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Abstract

Infectious disease outbreaks pose a significant threat to human health worldwide. The out-

break of pandemic coronavirus disease 2019 (COVID-19) has caused a global health emer-

gency. Thus, identification of regions with high risk for COVID-19 outbreak and analyzing the

behaviour of the infection is a major priority of the governmental organizations and epidemiol-

ogists worldwide. The aims of the present study were to analyze the risk factors of coronavi-

rus outbreak for identifying the areas having high risk of infection and to evaluate the

behaviour of infection in Fars Province, Iran. A geographic information system (GIS)-based

machine learning algorithm (MLA), support vector machine (SVM), was used for the assess-

ment of the outbreak risk of COVID-19 in Fars Province, Iran whereas the daily observations

of infected cases were tested in the—polynomial and the autoregressive integrated moving

average (ARIMA) models to examine the patterns of virus infestation in the province and in

Iran. The results of the disease outbreak in Iran were compared with the data for Iran and the

world. Sixteen effective factors were selected for spatial modelling of outbreak risk. The vali-

dation outcome reveals that SVM achieved an AUC value of 0.786 (March 20), 0.799 (March

29), and 86.6 (April 10) that displays a good prediction of outbreak risk change detection. The

results of the third-degree polynomial and ARIMA models in the province revealed an

increasing trend with an evidence of turning, demonstrating extensive quarantines has been

effective. The general trends of virus infestation in Iran and Fars Province were similar,

although a more volatile growth of the infected cases is expected in the province. The results

of this study might assist better programming COVID-19 disease prevention and control and

gaining sorts of predictive capability would have wide-ranging benefits.
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Introduction

In December 2019, several pneumonia infected cases were reported in Wuhan, China [1, 2]. In

January 2020, a novel coronavirus (2019-nCoV) that was later formally named COVID-19 was

approved in Wuhan [3]. It was announced that the disease is a severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2). The virus elevated concerns within China as well as the

global community as it was believed to be transmitted from human to human [4]. Initially,

China witnessed the largest outbreak in Hubei and other nearby provinces. The spread in

China was controlled soon thereafter through stringent preventive measures, but other parts

of the world (Europe, the Middle East, and the United States) were increasingly affected by the

outbreak through transmission by infected travellers from China. A similar outbreak soon fol-

lowed in other Asian countries [5]. Its global spread to more than 150 countries led to the dec-

laration in mid-March 2020 that COVID-19 was a pandemic [6]. By June 18, 2020, there were

nearly 8.60 million cases worldwide, with 455575 deaths attributed to COVID-19 [7]. Cur-

rently, the United States (2263651), Brazil (983359) and Russia (561091) have the largest num-

ber of confirmed cases, whilst the United States (120688), Brazil (47869) and UK (42288) have

the highest number of casualties, respectively [7, 8]. Iran with 197647 recorded cases and 9272

deaths is the most affected country in the Middle East (as of June 18, 2020) and infected cases

are expected to surge in the coming days [7, 9]. The outbreak of COVID-19 has disrupted and

depressed the world economy, whereas Iran is among the most severely affected by massive

economic losses, largely compounded by politically motivated sanctions imposed by other

governments [10]. The problem has been exacerbated as no specific medicine is yet realized

for COVID-19 disease treatment, though there are a few pre-existing drugs that are being

tested, so regions are presently concentrating their efforts on maintaining the infection rate in

a level that assists in reducing virus spread [11]. This has led to most states imposing lock-

downs, encouraging social distancing, and restricting the sizes of gatherings to limit transmis-

sion [12]. There is a pressing necessity for scientific communities to aid governments in their

efforts to control and prevent transmission of the virus [13].

During previous virus outbreaks stemming from Zika, influenza, West Nile, Dengue, Chi-

kungunya, Ebola, Marburg, and Nipah, geographic information systems (GISs) have played

significant roles in providing significant insight via risk mapping, spatial forecasting, monitor-

ing spatial distributions of supplies, and providing spatial logistics for management [13]. In

this current situation, risk mapping is critical and may be used to aid governments’ need for

tracking and management of the disease as it spread in places with the highest risk. Sánchez-

Vizcaı́no et al. [14] used a multi-criteria decision making (MCDM) model to map the risk of

Rift Valley fever in Spain. Traditional statistical techniques had also been used to detect the

risk of an outbreak [14]. Reeves et al. [15] employed an ecological niche modelling (ENM)

technique for mapping the transmission risk of MERS-CoV; the Middle Eastern name for the

coronavirus known as SARS-CoV-2. Similar techniques have been in the Nyakarahuka et al.

[16] study to map Ebola and Marburg viruses risks in Uganda. They assessed the importance

of environmental covariates using the maximum entropy model.

More recently, the use of machine learning algorithms (MLAs) for mapping the risk of

transmission of viruses has been increasing which is due to the demonstrated superior (and

more accurate) predictive abilities of the MLA models over traditional methods [17]. Jiang

et al. [18] employed three MLAs–backward propagation neural network (BPNN), gradient

boosting machine (GBM), and random forest (RF)–to map the risk of an outbreak of Zika

virus. Tien Bui et al. (2019) compared different MLAs–artificial neural network (ANN) and

support vector machine (SVM) with ensemble models including adaboost, bagging, and ran-

dom subspace–for modelling malaria transmission risk. Similarly, GBM, RF, and general
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additive modelling (GAM) were used by Carvajal et al. [19] to model the patterns of dengue

transmission in the Philippines. Mohammadinia et al. [20] employed geographically weighted

regression (GWR), generalized linear model (GLM), SVM, and ANN to develop a forecast

map of leptospirosis; GWR and SVM produced highly accurate predictions. Saba and Elsheikh

[21], also used the nonlinear autoregressive ANN model to forecast COVID-19 outbreak.

Another statistical-based model that recently has been applied to forecast the behaviour of

COVID-19 outbreak and death cases is ARIMA in which the forecast process is as a function

of time. Recently, the significant ability of this model to forecast COVID-19 outbreak in Egypt

[21] and coronavirus related deaths in Iran [22] has been reported. Benvenuto et al [23] per-

formed ARIMA model on the Johns Hopkins epidemiological data and they found that the

spread of virus tends to be slightly decreasing. However, Ahmar and del Val [24] combined

the α-Sutte indicator with ARIMA and developed a model to forecast COVID-19 outbreak in

Spain. Their combined model presented more accurate forecast compared to the ARIMA

model.

The literature shows that very few studies have tried to use GIS for analysis of COVID-19

outbreak in human communities. Kamel Boulos and Geraghty [25] described the use of online

and mobile GIS for mapping and tracking COVID-19 whilst Zhou et al. [13] revealed the chal-

lenges of using GIS for SARS-CoV-2 big data sources. To our knowledge, there has been no

study with a focus on mapping the outbreak risk of the COVID-19 pandemic. The aims of the

present study were to analyze the risk factors of coronavirus outbreak and test the SVM model

for mapping areas with a high risk of human infection with the virus in Fars Province, Iran. In

addition, the growth trend of the COVID-19 infestation in Fars Province was analyzed and

compared with the growth rate (GR) of Iran and several other countries. The outcome of the

present study lays a foundation for better planning and understanding the factors that acceler-

ate the virus spread for use in disease control plans in human communities. The methodology

of this research can be used for mapping the outbreak risk of COVID-19 and for detecting the

trend of COVID-19 infections in other parts of the world. This study also can aid local authori-

ties in imposing strict social distancing measures in the regions with high outbreak risk. Fur-

thermore, this study can be helpful in determining the significant effective factors that

influence the COVID-19 outbreak risk.

Materials and methods

Study area

The study area is in the southern part of Iran with an area of 122608 square kilometres located

between 27˚20 and 31˚420 N and between 50˚420 and 55˚360 E. Fars is the fourth largest prov-

ince in Iran (7.7% of total area) with a population density of 4851274 (based on in 2016

report). Fars Province is divided into 36 counties, 93 districts, and 112 cities (Fig 1).

Methodology

The multi-phased workflow implemented in this investigation (Fig 2) is described comprehen-

sively below.

Preparation of location of COVID-19 active cases

A dataset of active cases of COVID-19 in Fars was prepared to analyze the relationships

between the locations of active cases and the effective factors that may be useful for predicting

outbreak risk. The data utilized in this research (S1 File) was collected on April 10, 2020 from

Iranian’s Ministry of Health and Medical Education (IMHME: http://ird.behdasht.gov.ir/).
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Preparation of effective factors

Choosing the appropriate effective factors to predict the risk of pandemic spread is vital as its

quality affects the validity of the results [17]. Since, there have been no previous studies of risk

for COVID-19 distribution, the selection of effective factors is a quite challenging task. Also,

there is no approved universal factors for mapping the outbreak risk of COVID-19. Ongoing

research on the pandemic has revealed that local and community-wide transmission of the

virus largely happens in public places where the most people are likely to come into contact

with largest number of potential carriers of the infection [26]. Wang et al. [27] indicated that

meteorological conditions, such as rapidly warming temperatures in 439 cities around the

world resulted in a decline of COVID-19 cases. Accordingly, in this research, we selected six-

teen most relevant effective factors for the outbreak risk mapping of COVID-19 in Fars Prov-

ince of Iran, which includes minimum temperature of coldest month (MTCM), maximum

temperature of warmest month (MTWM), precipitation in wettest month (PWM), precipita-

tion of driest month (PDM), distance from roads, distance from mosques, distance from

hospitals, distance from fuel stations, human footprint, density of cities, distance from bus

Fig 1. The counties of Fars Province, Iran, and the number of COVID-19 infected case identified from March 29,

2020.

https://doi.org/10.1371/journal.pone.0236238.g001
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stations, distance from banks, distance from bakeries, distance from attraction sites, distance

from automated teller machines (ATMs) and density of villages. All the effective factors

employed in this research are generated using ArcGIS 10.7.

A few studies have established that variation in temperature would impact the transmission

of COVID-19 [27]. It has also been reported that alteration in temperature would have

impacted the SARS outbreak, which was caused by the identical type of coronavirus as SARS-

CoV-2 [28]. Recently, Ma et al. [2] disclosed that surge in temperature and humidity condi-

tions have resulted in the decline of death caused by SARS-CoV-2. Thus, climatic factors such

as temperature and precipitation can have an impact on the outbreak of SARS-CoV-2. The

temperature and precipitation data, namely MTWM, MTCM, PDM and PCM of Fars

Fig 2. The methodological framework followed in this study.

https://doi.org/10.1371/journal.pone.0236238.g002
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Province is acquired from world climatic data (https://www.worldclim.org/). In this study, the

MTWM of the Fars Province ranges from 27.7˚C to 41.8˚C (Fig 3) whereas MTCM ranges

between -15.3˚C and 10.4˚C (Fig 3). The PWM of the study area varies between 28 mm and 86

mm (Fig 4), and also the PDM is presented in Fig 3.

The proximity to various public places including roads, mosques, hospitals, fuel stations,

bus stations, banks, bakeries, attraction sites, and ATMs where people come in close contact to

each other can also be considered as significant factors that influence the distribution of

COVID-19. The data was acquired from Open Street Map (https://www.openstreetmap.org).

The distance from roads ranges from 0 to 45 in the study area (Fig 4) whereas the distance

from mosques varies between 0 and 0.71 (Fig 4) and the distance from fuel stations spans 0 to

0.67 (Fig 4). The distance from bus stations, banks, bakeries, attraction sites, and ATMs of Fars

Fig 3. Preparation of effective factors of COVID-19 outbreak.

https://doi.org/10.1371/journal.pone.0236238.g003
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Fig 4. Preparation of effective factors of COVID-19 outbreak.

https://doi.org/10.1371/journal.pone.0236238.g004
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Province have the minimum value of 0 and maximum value of 1.31, 0.68, 0.97, 0.79, and 0.78

respectively (Figs 4, 5). Since humans are the potential carriers of the COVID-19, the use of

human footprint (HFP) can aid in understanding the terrestrial biomes on which humans have

more influence and access [29]. In this study, HFP of the study area is acquired from the Global

Human Footprint Dataset. The HFP of Fars Province ranges from 6 to 78 (Fig 5) where the mini-

mum value represents the places having least access by humans, and the maximum value refers to

those regions having highest human influence and access. The density of population is also con-

sidered to be an important factor for the spread of the disease [30, 31]. Gilbert et al. [32] revealed

that the number of COVID-19 cases was proportional to the population density in Africa.

Accordingly, in this research, density of cities and villages were assessed, and the outcome displays

that density of cities in Fars Province ranges between 0 and 0.60 (Fig 5) while the density of vil-

lages varies from 0 to 0.58 (Fig 5). The distance from hospitals ranged from 0 to 1.11 (Fig 5).

Evaluation of variable importance using ridge regression

The association among the location of COVID-19 active cases and effective factors were evalu-

ated using ridge regression in order to assess the significance of individual effective factor in

predicting the outbreak risk [17]. To our knowledge, no previous study in epidemic outbreak

risk mapping has utilized ridge regression in determining the significance of effective factors.

However, the ridge regression algorithm has been utilized for modelling purposes in various

fields [33]. It was first given by Hoerl and Kennard [34] which exploits L2 norm of regulariza-

tion for lessening the model complication and controlling overfitting. Ridge regression was

also developed to avoid the excessive instability and collinearity problem caused by least-

square estimator [35]. The ‘caret’ package (https://cran.r-project.org/web/packages/caret/

caret.pdf) of R 3.5.3 was utilized for assessing the variable importance using ridge regression.

Machine learning algorithm (MLA)

Support vector machine. SVM is an extensively exercised MLA in diverse fields of

research that functions on the principle of statistical learning concept and structural risk mini-

mization given by Vapnik [36], which is utilized for classification as well as regression intrica-

cies [37, 38]. SVM has high efficacy in classifying both linearly separable and inseparable data

classes [39]. It utilizes an optimal hyperplane to distinguish linearly divisible data, whereas ker-

nel functions are employed for transforming inseparable data into a higher dimensional space

so that it can be easily categorized [40]. Assume a calibration dataset to be (sm, tm), where m is

1, 2, 3. . ., x; sm refers to the sixteen independent factors; tm denotes 0 and 1 that resembles risk

and non-risk classes and x represents the total amount of calibration data. This algorithm tries

to obtain an optimal hyperplane for classifying the aforementioned classes by utilizing the dis-

tance between them, which can be formulated as follows [41]:

1

2
kpk2

ð1Þ

tmððp� smÞ þ aÞ � 1 ð2Þ

where, kpk denotes the rule of normal hyperplane; a refers to a constant. When Lagrangian

multiplier (λm) and cost function is introduced, the expression can be given as follows [42]:

l ¼
1

2
kpk2

�
Xx

n¼1

lmðtmððp� smÞ þ aÞ � 1Þ ð3Þ
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Fig 5. Preparation of effective factors of COVID-19 outbreak.

https://doi.org/10.1371/journal.pone.0236238.g005
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In case of an inseparable dataset, a slack covariate δm is added into the previs Eq (2) that is

provided as follows [36]:

tmððp� smÞ þ aÞ � 1 � dm ð4Þ

Accordingly Eq (3) can be described as follows [36]:

L ¼
1

2
kpk2

�
1

ux

Xx

n¼1

dm ð5Þ

Moreover, SVM contains four kernel functions (linear, polynomial, radial basis function:

RBF and sigmoid) for making an optimal margin in case of inseparable dataset [36]. Moham-

madinia et al. [20] revealed that RBF kernel type produces high prediction accuracy than other

kernel types for epidemic outbreak risk mapping. Thus, in this study, RBF is used for creating

decision boundaries, and the kernel function is expressed as follows [36]:

Kðza; zbÞ ¼ ð� vkza � zbkÞ; v > 0 ð6Þ

where, K(za, zb) refers to kernel function and v represents its parameter.

Analysis of growth rate for active and death cases of COVID-19. In this study, the

growth rate (GR) of active and death cases around the world, Iran, and Fars Province were

evaluated using the data acquired from WHO and IMHME between February 25, 2020 and

June 10, 2020 for active cases and from March 2, 2020 to June 10, 2020 for death cases.

Validation of outbreak risk map. The cross-checking of the calibrated model using

untouched testing data is vital for determining the scientific robustness of the prediction [37].

In this research, we utilized ROC- AUC curve values for the validation of COVID-19 outbreak

risk map generated using the SVM model. It is a widely utilized validation technique for ana-

lyzing the predictive ability of a model [39]. A model is determined to be perfect, very good,

good, moderate and poor if the AUC values were 1.0–0.9, 0.9–0.8, 0.8–0.7, 0.7–0.6 and 0.6–0.5,

respectively [43].

Models for infection cases trend. The behavior of the variable infection cases in Fars

province was captured by a third-degree polynomial or cubic specification while for those of

Iran the fourth-degree polynomial specifications was found to be more appropriate as follows:

InfectionðtÞ ¼ a1t þ a2t
2 þ a3t

3þa4t
4 ð7Þ

where, Infection(t) represents the total infected cases in day t and t denotes the days starting

from 19th of February for Iran and one week later for Fars province. A quadratic specification

was examined and based on the fitted model, the cubic form (for Fars province) and fourth-

degree polynomial (for Iran) were selected. In the literature, the cubic form of specification

has been applied by Aik et al. [44] to examine the Salmonellosis incidence in Singapore. We

also used an ARMA model to compare the process generating the variable for Iran and Fars

province. This model includes two processes: Autoregressive (AR) and Moving Average (MA)

process. An ARMA model of order (p,q) can be written as [45]:

xðtÞ ¼ b0 þ
Pp

i¼1
bixt� i þ

Pq
j¼1
bjεt� j ð8Þ

Where x is the dependent variable and ε is the white noise stochastic error term. In the

applied model, x shows the total infected cases and t is the days starting from the first day of

happening infection cases. In building a time series model, the data are expected to be station-

ary [24]. In other words, the model (Eq 8) is based on the assumption that the data series are

stationary. Briefly, a time series process x(t) is stationary if the mean and variance are constant
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and independent of time and the covariance between x(t) and x(t+s) (x with s period apart) is

time-invariant or is dependent only upon the distance between the two time periods consid-

ered [46, 47]. Thus, if a time series have time-varying mean or a time-varying variance or both

will be nonstationary. Using nonstationary time series for the forecasting purposes has little

practical value. If the applied time series data is not stationary, after differencing it d times an

stationary time series was obtained. This series is called integrated of order d. After differenc-

ing d times, we may apply the ARMA (p, q) model which is called ARIMA (p, d, q) [46]. The

ARIMA (p,d,q) model is an ARMA(p,q) that applies d times differencing data. Benvenuto

et al. [23] applied an ARIMA model to predict the epidemiological trend of COVID-2019.

Also, Saba and Elsheikhb [21] used this model to forecast the outbreak of COVID-19 in Egypt.

Results

Outcome of the variable importance analysis

The analysis of variable importance using ridge regression revealed that distance from bus sta-

tions, distance from hospitals, and distance from bakeries have the highest significance

whereas distance from ATMs, distance from attraction sites, distance from fuel stations, dis-

tance from mosques, distance from road, MTCM, density of cities and density of villages

exhibit moderate importance. The effective factors such as distance from banks, MTWM,

HFP, PWM and PDM were the least influential factors (Fig 6).

Fig 6. Variable importance of each effective factors (bus: Distance from bus stations; hospital: Distance from

hospitals; bakery: Distance from bakeries; atm: Distance from ATMs; attraction: Distance from attraction sites;

fuel: Distance from fuel stations; mosque: Distance from mosques; road: Distance from road; bio6: MTCM; city:

Density of cities; village: Density of villages; bank: Distance from banks; bio13: MTWM; footprint: HFP, bio14:

PWM; bio5: PDM).

https://doi.org/10.1371/journal.pone.0236238.g006
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COVID-19 outbreak risk map using SVM

The COVID-19 outbreak risk map generated using SVM displays that risk of SARS-CoV-2

ranges from -0.25 to 1.22 (March 29) and -0.35 to 1.21 (April 10) where -0.25 and -0.35 repre-

sent the lower risk of SARS-CoV-2 outbreak and 1.22 and 1.21 indicates the regions of Fars

Province which is likely to experience a higher risk of COVID-19 outbreak (Fig 7A and 7B). It

can be observed from Fig 7B (April 10) that Shiraz County and its surrounding counties

including Firouzabad, Jahrom, Sarvestan, Arsanjan, Marvdasht, Sepidan, Abadeh, Khorram-

bid, Rostam, Larestan and Kazeron of Fars Province has the highest risk of being the epicentre

of SARS-CoV-2 outbreak. Apart from which counties like Eghlid, and Fasa also lie in the high

risk zone.

Outcome of growth rate analysis

The results of GR of active cases in the world, Iran, and Fars Province are presented in Fig 8.

Our results displayed that the highest active cases in the world, Iran, and Fars Province were

related to March 11 (GR = 1.59), Feb 26 (GR = 2.41), and March 15 (GR = 4.8), respectively.

Also, the outcome stated that GR average of active cases in the world, Iran, and Fars Province

reported since February 25 to June 10 was 1.15, 1.06, and 1.06, respectively. Our observations

demonstrated that the highest GR of active cases in Fars Province was on March 16 (GR =

4.80), March 28 (GR = 4.10), March 09 (GR = 3.20), April 19 (GR = 3.15), March 20 (GR =

2.40), June 2nd (2.14), March 22 (GR = 2.10), April 1st (GR = 2.10), and February 26 (GR =

2.00). On the other hand, the analyses indicated that between February 27 and February 29,

the GR of active cases was zero in Fars Province, followed by a GR value of 0.38 in 05 June, 0.3

in March 14, March 19, March 21, and 0.26 in April 18, whereas the lowest GR of active cases

in world and Iran observed on April 26 (GR = 0.81) and March 3 (GR = 0.67) respectively.

Death cases in the world, Iran, and Fars Province are given in Fig 9.

In total of 7131 active cases of COVID-19 in Fars Province, 118 died between February 24

and June 10. The highest GR of death cases in Fars Province was reported on April 15

(GR = 5.00), April 11 (GR = 4.00), March 24 (GR = 4.00), April 20 (GR = 3.00), March 26

(GR = 3.00), March 22 (GR = 2.00), March 4 (GR = 2.00), April 4 (GR = 2.00), and June l0

(GR = 2.00). Our analyses showed that since March 5 to March 11, March 15 to March 21,

March 28 to April 3, April 5 to April 7, May 2 to May 5, May 8 to May 18, May 20 to May 26,

and May 29 to June 7, the GR of death cases was equal to zero. Although the deaths on March

31, April 3, April 7, April 10, April 18, April 23, May 5, May 18, May 21, May 26, June 3, and

June 7 were 3, 2, 4, 1, 2, 4, 4, 2, 2, 2, 3 and 1, respectively, the daily growth rate is zero. Also,

average of the GR in Fars Province during 102 days was 0.77, whereas this rate in world and

Iran was observed as 1.07 and 1.05, respectively. Fig 9 shows that the highest GR of death cases

in the world and Iran was nearly equal during March 08 (GR = 2.17) and March 04

(GR = 2.50). In contrast, the lowest rate of death case was observed on April 26 (GR = 0.62),

and May 25 (GR = 0.59).

Results of active cases in 31 provinces of Iran country by March 25 is presented in Fig 10.

Observations indicate that the number of active cases in the 100,000 population varies from

4.4 to 86.1. This figure also shows that provinces of Sistan and Baluchestan and Bushehr have

the lowest cumulative rate of active cases, whereas the highest rate was observed in Qom, Sem-

nan, Markazi, and Yazd. The Qom Province was the first place in Iran where the outbreak of

COVID-19 was recorded. The latest news reported by the Iranian’s Ministry of Health and

Medical Education (IMHME) on June 10 determines the number of active cases of Fars prov-

ince in the 100,000 population is 146.99 while this number has been 10.4 on March 25.
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Fig 7. The COVID-19 outbreak risk map a) on March 29, 2020 and b) on April 10, 2020.

https://doi.org/10.1371/journal.pone.0236238.g007
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A comparison among age class of death cases in China, Iran, and Fars Province is presented

in Table 1. Percentage of death cases in China was related to February 29, whereas for Iran and

Fars Province it is related to March 14 and May 4, respectively. Table 1 show that age

class > 50 years old lie in the highest class of death rate. So, this age class of above 50 years is

highly sensitive to COVID-19.

Validation outcome of outbreak risk map

The ROC-AUC curve cross-validation technique is utilized in this research for validating the

COVID-19 outbreak risk map generated by SVM. The model achieved an AUC value of 0.786

and a standard error of 0.031 indicating a good predictive accuracy when cross-verified using

the remaining 30% testing dataset collected on March 20, 2020 (Fig 11 and Table 2).

When tested with active case locations on March 29, 2020, the model achieved an increased

AUC value of 0.799 which proves the stable and good forecast precision of the outbreak risk

map (Fig 12 and Table 3). Also, change detection on April 10, 2020 show that accuracy of the

built models is increased to 86.6% (AUC = 0.868) (Fig 13 and Table 4).

Comparison of Fars province and Iran infection cases

Two tools have been applied to compare the general trend of infection in Fars province and

Iran. The first includes a third-degree (for Fars province) and a fourth-degree (for Iran) poly-

nomial models that are presented in Fig 14. Another quantitative model is an ARIMA model

Fig 8. Growth rate of active cases in the world, Iran, and Fars Province (From 25 February to 10 June 2020).

https://doi.org/10.1371/journal.pone.0236238.g008
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presented in Table 5. Fig 12 shows the trend of infection cases in Iran and Fars province,

where predicted values extraordinarily keep pace with the actual values. Coefficients of deter-

mination () values also indicate that estimated models have significant predictive power. The

infection cases are increasing over the selected horizon.

The first derivative of the estimated model represents the daily infection cases. Based on the

daily infection model, there is a turning point for both Iran and provincial cases. It was found

that the turning point for provincial daily infection is 134. In other words, after 134 days the

decreasing trend in the daily infection is expected.

However, the corresponding value for Iran is much higher than the provincial one. There

are some evidences showing that a turning point in infection is expected. For instance, it has

been reported for SARS incidence [48], HAV [49], ARI [50], and for A (H1N1)v. It is worth

noting that a turning point means that after passing the peak, it is expected to show a decreas-

ing trend. In the 107th day of infection, Fars province accounts for around 4.34% of the total

Iranian cases while its population share is more than 6% (Statistical Center of Iran, 2016).

Regarding the values obtained for turning points and the infection share, up to the present, the

measures taken by the provincial government may be considered more effective than those

taken in other provinces as a whole. However, it should be taken into consideration that Fars

province experienced its first infection cases 7 days after Qom and Tehran, provinces that are

considered as starting point for virus outbreak in Iran. This might have given the provincial

governmental body and the households to take measures to cope with the widespread out-

break. It is worth noting that the comparison of the specified models is more appropriate to

Fig 9. Growth rate of death cases in the world, Iran, and Fars Province (From 2 March to 10 June 2020).

https://doi.org/10.1371/journal.pone.0236238.g009
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investigate the effectiveness of the measures taken by the corresponding health body rather

than using it to predict future values.

The ARIMA time series models for infection variables of the Fars province and Iran are

presented in Table 5. These models may show the generating process of the variables in time

horizon. It is worth noting that in order to have more comparable models, a 107-day time

horizon is selected. This is the period of time that data are available, starting on 19th of Febru-

ary for Iran and one week later for Fars province. As shown in Table 5, provincial data are gen-

erated by an ARIMA (2,1,1) process while ARIMA (2,0,2) was found more appropriate for

Iran’s data. Regarding the orders for AR and MA processes, the country model shows more

complicated behaviour. In addition, the Fars data was applied after differencing since it was

not stationary; indicating a more explosive process of an increasing trend for Fars province

compared to those of Iran in the following days. The provincial data indicated more volatility

which was captured by variance-related variable GARCH that was not easily captured in the

trends as shown in Fig 14. Benvenuto et al. [23] also used an ARIMA model and found that

COVID-2019 spread tends to reveal a slightly decreasing spread. Generally speaking, the diag-

nostic statistics indicate that the estimated models are acceptable since Q-statistics reveal that

Fig 10. Results of active cases in 31 provinces of Iran country by March 25, 2020.

https://doi.org/10.1371/journal.pone.0236238.g010

Table 1. Comparison of age in death cases of China, Iran, and Fars Province.

Country China Iran Fars Province

Age Death Rate (%) Death Rate (%) Death Rate (%)

>50 years old 93.7 84.15 80

10–50 years old 6.3 15.46 20

<10 years old 0 0.39 0

https://doi.org/10.1371/journal.pone.0236238.t001
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the residuals are not significantly correlated and the Jarque Berra statistic supports the normal-

ity of residuals at conventional significance level. In addition, all AR and MA roots were found

to lie inside the unit circle, indicating that ARIMA process is (covariance) stationary and

invertible.

Discussion

There is a great necessity for new robust scientific outcomes that could aid in containing and

preventing the COVID-19 pandemic from spreading. The spatial mapping of COVID-19 out-

break risk can aid governments and policy-makers in implementing strict measures in certain

regions of a city or a country where the risk of an outbreak is very high. It is, therefore crucial

to identify the regions that would have high outbreak risk through predictive modelling with

the help of machine learning algorithms (MLAs). In recent times, MLAs have demonstrated

promising results in forecasting the epidemic outbreak risk [17]. In this research, the SVM

model showing good forecast accuracy was used for mapping the outbreak risk of COVID-19.

Similarly, Mohammadinia et al. [20] revealed that GWR and SVM had the highest precision in

mapping the occurrence of leptospirosis. Ding et al. [51] employed three MLAs including

Fig 11. Receiver operator characteristic (ROC) curve based on testing data from March 20, 2020.

https://doi.org/10.1371/journal.pone.0236238.g011

Table 2. Area under the curve based on data from March 20, 2020.

Area Standard Error Asymptotic Significant Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

0.786 0.031 0.000 0.726 0.846

https://doi.org/10.1371/journal.pone.0236238.t002
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SVM, RF and GBM, for mapping the transmission risk assessment of mosquito-borne diseases

and disclosed that all three MLAs acquired excellent validation outcome. Machado et al. [52]

also applied RF, SVM and GBM in modelling the porcine epidemic diarrhoea virus and dem-

onstrated 90% specificity values in case of SVM. Tien Bui et al. [17] stated that SVM achieved

an AUC value of 0.968 in mapping the susceptibility to malaria. The ability to classify insepara-

ble data classes is the greatest benefit of the SVM model [53]. It is among the most precise and

robust MLA [54]. SVM can be useful and has higher prediction accuracy when it comes to

handling a small dataset. However, Huang and Zhao [55] demonstrated that SVM also yields

excellent precision in predictive modelling when a large dataset is utilized. The algorithm has a

very low probability of overfitting and is not disproportionately impacted by noisy data [53].

Behzad et al. [56] revealed that SVM had huge capacity in simplification and had enduring

forecast accuracy. It should also be noted that the predictive exactness of SVM model largely

depends on the choice of kernel function [54]. Among the four kernel functions of SVM, RBF

has been proved to generate high accuracy models [54]. SVM includes diverse kinds of catego-

rization functions which are responsible for assessing overfitting and simplifying data that

Fig 12. Receiver operator characteristic (ROC) curve based on data from March 29, 2020.

https://doi.org/10.1371/journal.pone.0236238.g012

Table 3. Area under the curve based on data from March 29, 2020.

Area Standard Error Asymptotic Significant Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

0.799 0.022 0.000 0.756 0.841

https://doi.org/10.1371/journal.pone.0236238.t003
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needs a minor tuning of model parameters [57]. The significance of each effective factor

employed in this research is assessed using ridge regression. Since, there is no previous study

in COVID-19 that outlines the proper effective factors. The outcome of this research can be

very helpful for scientists in experimenting the same and additional effective factors for

COVID-19 outbreak risk mapping. The proximity factors including distance from bus sta-

tions, distance from hospitals, distance from bakeries were most influential in forecasting the

COVID-19 outbreak risk whereas other proximity factors such as distance from ATMs, dis-

tance from attraction sites, distance from fuel stations, distance from mosques and distance

from road had the moderate influence which is followed by MTCM, density of cities and den-

sity of villages. It should be noted that climatic factors including MTWM, PWM and PDM

Fig 13. Receiver operator characteristic (ROC) curve based on data from April 10, 2020.

https://doi.org/10.1371/journal.pone.0236238.g013

Table 4. Area under the curve based on data from April 10, 2020.

Area Standard Error Asymptotic Significant Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

.868 .015 .000 .838 .898

https://doi.org/10.1371/journal.pone.0236238.t004
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had the least significance in mapping the outbreak risk. From this, it can be concluded that

precipitation factors PWM and PDM are not associated with the transmission of COVID-19

in Fars Province whereas in case of temperature factors MTCM had moderate influence in

mapping COVID-19 outbreak risk but MTWM exhibited a least significance. This outcome

reveals that proximity factors had high influence in the transmission of SARS-CoV-2. In addi-

tion, the study conducted disclosed that increase in temperature will not decline the SARS--

CoV-2 cases, although it has been also revealed that increase in temperature and absolute

humidity could decrease the death of patients affected by COVID-19 [58]. The polynomial

and ARIMA models were applied to examine the behaviour of infection in Fars province and

Iran. The general trend of infection in Iran and Fars province are similar while more volatility

for provincial cases is expected. The methodology and effective factors used in this research

can be adapted in studies investigated in other parts of the world for preventing and control-

ling the outbreak risk of COVID-19.

Conclusions

Mapping of SARS-CoV-2 outbreak risk can aid decision-makers in drafting effective policies

to minimize the spread of the disease. In this research, GIS-based SVM was used for mapping

the COVID-19 outbreak risk in Fars Province of Iran. Sixteen effective factors including

MTCM, MTWM, PWM, PDM, distance from roads, distance from mosques, distance from

hospitals, distance from fuel stations, human footprint, density of cities, distance from bus

Fig 14. Actual cases versus estimated cases in Fars province and Iran (From 25 February to 10 June 2020).

https://doi.org/10.1371/journal.pone.0236238.g014
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stations, distance from banks, distance from bakeries, distance from attraction sites, distance

from automated teller machines (ATMs) and density of villages were selected along with the

locations of active cases of SARS-CoV-2. The results of ridge regression revealed that distance

from bus stations, distance from hospitals, and distance from bakeries had the highest influ-

ence in COVID-19 outbreak risk mapping whereas the climatic factors had the lowest influ-

ence. The generated model using SVM had a good predictive accuracy of 0.786 and 0.799

when verified with the locations of active cases during March 20 and March 29, 2020. How-

ever, the weakness of the SVM model lies in managing a very large dataset and inferring with

the model outcome that is due to the black box nature of the model. The GR average for active

cases in Fars for a period of 107 days was 1.15, whilst it was 1.06 in the country and the world.

The Iranian government should take restrict preventive measures for controlling the outbreak

of SARS-CoV-2 in Shiraz as a tourism destination and the counties having high risk. Based on

the results of polynomial and an ARIMA model, the infection behavior is not expected to

reveal an explosive process, however; the general trend of infection will last for several months

especially in Iran as a whole. A more slowly trend is expected in Fars Province, demonstrating

extensive home quarantine and travel and movement restrictions were good strategies for dis-

ease control in Fars province. The main policy implication is that the infection cases, to some

extent, may be controlled using more effective measures. Although, the estimated models may

be used to predict the infection in following days, however; this contribution is less significant

than the other implications derived from them. Generally speaking, it is expected to encounter

a decreasing trend, however; this may be reversed if the ongoing attempts are slowed down,

pointing out the need to keep the measures like quarantine or even to try more restricting

Table 5. The results of autoregressive integrated moving average (ARIMA) model for COVID-19 infection cases of Fars province and Iran.

Regressor Coefficient Standard error t-statistics probability

Iran Constant 151503.8 95854.82 1.58 0.117

AR(1) 1.494 0.006 248.53 0.000

AR(3) -0.495 0.006 -84.16 0.000

MA(1) 0.403 0.080 5.00 0.000

MA(3) 0.295 0.083 3.51 0.000

Adjusted 0.999

Q(1)a 2.328 0.127

Q(2)a 3.176 0.204

Jarque Berra 0.666 0.716

Inverted AR roots -0.50

Inverted Ma roots -0.83

Fars province Constant 29.467 272.211 0.108 0.913

AR(1) 0.425 0.096 4.42 0.000

AR(2) 0.554 0.107 5.18 0.000

MA(5) 0.214 0.109 1.95 0.050

GARCH(-1) -0.964 0.028 -34.12 0.000

Adjusted 0.645

Q(1)a 3.147 0.076

Q(2)a 3.302 0.192

Jarque Berra 4.017 0.134

Inverted AR roots 0.99

Inverted MA roots -0.73

aQ(P) is the significance level of the Ljung–Box statistics in which the first p of the residual autocorrelations are jointly equal to zero.

https://doi.org/10.1371/journal.pone.0236238.t005
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attempts. As a policy implication, it is worth noting that the applied models clearly show the

extent that the measures taken by the central and provincial governments body have been effi-

cient, allowing them to consider more effective measures. This contribution will be more valu-

able when the dynamic and the complicated nature of the virus is taken into consideration.

Several extensions may be recommended for further investigation. It is possible to apply the

developed models to examine the behaviour of other related variables including recovered

cases and critical cases. If more detailed data is provided, the effectiveness of the location-spe-

cific measures deserves to be investigated more deeply.
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