
Variable Hidden Layer Sizing in Feedforward and Elman Recurrent
Neuro-Evolution

THESIS

Presented to the Graduate Council of
Southwest Texas State University

In Partial Fulfillment of
The Requirements

For the Degree

Master of Science

By

Ryan Mellor Garlick, B.B.A.

San Marcos, Texas
August, 1998

COPYRIGHT

by

Ryan Mellor Garlick

1998

ii

To my parents, David and Jean Garlick.

Every Christmas they give me a book with a personal note penned in the opening pages -
now it's my tum.

iii

Acknowledgements

I would like to sincerely thank several people for their generous assistance during this

project. My thesis advisor, Dr. Khosrow Kaikhah, whose determination and

perseverance to "get it right" have taught me immeasurably. My thesis committee

members, Dr. Carol Hazlewood, and Dr. Tom McCabe, whose support and comments

were invaluable. I would also like to thank Risto Miikkulainen and David Moriarty at the

University of Texas at Austin for making the SANE code available. Thank you also to

Faustino Gomez who was always willing to help with e-mail support and discussion of

new ideas.

Southwest Texas State University

August 1998

iv

Ryan Garlick

TABLE OF CONTENTS

Table of Figures _________________________ vii

ABSTRACT viii
1.Introduction _________________________ 2

1.1 Sequential Decision Tasks 2

1.2 Reinforcement Learning 3

1.3 Neuro-evolution in Sequential Decision Tasks 4

1.4 Concluding Remarks 6

2. Neural Network Background 8

2.1 Feedforward Neural Networks 10

2.2 Elman Recurrent Neural Networks 11

2.3 Advantages of Feedforward and Recurrent Networks 12

3. Neuro-Evolution 15

3.1 Evolutionary Algorithm Introduction 15

3.2 Alternative to Backpropagation 17

3.3 Advantages of Neuro-Evoultiori 18
3.1.1 Reinforcement Learning 19
3.1.2 Recurrency 20

4. SANE - Symbiotic Adaptive Neuro-Evolution 22

4.1 SANE Implementation 22

4.2 Results 24

5. Related Uterature 28

5.1 Neuro-Evolution 28

5.2 Recurrency 32

5.3 SANE Over Various Domains 34

6. SANE Modifications 38

6.1 Enforced Suh-populations 38

6.2 Recurrency 39

6.3 Variable Hidden layer sizin 40
6.3.1 Motiv~tion 41
6.3.2 Implenentation and Functionality in SANE 42

6.4 ~-codin~ 45

7. Preventi,:g l'rem,ature Convergence 50

7.1 Evchi1 g neurons increases population diversity 51

V

7.2 Varying Hidden Layer Size 51

8. Experiments 54

8.1 Playing Blackjack 54

8.1.1 Experiment Description 54

8.1.2 Analysis of Results 59
8.1.2.1 Feedforward Models 60
8.1.2.2 Recurrent Models 61

8.2 Pac-Man 62
8.2.1 Experiment Description 63
8.2.2 Analysis of Results 65

9. Contributions of This Research 68

9.1 Performance of the Evolutionary Algorithm 68

9.2 New Domains 68

10. Conclusion and Future Work 71

Appendix A 74

An Interesting Blackjack Trial 74

Appendix B 78

Source Code 78

vi

Table of Figures

Figure 2-1. The logistic sigmoid threshold function 8

Figure 2-2. A neuron receiving inputs and performing thresholding 9

Figure 2-3. A feedforward neural network 10

Figure 2-4. An Elman recurrent neural network 11

Figure 3-1. The crossover operator 15

Figure 3-2. The mutation operator performed on a chromosome 16

Figure 3-3. Chromosome encoding of a neuron in the hidden layer 19

Figure 4-1. High level SANE operation 22

Figure 4-2. A hidden layer (network) encoding in a chromosome 23

Figure 4-3. The network and neuron populations 24

Figure 4-4. Comparison of several learning techniques in pole balancing 25

Figure 5-1. An Othello board 29

Figure 5-2. A diagram of the Khepera mobile robot 31

Figure 5-3. Simple model of an Elman recurrent network 32

Figure 6-1. Crossover operator under variably sized network chromosomes 44

Figure 6-2. Mutation operator under variably sized network chromosomes 45

Figure 6-3. A fitness landscape 46

Figure 8-1. Network structure for blackjack tests 55

Figure 8-2. Blackjack test parameters 56

Figure 8-3. Feedforward blackjack results 60

Figure 8-4. Recurrent blackjack results 61

Figure 8-5. The arcade Pac-Man screen 62

Figure 8-6. The Pac-Man test board 63

Figure 8-7. Network structure for Pac-Man tests 64

Figure 8-8. Pac-Man test parameters 65

Figure 8-9. Results of the Pac-Man test 66

vii

ABSTRACT

Artificial neural networks are learning systems composed of layers of neurons,

modeled after the human brain. The relationship between the size of the hidden layer in a

neural network and performance in a particular domain is currently an open research

issue. Often, the number of neurons in the hidden layer is chosen empirically, and

subsequently fixed for the training of the network. Fixing the size of the hidden layer

limits an inherent strength of neural networks - the ability to generalize experiences from

one situation to another, to adapt to new situations, and to overcome the "brittleness"

often associated with traditional artificial intelligence techniques. This thesis proposes an

evolutionary algorithm to search for network sizes that exhibit good performance, along

with weights and connections between neurons. The size of the networks simply

becomes another search parameter for the evolutionary algorithm. This allows for faster

development time, and is a step toward a more autonomous learning system.

This thesis builds upon the neuro-evolution tool SANE, developed by Risto

Miikkulainen and David Moriarty. SANE stands for symbiotic adaptive neuro-evolution

and is a novel learning system proven extremely effective in a range of problems. SANE

is modified in this work in several ways, including varying the hidden layer size and

evolving Elman recurrent neural networks for enhanced performance. These

modifications allow the evolution of better performing and more consistent networks, and

evolve more efficiently and faster - in every domain tested.

This performance enhancement is demorrntrated in two real-world applications. First,

SANE, modified with variable network sizing, learns to play modified casino blackjack

,,i i

and develops a successful card counting strategy. Second, these modifications are

applied to an agent in a simulated search and obstacle avoidance environment.

The contributions of this research are performance increases in a decision strategy

generation system and a more autonomous approach to the scaling of neuro-evolutionary

techniques for solving larger and more difficult problems.

ix

1.1

1.2

1.3

1.4

Sequential Decision Tasks

Reinforcement Learning

Chapter 1

Introduction

Neuro-Evolution in Sequential Decision Tasks

Concluding Remarks

1

2

3

4

6

1. Introduction

A lost taxi driver must make many decisions before ultimately correcting the

errant path and delivering the passenger to the intended destination. Which decisions

were responsible for the goal of passenger delivery and which were not? It is often

impossible to trace back and determine the decision that led from familiar roads to

unfamiliar territory. In many real world problems, it is not until sequences of actions

have been performed that a particular agent's performance can be measured. After

looking at an opening chess move of Pawn to King 4, it would be impossible to

distinguish the author's chess play from Gary Kasparov's, much less assign a score to the

decision. Yet it is these scores by which artificially intelligent agents must be evaluated,

ranked, and employed in an environment.

1.1 Sequential Decision Tasks

Tasks, in which an agent must make several moves before performance

evaluations can be made, are termed sequential decision tasks. (Littman 1996) These

tasks require a sequence of decisions before the net performance of the system can be

evaluated. Providing reinforcement to a training algorithm at the end of a sequence of

events makes determining individual effective and non-effective decisions a challenging

problem. Minsky (1963) termed this the credit assignment problem, and it is the core of

many automation problems in artificial intelligence.

There are several important properties of sequential decision task environments,

which affect the nature and difficulty of the problem. Russell and Norvig (1993),

describe one prop~rty of environments as accessible vs. inaccessible. Accessible

2

environments provide an agent in the environment with a complete state of the

environment. Chess is an accessible environment, as a player knows every piece on the

board and its position. Poker is an inaccessible environment, as the other player's cards

are not known.

Another task discriminator is Markovian vs. non-Markovian tasks. The Markov

property holds if the transitions from any given state depend only on the state and not on

previous history. The Markov property holds in chess, as the next board position is

completely determined by the current board and the actions of the agents. Non­

Markovian tasks are more difficult, and require memory of previous states to be effective.

Poker is such an environment, in which cards already dealt influence cards remaining in

the deck, and the next cards to be drawn. When inaccessibility is added to such an

environment, the agent acting in "the environment does not have enough information to

determine the state or associated transition properties. Such problems are called partially

observable Markov decision problems, or POMDP.

1.2 Reinforcement Learning

Sequential decision tasks provide feedback of an agent's performance in the

environment after the game is complete, the maze has been traversed, or the taxi driver

arrives at the intended destination. Often little or no information is available regarding

the quality or performance measure of each individual decision. Environments that

provide these sparse reinforcements require learning techniques that are designed to

accept infrequent performance measures. Sutton (1988) has described learning under

very general and often infrequent reinforcements as reinforcement learning.

3

Reinforcement learning provides a general measure of the performance of the agent on a

particular task. It does not direct behavior or provide an explicit error measure.

Reinforcement learning methods must be able to effectively use these infrequent

environmental performance feedbacks. One such training method is an evolutionary

algorithm (EA). Evolutionary algorithms that train neural networks under reinforcement

learning can be highly effective in solving sequential decision tasks. (Moriarty, 1997.)

1.3 Neuro-evolution in Sequential Decision Tasks

Artificial Neural Networks are a simulation of the processing done in the human

brain, performed on a much smaller and simpler scale. These networks have proven

effective in a range of pattern recognition and association problems, and generalize well

to new situations, often overcoming the brittleness of some other traditional artificial

intelligence methods.

Evolutionary algorithms (EAs) are stochastic search techniques based on

evolution in nature, and aid in the development and training of artificial neural networks.

Evolutionary algorithms, also referred to as genetic algorithms in the literature, have

recently been applied to training neural networks. The neuro-evolution approach is

significant in its ability to discover difficult, counter-intuitive strategies. Evolutionary

algorithms represent a candidate solution as a chromosome. These potential solutions are

evaluated and the operations of crossover and mutation are performed on them in a hill­

climbing search for better solutions. A critical aspect of evolutionary algorithms is

maintaining diversity in the population, preventing the algorithm from falling into a local

optimum and converging to a sub-optimal solut 1on

The hybrid neural and genetic approach takes advantage of the strengths of both.

By training neural networks with evolutionary algorithms, performance evaluations can

be less frequent, and a decision strategy can be based upon the evaluation of a series of

decisions.

In traditional neuro-evolution, an evolutionary algorithm adjusts the connection

weights for a fixed neural network architecture in order to optimize network

performance. Choosing the correct size or number of neurons in the hidden layer for a

neural network is problem dependent, and is currently an open research issue.

Commonly, networks are tested using different size models, and size is chosen

empirically. This thesis presents a new approach to neuro-evolution, treating the size of

the network as another parameter in the evolutionary algorithm. This approach allows

the network to grow in response to shifts in the problem, or more efficiently form a

smaller network if this solution is more appropriate.

The contributions of this thesis are several - 1) a new method of efficiently

automating the search for appropriate network size with performance and efficiency

increases due to increases in network population diversity, 2) creation of Elman recurrent

neural networks with SANE, and 3) direction toward the goal of a more autonomous

learning system which searches for appropriate size on its own. This research is an

extension of SANE, developed by David Moriarty and Risto Miikkulainen. SANE is a

novel neuro-evolution tool that evolves neurons and networks simultaneously. This co­

evolution of neurons and networks is an effort to maintain population diversity and

encourage neurons to specialize or optimize one aspect of the problem and connect with

other neurons that optimize another part of the problem.

5

Maintaining a population of networks with different .sizes increases diversity and

helps prevent pre-mature convergence. As several tests will show, by implementing

variable network sizing the average performance per generation is increased.

1.4 Concluding Remarks

The body of this thesis is organized as follows. Chapters 2 and 3 provide background

details on neural networks and evolutionary algorithms respectively. Chapter 4 is an

introduction to the SANE system, upon which this research is built, with Chapter 5

providing additional related literature and articles concerning SANE and neuro-evolution

in general Chapter 6 describes modifications to SANE that have improved performance,

and the motivations and domains of application of these modifications. Chapter 7 is

devoted to preventing premature convergence in neuro-evolution. Chapter 8 descibes

simulation tests using the video game Pac-Man and its results. The partially observable

Markov decision task of blackjack play is described as an experiment with results and

analysis in Chapter 8 also, with comparisons between recurrent and feedforward models

of SANE, both with and without variable network sizing for performance comparisons.

Chapter 9 summarizes the analysis of the experimental results and the contributions of

this work to neuro-evolution and the automation of reinforcement learning in neural

systems. Chapter 10 summarizes the conclusions and research presented in this paper,

with emphasis on future directions.

6

Chapter2

Neural Network Background

2.1 Feedforward Neural Networks

2.2 Elman Recurrent Neural Networks

2.3 Advantages ofFeedforward and Recurrent Networks

10

11

12

2. Neural Network Background

Neural networks are networks formed of small computational units called

neurons. Neurons receive inputs from the environment (neurons in the input layer), or

from other neurons. Each neuron performs a simple computation on its inputs, and

passes the information along, either to another neuron, or back to the environment (an

output neuron). Connections between neurons have associated weights, sometimes in the

range of (-1.00,+1.00). These weights are multiplied by the signal propagating through

the connections, and control the amount to which the signal is strengthened or

diminished.

-6 -4 -2 0 2 4 6

Flgre 2-1. The logistic sigmoid threshold function

Typically, each neuron sums the weighted input it receives, and may perform an

additional thresholding (scaling) computation on this sum. Thresholding is done for

scaling down the activation and mapping it into a meaningful output for the problem, and

is important for multi-layer networks to preserve a meaningful range across each layer's

operations. The most commonly used threshold function is a sigmoid or elongated S­

shaped function, as shown in Figure 2-1.

A common sigmoid function is the logistic sigmoid function F(y) = 1/(1 +e-Y) where y

is the sum of the neuron's inputs. Mehrotra, et al. (1997) note that experimental

Figure 2-2. A nueron receiving inputs and performing thresholding

observations of biological neurons demonstrate that the neuronal firing rate is roughly

sigmoidal, when plotted against the net input to a neuron. However, the authors point out

that biological neurons do not perform any precise mathematical function. A neuron

receiving weighted inputs from three input neurons and performing a scaling function is

shown in Figure 2-2.

The collection of weights and connections are the system parameters. A system

learns if and only if the system parameter vector or matrix (P) has a non-zero time

derivative, or aP/dt * 0. By adjusting the weights and connections between neurons, a

system is '\rained" based on some training data, and can then be applied to the actual

inpu ~ (lat: L.

9

Typically, a network is trained by adjusting its weights during the training phase.

During training, for a given input signal, the network modifies its weights to bring the

actual output signal closer to the desired output. The goal of training is for the network to

form a mapping ability between each pair of input/output signals. After training, the

network is applied to the test or "actual" inputs. For each of these previously unseen

inputs, the mapping ability of a network determines the appropriate output. The opposite

of generalization is memorization. Memorization is undesirable and is the result of

subjecting the network to too much training data. (Rao, 1995.)

Neural networks, even with a finite number of nodes, are Turing-equivalent.

Therefore a neural network could be trained to distinguish context-free or context­

sensitive languages (Siegelman et al 1991). Turning equivalency makes neural networks

universal function approximators, and thus theoretically capable of matching the

performance of all other modeling techniques.

2.1 Feedforward Neural Networks

The most commonly used neural network model is the feedforward neural network.

Input Layer Hidden Layer Output Layer

Figure 2-3. A feed.forward neural network

10

A feedforward neural network is an acyclic network in which a connection is allowed

from a node_,in layer n only to nodes in layer (n+ 1), as shown in Figure 2-3.

Feedforward neural networks may contain multiple hidden layers. Conceptually,

nodes in successively higher layers abstract higher level features from the information

passed on from the previous layer (Mehrotra et al 1997.)

2.2 Elman Recurrent Neural Networks

A more complex model for neural processing was partially developed and refined

by Jeffrey Elman (1990). An Elman recurrent neural network, as shown in Figure 2-4,

contains feedback connections from the hidden layer to context units, which serve as

input to the network for the subsequent activation. Context units act as input units, but

Input Layer Hidden Layer Output Layer

True Input Unit&

Conteltt .

Figure 2-4. An Elman recurrent neural network

11

only receive input from the previous activation of the hidden layer neurons, and not from

the environment, as do the true input units.

As signals first propagate through the network, the input layer receives inputs from

the environment that are passed to the hidden layer. Hidden layer neurons pass their

activation to the output layer, and also back to the context neurons. Context neuron data

is used on the next complete iteration through the network, and refreshes the information

provided to the context neurons for the next iteration.

These feedback connections provide the network with short term memory of the

activation of the hidden layer from the previous iteration of the network. Recurrent

connections are found extensively in the brain, and the short term memory provides the

network with the additional information of previous states and decisions.

2.3 Advantages of Feedforward and Recurrent Networks

In general, feedforward networks are simpler and easier to train and understand. The

Elman recurrent networks used in this study have the additional overhead of context

neurons and their additional connections in the network. Feedforward networks are

subsets of recurrent networks, as a recurrent network with zero weights on all feedback

connections will function identically to a feedforward network. If the feedback

connections are used in a recurrent network, they provide the network with previous state

information that can be used in non-Markovian decision problems. Thus, recurrent

networks have more overhead ,md are more difficult to train (in most traditional methods

such as backpropagation), but (an improve performance in domains where state history is

needed.

12

Chapter3

Neuro-Evolution

3.1 Evolutionary Algorithm Introduction

3.2 Alternative to Backpropagation

3.3 Advantages ofNeuro-Evolution

3.3.1 Reinforcement Leaming

3.3.2 Recurrency

14

15

17

18

19

20

3. Neuro-Evolution

3.1 Evolutionary Algorithm Introduction

Evolutionary Algorithms (or Genetic Algorithms) are strategies that can be

applied to training neural networks. An EA is a stochastic state-space search technique

based loosely on biological evolution and borrowing heavily from its terminology. An

EA can assume many incarnations, with a common version encoding a potential solution

to the problem as a bit string. This bit string is referred to as a chromosome, with each

bit (an allele) representing some specific feature or trait of the solution (Mitchell, 1998.)

Unlike humans, EA populations are usually haploid, or contain a single unpaired

chromosome. A chromosome may contain an encoding of paths in the travelling

salesman problem, processor opcodes, or weight and connection information for a neural

network.

Populations of chromosomes are maintained, evaluated, and bred. This cycle is

referred to as a generation. Populations can be initialized randomly, or seeded with some

domain information in the hope of improving performance. Each candidate solution or

chromosome is converted into a phenotype, which is the actual implementation of a

potential solution that the chromosome encodes. These solutions are evaluated based on

Crossover Point Crossover Point

Chromosome 1 Child 1

Chromosome 2 Child2

Figure 3-1. Th"' ,·ros.-;over operator

l ;

some performance score.

Typically, the top networks are then subjected to crossover and mutation.

Crossover splits a chromosome at one or more points and combines each piece with the

pieces of another chromosome as shown in Figure 3-1. Mutation is a simple flipping of a

bit in a bit string chromosome, or substitution of a (usually random) allele with another

member of the allele population in hopes of finding an overlooked trait which improves

the performance of the chromosome in the task. Mutation in a chromosome using a bit

string genotype is represented in Figure 3-2.

Mutation

Figure 3-2. The mutation operator performed on a chromosome

Crossover has been described in terms of exploitation of information encoded in

high scoring individuals, and mutation is often described as exploration of the search

space. (Kingdon, 1997.) Having a good mixture of exploitation and exploration is

important in preventing pre-mature convergence of the population to a sub-optimal

solution.

l6

3.2 Alternative to Backpropagation

In contrast to evolutionary algorithms, gradient descent algorithms such as

backpropagation of error signals are the most common training methods for neural

networks. These methods adjust the weights in the connections between neurons based

on the backpropagation of error signals obtained from an environmental feedback

measure. These weight adjustments bring the network closer to a desired output for a

given input vector or pattern. Backpropagation is a gradient descent algorithm that

calculates errors in each layer of the network to serve as gradients for a hill climbing

search. (Kosko, 1992.) The goal of this search is a decision policy that meets the

performance criteria of the domain. This decision policy is represented in a distributed

fashion in the network connections and weights.

Popularized by Rumelhart et. al (1986), backpropagation uses errors in the output

to determine measures of hidden layer output errors, which are used as a basis for the

adjustment of connection weights between the layers. Although very effective, the

strength of backpropagation lies in its use of differences in the actual output vector of the

network and a desired or 'ideal' output vector. When the desired output is known and

the actual output is compared to the desired output and weights are modified based on an

error gradient, the learning algorithm is performing supervised learning. In contrast,

reinforcement learning provides a general feedback measure at the end of a sequence of

tasks, and is more suitable for many real world tasks in which a desired output is not

always available.

Backpropagation measures the differences in the desired output vector and the

actual output vector calculated by the network. Adjustments to weights between the ith

17

neuron in the hidden layer and the Jh output neuron are performed according to the

equation:

where Wh is the weight matrix for the hidden layer to output layer, ~ 0 is a

learning rate parameter usually between .01 and .50, Yi is the output of the ith hidden layer

neuron, and ~ is the Jh component of output error at the output layer.

White (1989) mathematically reduced a popular backpropagation algorithm to the

stochastic approximation methods used in training networks in their infancy in the

1950's. Trends have returned to stochastic methods, with neuro-evolution using genetic

algorithms becoming more prominent as a training method. This trend has been due to

specific advantages of the neuro-evolution approach in difficult decision tasks, and its

extreme flexibility over a range of neural network models and feedback responses used to

assess the performance and direction of the training.

3.3 Advantages of Neuro-Evoultion

A neuro-evolutionary approach to neural network training encodes network (and/or

individual neuron) information in a chromosome. While the specific information to be

encoded in the chromosome depen~s on the specific implementation and is open to much

debate, the approach used in this research is to encode connections and weights for

hidden layer neurons, as shown in Figure 3-3.

Each neuron in the hidden layer is encoded in such a manner, and networks are

formed of groups of such structures. These chromosomes are then subjected to the

crossover and mutation operators in a search for a globally optimal solution. Although a

genetic algorithm may fall into local optima in the search space, there are several

18

Neuron
Chromosome

Connection Weight Connection Weight Connection Weight Connection Weight Connection Weight

Figure 3-3. Chromosome encoding of a neuron In the hidden layer

A primary advantage of hybrid neuro-evolution searches over more traditional

gradient-descent searches is the ability to implement reinforcement learning rather than

supervised learning. Sutton (1988) has described learning under very general and often

infrequent reinforcements as reinforcement learning. Supervised learning methods (such

as back.propagation) require a smooth, continuously differentiable activation function

from which gradient information can be derived for the back.propagation of error signals

for every iteration of the network. This means that for training purposes, the network

must receive feedback as to its performance after every output. In many domains, this

output may not co~e until a sequence of events has occurred. Training a neural network

using back.propagation or other supervised learning methods to perform a sequential

decision task requires a determination of which specific decisions were responsible for

any errors based upon an evaluation of a series of such decisions. This is Minsky's credit

assignment problem.

19

Reinforcement learning circumvents the credit assignment problem by assigning a

performance measure to an entire system, even after several decisions have been made. In

many tasks, continuous performance information is very difficult or impossible to obtain

from the environment, and reinforcement learning becomes the natural choice for

evaluating performance and selecting favorable agents.

3.1.2 Recurrency

An additional advantage of not having to compute gradients for backpropagation

is that recurrent neural networks can be evolved at no additional expense (Moriarty,

1997.) Supervised learning attempts to correct the system at every step, and this becomes

more difficult with recurrent connections. Supervised learning in recurrent networks can

be performed, however existing algorithms are complex and difficult to extrapolate to

new neural models. In neuro-evolution, a feedforward or recurrent network may be

created, evolved by an EA, and evaluated, without regard for whether the network is

feedforward or recurrent.

Potter (1992) used an evolutionary algorithm in place of the quickprop learning

method and achieved better results. Quickprop is a modified version of backpropagation

designed to run faster.

20

Chapter4

SANE - Symbiotic Adaptive Neuro-Evolution

4.1 SANE Implementation

4.2 Results

21

23

25

4. SANE - Symbiotic Adaptive Neuro-Evolution

David Moriarty and Risto Miikkulainen have developed a unique and very powerful

neuro-evolution tool called SANE, for Symbiotic, Adaptive, Neuro-Evolution. SANE is

a C program run under Visual C++ 5.0 for this research. Almost every existing neuro­

evolution tool evolves network structures (Whitley et al 1993.), but SANE is unique in

that it uses an evolutionary algorithm to evolve neurons and network 'blueprints'. SANE

evolves partial solutions to problems in neurons, combines the neurons into networks,

and evolves the best network structures.

4.1 SANE Implementation

SANE encodes weight and connection information for each neuron in the neuron

population. These neurons are then combined and formed into networks. The networks

are evaluated in some domain, and the neurons are rated based on the• best networks in

which the neurons participated. This is shown in Figure 4-1, reproduced from Moriarty

(1997.)

The neurons are evolved in the context of the other neurons in the population. This

strategy allows the neurons to rely on other neuron 'specializations' that form in the

COMBINA110N
INTO

NE'IWORKS

FITNESS
NORMALIZA­

TION

Figure 4-1. High level SANE operation

SELKCI10N
AND

IIECOMBINA1DN

NEWNEURONS

population, and helps prevent premature convergence of the population, as discussed in

the following chapter. Neurons are encoded as described in Figure 3-3, and maintained

as a population.

Neuron 1 Neuron 2

Network chromosome

Input Layer

.62

Neuron n

·CEJ
/

/
,,.butput Layer

/
i ~.14

Figure 4-2. A hidden layer (network) encoding in a chromosome

A layer of neural network blueprints is also evolved on top of the neuron population,

with network blueprints maintained as a separate population. These blueprints are

collections of neurons grouped together to form a hidden layer of a neural network.

Since the number of input neurons and output neurons are fixed in a particular

environment in SANE, an entire network can be defined by the hidden layer neurons and

their weighted connections to the input and output layer. Networks are also encoded in

chromosomes as shown in Figure 4-2 for purpcs;~s of crossover and mutation. The

2.·

blueprint population is evaluated, and the crossover and mutation operations are

performed as the genetic search for the best network progresses.

Each member of the network blueprint population specifies a number of pointers to

members of the neuron population equal to the hidden layer size. Neurons are combined

systematically based on past performance, and are thus grouped in network structures

with neurons that perform well together. The network blueprint and neuron populations

are diagrammed in Figure 4-3.

Network Population (with
Various Sized Networks)

Neuron Population

-.... I ____ F_Igur __ e_4-_3_. _Th_e_n_etw-or_k_an_d_n_e_ur_on_po_p_uia_tt_o_m ____ __,

4.2 Results

In traditional network evolution, the evolutionary search focuses on a single,

dominant individual, and can often converge prematurely on local optima. Networks that

perform well are bred with other networks that perform well, and the population of

networks often becomes very homogeneous, which decreases population diversity and

'.24

discourages alternative and possibly higher scoring approaches to the network

architecture.

In contrast, SANE restricts the scope of each individual to a single neuron, with each

neuron optimizing a particular sub-task of the network (Moriarty, 1997.) When a neuron

is ranked highly (because of participating in high scoring networks), it will usually be

found several times in subsequent generations of networks. These networks do not

typically perform well because a good network usually needs several types or

'specializations' of neurons. These homogeneous networks receive lower scores, thus

selecting against the neurons in these networks in subsequent generations, restoring

diversity to the population (Moriarty, 1997.) Moriarty defines Symbiotic in the SANE

acronym as symbiotic evolution in which "individuals explicitly cooperate with each

other and rely on the presence of other individuals for survival." (Moriarty, 1997.)

SANE achieves very good results in sequential decision tasks. It has been applied to

a number of domains, including the game of Go (Richards, et al. 1997.) It has been used

to evolve a network for controlling a robotic arm (Moriarty, 1997), balancing an inverted

pendulum (Moriarty, 1997), balancing 2 inverted pendulums (Gomez and Miikkulainen,

1998), and capturing simulated prey (Gomez, 1996.) In almost every simulation, SANE

has been shown to evolve networks more quickly, keep a more diverse population of

Pole Balance Attemets CPU Time
Method Mean Best Worst St. Dev. Mean Best Worst St. Dev. Failures
1-layer AHC 430 80 7373 1071 49.4 14 250 52.6 3
2-layer AHC 12513 3458 45922 9338 83.8 13 311 61.6 14
Q-leaming 2402 426 10056 1903 12.2 4 41 7.8 0
GENITOR 2578 415 12964 2092 9.8 4 54 7.9 0
SANE 900 101 2502 598 7.7 4 17 2.9 0

Figure 4-4. Comparison of several learning techniques in pole balancing over 50 trials

25

neurons and networks, and outperform other neuro-evolution strategies. A comparison of

several learning methods is reproduced from Moriarty (1997) in Figure 4-4. The results

are from a pole or "inverted pendulum" balancing test and demonstrate that SANE

outperforms 1 and 2 layer Adaptive Heuristic Critics, and Q-learning. SANE's

performance was very similar to GENITOR (Whitley et al 1993), a neuro-evolution

strategy shown to be successful on the inverted pendulum problem. The pole-balance

attempts in Figure 4-4 are the number of training episodes necessary to find a network

successfully balancing a pendulum mounted to a cart on rails for 120,000 time steps.

CPU time comparisons are in seconds.

26

Chapter5

Realted Literature

5.1 Neuro-Evolutionary Approaches

.5.2 Recurrency

5.3 SANE Over Various Domains

2.7

29

33

35

5. Related Literature

Numerous researchers have explored neuro-evolution and have applied its techniques

to a broad range of control and decision tasks. A common thread and development in

these investigations has been improvements in autonomy, robustness, performance, and

difficulty of task. Hybrid neuro-evolution techniques have taken many different

approaches, with the EA training the network, or serving as an input preprocessor for

scaling or selecting network inputs from a range of possible input choices.

5.1 Neuro-Evolution

Kupinski and Giger (1995) used a different hybrid neuro-evolutionary approach in a

neural network based mammogram cancer detection scheme. The EA does not train the

network directly, but rather selects a subset of features from the mammogram slide as

inputs to the network to detect-possible malignancies. This is an example of an

evolutionary algorithm selecting the inputs to a neural network from a larger set of

potential inputs. The EA works as a filter for determining worthwhile inputs.

Fullmer and Miikkulainen (1992) explored marker based encoding of neural

networks. Using this strategy, networks are encoded in a single circular chromosome,

with start and end markers indicating the beginning and end of neurons in the network.

Weight and connection information is encoded within the start and end markers, and the

networks are recurrent. The marker-based encoding is unique in that position X on the

chromosome does not have a fixed meaning as in most encodings. The interpretation of

each allele is independent of its locus in the chromosome. Each position is used in such a

28

way that produces the maximum benefit for the network. In the crossover operator,

neurons may be added or taken away, and connections may feed back to other neurons or

even to themselves. This encoding was very loose and dynamic, and the idea of growing

a network to fit the problem at hand was used extensively in this research.

The authors did pioneering work in representing neural structures in an evolutionary

algorithm, and applied the work to an object recognition task requiring exploration and

discrimination of objects in a simulated environment. Tests confirmed that agents were

able to discriminate objects in an environment even when memory was required.

Moriarty and Miikulainen (1995) continued the marker based encoding strategy

by applying neuro-evolution to the domain of Othello play. Othello is another interesting

Figure 5-1. An Othello board with legal moves for white indicated with an 'X'.

test, as the game has quite simple rules, but is very difficult to master. Othello is played

on an 8 x 8 board with pieces black on one side and white on the other. Players take

29

turns and may only move in unoccupied squares that are flanked by an opponent's piece

or pieces and one piece of the player's own color. In other words, a player must linearly

surround the opponent's piece or pieces horizontally, diagonally, or vertically. After

doing so, the player flips the opponent's pieces to her color and play continues. The

game ends when there are no legal moves for either player, in which case the player with

the most pieces of her color wins. A possible board with the legal moves for white is

indicated in figure 5-1. If white plays in the square marked with a shaded X, white then

flips the two bottom black pieces. Beginning players usually try to maximize their piece

count at all times, while more advanced players will adopt a positional strategy based on

taking comers (which can never be retaken) and adding pieces along the edges.

Tournament level players have developed a mobility strategy based on actually

maintaining a low piece count, but holding strategic positions and forcing the opponent to

make poor moves, surrendering good positions. Mobility is much harder to learn than a

positional strategy.

The network evolved was feedforward with 2 input neurons for each board

position, one 'on' if the network's piece occupies the square, the other 'on' if the

opponent occupies the square, and both 'off' if the squai:e is empty. The authors used the

power of the marker based encoding strategy and refined its representation of the

network. Only hidden layer neurons are represented in the chromosome, with

connections to the output layer specifically encoded in the connection information. In the

earlier version, output nodes were explicitly defined.

The authors pitted the network against a random player, a minmax search with a-B

pruning, and finally against themselves. With enough evolution (typi1.:ally 24 hours on an

30

IBM RS6000 25T workstation), the network defeated all three. According to the authors,

after 2000 generations, the networks are employing a beginning mobility strategy. David

Shaman, the 1993 world Othello champion, described the network's play as follows:

This is someone who has been playing for a while and thought about the game.
They've just been introduced to the idea of mobility. They are not very good yet.
They are usually choosing the right type of move, but only occasionally choosing the
best move. Unfortunately, sometimes they seem at a bit of a loss as to what to do -
they then often revert to positional play or even just play an inexplicable bad move.
(taken from Moriarty and Miikkulainen, 1995.)

This is exceptional performance for a system having no domain knowledge and

discovering mobility strategy on its own.

Floreano and Mondada (1995), used an evolutionary algorithm to adjust weights and

thresholds for a fixed size fully connected neural network. The network consists of eight

input units attached to sensors on a Khepera mobile robot, and two output units

controlling motors on each wheel of

Motorola 68331
On Board
Processor

Infra-Red Sensors

Motor

Figure 5-2. A diagram of the Khepera mobile robot

31

the robot. This research is

particularly interesting because it

moves beyond the realm of computer

simulation and tests neuro-evolution

on tiny Khepera robots, 55mm in

diameter. The input sensors and

motors are shown in Figure 5-2,

adapted from Floreano and Mondada (1995.) Neural networks control the robot

dynamically in a maze, interfacing with the Khepera via serial cable.

The robot is placed in the maze and is evaluated based on speed maximization,

straight direction, and obstacle avoidance. The authors achieved very good results, with

the robots learning to navigate the maze and avoid obstacles in less than 100 generations.

The best individuals moved extremely smoothly, never bumped into walls, and perform

complete laps of the maze corridor.

5.2 Recurrency

Elman (1990) explored recurrent neural networks that provide the system with

memory. This is done in the context of giving the system "dynamic properties that are

responsive to temporal sequences." This work included a time parameter, which

necessitated a new network model for representing inputs to the system in previous time

Hidden Layer

Input Units Context Units

Figure 5-3. Simple model of an Elman recurrent n2twm·k

32

steps. Elman added context units to a standard neural architecture. These context units

function similarly to input units, but receive their input from the output of the previous

iterations hidden layer as shown in Figure 5-3. This diagram is a generalization, for a

more detailed model, see Figure 2-4.

Elman applied this new architecture to the temporally based problem of predicting

the XOR function from a bit stream. A network was given an input stream, such as

110101101000011, in which every third input is the XOR result of the previous two. By

sequentially inputting each bit to a neural network, a network remembering the first input

should be able to predict the third input upon receiving the second. This would not be

possible in a standard feedforward network, as the first input would propagate through

the network, followed by the second, with no internal state representation.

Elman notes that in feedforward networks, the hidden units develop internal

representations of input patterns ·and recode those patterns to produce the correct output

for any given input. In this recurrent structure, the context units serve as memory for

previous internal states. The hidden units in this model thus have the dual task of

mapping both an external input and the previous internal state saved in the context units.

The internal representations that develop have an implicit temporal property. (Elman,

1990.)

Elman' s results confirmed that the network learned something ahout the temporal

structure of the input, with the networks error dropping dramatica] l) when prediction of

the 3rd bit was possible (when two complete inputs to the XOR fin .c ion had been input to

the network), and rising at other times.

33

5.3 SANE Over Various Domains

Richards et al. (1997) applied SANE to the game of Go. Computers have had

limited success in the game of Go. Despite its simple gameplay, Go is deceptively hard

to master. Black and white stones are alternately placed on a board until both players

mutually decide the game is over and pass, at which time the score is calculated and a

winner determined.

Go is largely pattern based, which makes it particularly suited for implementation

by a neural network. The authors used SANE to evolve a feedforward network with two

input neurons and one output neuron for each board position. Input neuron one is fed a

boolean value indicating the presence or absence of a black stone, and input neuron two

represents a white stone. The output neurons are fuzzy values indicating a range of

relative 'goodness' of a move to a particular board position. In this manner, the output

neurons encode some semantics of the network's decision. The higher the output neurons

value for a board position, the better the move to that position.

SANE achieved quite good results in evolving Go playing networks. SANE was

able to defeat a publicly available Go program called Wally, developed by Bill Newman,

on small boards. SANE was able to defeat Wally up to a 9 x 9 board, but took 5 days of

CPU time. The authors estimated the time to evolve a successful network on a full sized

19x19 board at over a year.

An important conclusion of this experiment was an insight into neural networks

and evolutionary algorithms. The authors discovered that SANE evolved to defeat

deterministic opponents quite quickly, but" .. .learned little about playing Go and only

34

learned what was necessary to win against that particular opponent." (Richards, et al

1997.) When 10% non-determinism was applied to the Wally opponent in the form of

random legal moves, SANE actually required more generations to defeat the opponent.

The authors concluded that SANE was finding holes in the deterministic opponent's

strategy, but actually learning Go strategy against the non-deterministic opponent. These

results are used later in this research in making a Pac-Man opponent non-deterministic to

decrease the possibility of learning loopholes in the opponent's strategy.

Gomez and Miikkulainen (1997 & 1998) introduce the ideas of incremental

evolution, ..1-coding, and enforced sub-populations. Discussed in more detail in the next

chapter, these modifications to SANE are designed to assist in non-Markovian tasks and

other tasks that are difficult to evolve directly. By incrementally evolving successively

more sophisticated behavior, the authors were able to achieve very good results on more

difficult problems.

The idea of incremental evolution and ..1-coding is to start with simpler tasks and

evolve more sophisticated behavior on top of the existing knowledge. If an infant were

dropped on a deserted island with a Sun workstation, it is hard to imagine that he would

ever learn to use it. This is the coricept behind incremental evolution. Starting with

smaller goals, more complex behavior can generally be evolved than starting from

scratch.

Enforced sub-populations are an addition to SANE making it more feasible to

evolve recurrent networks. The neuron population is partitioned into sub-populations,

with a neuron replaced only with neurons from the same sub-population. This allows

35

sub-populations to specialize and gives recurrent networks more stability and better

performance. Sub-populations are discussed extensively in the next chapter and are

included in the models used in this research.

Gomez and Miikkulainen applied incremental learning to the tasks of prey capture

and simultaneously balancing two inverted pendulums. Both tasks were handled by

recurrent networks and included sub-populations. The prey capture task was

incrementally made more difficult by increasing the prey's head start, and increasing its

speed. The prey was eventually given a large enough head start to move out of the

agent's sensor range, and required the agent to have memory of the last direction it saw

the prey moving. Despite the advanced behavior required of successful networks, SANE

evolved solution networks that effectively captured the prey. In addition, SANE

incrementally evolved networks to balance two inverted pendulums of very similar length

without pole velocity information, a non-Markovian task previously unsolved.

36

Chapter 6

SANE Modifications

6.1 Enforced Sub-Populations

6.2 Recurrency

6.3 Variable Hidden Layer Sizing

6.3.1 Motivation

6.3.2 Implementation and Functionality in SANE

6.4 L\.-Coding

39

40

41

42

43

46

6. SANE Modifications

SANE 2.0 has been modified by several people. The primary modifications

involve sub-populations, recurrency, and delta-coding. This research uses the sub­

population modification of Faustino Gomez and Risto Miikkulainen, and introduces

hidden layer growth, and Elman recurrency (a variant of the recurrency introduced by

Gomez). SANE is a C program that runs under Visual C++ 5.0 for this research.

Additionally, since variable hidden layer sizing works well with large populations, SANE

2.0 was ~onverted to dynamic memory allocation for the larger memory requirements

imposed by large neuron and network populations.

6.1 Enforced Sub-populations

In unmodified SANE, the neurons are in one large population, and a network may be

made of neurons from the entire population. As Moriarty (1997) showed, in the

advanced stages of evolution; instead of converging to a single individual as a standard

evolutionary algorithm would, the neuron population forms groups of individuals

(neurons) that perform "specialized functions in the target behavior." These neurons

specialize to perform a specific feature of the task, combining into networks to form

effective solutions to the entire problem.

Sub-population modifications split the neuron population into sub-populations. A

sub-population is maintained for each neuron that may be in a hidden layer, and neurons

are only replaced in a network from this respective sub-population. For example, hidden

neuron 3 in a network will only be replaced by neurons from the 3rd sub-population. This

is in an effort to circumscribe the "species" which evolve in advanced stages of SANE

38

evolution, and thus speed up the evolutionary process. This modification also allows

each neuron to be evaluated on how well it performs in the context of the other neurons.

Neuron specialization, which is hopefully contained in each sub-population, is not

hindered or contaminated by recombination across specialization or sub-population.

Sub-populations also increase the performance and allow for more effective

creation of recurrent networks. As discussed in 2.3, the effectiveness of a neuron is more

critically dependent on the neurons to which it is connected in a recurrent network. The

specialization of neurons in each sub-population allows recurrent neurons to rely more

upon the type of neuron to which they are connected, and the performance of a recurrent

network is boosted.

6.2 Recurrency

In order to provide the network with short term memory and give the network the

ability to define the problem domain in simpler terms, for the recurrent portion of this

experiment, tests were run with an Elman recurrent neural network. By using previous

state information, the environment becomes more accessible. The recurrent network has

feedback connections from the previous iterations hidden layer activation, and thus has

access to information about previous states.

In SANE, as long as this information does not improve the performance of the

networks, the recurrent network is free to ignore this information and evolve zero weights

for the feedback connections. Hence, the network functions as a feedforward network.

The previous state information provided by recurrent networks is essential in non­

Markovian tasks, where recurrent networks provide significant feedback for decomposing

difficult tasks.

39

The number of examples needed to train a neural network to learn a function

increases roughly exponentially with the number of input neurons (Baum, 1994.) Game

playing typically requires at least two input neurons per game square, and most

interesting problems have a high input dimension. This is a problem with feedforward

approaches. Recurrent networks can decompose a high dimensional function into many

lower dimensional functions connected in a feedback loop, and in a fashion similar to

recursion reduce the difficulty of the problem (Jones, 1992.)

6.3 Variable Hidden layer sizing

Varying the size of the hidden layer in a neural network is achieved by varying the

number of neurons in the hidden layer. Since the input and output neurons have

semantics associated with them, the size of the input and output layers are almost always

fixed in a neural network implementation. The exception to this is some pattern

recognition problems where the most appropriate inputs are not always known. For

example, in modeling a commodity market, there is often a massive amount of

information available, and preprocessing must be done to determine a subset and the

quantity of appropriate inputs.

The optimal size of the hidden layer in a neural network has been the topic of much

debate and is still very much an open research issue. A common heuristic has been "an

extremely non-linear problem requires a larger hidden layer size", but the number of

neurons in the hidden layer of the network is often left to guesswork, or trying several

sizes until acceptable results are achieved empirically.

There have traditionally been three approaches to attempting to automate the hidden

layer size in a network. One may build a large network and prune it, start with a small

40

network and add to it as needed, or start with a 'sufficient' size, and add or subtract and

retrain.

This research proposes a new solution working in conjunction with the genetic

selection inherent in the training and creation of networks created with SANE. The

hidden layer size becomes another parameter in the genetic search for weights and

connections, and networks are evolved with hidden layer size as a genotype along with

weight and connection information. Network size is another trait of the individuals in the

network population.

6.3.1 Motivation

Varying the hidden layer size creates a more autonomous learning system, and

eliminates some of the guesswork associated with finding the proper hidden layer size,

and thus decreases the development time. In a rough sense, nature has taught us a similar

strategy of growing and refining neural processors.

In early childhood, the brain grows dramatically, particularly in the telencephalon or

forebrain, with an infant's skull still soft to allow for the growth. Later, this growth

slows for fine-tuning of the connections between neurons (Shepherd, 1994.) This fme

tuning and connection adjustment results in infolding of the cortical surface, continuing

throughout life. Copying this growth and refinement process, by evolving network size

and weights, allows us to more closely simulate the processes of nature.

Varying the hidden layer size is also motivated by the earlier work of Moriarty,

Miikkulainen, and Fullmer, who developed the marker based encoding strategy. These

auLho:·s achieved good results by allowing recurrent networks to assume any size

41

necessary. A strength of reinforcement learning, when combined with EAs, is the ability

to vary network parameters and architecture easily while selecting those individuals

which perform the best, regardless of size.

An additional motivation for varying hidden layer size is the ability to explore larger

networks that may be required to solve a particular problem. Complex problems may

require larger hidden layers. The ability to evolve a population to more closely match

this larger hidden layer size requirement is an important consideration in any learning

system.

As mentioned earlier, maintaining population diversity is critical to the effective

performance of any evolutionary algorithm. By forcing variable sized networks, a

measure of diversity is introduced into the network population. Varying the number of

neurons in the hidden layer makes the population of networks more diverse. Network

"blueprints" not only explore different combinations of neurons, but different quantities

as well. Adding and removing neuron specializations dynamically increases the

dimensionality of the network evolution, as will be discussed more thoroughly in Chapter

7.

6.3.2 Implementation and Functionality in SANE

It is important to note that varying the hidden layer size does not inherently give the

networks more power. Networks with hidden layers from 10 to 20 neurons are no more

effeclive than networks with 20 fixed neurons, since the fixed network may evolve zero

vdued weights for the 10 to 0 extra neurons. In addition, the fixed network may not

m ol, e c,mnections to the extra neurons at all, and effectively becomes a network with

42

fewer hidden layer neurons. This could be seen as the traditional approach of starting

with a large network and pruning 'useless' connections.

Pruning is often accomplished by searching for nodes whose associated connection

weights have very small magnitude, or running a lesion study to find connections whose

existence does not significantly affect network outputs. If "iJo/ow is negligible for a given

node, where o is the output of the node and w is the weight for a connection, then this

node may be pruned.

The advantages of dynamic evolutionary hidden layer sizing are: a) the elimination of

searches for 'prunable' nodes, b) increases in network population diversity, c) implicit

elimination of excess nodes, d) extensibility to A-coding, and e) more performance

increase per generation for the experiments in this study.

By including various sized networks in. the population of candidate solutions,

networks are more efficiently sized for the task at hand. Allowing a larger network to

evolve zero weights or connections to certain neurons slows the search. Allowing a

hidden layer size genotype in the genetic representation of the neuron forces networks to

explore different sizes, since networks will rarely evolve all zero weights and connections

for a neuron.

The enhancements provided by variable hidden layer sizing are similar to those

introduced by enforced sub-populations. Sub-populations form in SANE after several

generations, due to neuron specialization (Moriarty, 1997.) By forcing sub-populations,

however, the formation of sub-populations is speeded and performance improves,

particularly in recurrent networks. Including those features from the start that evolve

naturally gives the system a "head start" and allows the evolutionary search to focus on

43

optimal solutions rather than forming specializations first and then optimizing. Having

variable sized networks, the evolutionary algorithm eliminates the search for possibly

beneficial null connections in a larger network.

Although SANE with the hidden layer size modifications did evolve better networks

faster, the standard version provided acceptable results. Hidden layer size evolution may

be necessary for acceptable performance when combined with A-coding on non­

Markovian tasks, and for the esoteric ideal of creating truly automated learning systems.

Variable hidden layer models require slight modifications to the crossover and

mutation operators found in the outer loop evolutionary algorithm of SANE. Since the

network population sizes are initialized randomly, the crossover operator often performs

Crossover Point Crossover Point

Cluomosome 1 Child 1

Cluomosome 2 Child2

Figure 6-1. Crossover operator under variably sized network chromosomes

crossover between two networks of different sizes. Networks are initialized to a random

size between two user-defined numbers. A minimum size and maximum size are

included to refine searches, as very broad ranges of size require a very large and often

unfeasible network population to achieve good results. The following equation produced

the best results for the tests in this research, although this is domain dependent.

5 ~ (Max_Net_Size- Min_Net_Size) ~ 10

A crossover point is selected to be somewhere between the start and the end of the

shorter network chrom< ,sqme, and crossover is performed as usual One child assumes

44

the size of the shorter length parent and one assumes the length of the larger parent, as

shown in Figure 6-1.

The mutation operator is also modified slightly to explore larger networks. Instead

of traditional mutation, in which a bit is flipped, or a connection or weight value in a

chromosome is randomly altered, mutation in variable hidden layer sizing was performed

by adding a neuron to each chromosome (if the length of the chromosome is less than

Mutation

Figure 6-2. Mutation operator under variably sized network chromosomes

Max_Net_Size). This operator is performed on a user-defined percentage of the network

population per generation to further explore the search space, as shown in Figure 6-2.

The diagram illustrates a bit string representation for simplicity, but in SANE a complete

neuron structure including weights and connections is added to the end of a network

chromosome.

6.4 ~-coding

Delta-coding was not included in the experiments for this research, but merits

discussion due to its importance in hidden layer growth and future work. Originally

included in SANE by Faustino Gomez, Delta-coding is a method developed by Whitley

et al (1991.) The concept of Delta-coding is to search the neighborhood around the best

solution found so far.

45

After many generations, the population of neurons will become more homogeneous,

and the evolutionary algorithm will perform poorly or fail to find a global optimum.

When the neuron sub-population has reached a minimum diversity (defined by the user),

the chromosome encoding the network with the highest score as defined in the

environment is saved. This chromosome is the best solution found so far. New sub­

populations are then initialized with ~-values representing small differences in the

Figure 6-3. A fitness landscape

connection weights for each neuron in the best network found so far. Thus, each neuron

in the best network has a specific sub-population of neuron Delta-chromosomes designed

to improve this neuron specifically. Delta values are added to the connection weights in

46

the best solution and the resulting chromosomes are termed A-chromosomes. Those

Delta-chromosomes that improve performance are kept and bred.

Delta-coding is similar to evolving a network population, arriving at the highest

scoring network, and then starting over, using this best network as a starting point.

Gomez and Miikkulainen (1997) showed that Delta-coding can be used to implement

incremental evolution by successively evolving more complex prey capture behavior.

As shown in Figure 6-3, Delta-coding may "bump" an EA stuck in the locally optimal

star position out, hopefully allowing the EA to converge on the globally optimal arrow

position in the diagram. Figure 6-3 is a simplified fitness landscape of a state space

search for a globally optimal solution. A global optimum is a candidate solution whose

quality is better than or equal to the quality of every other candidate solution. A local

optimum is a candidate solution whose quality cannot be improved by any single move.

That is to say, its neighbors in the state space are of lower quality.

The idea of a fitness landscape has often been used in conjunction with search

algorithms. The modality, or number of peaks on a landscape has been used as a measure

of difficulty associated with finding global optima, and an abundance of local optima has

been taken as harmful and misleading to the search process (Kingdon, 1997.)

Although Delta-coding is very effective in incremental evolution of complex

behaviors, it requires a decomposition of the task into pieces that can be incrementally

evolved and encoded in the population of candidate solutions. For some problems, this is

rather simple- an agent can be given a head start in pursuing a moving target, with this

lead incrementally diminished as the agent learn'.s a generalization nf t 11' task to be

47

performed. For other tasks, decomposition may be more difficult, or impossible to

automate without human intervention. For the goal of a truly automated learning system,

automatic task decomposition is an important future direction. Varying the hidden layer

size, or adding neurons to the hidden layer when needed is an important corollary to this

decomposition, and will be discussed thoroughly in Chapter 10.

48

Chapter?

Preventing Premature Convergence in Evolutionary Algorithms

7.1 Evolving Neurons Increases Population Diversity

7.2 Varying Hidden Layer Size

49

52

52

7. Preventing Premature Convergence

The strategies presented in the previous chapter are designed to improve the

performance of evolutionary algorithms by increasing the diversity of a population

initially and reintroducing diversity after a population has converged. Maintaining the

diversity of a population of candidate solutions in a genetic algorithm is tantamount to

preventing premature convergence of that population to a less than optimal solution, or

falling into a shallow pit in the fitness landscape in Figure 17. An evolutionary algorithm

flounders without a diverse population of genetic material. Maintaining this population

diversity is a very difficult task and remains an open evolutionary algorithm research

issue.

A traditional approach to maintaining population diversity has been to increase the

mutation rate. This approach injects new genetic material into the population, but only

rarely produces better individuals, and follows no specific heuristic to improve

performance. A better approach, introduced by Kenneth DeJong, has spawned many

similar versions. In DeJong style crowding, when two chromosomes are crossed-over,

the children become new individual genotypes. These new children replace the members

of the population most similar to them. This preserves more varied members of the

population, and improves overall diversity. More powerful techniques, including those

that identify chromosomes that contribute to low scoring solutions, are available.

However, these techniques are costly and add CPU time to a system that is already very

computationally expensive. An approach that builds diversity into the chromosome

populations while requiring little or no additional processing would be ideal.

50

7.1 Evolving neurons increases population diversity

By evolving neurons, which are partial solutions to the problem to be solved by

the resulting networks, SANE automatically maintains diversity in the population.

(Moriarty, 1997.) If one neuron is a member of one or more particularly high scoring

networks, its genetic material will begin to permeate throughout the neuron population.

In that case, networks evolve that contain several copies of this neuron. These networks

will rarely perform well, as difficult tasks often require several different types or

"specializations" of neurons. This poor performance will garner a low fitness rating, and

lower the chance that the dominant neuron will reproduce in subsequent generations, thus

restoring diversity to the population.

This is one of the major contributions of SANE over previous neuro-evolution

tools and is one of its major strengths. Although EAs are inherently stochastic

techniques, effectively and intelligently guiding evolution toward global optima is the

main goal of the current trends in evolutionary algorithms. A primary advantage of EAs

over gradient descent methods is that the search is not inherently biased toward a locally

optimal solution. On the other hand, they differ from purely random sampling algorithms

due to their ability to direct the search toward relatively "prospective" regions in the

search space (Patnaik & Mandavilli, 1996.)

7.2 Varying Hidden Layer Size

Varying the hidden layer size in network blueprint chromosomes also injects diversity

into the network blueprint population. As Moriarty (1997) has shown, SANE forms

specializations among the neuron population, each optimizing a particular aspect of the

total task, and searches for effoctivc ,:;ombinations of these specializations. Diversity is

51

increased in the network population by evolving networks that combine different

numbers of neurons (or specializations.)

These combinations are possible with a large fixed hidden layer model, but

specifically removing a neuron is rarely explored by a fixed network architecture. That is

to say, a neuron in the hidden layer rarely evolves with all zero connections and weights

to other neurons under a fixed architecture. Varying the size of the hidden layer forces

this evolution, and increases the dimensionality of the search, not only exploring different

combinations of specializations, but different quantities as well.

52

8.1 Playing Blackjack

Chapters

Experiments

8.1.1 Experiment Description

8.1.2 Analysis of Results

8.1.2.1 Feedforward Models

8.1.2.2 Recurrent Models

8.2 Pac-Man

8.2.1 Experiment Description

8.2.2 Analysis of Results

53

55

55

60

61

62

63

64

66

8. Experiments

8.1 Playing Blackjack

SANE was modified with sub-populations and hidden layer growth, and applied

to the game of blackjack. Two versions were created and tested, one as a feedforward

network, the other as an Elman recurrent network. In both cases, the environment is a

partially observable Markov decision problem. Blackjack provides a unique test, as

feedforward networks are trained to make sound decision strategies, yet have no history

information of previous cards played. These networks simply evolve to form the best

decisions for a given hand. Recurrent networks are applied to the same task with the

opportunity to evolve into more complex agents, taking advantage of previous state

information. By using knowledge of cards played in previous hands, the network can

gather more information from the environment, or in a more formal sense, the network

can make the environment more accessible. Despite increases in accessibility through

information from recurrent connections of previously played cards, the environment still

remains inaccessible because there are some cards the network will never see, and thus

some uncertainty in the environment. This problem is interesting because making the

problem easier or more accessible can be a goal of the network evolution, by evolving

useful recurrent connections.

8.1.1 Experiment Description

For the purpose of experimentation, blackjack was played with a single deck, with

standard rules. Pair splitting, insurance, and doubling down were not allowed. The

player and the dealer were initially dealt two cards, with the player aware of one of the

dealer's cards (the up card). The network was aware of the total of its (the player's)

hand, and the dealer up card. The network is then activated, and can decide to hit or

stand. Hitting gives another card, with the goal of reaching 21. Cards are worth their

face value, with 10s, Kings, Queens, and Jacks worth 10 points. An ace is worth 1 or 11,

and a player with a hand containing an ace has an option of using the ace as 1 or 11 (if

using the ace as an 11 does not make the total more than 21). A hand with this option is

referred to as 'soft'. For example, a hand consisting of {A,5} is a soft 16, because hitting

and receiving a Jack for {A,5,J} is still 16, although now it is a hard 16. The network

(player) wins if it has a higher point total than the dealer, without going over 21 (busting).

An initial deal of a 10 value card and an ace is an automatic victory for the player

(assuming the dealer does not also have 21), and is referred to as a 'natural.' Ties in

blackjack are referred to as a 'push', and the player's bet is returned.

Input Layer

I
I
.8
£ • IS • l • S' • 0
~ • fl
~ • .8 • i. • IS • E
ll,. • 8 • :3' • IS • 'iil • Cl •

Hidden Layer

• • •

Output Layer

~111111111----+ Stand

Increase Next Bet }
Recurrent Models Only e---+ Decrease Next Bet

Most connections omitted for simplicity

Context neurons (in recurrent models) omitted for simplicity

Figure 8-1. Network structure for blackjack tests

55

]

Figure 8-1 depicts the blackjack network. The networks consist of 41 input

neurons for the player's point total (separate neurons for hard or soft totals) and the

dealer's up card. For example, a player receiving { 10,6} with a dealer up card of {8}

activates the hard 16 input neuron and the dealer's 8th neuron. The network has 2 output

neurons, for hit and stand. If the hit neuron's output is higher, the network hits, and vice

versa. Recurrent networks are outfitted with two additional neurons for raising or

lowering the bet.on the next hand.

The inputs of the recurrent model depend on the hidden layer activation of the

previous iteration, as well as the card total of the player and the dealer up card. The

recurrent model can be thought of as having a short-term memory of the network's

activation from the previous iteration. Test parameters for both feedforward and

recurrent tests are given in Figure 8-2.

Recurrent tests were conducted with networks outfitted with two additional output

neurons, for determining the next bet. By varying bets, the network can influence its

monetary outcome based on the additional information and accessibility from recurrent

connections and weights conveying previous decision information. From a domain

Blackjack feedforward recurrent
fixed variable fixed variable

Decks of play per network evaluation 35 35 35 35
Number of decks used (shue size) 1 1 1 1
Hidden layer size 20 15-20 25 20-25
NetVlt'Ork population size 140 140 140 140
Neuron population size 4000 4000 5000 5000
Sub-population size 200 200 200 200
Adding neuron mutation rate 2% 2% 2% 2%

Figure 8-2. Blackjack test parameters

56

specific standpoint, this can be thought of as counting cards, or changing present

behavior based on previous states and previous cards played.

Card counting is a strategy employed by blackjack professionals to significantly

improve the player's odds. Simply stated, the more 10 value cards remaining in the deck,

the more favorable future hands will be to the player. Similarly, if all of the face cards

and 10s are dealt out early, later hands will favor the dealer. A recurrent network that

increases its bets when the deck becomes favorable demonstrates an effective use of the

additional information provided by the feedback connections.

There are widely available blackjack tables, which indicate the correct hit/stand

decision for each possible point total in a player's hand, based upon the dealer's up card.

The dealer in blackjack has no choices - the dealer must hit a 16 or below, and must stay

on 17 or higher. The dealer does hit a soft 17. This was the only dealer rule variant

introduced in the experiment, to make play slightly harder for the network. Since the

dealer's down card is revealed after the network has made a decision, the network is not

ever aware of the dealer's down card, which is not standard in normal blackjack play.

This makes keeping track of unplayed cards more difficult for the network.

Two main blackjack experiments were conducted, one with a feedforward

network, and one with an Elman recurrent network. In each case, one test was conducted

with networks evolving with a variable hidden layer size, and one test with networks

evolving with a fixed hidden layer size. The fixed model has 20 neurons in the hidden

layer, while the variable model could have 15 to 20 neurons in the hidden layer. With a

20 neuron fixed hidden layer, the fixed model could evolve all of the networks the

57

variable model could. Evolving zero weights for the connections to extra neurons

effectively makes the fixed model the same size as a smaller network. The fixed model

was just as powerful as the flexible model, spending more time optimizing its fixed

network structure rather than finding the optimal network size. By comparison, the

variable sized networks had more built-in population diversity in terms of the network

structures, but had to spend generations exploring appropriate network size as well as

finding appropriate weights.

During and after training, the feedforward network model behaved

deterministically for each distinct set of input (for example, if the network decided to hit

a hard 15, it always did so.) The feedforward model was allowed to bet 1 unit of money

for each hand. As the feedforward model has no short-term memory from recurrent

connections, varying bets would only improve performance as the result of lucky guesses

on the part of the network. However, the recurrent model could learn the remaining

contents of the deck and use this information to increase the bets on the next hand when

the deck becomes 'favorable' (more high cards left in the deck), or lower the bet when

the deck is 'unfavorable' (more non-10 value cards remaining in the deck.) In this sense,

if the system evolves networks that take advantage of this additional information, the

problem becomes more accessible - that is, more information from the environment is

available to the agent, and performance will improve.

In order to roughly compare the recurrent and feedforward tests, both network

architectures were evaluated based upon the mean of the amount of money at the end of

35 decks of blackjack, and the percentage of correct hit/stand decisions made by the

network, as defined by known blackjack tables. The net work player started with a

58

bankroll of 100 units, and feedforward networks bet 1 unit per hand, while recurrent

networks could dynamically determine the next bet in the range of 1 unit to 5 units. Bet

varying was allowed in the recurrent networks, and the mix of performance based on an

average of money remaining and mathematically correct decisions was deemed

appropriate. This measure was used to balance the 'real-life' goal of competitive

blackjack - to make money, while preventing lucky high bets on the part of the recurrent

network by requiring that half of performance be based on the correct decisions

according to a blackjack table.

8.1.2 Analysis of Results

Overall, all blackjack networks both recurrent and feedforward, fixed and variable

sized, performed well by making intelligent decisions, and by evolving a strategy similar

to a player utilizing the blackjack tables. Given the rules of the game used for these tests,

with no doubling down or pair splitting, no insurance, and dealer hitting soft 17, the

'house edge' was 3.28% (Humble & Cooper, 1980.) When the best network in the entire

testing series was run over 20 decks of test play, the network had $116, after starting with

$100. Due to the house edge, and an average of 8 hands per deck, a player playing

exactly according to blackjack tables should have only had $94.75. It is important to note

that this best network was a recurrent network evolved with variable hidden layer sizing.

The feedforward and recurrent tests cannot be directly compared, as network and

neuron population size for recurrent tests was higher. As shown later, however, recurrent

models demonstrated a positive use of past state i,1fo1T,1ation to improve scores. The size

and population advantage was given because, crnpi icr.lly, the more complex recurrent

59

networks required more powerful architectures to evolve performance above simple

random guesses or "always stand" strategies. As an interesting corollary, very early

generations evolved networks employing the "always stand" strategy, a very beginning

and ineffective strategy found in some human players.

8.1.2.1 Feedforward Models

The results of the feedforward test are presented in Figure 8-3. All tests consisted

of 50 trials. Both variable and fixed hidden layer models evolved successful strategies

often similar to blackjack tables. Varying the hidden layer size increased the average

score per generation by 24.03% in this test, and produced more consistent results with a

lower standard of deviation for the score. Due to extremely computationally expensive

tests, SANE was run for 200 generations and the score achieved at generation 200 taken

as the score for the network on that trial. Each testtook approximately 1.5 hours of CPU

time on a K6-233 NT Workstation. The average generation is the generation at which the

Feedforwa-d Blackjack Tests

Variable Hidden Layer Size Fixed Hidden Layer Size
Average Size 17.423 Average Size
Average Score 74.546 Average Score
Average Generation 82.923 Average Generation
Average Score/ Average Gen 0.899 Average Score/ Average Gen
Standard Dev. Of Score 15.52 Standard Dev. Of Score

Figure 8-3. Feedforward blackjack results

average network achieved its highest score. Beyond this generation (and up to 200

generations, when the test was halted), no higher scoring individuals were evolved.

60

20.CX)()
69.834
96.346
0.7248
19.017

8.1.2.2 Recurrent Models

Recurrent tests produced better results on average, both with and without variable

hidden layer sizes, as shown in Figure 8-4. This is an indication that to a certain extent,

Recurrent Blackjack Tests

Variable Hidden Layer Size
Average Size
Average Score
Average Generation
Average Score/Averar;p Gen
Standard Deviation of Score

22.
77.
82.
0.

9.

Fixed Hdden Layer Size
Average Size
Average Score
Average Generation
Averar;p Score/Average Gen
Standard Deviation of Score

Figure 8-4. Recurrent blackjack results

2

8
0.
16.232

networks were using previous decisions to improve performance. Despite the higher

scores, only a very small number of networks varied their bets. This means that most

networks used feedback information to refine the hit/stand decision rather than

attempting to bet more when the deck was favorable. The networks that did modify their

betting strategy did so successfully. This was an advanced trait and was only evolved by

2 networks (out of the 100 recurrent trials.) A particularly interesting transcript over 20

decks of test data on one of these networks is reproduced in Appendix A, along with

some comments. As Appendix A illustrates, this network was betting on future hands by

raising its bet and succeeding with a 64% accuracy rate. That is, when the network

decided to raise its next bet, it won the next hand 64% of the time. A non card-counting

player following the statistical black jack rules, as defined in this test, would have won

61

only 47.72% of the time. This strategy could not be duplicated often enough to confirm

any trends, or prove a prediction ability.

The trend of larger score gains per generation for the variable hidden layer model

was continued in this test, with variably sized networks gaining an average of 0.13 points

more per generation than the fixed size models. Test results were similar to the trends in

the feedforward test, with growth providing lower standard deviation of score, higher

score, and more score gain per generation.

8.2 Pac-Man

Pac-Man is a classic video game created in 1980 by Namco, Inc. Pac-Man

Figure 8-5. The arcade Pac-Man screen

and there were no large dots.

consists of a roundish character eating dots in a

maze, avoiding ghosts. The only goal in Pac-Man

is accumulating points by eating dots.

The arcade Pac-Man maze is displayed in

Figure 8-5. For this research, a smaller and simpler

maze was used with 1 ghost trying to catch the Pac­

Man. This is a classical exploration and obstacle

avoidance problem. In the arcade game, the player

could eat a large dot and temporarily eat the ghosts.

When this effect wore off after a few seconds, the

player became the prey once again. For this test,

the ghost was always to be avoided by the network,

62

For this experiment, tests were conducted on the smaller and simpler map shown

in Figure 8-6. The black bunkers are immobile barriers and the player and ghost are

shown in random starting positions.

8.2.1 Experiment Description

To prevent memorization of a correct

strategy, based on the conclusions of Richards, et al.

(1997) regarding better performance against non­

deterministic opponents, the Pac-Man was placed

randomly along the upper row, and the ghost was

placed randomly along the bottom row.

Additionally, the ghost's behavior was generally to

pursue the Pac-Man, but 8% of the time it made a

random move, both to induce non-deterministic

behavior, and to prevent the occasional stalemate from

Figure 8-6. The Pac-Man test board

a network hiding in the comer with a ghost 2 squares diagonally in a bunker. The

random moves would 'pop' the ghost out of the bunker and continue pursuit behavior.

The Pac-Man receives 5 points for every dot it eats, and loses a point for bumping

into a wall or a bunker. If the ghost and the player occupy the same cell for 1 move, the

game ends with the player receiving his accumulated points. The game also ends after

100 moves, or if the player clears all of the dots.

Network parameters for the Pac-Man test are shown in Figure 8-7. Networks

consist of 29 inpuL neu··ons, with 7 neurons for inputting the player's x coordinate

63

(neuron n is activated for player in x-coordinate n), 7 neurons for the player's y­

coordinate, and a similar 14 neurons for the ghost's location. An additional input neuron

indicates a bump into the wall or a bunker. Four output neurons enable the player to

move in four directions.

Input Layer Hidden Layer Output Layer

bump

Moo connections omitted for simplicity

Context neurons omitted for simplicity

Figure 8-7. Network structure for Pac-Man tests

The ghost pursues the Pac-Man by moving in the direction of the Pac-Man along

the x or y axis. The pursuit algorithm moves the ghost toward the player (Pac-Man)

along the axis of greatest distance from the player. For example, if the ghost is one

column away (x-axis) and five rows away (y-axis), the ghost will move toward the Pac­

Man along the y-axis. This allows the ghost to chase the Pac-Man when they are both on

the same horizontal or vertical axis. Should this strategy fail due 10 a bunker in the way,

64

the ghost moves toward the Pac-Man along the other axis. Unlike the arcade game,

where any contact by the player and the ghost ends play immediately, the ghost and the

player must occupy the same square for 1 move. This makes the ghost an eliminator for

players that make errors, usually by going to a comer and then moving into a wall. When

the player makes a move into the wall, the ghost has time to catch up and occupy the

same space as the player for 1 time step, thus eliminating the player.

Pac-Man-

Mazes run per netvvork evaluation
Hidden layer size
Netvvork population size
Neuron population size
Sub-population size
Adding neuron mutation rate

recurrent
fixed variable

20 20
20 15-20
140 140
4000 4000
200 200
2% 2%

Figure 8-8. Pac-Man test parameters

This test was performed exclusively with Elman recurrent networks, testing

variable hidden layer sizes versus fixed hidden layer size models. In this experiment, the

variable hidden layer model is tested with hidden layers ranging in size from 15 to 20

neurons. The fixed model has 20 hidden layer neurons. Parameters for the Pac-Man test

are given in Figure 8-8.

8.2.2 Analysis of Results

Figure 8-9 represents the results of 50 trials for the simulated Pac-Man

environment for fixed and variable hidden layer networks. Scores for both models were

virtually identical, although !.h~ variable model continued to have a larger performance

increase per generation. ~;co ·e; are an average of the scores received by a player over 20

65

Recurrent Pac-Man Tests

Variable Hidden Layer Size Fixed Hidden Layer Size
Average Size 18.125 Average Size 20.000
Average Score 82.286 Average Score 82.979
Average Generation 65.500 Average Generation 81.375
Av. Score/Av. Gen 1.256 Av. Score/Av. Gen 1.020
St. Dev. of Score 10.650 Standard Dev. Of Score 16.785

Figure 8-9. Results of the Pac-Man test

trails, each one initialized with the player and ghost in random positions along opposite

walls. Scores were measured at the end of 200 generations. The average generation in

Figure 8-9 represents the average generation at which the highest score was achieved.

Evolution beyond this generation did not produce better scoring networks.

The Pac-Man network is always aware of its position and the position of the ghost.

Therefore, the Pac-Man experiment has an accessible environment, which differs from

the inaccessible blackjack environment.

Most networks followed the outer edges of the maze and ate the dots along the side

walls. Higher scoring networks initially followed this strategy and then moved to the

center of the maze. Finding a path to the center was a discriminator between average

networks and high scoring models. However, without advance knowledge of bunker

placement or ghost avoidance, high scoring networks navigated well. They rarely if ever

bumped into walls and formed efficient paths to eat large numbers of dots.

66

Chapter 9

Contributions of This Research

9.1 Evolutionary Algorithm Performance Increases

9.2 New Domains

67

69

69

9. Contributions of This Research

This research has demonstrated a new modification to the SANE neuro-evolution

tool and established the effectiveness of evolving Elman recurrent networks. In addition,

performance enhancements in the form of more consistent network evolution and higher

score increases per generation were also achieved. This conclusion was confirmed by

tests in the domain of partially observable Markov decision problems, exploration and

obstacle avoidance, and trivial tests evolving networks to add a predetermined number of

inputs (not reproduced here because of triviality).

9.1 Performance of the Evolutionary Algorithm

Allowing the evolutionary algorithm to modify the number of hidden layer

neurons in the networks increased the average scores over the domain of blackjack, but

had no effect on the raw scores in the Pac-Man test. Average score increases per

generation were higher in variably sized hidden layer models for every test conducted in

this research. Average score per generation increased by using variable hidden layer

sizing by 4.44% on recurrent blackjack tests to 24.03% on feedforward blackjack tests.

The networks, with variable hidden layer size, were more consistent in performance

(lower standard deviation of scores), and demonstrated performance equal to fixed hidden

layer models more quickly (higher average score/average generation to reach high score).

9.2 New Domains

This research extended the domain of SANE applications to partially observable

Markov decision problems and exploration and obstacle avoidance. SANE evolved a

68

network capable of predicting cards in future blackjack hands and evolved to make its

environment more accessible, as defined in Section 1.1, by using previous state

information.

SANE, modified with variable hidden layer sizing, was particularly effective in

partially observable Markov decision problems. It has only been recently that neuro­

evolution has evolved the power to solve non-Markovian problems. SANE has

demonstrated effectiveness in these domains and varying the size of the hidden layer has

improved performance and created higher performing networks more quickly (Gomez,

1997, Gomez and Miikkulainen, 1998.)

SANE was also modified with the ability to evolve Elman recurrent networks.

For the domain of blackjack play, this modification evolved networks that displayed

predictive abilities. Elman recurrent networks are an efficient addition to SANE as they

require little modification to the internals of SANE. A distinction is simply made in the

connection of a neuron to indicate a connection to a context neuron. Context neurons

then function as input units and SANE can be applied to many new domains.

This research has also made some headway into creating neuro-evolution models

capable of "scaling up" to larger and more complex domains. Tests in this research have

confirmed that growing or varying the hidden layer size is an effective technique for

creating larger neural models, and may improve network performance for many domains.

69

Chapter 10

Conclusion and Future Work

7J

10. Conclusion and Future Work

The goal of dynamic construction of neural networks supports a reduction in

development time and is a step toward, in the general sense, a more autonomous learning

system (Romaniuk, 1996.) Automating the selection of hidden layer siz.e augments this

goal and simply becomes another search criterion for the evolutionary algorithm. For the

domains in this research, varying the hidden layer siz.e has been shown to improve the

score of the network per generation and provide a direction toward that autonomy.

Neuro-evolution researchers have demonstrated the ability to effectively solve

problems in many domains. Allowing an evolutionary algorithm to determine the

appropriate network size is another step toward this truly autonomous learning system.

Networks evolved in this research, with no prior domain knowledge of the game of

blackjack, developed a very effective card counting strategy and employed that strategy

to overcome the dealer's built-in advantage.

Future directions for neuro-evolution research include refining and modifying the

very effective SANE model and adding functionality and applicability to newer and more

difficult classes of problems. Research in the area of reducing CPU time of evolutionary

algorithms is an important step in evolving more complex behavior. An interesting area

of future research is augmenting the work of Gomez and Miikkulainen in incrementally

evolving behaviors. Networks under incremental evolution are not evolved from a

random population of neurons and networks, but rather start evolution by building upon

previously evolved decision strategies.

71

Delta-coding and hidden layer size variation are together significant in

incremental evolution, since they are both methods that can be used when a population

has converged. Delta-coding has been shown to be effective in incremental evolution.

Hidden layer growth could be combined with Delta-coding to provide more power to

networks attempting to achieve higher scores in difficult, non-Markovian tasks. Delta­

coding increases the diversity of the candidate solutions and hidden layer growth

increases the dimensionality of the solution. Exploring this combination for solving non­

Markovian tasks is an interesting consideration for future research.

As stated in 6.4, incremental evolution with Delta-coding requires a decomposition of

the main task into sub-tasks to be performed by the networks. These tasks build upon

one another and are combined to allow the successful evolution of more complex

behavior. Expecting a network to evolve tournament-level chess play from scratch is

unrealistic. However, by steadily increasing task difficulty and building upon knowledge

gained earlier, incremental evolution seems a promising approach to solving more

difficult classes of problems. In each step of the incremental evolution, the difficulty of

the task increases and the network requires more power. Varying or growing the hidden

layer size may provide additional power to the network evolving more difficult decision

strategies on non-Markovian tasks.

Another future area for exploration is on-line learning. For the experiments in this

research, network weights and connections were not modified after training. On-line

learning systems continue to fo,,rn during their "lifetime" as an agent, provided

performance feedback mens 1rc:: are available. Growing the hidden layer size under on­

line learning is another intrn ~:,tJn:~ investigation, as networks that learn on-line must be

72

more adaptable and robust. Inputs to the network during on-line learning may be outside

the range anticipated by the designer's training inputs. As a result, networks using on­

line learning must be able to adapt to these changes. Variable hidden layer sizing could

help in this adaptability.

73

Appendix A

An Interesting Blackjack Trial

It is important to note that among the recurrent networks evolved to play '21 ',

only the top 2% varied their bets and gave any indication of using feedback information

to affect future decisions. This is one such network with the results of a test conducted

over 20 decks of play. While this network appears to exhibit some predictions of future

cards based on bet increases, it is impossible to prove that this network was not simply

lucky. There were not enough networks evolved with these advanced abilities to make

generalization possible. It is also interesting that when the network decided to increase

its bet for the next hand, the network won the next hand 64% of the time. If a human

player in Las Vegas achieved this percentage, they could become rich very quickly. In

the following tables, winning hands are shaded. The hands, where the network decided

to raise the bet for the next hand and the next hand was lost, are covered in black. The

hands, where the network decided to increase the bet on the next hand and the next hand

won, are shaded (as winning hands) and bordered in black.

74

·················:Deaier·:·· ·· ·· ·· r ·· Mattie:·· ············:--·······:·············· ·;··Mathe·: ···· · ·········· ·, ·· ····· ················ .Mathe·:·· ···· ··· ····r·······,-··········· Mathe- •

Player ; Up :Next • Network matically Hand/ :Ne>Ct j Network maticallV j Hand/ :Next • Network matically Hand/ lNext j Network matically Hand/
Hand • card j Bet Decision Correct? Bank j Bet :Decision • Correct? j Bank • Bet :Decision COrrect? Bank j Bet !Decision Correct? : Bank

: Hard 6 : A : $1 • Hit Yes : Hard 9 : $1 : Hit • Yes •Hard 17: $1 • Stand : Yes $99 : , • ,
:- ···so1'i·1·s····:····· i< ····:··i2··;·· ·siarid.. ····r;,-a· ····-r ···$ss·-r······-:- ···· ··········;···············:···· ·· ·· ···-:-··· ··· ·-:-··· ······ ··· ·-r·············· ···········1······· -r· ···· ·· ······ · ··· ········ ··· ··;····· ···· ·•

Hard 18 , A : $1 Stand Yes : . ~~~
:NE"w o E ·c K . . . : : : .

. ·:··· ··········!· : :--·········· ·. ·+ ··f· . ····-~---···· ········~-

•NEW DECK : : : : . : . : i : : . :
:-··~ia.rc1·,·;· ··:- ····-;:.····:··i1···,· ····Hi····:·····ves····-:-Ha~d·1·iti1··r·· siand···,····ve·;; ····:·· i11·s··r·······,·············· -r···············:···········-r ······· -:-·· ············=················,··········:

!J;illi~t~;~.6'.(iiit~t)~t~l!ll~:~~~,--i&Ye~~*~~1\~.~4::ft~t%'f:.~\~'.~:~
L n;~ H Li i l i: .. : :: i .. Hf.H.~113~~~. i ..Y.•e .. Ijiitl ... :L .:. .L. . T .: .-1:- : L . T : : . :
····••H~f~O•~··••i••····~••Jm:l!KtMffiwtttlt:ii:••J•t•Ul:~J•ll••t•••i•mm••···••m•:t:t:t:t:tttt••••?t::lfH:ttmt:l?JtlklJ:ttHW?t•••mtnntm••••inmt:•t:t•••t•t.rd
:.~ •• a,&il•®••~·••:tt=•••l••·•$ttltfitMJhm~:tt;$J:tti••·•• nk:•stiMt@#N M•••!t,,n\&#JNtt@Jtf:ttt#:t:\:~•=¥Mbttrttl@#ht@Mlmt:•r•tttt:tt)
\ So1t 13 : K : $2 • Hit : Yes :Hard 13: $2 \ Hit : Yes :Hard 1 ($1 • Hit I Yes Hard 16; $1 : Stand : No • $113 :

: Hard 15 : 9 • $2 • Stand • Yes : $111 I : • I I • • • '. • : ' •
====:,Mara:•t~f===·==t=~:::::=.===:===i:t====•===========,t:flH:==·==:•:'f:==i~=:=:===::::f.mi~:t1t:=:Jf::::;:=:=:=~!lr:;::=:::::::t#)t=::=•=J:Jlst:=:=:=:h:::,::::\:::::r:J/;{tl====:t:::;t::i=:=::/::}:•::•::~:=:=:t•=:=:=:=•=:=·=~==:=:=:==:=•:::::::::::::::::::::::::::::::::::::/•:::::::::l{::::ll
: Hard 13 • 3 ! $1 • Stand ' No · $112 : ' · l I · · ! -' ' ! · ·

!]&ilJ·f ff ::~;:.•:: .• a::.::.:.•:m.1.·:·.:·.:.1:•·:•:••·:·::.: ••·••••· .J .F:.••·'•: : .. i •.. · :.:•.•·········:·:·.···1.::::.t•.::::•••·:: .:1 •:.•••::.:: ... ::••:::.:•

l ~.~.~~ .. f? ... L. ... ~ .. ::Li1 .. , ... ~~~~~·••:•• ·· ···~~ : .. ~~)) .. L•.............. ,•..•...... .. :•.......... ~;.•. ::::::::::: .. L:
: Hard 9 9 : $2 • Hit · Yes Hard 16: $1 · Stand · No • $111 • : · : i · : ·

75

• Hard 17 , J : $1 : Stand : Yes : $121 : : : : : : : : : : • , '.

:::·:·:·:ffiid:iJtt·il:·JWHJtMf.Wfl#W# #(Wi#O=i ::~iftfii@JlMlWrMt#1UMt:\:\?=lWW:HW:@t:ltlMFl::%=W@@tP:JtlllW#fNW1MWlFJltkW
• Soft 17 : 7 : $1 : Hit • Yes Hard 16 $1 : Stand : Yes : $121 • : : • : : : • i
'.:·:·:·a~mtr:=:t:te=r•:·::tt=/:\stsMt:7=:•:wts:\'h:·1:nt:::\=•:•:•:•=:·'?':··;·:tt==:=·t=:y:=·=··:·\·:)=·?Vt=:·:t·p:=:=:=·=:7k:t:·:t·=:::··=t·=:=·•:t:===:f·==:t==:·:=(tft:t:=·:··::~=:d:t··N==:•:=:::?='·:•:::=:=·=:>\:=:::::=:::·:f=·=:::=:=::

; •••••• ;~m:i~=·t=:=:=:=:·~:=:::=:t :=::;t~:·=·~:::;.=·:·:n=:=:; =·~=·==:=(••• =:;=~~4::=::=:=k:M·W:~==~=:=:=¥:=:=:::=:=:=:=:=t•·==:=:==:~==w:n=:=:=+1+=t===~~ •• w~=···+:%·=~===t=n==t==·=·====L:=·===-==···====·=·t==·=·=@:f .=.=:::=:=·===·==t=\=::====:=:::=:t=·:·=··=·t:=*M·=·:=-::==·=·;
: Hard 5 : 6 $1 : Stand : No . $121 . . . : : : • : . . l r;. Evii .. ifrc K . r ········~··· ············:-··············•·····'.·· . . ··· ·······r·····r··•·········=·· . . . : . ·· ····i

ifiil~·-••tlliliiiaa,,■•-~
: Hard 16 : 3 : $1 : S1and : Yes • $121 : : : : : : : : : : : · 1
r·· Ha~d·1·4········a·······$1···r····Hii··········v~·s·· ···i~ia·rd·1·iti"1 .. r·· s1anei······ ···No·····:··i1io··r·· ·· ··-:-···· ··· ·······:··· ··· ·········-;---··········=·········:············ ···; ··············· ···· ·· ······1
rN·Ew D E,C:K : ··.·.··J ,.. ···· ·····················:···· ···.· ··· ... ············ ·· :·····.· . ···r.·· ·.·)·· ············· ··:·· ·········
= . .. ~~r.~ .. ~.? .. , ~ , .. J1 .. .i ~.~~.r:i.~ ... • x~~ :.J1.~.~ .. ; , • , i i ,•......... .. .•........ ; = ,

: Hard 17 : 10 : $1 • Stand : Yes : $118 , • : : : : : : : , • : 1 :·· ·Hard·"i·o···:- ····;(:"····,·· ·$·2·-r···siiirid···:··· ··yas·····,··s1·1·,··,········,···············: ······· ········ -r············=········=··············-:-···············,············=········,··············r················,·· ········1

76

li;rrT'''.~'.'IiTEr-I?:TTrrn:rT:~r::""'"~T''.;'C:':'T'~''':I=,,,,,,::,,:~~r'.';'.°"'~I,: ~:;T~:~;t~,: :~,e:~,:: 't::~,1
: Hard 12 : A : $1 : Hit , Yes Hard 14; $1 : stand : Yes , $116 : : , : : : : • :
l i¾am:i~v~~-·-.·.! ·<·j::·•ilJh-:••·:jtiU~ij::)h::-ya(n)·si~i?i=\>::,.::=i•::ii:::::::·:::::::i::i\/:/i)·:i:i:::::::iifr?:~·i·m?::\-::·h··==~•:::. •. :::•:•.·•:=:-·•·:::•-w.·y•:•+···•--:=❖t·=·=·=~·.:·:·.-.::•:::w:•:.:.: •.·•:•:•·:·.·•:•:•·=:=<·.w.•.<•.:,
~'i~i~·~o~E:c·l·····i ··~~ ... l ... ?!~.~~ .. L x~~ :. J~.~.~+······.:..·············/···············;.···········{·······L··············: : : l i 1 :

'M#ifr:i,~,):~ •- !h· ·~)--·,·•:i,Jh700@:·,;,:'rnufflil:U;fi!ffik'1Mill\tTut'illiiN"'illlWfit'tl'li!@M'!&'W•
• Hard 10 : 4 • $1 : Hit : Yes Hard 20: $1 • Stand • Yes : $115 • : : : : : , : :
t .. ~.ax~.1.~ ... i ?. : .. ~~ ... l ... ~!~.~~ ... :.:.:.x~~ i.J1.1.~:.: ... ::.:: .. :: .. : : : : / L l ! : ... l l : : ... : .. : ... :.. .
: Hard 20 : J : $2 Stand Yes : $113 • • • • • •

77

AppendixB

Source Code

The original SANE 2.0 C source code is available from the UTCS Neural Networks'

home page: http://www.cs.utexas.edu/users/nn/

SANE source code modified with sub-populations, dynamic memory allocation,

variable hidden layer sizing and Elman recurrency can be obtained by e-mailing Dr.

Khosrow Kaikhah at kk:02@swt.edu. The latter version is in C, but was compiled under

Visual C++ 5.0 and is easier to port to an NT workstation. The following code is used to

perform the blackjack and pacman tests. The code is called each time SANE evaluates a

network. Each function performs the test, rates the agent (network) in the environment,

and returns a score.

78

Bjack.h

// bjack.h
// header file for bjack.c

float play(networle); r returns a float for this networks performance */
r performance is # of chips at end of <ROUNDS> decks of play */

r set up the cards*/
r shuffle the deck*/

void init_deck(deck*);
void shuffle(deck*);
int find_in(char); r find the input neuron for a card*/

/* depends on which card in hand it is */
double find_bet(double,double,double); /* find the next bet based on network output*/
int acc_check(int,int,int); /* check the hit/stand decision for accuracy*/

79

Bjack.c

// Bjack.c
II
// Ryan Garlick
II
// this file is the blackjack simulator for testing sane
// sane plays alone against the dealer - standard blackjack
// rules - dealer hits soft 17, stays on hard 17, hits 16.
// Double down is an optional feature, but splitting is not
// allowed.
II To reduce the search space, the network is not allowed to
// hit a 21 or higher.

// ouput neuron 0 higher than output neuron 1 indicates hit,
// opposite is stand. output 3 is the next bet (higher for higher bet)

#include "sane.h"
#include "sane-util.h"
#include "bjack.h"
#include "sane-nn.h"

float play(net)
network* net;

//main blackjack function

{
deck my_deck;
int i,j,remain;
int p_tot,p_alt_tot;

int d_tot,d_alt_tot;
float bank=100.0;

//struct for the deck of cards

//player total and player alt. total
//alt totals will always be higher if ace

//dealer total and dealer alt. total
//the players bankroll -

//used to find network fitness
int q,dealer_hold,play_hold; //holder for neurons to activate based on cards
float tot_dec,corr_dec; //total and correct decisions made by the network
float bet = 2.0; //bet = 1, next bet determined by network
float next_bet = 2.0; //first bet will be 1 regardless
int hit; //boolean if the network hit
float ret_val,bet_val,bet_val2; //return performance-average of money and accuracy

tot_dec = corr_dec = 0.0; //zero out total and correct decisions
for (i=O;i<ROUNDS;++i) {

init_deck(&my_deck);
shuffle(&my_deck);

remain = 51; //counter for# of remaining cards - 51 to 0

while (remain >= 12)
{ //lets play a deck

bet=next_bet;
p_tot = p_alt_tot = 0; //clear player hand

d_tot = d_alt_tot = 0; //clear dealer hand
forU=0;j<41 ;++j) //init input neurons to 0
net->input[j] = 0.1000;
p_tot += my_deck.cards[remain].value; // get player card 1
if (my_deck.cards[remain].value = 1)

p_alt_tot += 11;
else

p_alt_tot += my_deck.cards[remain].value;
remain-= 1;
p_tot += my_deck.cards[remain].value; //get player card 2
if (my_deck.cards[remain].value = 1) {

if (p_alt_tot < 11)
p_alt_tot += 11;

80

else
p_alt_tot += 1;

}
else

p_alt_tot += my_deck.cards[remain].value;
if(p_alt_tot>p_tot) //input to net

play _hold:p _alt_tot +6;
else

play_hold:p_tot-4;
net->input[play_hold]=.500;

remain -=1;

d_tot += my_deckcards[remain].value; // get dealer card 1
if (my_deck.cards[remain].value == 1)

d_alt_tot += 11;
else·

d_alt_tot += my_deck.cards[remain].value;
remain-= 1;

d_tot += my_deckcards[remain].value;
if (my_deck.cards(remain].value = 1)

if (d_alt_tot < 11)
d_alt_tot += 11;

else
d_alt_tot += 1 ;

}
else

//get dealer card 2
{//this is the up card

d_alt_tot += my_deck.cards[remain].value;
dealer_hold=find_in(my_deck.cards[remain].face);
net->input(dealer_hold]=.500; //input dealer up card to net

remain -=1;
if (remain < 47)

activate_net(net,0); //if 1st time thru deck, zero context layer history
else

activate_net(net, 1);
bet_val=net->sigout[2];
bet_val2=net->sigout[3];
next_bet=find_bet(bet_ val, bet_ val2, bet);
tot_dec += 1;
if (net->sigout[0]>net->sigout[1])

hit= 1;
else

hit= 0;
corr_dec += acc_check(play_hold,dealer_hold,hit); //was it correct?

while((net->Sigout[1]<net->sigout[0])&&(p_tot<22)) {
p_tot += my_deck.cards[remain].value; //get player next card
if (my_deck.cards[remain].value = 1) {

if (p_alt_tot < 11)
p_alt_tot += 11;

else
p_alt_tot += 1;

}
else

p_alt_tot += my_deck.cards[remain].value;

for(q=0;q<41 ; ++q)
net->input[q]=0.1000;

if(p_tot<22) {
if((p_alt_tot>p_tot)&&(p_alt_tot<22)) //input t l !let

play_hold=p_alt_tot+6;

81

//made a decision

else
play_hold=p_tot-4;

net->input[dealer_hold]=.500; //input dealer up card to net
net->input[play_hold]=.500; //input player card to net
activate_net(net,0); //get a hit/stand decision
bet_val=net->sigout[2]; //nexJ. bet is last output of sigout[2]
bet_val2=net->sigout[3];
nexJ._bet=find_bet(bet_ val, bet_ val2,bet);
tot_dec += 1;

if (net->sigout[0]>net->sigout[1])
hit= 1;

else
hit= 0;
corr_dec += acc_check(play_hold,dealer_hold,hit);

}
remain-= 1;

// player is done hitting or standing, now find dealer total
while (({d_tot==d_alt_tot)&&{d_tot<17))11({d_tot<d_alt_tot)&&{d_alt_tot<18))) {

d_tot += my_deck.cards[remain].value; //get dealer nexJ. card
if (my_deck.cards[remain].value == 1) {

if (d_alt_tot < 11)
d_alt_tot += 11;

else
d_alt_tot += 1;

}
else

d_alt_tot += my_deck.cards[remain].value;
remain -=1;

} //end of dealer hitting
if ({p_alt_tot<22)&&{p_alt_tot>p_tot)) //now determine the winner

p_tot = p_alt_tot;
if ((d_alt_tot<22)&&(d_alt_tot>d_tot))

d_tot = d_alt_tot;
if (((p_tot>d_tot)&&{p_tot<.22))11({p_tot<22)&&{d_tot>21))) //player wins

bank+= bet;
if (({d_tot>p_tot)&&{d_tot<.22))11({d_tot<.22)&&(p_tot>21))) //dealer wins

bank-= bet;

//end of this deck (while remaining cards >= 12)
} //end of rounds for loop
if {bank< 0)

bank= 0;
ret_val= ((bank+((corr_dec/tot_dec)*100))/2);

// if (ret_val < 0)
// ret_val = 0;

return ret_val;
} //end of play

void init_deck(my_deck2) //this function creates a deck
deck* my_deck2;
{
inti;
for (i=0;i<4*NUM_DECKS;++i) {

my_deck2->eards[i].face='A';
my_deck2->eards[i].value=1;

}
for (i=4*NUM_DECKS;i<8*NUM_DECKS;++i) {

my_ deck2->eards[ij.f ace='2';
my_deck2->eards[i].value=2;

82

for (i::8*NUM_DECKS;i<12*NUM_DECKS;++i) {
my _deck2->eards[i].face='3';
my_deck2->eards[i].value=3;

}
for (i=12*NUM_DECKS;i<16*NUM_DECKS;++i) {

my_deck2->eards[i].face='4';
my_deck2->eards[i).value=4;

}
for (i=16*NUM_DECKS;i<20*NUM_DECKS;++i) {

my _deck2->eards[i). face='5';
my _deck2->eards[i]. value=5;

}
for (i=20*NUM_DECKS;i<24*NUM_DECKS;++i) {

my _deck2->eards[i). face='6';
my_deck2->eards[i).value=6;

}
for (i=24*NUM_DECKS;i<28*NUM_DECKS;++i) {

my _deck2->eards[i].face='7';
my _deck2->eards[i).value= 7;

}
for (i=28*NUM_DECKS;i<32*NUM_DECKS;++i) {

my_deck2->eards[i].face='8';
my_deck2->eards[i).value=8;

}
for (i=32*NUM_DECKS;i<36*NUM_DECKS;++i) {

my _deck2->eards[i).face='9';
my_deck2->eards[i).value=9;

}
for (i=36*NUM_DECKS;i<40*NUM_DECKS;++i) {

my _deck2->eards[i].face='1 ';
my _deck2->eards[i).value=1 O;

}
for (i=40*NUM_DECKS;i<44*NUM_DECKS;++i) {

my_deck2->eards[ij.face='J';
my _deck2->eards[ij.value=1 O;

}
for (i=44*NUM_DECKS;i<48*NUM_DECKS;++i) {

my_deck2->eards[ij.face='Q';
my_deck2->eards[i).value=1 O;

}
for (i=48*NUM_DECKS;i<52*NUM_DECKS;++i) {

my_deck2->eards[ij.face='K';
my_deck2->eards[ij.value=1 O;

}
}

void shuffle(my_deck) //shuffles the cards
deck* my_deck;
{
char tempf ace;
int tempval;
int h,i,randhold;
for (h=O;h<2;h++){

for (i=O;i<52*NUM_DECKS;++i) {
randhold = randint(0,51 *NUM_DECKS);
tempface = my_deck->eards[i).face;
tampval = my_deck->eards[i).value;
1 ny_deck->eards[i].face = my_deck->eards[randhold].face;
my _deck->eards[i].value = my _deck->eards[randhold). value;
rny_deck->eards[randhold).face = tempface;
rny_deck->eards[randhold).value = tempval;

83

int find_in(face)
char face;

//find the input neuron for this

{
if (face= 'A')

return 28;
if (face = '2')

return 29;
if (face = '3')

return 30;
if (face = '4')

return 31;
if (face = '5')

return 32;
if (face = '6')

return 33;
if (face = '7')

return 34;
if (face = '8')

return 35;
if (face = '9')

return 36;
if (face = '1 ')

return 37;
if (face= 'J')

return 38;
if (face = 'Q')

return 39;
if (face = 'K')

return 40;
}

double find_bet(netout,netout2,prev _bet)
double netout, netout2;
double prev_bet;

{
double ret_bet;
next bet

if (netout<netout2) {
if (prev_bet=1.00)

return prev_bet;
else {

}
}
else {

more next time

ret_bet = prev_bet - 1.00;
return ret_bet;

if (prev_bet==5.00)
return prev_bet;

else {
ret_bet = prev_bet + 1.00;

return ret_bet;
}

}

int acc_check(play,deal,dec)

//card and this input order (2nd card, etc.)

//find the bet based on output neuron 3

//return value of

//bet less next time

//bet

int play, deal, dee; //dee is decision 1 for hit, 0 for stand
{

switch(play) {

case O:

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

if(dec=1)
return 1;

else
return O;

if(dec=1)
return 1;

else
return O;

if(dec=1)
return 1;

else
' return O;

if(dee=1)
return 1;

else
return O;

if(dec=1)
return 1;

else
return O;

if(dec=1)
return 1;

else
return O;

if(dec=1)
return 1;

else
return O;

if(dee=1)
return 1;

else
return O;

if ((deal<34)&&(deal>30))
if (dec=::0)

return 1;
else

return O;
else

if (dee==1)
return 1;

else
return O;

if ((deal<34)&&(deal>28))

//hard 4 - always hit

//hard 5 - always hit

//hard 6 - always hit

//hard 7 - always hit

//hard 8 - always hit

//hard 9 - always hit

//hard 10 - always hit

//hard 11 - always hit

//hard 12 - stay against dealer 4,5,6

//hard 13 - stay against dealer 2 thru 6

85

if (dec==O)
return 1;

else
return O;

else
if (dec=1)

return 1;
else

return O;
case 1 O: //hard 14 - stay against dealer 2 thru 6

if ((deal<34)&&(deal>28))
if (dec=O)

return 1;
else

return O;
else

if (dec=1)
return 1;

else
return O;

case 11: //hard 15 - stay against dealer 2 thru 6
if ((deal<34)&&(deal>28))

if (dec==O)
return 1;

else
return O;

else
if (dec==1)

return 1;
else

return O;
case 12: //hard 16 - stay against dealer 2 thru 6

case 13:

if ((deal<34)&&(deal>28))
if (dec=O)

return 1;
else

return O;
else

if (dec=1)
return 1;

else

if(dec=O)
return 1;

else
return O;

return O;
//hard 17 - always stay

case 14: //hard 18 - always stay
if(dec=O)

return 1;
else

return O;
case 15: //hard 19 - always stay

if(dec==O)
return 1;

else
return O;

case 16: //hard 20 - always stay
if(dec=O)

return 1;
else

return O;

86

case 17: //hard 21 - always stay
if(dec=O)

return 1;
else

return O;

case 18: //soft 12 - always hit
if(dec=1)

return 1;
else

return O;

case 19: //soft 13 - always hit
if(dec=1)

return 1;
else

return O;

case 20: //soft 14 - always hit
if(dec=1)

return 1;
else

return O;

case 21: //soft 15 - always hit
if(dec=1)

return 1;
else

return O;

case 22: //soft 16 - always hit
if(dec==1)

return 1;
else

return O;

case 23: //soft 17 - always hit
if(dec=1)

return 1;
else

return O;

case 24: //soft 18 - hit against dealer 9, 1 O,j,q,k,a

case 25:

if ((deal 28)11((deal<41)&&(deal>35)))
if (dec=1)

return 1;
else

return O;
else

if (dec=O)
return 1;

else

if(dec=O)
return 1;

else
return O;

return O;
//soft 19 - always stay

case 26: //soft 20 - always stay
if(dec==O)

return 1;
else

87

return O;
case 27: //soft 21 - always stay

if(dec=O)
return 1;

else
return O;

default:
printf("lnvalid parameter for player hand");
exit(1);

} //end of switch statement

88

llpacman.c
II
II Ryan Garlick
II
II Performs the pacman simulation

#include "sane.h"
#include "sane-util.h"
#include "pacman.h"
#include "sane-nn.h"

float pacman(net)
network* net;

{
cell world[W _SIZE][W _SIZE];
ag_stat agent;
int i,j,q;
float score_sum = 0.0;
int gx,gy;
int ax,ay;
int gh_x,gh_y;
int high_out;
int in_neur1,in_neur2;
int g_in_neur1, g_in_neur2;
float ReturnVal;
int randmove;
II initialize the world

for (q=0;q<ROUNDS;++q) {
gx = randint(0,W _SIZE-1);
gy =6;
ax = randint(0,W _SIZE-1);
ay=0;

for(i=0;i<W _SIZE;++i)
for (i=0;j<W_SIZE;++j) {

world[i][j].ghost = 0;
world[ijU].dot = 1; ·

world[i][j].bunker = 0;

world[1][1].bunker = 1;
world[2][1].bunker = 1;
world[4][1].bunker= 1;
world[5][1].bunker = 1;
world[1][2].bunker = 1;
world[5][2ibunker = 1;
world[1][4].bunker = 1;
world[5][4].bunker = 1;
world[1][SJ.bunker = 1;
world[2][5].bunker = 1;
world[4][5].bunker = 1;
world[5][5].bunker = 1;

Pacman.c

//main pacman experiment function

//ghost x and ghost y;

89

//place the ghost
world[gx][gy].ghost = 1;
gh_X= gx;
gh_y = gy;

//place the agent
agent.ag_x = ax;
agent.ag_y = ay;
agent.in_ghost = O;
agent.dotcount = 37;
agent.move_count = O;
agent.score= 0.00;

for (i=O;i<NUM_INPUTS;++i)
net->input[i] = .1000;

//input to net
do{ //main loop
if (agent.ag_X=O)

in_neur1 = 1;
if (agent.ag_x==1)

in_neur1 = 2;
if (agent.ag_x==2)

in_neur1 = 3;
if (agent.ag_x'-3)

in_neur1 = 4;
if (agent.ag_x--4)

in_neur1 = 5;
if (agent.ag_x==5)

in_neur1 = 6;
if (agent.ag_x'--6)

in_neur1 = 7;

if (agent.ag_y==D)
in_neur2 = 8;

if (agent.ag_y=1)
in_neur2 = 9;

if (agent.ag_y--2)
in_neur2 = 1 O;

if (agent.ag_y==3)
in_neur2 = 11;

if (agent.ag_y==4)
in_neur2 = 12;

if (agent.ag_y==5)
in_neur2 = 13;

if (agent.ag_y=6)
in_neur2 = 14;

if (gh_x 0)
g_in_neur1 = 15;

if (gh_x=1)
g_in_neur1 = 16;

if (gh_x 2)
g_in_neur1 = 17;

if (gh_X=3)
g_in_neur1 = 18;

if (gh_:x= 4)
g_in_neur1 = 19;

if (gh_x==5)
g_in_neur1 = 20;

if (gh_:x=:6)
g_in_neur1 = 21;

if (gh_y-::0)
g_in_neur2 = 22;

if (gh_y=1)
g_in_neur2 = 23;

if (gh_y==2)
g_in_neur2 = 24;

if (gh_y=3)
g_in_neur2 = 25;

if (gh_y==4)
g_in_neur2 = 26;

if (gh_y==5)
g_in_neur2 = 27;

if (gh_y==6)
g_in_neur2 = 28;

net->input[in_neur1) = .5000;
net->input[in_neur2] = .5000;
net->input[g_in_neur1] = .5000;
net->input[g_in_neur2] = .5000;

if (agent.move_count=0)
activate_net(net, 1); //get a decision

else
activate_net(net,0);

for (i=0;i<NUM_ TRUE_INPUTS;++i)
net->input[i] = .1000;

agent.move_count += 1;
high_out = 0;

for (i=O;i<NUM_OUTPUTS;++i) {
if (net->sigout[i]>net->sigout[high_out])

high_out = i;

switch (high_outY {
case 0: //move forward

if ((agent.ag_y == W _SIZE-1)ll(world[agent.ag_x][agent.ag_y+ 1).bunker==1)) {
net->input[0] = .5000; //bumped into a wall

}
else {

}
break;

if (agent.score> 1.000)
agent.score-= 1.000;

agent.ag_y += 1;

case 1: //go right
if ((agent.ag_x = W_SIZE-1)11(world(agent.ag_x+1](agent.ag_y).bunker==1)) {

net->input(0) = .5000; //bumped into a wall

}
else {

}
break;

if (agent.score> 1.000)
agent.score -= 1.000;

agent.ag_x += 1;

case 2: //go left
if ((agent.ag_x == 0)ll(world[agent.ag_x-1][agent.ag_y).bunker=1)) {

net->input[0l = .5000; //bumped into a wall
if (agent.score> 1.000)

agent.score -= 1.000;

91

else {

}
break;

agent.ag_x -= 1;

case 3: //go backwards
if ((agent.ag_y = 0)ll(world[agent.ag_x][agent.ag_y-1].bunker=1)) {

net->input[0] = .5000; //bumped into a wall
if (agent.score> 1.000)

}
else {

agent.score -= 1.000;

agent.ag_y -= 1;
}
break;

} //end of case statement

if (wortd[agent.ag_x][agent.ag_y].dot == 1) {
world[agent.ag_x][agent.ag_y].dot = 0;
agent.dotcount -= 1;
agent.score+= 5.00;
}
if (world[agent.ag_x][agent.ag_y].ghost == 1) {

agent.in_ghost = 1;
}

//move the ghost
randmove = 0;
if (randint(0, 100)<9) {

if (randbit()) {

}
else {

if (randbit()) {

}

if ((world[gh_x+1][gh_y].bunker = 0) && (gh_x+1 <W_SIZE)) {
world[gh_x][gh_y].ghost = 0;
gh_x += 1;

world[gh_x][gh_y].ghost = 1;
}

else {
if ((world[gh_x-1][gh_y].bunker = 0) && (gh_x != 0)) {

world[gh_x][gh_y].ghost = 0;
gh_x-= 1;

world[gh_x][gh_y].ghost = 1;
}

if (randbit()) {
if ((world[gh_x][gh_y+1].bunker = 0) && (gh_y+1 < W_SIZE)) {

world[gh_x][gh_y].ghost = 0;

}

gh_y += 1;
world[gh_x][gh_y].ghost = 1;

}

else {
if ((world[gh_x][gh_y-1].bunker == 0) && (gh_y != 0)) {

world[gh_x][gh_y].ghost = 0;
gh_y-= 1;

world[gh_x][gh_y].ghost = 1;
}

92

randmove = 1 ;
}
if (((abs(agent.ag_x-gh_x))>=(abs(agent.ag_y-gh_y)))&&(randmove = 0)) {

}

if ((agent.ag_x > gh_x) && (world[gh_x+ 1][gh_y].bunker == 0)) {
world[gh_x][gh_y].ghost = 0;

}
else {

gh_X+= 1;
worlc(gh_x][gh_y].ghost = 1;

if ((agent.ag_x < gh_x) && (world[gh_x-1][gh_y].bunker = 0)) {
world[gh_x][gh_y].ghost = 0;

}
else {

gh_x-= 1;
world[gh_x][gh_y].ghost = 1;

if ((agent.ag_y > gh_y) && (world[gh_x][gh_y+ 1].bunker == 0)) {
world[gh_x][gh_y].ghost = 0;

else {

gh_y += 1;
world[gh_x][gh_y].ghost = 1;

if ((agent.ag_y < gh_y) && (world[gh_x][gh_y-1].bunker = 0))
world[gh_x][gh_y].ghost = 0;
gh_y-= 1;
world[gh_x][gh_y].ghost = 1;

else if (((abs(agent.ag_x-gh_x))<(abs(agent.ag_y-gh_y)))&&(randmove =0)) {
if ((agent.ag_y > gh_y) && (world[gh_x][gh_y+1].bunker = 0)) {

world[gh_x][gh_y].ghost = 0;

}
else {

gh_y += 1;
world[gh_x][gh_y].ghost = 1;

if ((agent.ag_y < gh_y) && (world[gh_x][gh_y-1].bunker = 0)) {
world[gh_x][gh_y].ghost = 0;

}
else {

gh_y-= 1;
world[gh_x][gh_y].ghost = 1;

if ((agent.ag_x > gh_x) && (world[gh_x+ 1][gh_y].bunker == 0)) {
world[gh_x][gh_y].ghost = 0;
gh_X+= 1;
world[gh_x][gh_y].ghost = 1;

else {
if ((agent.ag_x < gh_x) && (world[gh_x-1][gh_y].bunker == 0)) {

worlc(gh_x][gh_y].ghost = 0;
gh_x-= 1;
world[gh_x][gh_y].ghost = 1;

}while((agent. in_ghost==O) &&(agent. m,JVe_ count <1 00)&&(agent.dotcount>O));

93

score_sum += agent.score;

} // end of for loop for ROUNDS

Return Val = (score_sum / ROUNDS);
return ReturnVal;

} //end of pacman

94

References

Baum, E., and Haussler, D. (1994). What size network gives valid generalization?.
Neural Computation, 1(1),151-160.

Boltou, L., and Gallinari, P. (1997). A Framework for the Cooperation of Learning
Algorithms. Technical Report, Laboratoire de Recherche en lnformatique, Paris.

Elman, J.L. (1990). Finding Structure in Time. Cognitive Science 14, 179-211.

Elman, J.L. (1991). Increamental Learning, or the Importance of Starting Small
Proceedings of the 13th Annual Conference of the Cognitive Science Society, 443-448.
Erlbaum.

Floreano, D., and Mondada, F. (1995). Automatic Creation of an Autonomous Agent:
Genetic Evolution of a Neural-Network Driven Robot. Technical Report.

Fullmer, B. and Miikkulainen, R. (1992). Using Marker-Based Genetic Encoding of
Neural Networks to Evolve Finite-State Behavior. Proceedings of the First European
Conference on Artificial Life, 255-262.

Gomez, F. and Miikkulainen, R. (1997). Incremental Evolution of Complex General
Behavior. Adaptive Behavior, 5:317-342.

Gomez, F. and Miikkulainen, R. (1998). Solving Non-Markovian Control Tasks with
Neuro-Evolution. Submitted to the International Conference on Machine Learning, 1998.

Herrera, F., Lozano, M., and Verdega, Y. (1995). Fuzzy Connectives Based Crossover
Operators to Model Genetic Algorithms Population Diversity. Technical Report,
University of Granada, Spain.

Humble, L. and Cooper, C. (1980). The World's Greatest Blackjack Book. Doubleday.

Jones, M. (1992). Using Recurrent Networks for Dimensionality Reduction. AI Technical
Report 1396, Massachusetts Institute of Technology.

Kingdon, J. (1997). Intelligent Systems and Financial Forecasting. Springer-Verlag.

Kosko, B. ,_1992). Neural Networks and Fuzzy Systems. Prentice-Hall.

Kupinski. J ,1 , and Giger, M. (1995). Optimization of Neural Network Inputs with
Genetic Al ~< ,rtluns. Kurt Rossmann Laboratories for Radiologic Image Research.

95

Lu, B., and Ito, K. (1996). A Parallel and Modular Multi-Sieving Neural Network
Architecture with Multiple Control Networks. Proceedings of 1996 IEEE International
Conference on Systems, Man, and Cybernetics.

Mitchell, M. (1998). An Introduction to Genetic Algorithms, MIT Press.

McQuestin, P. and Miikkulainen, R. (1997). Culling and Teaching in Neuro-Evolution.
Proceedings of ih International Conference on Genetic Algorithms, Morgan Kaufman.

Mehrotra, K. (1997). Elements of Artificial Neural Networks. MIT Press.

Minsky, M. (1963). Steps Toward Artificial Intelligence. In Feigenbaum, E., and
Feldman, J. editors, Computers and Thought, 406-450. McGraw-Hill

Moriarty, D. and Miikkulainen, R. (1998). Forming Neural Networks Through Efficient
and Adaptive Co-Evolution. Evolutionary Computation, 5(4).

Moriarty, D., and Miikkulainen, R. (1995). Discovering Complex Othello Strategies
Through Evolutionary Neural Networks. Connection Science, 7(3): 195-209.

Moriarty, D. (1997). Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. Ph.D. Dissertation, Department of Computer Science, The University of Texas at
Austin.

Patnaik, L., and Mandavilli, S. (1996). Adaptation in Genetic Algorithms. Genetic
Algorithms for Pattern Recognition, CRC Press.

Potter, Mitchell A, and De Jong, K. (1996). Evolving Neural Networks with
Collaborative Species. Navy Center for Applied Research in Artificial Intelligence.

Rao, V., and Rao, H. (1995). C++ Neural Networks and Fuzzy Logic. M&T Books.

Richards, N., Moriarty, D., and Miikkulainen, R. (1997). Evolving Neural Networks to
Play Go. To Appear in Applied Intelligence.

Romaniuk, S. (1996). Leaming to Learn with Evolutionary Growth Perceptrons. Genetic
Algorithms for Pattern Recognition. CRC Press.

Russell, S. and Norvig, P. (1994). Artificial Intelligence, A Modem Approach. Prentice­
Hall.

Schatten, A, (1997). Cellular Automata.

Shepherd, G. (1994). Neurobiology, Third Edition. Oxford University Press.

96

Siegelman, H., and Sontag, E. (1991). Neural Nets are Universal Computing Devices.
Technical Report SYCON-91-08.

Syed, 0. (1995). Applying Genetic Algorithms to Recurrent Neural Networks for
Learning Network Parameters and Architecture. Masters Thesis, Case Western Reserve
University.

Thimm, G., Grau, R., and Fiesler, E. (1994). Modular Object-Oriented Neural Network
Simulators and Topology Generalizations. In Proceedings of the International Conference
on Artificial Neural Networks.

Weisman, 0., and Pollack, Z. (1995). Neural Networks Using Genetic Algorithms.

97

	Garlick_Ryan_1998_0001
	Garlick_Ryan_1998_0002
	Garlick_Ryan_1998_0003
	Garlick_Ryan_1998_0004
	Garlick_Ryan_1998_0005
	Garlick_Ryan_1998_0006
	Garlick_Ryan_1998_0007
	Garlick_Ryan_1998_0008
	Garlick_Ryan_1998_0009
	Garlick_Ryan_1998_0010
	Garlick_Ryan_1998_0011
	Garlick_Ryan_1998_0012
	Garlick_Ryan_1998_0013
	Garlick_Ryan_1998_0014
	Garlick_Ryan_1998_0015
	Garlick_Ryan_1998_0016
	Garlick_Ryan_1998_0017
	Garlick_Ryan_1998_0018
	Garlick_Ryan_1998_0019
	Garlick_Ryan_1998_0020
	Garlick_Ryan_1998_0021
	Garlick_Ryan_1998_0022
	Garlick_Ryan_1998_0023
	Garlick_Ryan_1998_0024
	Garlick_Ryan_1998_0025
	Garlick_Ryan_1998_0026
	Garlick_Ryan_1998_0027
	Garlick_Ryan_1998_0028
	Garlick_Ryan_1998_0029
	Garlick_Ryan_1998_0030
	Garlick_Ryan_1998_0031
	Garlick_Ryan_1998_0032
	Garlick_Ryan_1998_0033
	Garlick_Ryan_1998_0034
	Garlick_Ryan_1998_0035
	Garlick_Ryan_1998_0036
	Garlick_Ryan_1998_0037
	Garlick_Ryan_1998_0038
	Garlick_Ryan_1998_0039
	Garlick_Ryan_1998_0040
	Garlick_Ryan_1998_0041
	Garlick_Ryan_1998_0042
	Garlick_Ryan_1998_0043
	Garlick_Ryan_1998_0044
	Garlick_Ryan_1998_0045
	Garlick_Ryan_1998_0046
	Garlick_Ryan_1998_0047
	Garlick_Ryan_1998_0048
	Garlick_Ryan_1998_0049
	Garlick_Ryan_1998_0050
	Garlick_Ryan_1998_0051
	Garlick_Ryan_1998_0052
	Garlick_Ryan_1998_0053
	Garlick_Ryan_1998_0054
	Garlick_Ryan_1998_0055
	Garlick_Ryan_1998_0056
	Garlick_Ryan_1998_0057
	Garlick_Ryan_1998_0058
	Garlick_Ryan_1998_0059
	Garlick_Ryan_1998_0060
	Garlick_Ryan_1998_0061
	Garlick_Ryan_1998_0062
	Garlick_Ryan_1998_0063
	Garlick_Ryan_1998_0064
	Garlick_Ryan_1998_0065
	Garlick_Ryan_1998_0066
	Garlick_Ryan_1998_0067
	Garlick_Ryan_1998_0068
	Garlick_Ryan_1998_0069
	Garlick_Ryan_1998_0070
	Garlick_Ryan_1998_0071
	Garlick_Ryan_1998_0072
	Garlick_Ryan_1998_0073
	Garlick_Ryan_1998_0074
	Garlick_Ryan_1998_0075
	Garlick_Ryan_1998_0076
	Garlick_Ryan_1998_0077
	Garlick_Ryan_1998_0078
	Garlick_Ryan_1998_0079
	Garlick_Ryan_1998_0080
	Garlick_Ryan_1998_0081
	Garlick_Ryan_1998_0082
	Garlick_Ryan_1998_0083
	Garlick_Ryan_1998_0084
	Garlick_Ryan_1998_0085
	Garlick_Ryan_1998_0086
	Garlick_Ryan_1998_0087
	Garlick_Ryan_1998_0088
	Garlick_Ryan_1998_0089
	Garlick_Ryan_1998_0090
	Garlick_Ryan_1998_0091
	Garlick_Ryan_1998_0092
	Garlick_Ryan_1998_0093
	Garlick_Ryan_1998_0094
	Garlick_Ryan_1998_0095
	Garlick_Ryan_1998_0096
	Garlick_Ryan_1998_0097
	Garlick_Ryan_1998_0098
	Garlick_Ryan_1998_0099
	Garlick_Ryan_1998_0100
	Garlick_Ryan_1998_0101
	Garlick_Ryan_1998_0102
	Garlick_Ryan_1998_0103
	Garlick_Ryan_1998_0104
	Garlick_Ryan_1998_0105
	Garlick_Ryan_1998_0106

