

}
⊂

{
F (ϕ,ϕ)
‖ϕ‖2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩ D(F )\{0}
}

⊂
{
FN (ϕ,ϕ)
‖ϕ‖2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩H1(G)\{0}
}
.

Taking infima gives

dD
n (v0, . . . , vn−1) := inf

{
FD(ϕ,ϕ)
‖ϕ‖2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩H1
o(G)\{0}

}
≥ dn(v0, . . . , vn−1)

≥ inf
{
FN (ϕ,ϕ)
‖ϕ‖2

∣∣∣∣ ϕ ∈ {v0, . . . , vn−1}⊥ ∩H1(G)\{0}
}

=: dN
n (v0, . . . , vn−1).

Theorem 4.1 now gives

λD
n = sup{dD

n (v0, . . . , vn−1) | v0, . . . , vn−1 ∈ L2(G)}
≥ λn = sup{dn(v0, . . . , vn−1) | v0, . . . , vn−1 ∈ L2(G)}
≥ sup{dN

n (v0, . . . , vn−1) | v0, . . . , vn−1 ∈ L2(G)} = λN
n

from which the claims of the theorem follow directly. �

6. Eigenvalue Asymptotics

The results of the previous section provide a means by which to approximate the
spectrum of a boundary-value problem (2.2) when boundary conditions (2.4) are of
co-normal type, by considering the spectrum of a finite family of Sturm-Liouville
problems on bounded intervals with separated boundary conditions. Sturm-Liouville
problems on bounded intervals with separated boundary conditions have been ex-
tensively studied, and consequently eigenvalue approximations for such problems
are well known, see [7]. These eigenvalue approximations in turn provide informa-
tion about the spectral counting function for each Sturm-Liouville problem. Corol-
lary 5.1 can now be applied, giving bounds on the spectral counting function for the
original boundary-value problem on the graph, from which eigenvalue asymptotics
can be deduced.

Theorem 6.1. Let G be a compact graph with finitely many nodes. If the boundary-
value problem (2.2), (2.4) has co-normal boundary conditions, then its eigenvalues
obey the asymptotic development

λn =
n2π2

L2
+O(n), as n→∞,

and its spectral counting function has asymptotic approximation

A(λ) =
L
√
λ

π
+O(1), as λ→∞,

where L =
∑K

i=1 li is the total length of the graph.
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Proof. In this proof we use the notation of Section 4. If we denote by λD,i
n , n =

0, 1, . . . the eigenvalues of l operating on the graph Gi with Dirichlet conditions at
both ends, then [7, Theorem A4] gives that

λD,i
n =

(n+ 1)2π2

l2i
+O(1), n = 0, 1, . . . ,

and consequently as λ→∞ we obtain

AD
i (λ) ≥ li

√
λ− cDi
π

− 1, (6.1)

for some constant cDi > 0.
Similarly, if we denote by λN,i

n , n = 0, 1, . . . the eigenvalues of l operating on the
graph Gi with the separated boundary conditions given in (5.2), then [7, Theorem
A4] gives that

λN,i
n =

n2π2

l2i
+O(1), n = 0, 1, . . . ,

and consequently for large λ

AN
i (λ) ≤ li

√
λ+ cNi
π

+ 1, (6.2)

for some constant cNi > 0.
Taking c = maxi=1,...,K{cDi , cNi }, equations (6.1) and (6.2) remain valid with cDi

and cNi replaced by c. Thus (6.1) and (6.2) yield

li
√
λ− c

π
− 1 ≤ AD

i (λ) ≤ AN
i (λ) ≤ li

√
λ+ c

π
+ 1, as λ→∞. (6.3)

Corollary 5.1, equation (5.3), can now be combined with (6.3) to give

L
√
λ− c

π
−K ≤

K∑
i=1

AD
i (λ) ≤ A(λ) ≤

K∑
i=1

AN
i (λ) ≤ L

√
λ+ c

π
+K.

This can be rewritten as

A(λ) =
L
√
λ

π
+O(1), as λ→∞.

Solving the asymptotic equation A(λ) = n as both λ and n tend to infinity gives√
λn =

nπ

L
+ δn

where δn = O(1), from which the stated eigenvalue asymptotic approximation
follows directly. �
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