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ABSTRACT 

 

In this paper I discuss the process of creating a closed-form multiple-choice assessment 

of students’ ability to validate mathematical proofs at the introduction to proof (ITP) 

level. This process involved: (1) creating and validating a cohesive framework of 

common validity issues (CVI) in proof writing as a basis for assessment creation through 

a mathematician survey (𝑁 = 228) and two focus groups (𝑁 = 4 & 𝑁 = 7); (2) creating 

and piloting an open version of the assessment as a means to create distractors for the 

closed assessment; (3) creating, piloting (𝑁 = 187) and analyzing the results from the 

closed form assessment; and (4) conducting interviews with student participants after the 

pilot to determine the characteristics of the process that students took during the pilot.  

The results of the processes offer an assessment that, with some refinement, can 

authentically measure students’ ability to validate mathematical arguments from a 

number of perspectives in the ITP setting.
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I. Introduction 

Argumentation and proof are indispensable practices for all aspects of 

mathematics (de Villiers, 1990; Hanna, 2000; Rav, 1999; Stylianides, Stylianides & 

Weber, in press). For most of the twentieth century research which focused on 

mathematical argumentation and proof focused on how students construct arguments. 

This trend shifted in the first decade of the twenty-first century as researchers renewed 

awareness for other skills related to the argumentative process, most especially that of 

comprehending and validating proofs, skill which in the past were largely neglected in 

empirical studies (Alcock & Weber, 2005; Mejía-Ramos & Inglis, 2009; Selden & 

Selden, 2003). Proof validation is a significant facet of the mathematical practice for both 

students and mathematicians and as such is deserving of empirical consideration. 

The skill of validating proofs is an aspect related to the reading of proof (Mejía-

Ramos & Inglis, 2009) and as such is a cognitive activity requiring the reader to focus not 

only on the logical aspects of the proof, but also the use of statements and representation, 

and the overall structure of the proof (Ko & Knuth, 2013; Selden and Selden, 2003; 

Mejía-Ramos, Fuller, Weber, Rhoads, & Samkoff, 2012; Weber & Mejía-Ramos, 2011). 

Much of the research on the reading of mathematical proofs focuses on the skill of proof 

validation (Inglis & Alcock, 2012). These research tracts focus on such varying topics as 

the skills students need to validate proofs (Alcock & Weber, 2005; Weber & Alcock, 

2005); the strategies  mathematicians and students use in a variety of mathematical 

settings to validate proofs, and how they actually go about said evaluations (Inglis & 

Alcock, 2012; Ko & Knuth, 2013; Moore, 2016; Morris, 2007; Weber, 2008; Weber & 

Mejía-Ramos, 2011); and how conviction is affected by a teacher’s or student’s beliefs 
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about the validity of purported proofs (Knuth, 2002; Segal, 1999; Weber, 2010; Weber, 

Inglis, & Mejía-Ramos; 2014).  

Two of the most common refrains from research on proof validation are that: (1) 

proof validation is an important skill for students to gain, however making these 

evaluations presents a considerable challenge for students (e.g., Inglis & Alcock, 2012; 

Selden & Selden, 2003; Weber, 2010); and (2) mathematicians often do not agree on the 

validity of purported proofs (e.g., Inglis, Mejía-Ramos, Weber,& Alcock, 2013; Moore, 

2016). The existing research highlights the situation facing mathematics education 

regarding proof validation is at odds with itself: students need to learn how to validate 

proof but struggle, yet, teachers and mathematicians are inconsistent in their own practice 

of validation due to contextual constrains which exist with regards to proof in 

mathematics generally. More understanding is needed in order to remedy the variance in 

the practices of teaching and learning of proof validation. 

Despite the research efforts surrounding proof validation, there does not exist a 

comparable and perhaps parallel field of proof comprehension: no formal assessment 

exists on any level, nor is there an understanding of the domains for which one might 

even begin to assess such a construct. The three ways in which the assessment for proof 

comprehension are important to mathematics education (Mejía-Ramos, Lew, de la Torre, 

& Weber, 2018) could similarly be true for proof validation if such an assessment 

existed. In mirrored fashion, an assessment of proof validation might be able to: (1) offer 

a tool for teachers to better understand what their students know; (2) offer students a map 

to better focus their attention to important aspects of proof, leading to deeper 

understanding; and (3) offer researchers a tool to better understand aspects of proof 



 

3 

 

validation and uncover new related competencies. A proof validation assessment (PVA) 

offers a tool not only to improve classroom outcomes, but also to further researcher into 

this often difficult-to-grasp skill. 

Significance 

 Because proof validation seems to be connected to other areas of proof, like proof 

comprehension and proof construction (see Mejía-Ramos, Fuller, Weber, Rhoads, & 

Samkoff, 2012; Selden & Selden, 1995, 2003), it is important to have a tool to measure 

students’ ability to validate proof to further research efforts in this field. If proof 

validation is in fact strongly connected to these other aspects dealing with proof, then an 

assessment which measure students’ ability to validate proofs would be a useful tool in 

first confirming there is in fact some sort of relationship between these other proof 

constructs, but also in determine the strength of these relationships. As Mejía-Ramos et 

al. (2018) suggest concerning their proof comprehension assessments, assessing proof 

validation “could be important for evaluating the effectiveness of mathematics 

instruction” (p. 4). Researchers suggest a link between validating and constructing proofs 

(Powers, Craviotto & Grassl, 2010; Selden & Selden, 2003) and similar claims exist 

about the connection between validation and proof comprehension (Alcock, Bailey, 

Inglis, & Docherty, 2014), however, these claims need stronger empirically evidence to 

fortify and generalize the theory. Furthermore, focusing on the Introduction to Proof 

(ITP) level is a good first step in the process of understanding the effects proof validation 

has on learning proof generally and gives a good starting point for helping map our 

understanding about proof and proof validity at the university level. 
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 A tool, like the one proposed for this study, could help identify teaching and 

instruction habits, as well as proof learning and reading habits. This research tool can be 

expanded upon to focus on other areas of advanced mathematics beyond the ITP setting 

in order to help further clarify these questions throughout the undergraduate and even 

graduate mathematics tracts too. 

 Because creating a research tool necessitates the involvement of mathematicians 

to identify the essential aspects of proof with regards to proof validity, a strongly 

supported framework for understanding aspects of proof validity emerges. This 

framework, situated in this instance in the ITP context, could be scaled to help 

researchers better identify aspects of proof which are important markers in curricular 

materials, classroom presentations, and graded feedback, all of which may further support 

the development of proof validating competencies in the classroom environment. This 

knowledge could build new understandings on how to teach intuitively and overtly proof-

base mathematics. 

 The norm concerning mathematical instruction and assessment at the advanced 

undergraduate level is often describe in terms of definition-theorem-proof presentations 

which are broken up over the semester by state-and-prove assessments (see Conradie & 

Frith, 2000; Davis & Hersh, 1981; Dreyfus, 1991; Weber, 2004) . The definition-

theorem-proof/state-and-prove model of teaching and assessing has considerable 

drawbacks, the first of which is that only part of the curriculum is ever explicitly 

addressed in class. 

It is widely agreed that in advanced undergraduate mathematics courses, one of 

the biggest overt focuses is on improving students’ proof writing ability (e.g., Weber, 
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2001). Despite this emphasis, one of the most common activities students take part in, 

especially in the classroom, is the reading of proofs. This is due to the fact that the 

definition-theorem-proof paradigm is the most common pedagogical approach for the 

presentation of formal proofs (see Davis & Hersh, 1981; Weber, 2004) and it is through 

the presentation of written proofs professors most often afford instructional explanations 

(Lia, Weber & Mejía-Ramos, 2012). Because proofs as a pedagogical tool are meant to 

convince, explain, stimulate understanding, and enable mathematical discourse and 

critique, (de Villiers, 1990; Hanna; 1990; Hersh, 1993; Knuth, 2002; Mejía-Ramos et al., 

in press; Weber, 2010) it seems  the curriculum in advanced undergraduate mathematics 

consists of writing proofs and also aspects of proof reading. One important aspect of 

proof reading is proof validating (Mejía-Ramos & Inglis, 2009) which is linked to the 

ability to construct proofs (Powers, Craviotto & Grassl, 2010; Selden & Selden, 2003) 

and is a major factor in promoting critique and mathematical discourse. 

A second shortcoming of the pedagogical model of definition-theorem-

proof/state-and-prove is in how it leads to a suboptimal learning experience as it assesses 

students’ abilities to recall and prove theorems. Conradie and Frith (2000) outline some 

of the drawbacks of the state-and-prove assessment strategy, all of which can be inferred 

to affect learning in one form or another:  

1. In preparing for these tests, students typically learn to memorize proof 

structures and tricks, if not entire proofs outright. 

2. In grading, the professor learns what their students memorized or failed to 

memorize, not necessarily what students know, understand, or do in terms of 

proof and conceptual understanding. 
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3. The professor’s feedback – or lack thereof – afford students little opportunity 

for further learning. 

From a learning standpoint, this is a grim situation as students are ultimately judged more 

on their ability to memorize, not understand or apply. Even if a professor has the best 

intentions, these assessments often fail to test what students actually know and can do, so 

a professor has difficulty making accommodations throughout the course based upon 

students’ performance. Also,, if students hope to gain further insight into how their 

knowledge and ability align with expectations, they might be left guessing as grading 

these assessments is contextually based upon the preference of the professor grading 

them (Moore, 2016) making the grades themselves somewhat arbitrary from class to 

class. 

The final shortcoming of the definition-theorem-proof/state-and-prove cycle 

stems from the fact that proof reading – and of particular interest in this research – proof 

validating is part of the curriculum but not directly assessed. In constructing proofs as 

part of an assessment, some amount of validating passively occurs, as Selden and Selden 

(2003) suggest that:  

One constructs a proof with an eye toward ultimately validating it and may often 

validate parts of it during the construction process. In fact, the final portion of a 

proof construction is likely to be validation of that proof. That is, each process, 

validation and proof construction, entails the other. (p. 6) 

Thus, as part of an assessment involving proof construction, students also validate, even 

if it is to assess if what they have memorized is presented – in what the student perceives 

– as a sound argument. Ultimately, if validating is not blatantly part of the curriculum, 
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then validating occurs – even in the setting of an assessment – much the way it is learned, 

implicitly and passively without specific regard to how it relates to the curriculum or 

mathematics in general.  

As validating is not a deliberate part of the curriculum currently, there is little 

hope students become proficient in this practice. Because of this, feedback becomes the 

only means for a student in a definition-theorem-proof/state-and-prove class to learn how 

their conception of proof stands up against the standards of mathematical practice at 

large. But as was pointed out, feedback in this regard may be insufficient for the needs of 

the student (Conradie & Frith, 2000), and thus their conceptions of proof are shaped 

without specific knowledge about where they are deficient in their ability and 

understanding.  

Research Goal 

Mathematics education in the twenty-first century has seen considerable growth in 

terms of researcher’s ability to assess individuals for conceptual and pedagogical 

knowledge about mathematical topics, skills, and understandings (e.g., GTCA – 

Melhuish, 2015; LMT – Hill, Ball & Schilling, 2008; MQI – Learning Mathematics for 

Teaching Project, 2011; PCA – Carlson, Oehrtman, Engelke, 2010; Proof Comprehension 

Assessment – Mejía-Ramos et al., 2018). This work needs to continue, especially at the 

tertiary level to support efforts to understand learning outcomes, and reform practice to 

increase opportunities to learn. To this end, having a validated instrument measuring 

proof validating competencies could open new venues for large scale research at the 

advanced undergraduate level. As such, the goal of this research is to build an assessment 

for the advanced undergraduate level, focused on proof validation that is robust enough to 
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serve as a research tool to further our understanding of students’ proof competencies. Put 

plainly, the primary goal is to: 

Develop a cohesive analytic framework and use it to construct a closed-form, 

multiple-choice assessment which measures students’ abilities to validate 

deductive mathematical arguments at the introduction to proof (ITP) level. 
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II. Proof Validation Literature Review 

The mathematics education literature on proof covers a wide range of topics from 

the philosophical treatise on the purpose and character of proof as well as reasons for 

proving (e.g., de Villiers, 1990; Rav, 1999) to the more pragmatic inquiry focused on 

understanding the conceptions teachers and students have about proof (e.g., Harel & 

Sowder, 1998; Healy & Hoyles, 2000; Knuth, 2002; Morris, 2007). Additionally, 

researchers studied pedagogical issues and the role of the teacher in proof related 

activities and settings (e.g., Herbst, 2002; Lai, Weber, & Mejía-Ramos, 2014; Lew, 

Fukawa-Connelly, Mejía-Ramos, & Weber, 2016; Rowland, 2002).  

Most important to this study, researchers focused on the types of mathematical 

activities that are associated with proof in an educational setting.  In exploring proof-

related activities, research on proof and argumentation can be broken down into three 

general categories of student competencies: (1) proof construction; (2) proof reading; and 

(3) proof presentation (Mejía-Ramos & Inglis, 2009). Most research focused on proof 

construction, while considerably less focused on the latter two tracts, especially proof 

presentation. The literature explored here naturally focuses on proof validation, an aspect 

of proof reading, giving special attention to what has been explored related to 

mathematician’s perspectives on validity and student’s capabilities in judging 

mathematical arguments. 

Research on proof validation breaks down into subgenres based upon the 

population which each study was focusing on. These populations form three distinct 

bands: (1) K-12 students, K-5 teachers and preservice teacher (PST), (2) undergraduate 

mathematics majors including secondary PST; and (3) practicing mathematicians. I set 
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these groups in ascending order of mathematical background; the first group with the 

least amount of mathematical background, the second with greater indoctrination into 

proof culture, and of course the practicing mathematicians who regularly interact with 

and set the norms for the argumentative culture with the greatest depth of mathematical 

knowledge. 

K-12 Students and Preservice Elementary Teachers 

This set of research explores ideas like preservice elementary teachers (PSeT) 

conceptions of proof (Martin & Harel, 1989), school-aged students’ conceptions of 

validity (Healy & Hoyles, 2000), PSeT process of evaluation of students’ mathematical 

arguments (Morris, 2007), and framing of students’ understanding concerning the 

structure of deductive proofs (Miyazaki, Fujita, & Jones, 2017). Taken as a whole, this 

set of research demonstrates that K-12 students and PSeT are deficient in their ability to 

consistently identify valid proofs. These results are unsurprising in some ways though, as 

this group represents a cluster of individuals who have had minimal to no indoctrination 

into advanced mathematics, especially those which deal with the norms of proof. The 

research suggests that PSeT seem to have difficulty in identifying valid deductive 

arguments, and in symmetric fashion, students too have difficulties in this regard.  

The importance of this research for this study is that it fixes the understanding that 

once students complete their tract of K-12 mathematics education they are 

unindoctrinated in the art of proof reading and especially validating. This means that 

students who are in an ITP course are truly novice from the sense that they have not been 

formally introduced to proofs in any constructive way during either their K-12 education 
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or their courses leading up to their ITP classes1. Thus, when setting the aim for this study, 

to build an instrument which measures students’ ability to validate arguments, the ITP 

classroom becomes a sufficient baseline for exploration. These students are novice in this 

regard and will serve to set the standard for what is or might be learned in the university 

setting. 

Proof Validating 

The study of proof validation was largely formalized by Selden and Selden in 

their 1995 study in which they focused on 61 students’ ability to unpack the meaning of 

mathematical statements. In this study, Selden and Selden (1995) defined the term 

validation as, “The process an individual carries out to determine whether a proof is 

correct and actually proves the particular theorem it claims to prove” (p. 127). The main 

claim of this study was that students’ ability to unpack mathematical statements was in 

some way linked to their ability to validate proofs. Furthermore, they claimed that 

beginning undergraduate students could not reliably unpack mathematical statements and 

therefore would not be able to reliably validate proofs.  

In a subsequent study, Selden and Selden (2003) tested this last claim, asking 

whether students could in fact validate proofs in a reliable manner. They did so by asking 

eight mathematics and secondary mathematics education majors from an ITP course to 

validate three different proofs. For a basis to this study, Selden and Selden (2003) gave a 

broad and generalized understanding of proof validation stating, “Here we focus on 

proofs as texts that establish the truth of theorems and on reading of, and reflecting on, 

proofs to determine their correctness. We call such reading and the mental processes 

                                                 
1 This works under the assumption that an Introduction to Proof (ITP) course is in fact the university course 

where students are formally introduced to proof (David & Zazkis, 2017). 
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associated with them validations of proof” (p. 5). While this definition did little to clarify 

what those mental processes were, it importantly defined validating as a part of the 

process of reading a proof and connecting that reading to a series of cognitive efforts to 

determine the veracity of a proof. The results of this study suggest that students unaided 

are no better than chance at determining the validity of proofs, but with guided 

intervention can be led to be more reliable in their validation judgments. 

Since Selden and Selden’s (2003) study, research on proof validation moved away 

from asking if students could validate to how they validate and how that compares to how 

mathematicians validate. This tract of research broadens some to explore the more 

comprehensive conception of proof reading. Alcock and Weber (2005) had 13 

undergraduate students explore a single proof to help determine what students attend to in 

validating. Their findings suggest that by the time they are in an analysis course there are 

specific aspects of proofs that students learn to focus on to aid in determine the validity of 

a proof. Moreover, they noted that students tend to focus on the veracity of statements 

rather than the tenability of the statements themselves, meaning students were more 

concerned with what was or was not true rather than what was or was not supported by 

the argumentative process employed in the proof.  

Weber and Mejía-Ramos (2011) studied the process that mathematicians 

undertake in validating proofs, suggesting that mathematicians typically do so under the 

semblance of three different rationales; (1) the source of the proof, (2) an actual line-by-

line checking of the proof, and (3) a review of the overall method or methods used to 

accomplish the proof. These results to some degree echo the findings of Heinze (2010) 

and those of Weber (2008) who found that mathematicians tend to evaluate proofs in a 
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two-step process. The first step consisted of checking the structure of the argument, 

typically by noting the proof technique (e.g. direct proof, proof by contradiction) 

employed in the argument, and then, if they found that satisfactory, the second step 

consisted of  checking the proof line-by-line. Of Weber and Mejía-Ramos’ (2011) third 

rationale, the authors discussed the idea that mathematicians may do two activities to 

explore the methods undertaken, that of zooming in and zooming out. The former is that 

of focusing on what may be problematic portions of the argument, while the latter is that 

of exploring the overall structure – what Selden and Selden (1995. 2003) refer to as first-

level proof frameworks – to get at the heart of the main ideas of the proof. 

Weber and Mejía-Ramos’ (2011) results led Inglis and Alcock (2012) to explore 

if students took a different approach to validating proofs than those of mathematicians. 

Their approach to this research was novel as they employed eye-track technology to 

determine the process by which 18 first-year undergraduate students and 12 research-

active mathematics approached validating proofs. Their results supported Selden and 

Selden’s (2003) findings that these students are unreliable in their validating of proofs. 

Furthermore, they found that these students tended to fixate on the correctness of 

mathematical computations which echoed the finds published by Knuth (2002) almost a 

decade earlier. Inglis and Alcock (2012) also found that mathematicians were far more 

active in their zooming in than the students, and that neither group actively zoomed out, 

in contrast to the findings of Weber and Mejía-Ramos (2011). 

These two research teams worked in unison to determine the standards that 

mathematicians had in evaluating proofs. Inglis, Mejía-Ramos, Weber, and Alcock 

(2013) surveyed 109 research-active mathematicians to determine areas of disagreement 
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in mathematicians’ validity judgments. To do this, they presented these mathematicians 

with a single proof, which they asked the mathematicians to validate, as well as a critique 

of the proof which the authors asked the mathematicians to comment on, giving them the 

chance to change their minds. According to Inglis et al. (2013), “The results of this study 

provide empirical support for the claim that there is not universal agreement among 

mathematicians regarding what constitutes a valid proof” (p. 279). Ultimately, they found 

that mathematician do not hold universal agreement in the validity of proofs or more 

generally, what constitutes a valid proof and that in practice the standards they hold about 

what causes a proof to be invalid are also not universal. According to their study, the 

standards by which mathematicians validate proof are to some degree dependent upon the 

domain of mathematics in which the mathematician is involved. 

Directly related to their interactions with students’ proofs, Moore (2016) explored 

the proof grading and evaluating habits of four university professors to determine if there 

would be consensus in evaluating and scoring students proofs as well as explicating what 

these professors saw as the characteristics of well-written proofs. To accomplish these 

goals, Moore conducted one-on-one interviews where each professor was asked to talk 

aloud while scoring six student proofs, indicating how the proof could have been 

improved and assigning a score on a ten-point scale. This was followed by a 

question/answer session where Moore asked the professors about their grading habits 

generally, and the features they thought constituted a well-written proof. A year later 

Moore conducted a set of follow-up interviews with each professor to further understand 

the variance in results from the initial study where Moore used modified versions of three 
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of the proofs from the original study as well as presenting them each with a seventh 

proof. 

The professors in Moore’s study varied by three or more points on four of the six 

proofs in the initial study. This range actually increased in the follow-up study. Beyond 

overlooking details that would have led to different scores (i.e., performance errors) 

ultimately Moore’s professors held vastly different schemas for grading which had the 

greatest impact on the final scores they gave to each proof. In characterizing well-written 

proofs, the professors identified four characteristics which they deemed as important: (1) 

logical correctness; (2) clarity which encapsulated a variety of meanings; (3) fluency of 

language; and (4) a demonstration of understanding.  

Conclusion. This tract of research answered quite a few questions about what a 

small group of students can do in terms of validating a select set of proofs, what 

processes mathematicians and students undertake while validating, and what standards 

mathematicians may hold about the validity of proof. On the other hand, there are still 

many questions which this research does not answer. First and foremost, on the students 

side, most samples taken were small (e.g., 𝑁 = 8, 𝑁 = 13, & 𝑁 = 18) and the data 

collection, while systematic in terms of methodology, did not employ quantitative 

measures and controls to make larger claims about the abilities student might possess 

with regards to validating. In some ways, this affects the generalizability of these finds 

and gives space for asking more pointed questions about students’ ability in regard to 

validating. For instance, do students improve in their ability to validate arguments as they 

progress in an undergraduate mathematics course of study (i.e., as they take more classes 

in their degree)? To answer such questions, there needs to be a uniform and consistent 
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way of determining students’ ability of validating on a larger scale data collection. 

Furthermore, in terms of the arguments themselves, while the proofs for these studies are 

certainly interesting and meaningful, it seems important for a large scale study of 

students’ validating ability to have proofs which are selected and codified based on the 

types of mistakes that are present in the arguments and which mathematicians would 

agree to their validity, again in order to make larger claims about what students are and 

are not able to do, which no study to date has done. 

  With regards to the research on mathematicians, the research to date presents 

important findings about some basic norms and practices to which mathematicians adhere 

both in their reading and validating of proofs. What is less clear from the research is an 

overarching sense of how specific aspects of proof affect validity. For instance, there is a 

body of research focusing on errors in proof writing (e.g., Hazzan & Loren, 1996; Selden 

& Selden, 1987). What is unknown from the research base is how mathematicians view 

these errors in terms of validity and whether mathematicians see these errors as having 

similar or different effects on validity. 
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III. Common Validity Issues and Theoretical Background 

To frame this research, I begin by outlining the definition of proof that will 

underlie my instrument, thus the idea of a valid or even invalid proof can be ascertained 

with minimal ambiguity. This defining process occurs in two steps, the first is to give 

general meaning to the aspects of proof, and second, to give sharper contrast to this 

research, I set the norms about each aspect in conjunction with the target population for 

the proposed instrument. I conclude the defining process by leveraging these constructs 

to define validating. Also included in this section is a presentation of the Common 

Validity Issue (CVI) framework which undergirds the creation of the assessment; the 

main goal of this study. Finally, I briefly discuss educational assessments, giving specific 

attention to validity – in this case content validity – and reliability.  

Arguments and Proofs 

 To set the tone linguistically, I first will clarify the terminology used to identify 

what is valid and what is not. First and foremost, the term argument represents the body 

of all purported proofs regardless of their validity. Thus, to ascribe a series of logical (or 

illogical) statements as an argument is to remove any notion of validity from the 

conversation and is akin to the use of the term purported proof in other studies. 

Arguments are valid-neutral. On the other hand, though this may not be in common 

parlance, I take term proof to be self-evident in reference to an argument’s validity. 

Identifying an argument as a proof is to remove its valid-neutrality and assert that it is, in 

fact, valid. Finally, the class of arguments that are not proofs, and thus not valid, I adopt 

the term non-proof. Non-proofs are arguments which do not prove for some reason or 

another; they are not valid. I adopt this terminology first because terms like purported 
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proof and valid proof are cumbersome, but also because I feel that the language I use is 

important and the term proof holds a special position as the only argument that proves. 

All other arguments may do other things, but ultimately, they fail to prove. 

Defining Proof 

The idea of proof is nuanced in the mathematics education literature. These 

characterizations range from the overtly mathematical in nature (e.g., Healy & Hoyles, 

2001; Knuth, 2002; Mariotti, 2000) where logic and deduction are stressed at the expense 

of all else, to the cognitive or social perspectives each focusing on aspects of conviction, 

and communal acceptance (e.g., Balacheff, 1988; Harel & Sowder, 2007). I adopt 

Stylianides’ (2007) definition as it incorporates all three views previously mentioned 

(mathematical, social, and cognitive), but also explicates what might qualify as a proof. 

Stylianides defines proof thusly: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 

mathematical claim, with the following characteristics:  

1. It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and 

known to, or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument 

representation) that are appropriate and known to, or within the conceptual reach 

of, the classroom community. (p. 291; emphasis in original) 

From this definition the understanding is gained, as was previously mentioned, that a 

proof is a mathematical argument which is defined by three distinct characteristics 
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concerning statements, modes of argumentation, and representation (see Table 1). I take 

the phrase mathematical statements to represent the set of all acceptable statements. 

These mathematical statements represent the set of axioms, definitions, and theorems 

upon which a mathematical domain is built. When employed in an argument these 

mathematical statements are taken as true without further consideration. Modes of 

argumentation centers on the use of logic, reasoning, and the appropriate application of 

mathematical statements within an argument. Finally, modes of argument representation 

encapsulate ideas about the linguistic, symbolic, and diagrammatic nature of proof. 

Table 1 

Examples of the Three Components of a Mathematical Argument Mentioned in the 

Definition of Proof. Reprinted from “Proof and proving in school mathematics,” A.J. 

Stylianides, 2007, Journal for Research in Mathematics Education, 38, p. 292. Copyright 

2007 by NCTM. 

 

It is significant for situating this research as not just an educational activity, but 

also as a mathematic endeavor. By defining proof, the definition is appropriate for the 

classroom setting and also operational and acceptable in the mathematical world at large. 

In reference to this dual requirement Stylianides (2007) posited: 

Regarding the consideration of mathematics as a discipline, the definition requires 

that the accepted statements be true, the modes of argumentation be valid, and the 
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modes of argument representation be appropriate. Regarding the consideration of 

students as mathematical learners, the definition requires that proofs depend on 

what is accepted, known, or conceptually accessible to a class- room community 

at a given time. (p. 294, emphasis in original)  

The definition presented here walks a careful line between what is required of a 

mathematical argument to be a proof in the larger setting of the general mathematical 

discipline while simultaneously affording consideration to the social requirements that 

exist in the smaller setting of the mathematics classroom. For this research, this dual 

nature affords not only the ability to carefully view implications from an educational 

perspective, but for them to be potent and meaningful from a mathematics perspective. 

Beyond simply making affordances for the various mathematical communities 

that exists, the definition of proof used in this research needs to be explicit enough to 

make evaluations of validity a straightforward and consistent effort. In agreement with 

Stylianides, Stylianides, and Weber (2017), I see this definition of proof as able to 

“support judgments about whether students’ arguments meet the standard of proof, and if 

not, it can also support decisions about which specific components of students’ 

arguments require development so as to better approximate that standard” (p. 5). Thus, 

once the normative nature surrounding acceptable statements, argumentation, and 

representation are well-defined, the definition affords a clear understanding of what is 

important in the context of checking for validity. Next, I discuss the general basis for 

setting the norms for proofs. 
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The Norms for Proof  

The norms for this research are set from the perspective of the commonly referred 

to university course, introduction to proof (ITP). The choice to set the ITP class as the 

standard is because it is the entryway into advanced mathematics and is the setting where 

most students first interact with proof at a high level. As such, the classroom community 

used in the broad definition of proof can be understood to be that of the ITP classroom, 

and in this way, I heavily leverage the work of David and Zazkis (2017) as they have 

taken great strides in defining what is meant by ITP from a research perspective. Using 

this perspective focuses the understanding of classroom community toward a curricular 

bias as David and Zazkis’ (2017) work largely identifies the curriculum and curricular 

materials not necessarily the classroom environment itself. I justify this bias as textbooks 

and other curricular materials represent a bridge between the classroom and the intended 

curriculum (Thompson, 2014).  

Furthermore, Stylianides (2007) concedes that the classroom community 

overlooks the individual and focuses more on what is within reach of the community and 

that which “Can comfortably be assumed and used publicly without further justification” 

(p. 293). Therefore, while the classroom community is ill defined, David and Zazkis 

(2017) give a thorough understanding of the intended curriculum and the texts involved, 

which combine understanding is enough for situating the norms about proof for ITP 

classroom community. Thus, when referencing the ITP curriculum, I do so in place of the 

classroom community. 

What follows is discussion on the general meanings for this research in regard to 

acceptable statements, acceptable forms of argumentation, and acceptable argument 
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representation. Where appropriate, I will follow the general discussion with a set of 

norms based upon the ITP class as outlined by David and Zazkis (2017). 

Acceptable Statements 

 As previously mentioned, the phrase mathematical statements represents the set 

of acceptable statements, which statements are the set of axioms, definitions, and 

theorems upon which a mathematical domain is built. Mathematical statements have two 

important roles as part of the mathematics register, (1) they establish meaning, and (2) 

they function as a basis for building new meaning (Halliday, 1978). The first aspect is 

straightforward because axioms, definitions and theorems by their very natures connote 

meaning. The second aspect points to the use of mathematical statements, and beyond 

being markers for what is known, they are the basis upon which new knowledge is built. 

For mathematics, the mode of creating new knowledge is precisely the argumentative 

process, and in terms of argumentation, mathematical statements play the role of 

justifying, or in the vernacular of Toulmin (1964) warranting.  

Warranting is the cognitive process of either inferring or outright stating an 

axiom, definition, or theorem to justify claims from the basis of some data (Toulmin, 

1964). Repeating this process forms an inferential chain and is the very essence of an 

argument, which I will speak of more in acceptable argumentation. For the purpose of 

specifying acceptable statements and their significance in argumentation, understand that 

the role mathematical statements play in argumentation is by offering meaning to build 

upon and function as warrants or justification in building new meanings. 

I will not lay out a list of acceptable mathematical statements for use in building 

an assessment, as this does not seem possible at this time, but I will instead loosely define 
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the scope of what is acceptable for building the assessment based upon the curriculum 

which this assessment is based. The set of acceptable statements for this assessment 

arises from the ITP course. David and Zazkis (2017) introduce the Standard ITP course 

whose curriculum covers “Symbolic/formal logic, truth tables, propositions, quantifiers, 

methods of proof (including contradiction and induction), number systems, sets relations 

and functions, infinite sets, and cardinality” (p. 5). Fagan and Melhuish (2018) found that 

proof activities in Standard ITP classes most often fell in the mathematical domains 

dealing with basic number systems/theory, sets, relations, functions, and cardinality. It is 

from this curriculum that I define acceptable statements using the vernacular common to 

three of the most widely used Standard ITP texts from David and Zazkis’ (2017) survey, 

namely Mathematical Proofs: A Transition to Advanced Mathematics (Chatrand, 

Polimeni & Zhang, 2013), A Transition to Advanced Mathematics (Smith, Eggen, St. 

Andre, 2014), and Book of Proof (Hammack, 2013). 

The set of accepted statements underlying proofs in the validating measure consist 

of mathematical statements which make up the basic set of axioms, definitions, and 

theorems for the Standard ITP course dealing specifically with basic number 

systems/theory, sets, relations, functions, and cardinality. A proof in the context of this 

research is any argument that is built upon mathematical statements that are common to 

the curriculum dealing with basic number systems/theory, sets, relations, functions, and 

cardinality found in the Standard ITP course or any course that could reasonably be 

presumed to precede such a course. This additional closing clause is necessary as often 

ideas like field axioms (i.e., associative, commutative, distributive, identity and inverse) 

are taken for granted in the study of proofs in the Standard ITP course in that they are 
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often used though not defined or introduced in any formal way (Fagan & Melhuish, 

2018). These topics are often introduced as early as pre-algebra and are widely available 

for undergraduate mathematics majors despite not being formally introduced in the 

Standard ITP course. Thus, the inclusion of these types of mathematical statements and 

others from calculus, and high school algebra, trigonometry, and geometry are part of the 

accepted statements of proofs for this research. 

Acceptable Argumentation 

To help clarify argumentation, I partition the topic into three sub-constructs 

coming out of the literature on argumentation in proof, namely logical structure (see 

Selden & Selden, 1995, 2003; Weber, 2008), line-by-line reasoning (see Alcock & 

Weber, 2005; Inglis & Alcock, 2012; Weber, 2008; Weber& Alcock, 2005), and 

argument type (see Healy & Hoyles, 2000; Inglis & Mejía-Ramos, 2009; Raman, 2002; 

Weber, 2010). In the following sections, each sub-construct is defined generally as it 

relates to this research. 

Logical structure. Mathematical statements like theorems have an intrinsic 

logical structure. A basic assumption in this research is that a theorem’s logical structure, 

no matter how convoluted, should in turn inform how a proof of that theorem is logically 

structured. Selden and Selden (1995) highlighted the interdependence of logical 

structures in define proof frameworks, a term used to describe the overall logical 

structure of a proof as implied by the logical structure of the statement it proves and the 

proof method used to accomplish said proof (cf. Weber, 2015). For example, in Figure 1, 

the logical structure of the theorem is that of a standard conditional statement, 𝑃 → 𝑄 

where 𝑃 is “𝑀 is a compact set” and 𝑄 is “each infinite subset of 𝑀 has a limit point.” In 
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consistent fashion, what is assumed is in direct conjunction with what is allowed by the 

theorem, and what is concluded similarly coincides with the theorem. The logical 

structure along with what might be termed proof method (e.g., direct proof, proof by 

contradiction) makes up the proof framework.  

 
Figure 1. Proof framework.  

 An important aspect of the proof framework is the alignment of the logical 

structure of the proof and the proof method being used to produce the argument. Selden 

and Selden (1987) point out that a common mistake students make is to assume the 

consequent of a mathematical statement and arriving at a trivial conclusion. Moreover, in 

proving a theorem, to assume more or less than what is allowable based upon the theorem 

being proven is strictly at odds with aligning the logical structures of the argument and 

the statement being proved. This concept is known as weakening the theorem, which 

Selden and Selden (1987) characterized as, “When what is used is stronger than the 

hypothesis or when what is proved is weaker than the conclusion” (p 464-465). For 

defining proof, this means an argument must assume exactly that which the statement 

being proved allows and that the proof does not assume that consequent and arrive at a 

trivial solution. 

Line-by-line reasoning. Mathematical statements have both meaning and 

function. It is the inferential chain which defines the line-by-line reasoning of a proof. As 

the line-by-line reasoning of a proof is an extension of the logical structure of the proof, 
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any assertion in a proof proceeds as a logical outcome of previous assertions, which in 

iterative fashion should trace back inferentially to the basic assumptions of the proof 

framework.  

While admittedly overly simplistic, Figure 2 presents an example of how the 

proof framework begins and ends the inferential chain of line-by-line reasoning. The set 

of assumptions, 𝐴,  granted by the antecedent of the initial statement starts the chain of 

inferences as data which combine with warrant 𝑋 leads to the claim 𝐵. Once claimed, 𝐵 

becomes part of what is accepted. It can in turn be data itself, and when combined with a 

warrant 𝑌 leads to claim 𝐶. This cycle ultimately ends as 𝐶 is now derived, and, 

therefore, is used as data all its own and when combined with the warrant 𝑍 leads to the 

logical conclusion 𝐷. The connective structure, or justification, in an implication between 

any previous assertion(s) and a new assertion is what is termed a warrant (see Toulmin, 

1964; Weber & Alcock, 2005) which comes from the set of mathematical statements. 

Thus, for a proof to be logically consistent from line-to-line, the warrants must be 

accurate and appropriate for the claim they support. 
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Figure 2. Line-by-line reasoning is built upon the logical structure and is supported by warranting. 

Adapted from Weber and Alcock (2005). 

In terms of what warranting means for building an assessment of validating 

competencies, there are two distinct aspects I define to situate this research. The first 

deals with the necessary and sufficient level of explicit warranting in a proof: how often 

and for what types of inferential claims an explicit justification in terms of a warrant must 

be stated outright. This concept stems from professors’ and teachers’ grading habits in the 

classroom (e.g. Moore, 2016) and is a problematic topic as there seems to be no 

consensus on this idea generally. As it is most often defined by the society for which 

proofs are created, the notion of there being a necessary level of explicit warranting is an 

artificial construct of the didactic process. To some degree, it would seem incongruous to 

attempt to force such an arbitrary if not artificial norm on an instrument whose target 
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population includes students who will have experienced widely varying norms on this 

front. On the other hand, while this idea is contextual, by putting this notion in front of 

mathematicians who teach these courses and so often set these norms – both for the 

classroom and in practice for journals and publications generally – perhaps some 

consensus can be reached for the ITP level. Thus, while the professors in Moore’s (2016) 

study may have considered stating warrants explicitly as an important factor for grading, 

this may not be the case universally (Alcock & Weber, 2005; Weber & Alcock, 2005). It 

is worth exploring from a mathematician standpoint to better understand if there exists 

any generality at all. 

Warrants (whether implicit or explicit) must be appropriate to justify the 

connection between data and claim. For example, in Figure 3, a common problem for 

students learning modern algebra is the use of Lagrange’s Theorem. As stated in Hazzan 

and Leron (1996), statement (A) overtly warrants using Lagrange’s Theorem, which is 

the incorrect use of the theorem and therefore invalidates statement (A). On the other 

hand, statement (B) is invalid not because {𝑎𝑛} is not convergent, because it might be 

dependent upon the sequence. Instead, (B) is invalid because the implied warrant – every 

bounded sequence is convergent – is categorically false. For instance, the 

sequence {(−1)𝑛}𝑛≥1 is bounded such that ∀𝑛 ≥ 1, |(−1)𝑛| ≤ 1, but it does not 

converge. The warrant can be inferred from the fact that the statement is talking about the 

convergence of a sequence and the stated data, “it is a bounded sequence.” So, while the 

antecedent may be true, if the warrant is false the statement itself is invalid. In either case, 

whether explicit or implicit warranting, this is the logical issue of line-by-line reasoning 

spoken of in this section. 
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Figure 3. Implicit and explicit warrants. 

Once again, because of the inconsistent manner in which warranting is treated in 

the curriculum (Fagan & Melhuish, 2018), the amount or level of explicit warranting 

within an argument will not serve in defining the norms about proof. Thus, a proof can be 

understood to either explicitly warrant all claims, or leave it to the reader to, as Alcock 

and Weber (2005) stated it, infer warrants. On the other hand, as the idea of the 

appropriateness of a warrant within a proof is a measure of the consistency of line-by-line 

reasoning, a proof can further be defined from the standpoint of justification as an 

argument where each warrant, implied or explicit, is accurate and appropriate for the 

claim it supports. Additionally, as a direct consequence of this understanding, in order for 

an argument to be valid both at the ITP level and the more general mathematical level, 

the norm is that computations must be carried out correctly (Selden & Selden, 2003; 

Weber, Inglis & Mejía-Ramos, 2014). 

Finally, in relation to line-by-line reasoning, there is some debate amongst 

differing school of thought about the effect of irrelevant and extraneous statements on the 

validity of a proof (see Dawkins & Weber, 2016; Selden & Selden, 2003). The argument 

against extraneous statements is that they affect the clarity and flow of an argument and 

can often confuse the reader making it difficult to both validate and comprehend. Despite 

the difficulties that extraneous statements can cause, they do not a priori invalidate the 

argument by their very presence (Dawkins & Weber, 2016; Selden & Selden, 2003). 

Therefore, while they are undesirable in a well written proof, they can still exist as part of 
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the line-by-line reasoning of an argument deemed to be an acceptable proof. To avoid 

unnecessary convolution, I avoided needlessly including extraneous statements, however, 

as I used previously collected student work as inspiration in writing the instrument, 

extraneous statements may exist in these proofs. As such, I am careful in considering 

their effect on the line-by-line reasoning of the argument before I decided on whether to 

keep or remove said statements.   

Argument type. By type of argument, I embrace the notion Weber (2010) 

referred to as the “Types of evidence contained in the argument included to convince the 

reader about the veracity of the theorem being proved” (p. 307). Thus, this discussion 

concerns the strength of the argument, whether it is example-based argumentation or 

general in nature. Stylianides (2007) stated that his definition,  

Describes a special class of arguments (those that qualify as proofs) without 

suggesting that other classes of arguments represent less valuable ways of 

knowing and doing mathematics. Indeed, there are many valuable ways of 

reaching valid conclusions (e.g. arguments by analogy) that may not be logically 

“tight” enough to meet the standard of proof. (p. 292) 

There are many argument types which an individual may accept as valid, not all of which 

are valid for proving.  

Generally, arguments break into two categories: deductive and inductive. 

Deductive arguments offer a guarantee that when the premise is true, the conclusion is 

also true, and necessitate the logical qualities mentioned previously (i.e., logical structure 

and line-by-line reasoning). Their results are logical and general, and follow from and 

extend theory. Conversely, inductive arguments use empirical evidence to establish cases 
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of theory, and while useful in building general results, inductive arguments are not 

general in nature.  

A third and more elusive argument type is that of diagrammatic arguments. 

Diagrammatic arguments are not elusive because they are hard to identify or define, but 

rather because they present a conundrum in their acceptance and purpose. Indeed, 

Nelson’s (1993) collection of Proofs Without Words is an interesting collection of 

arguments that in some case are canonical (e.g., proofs of Pythagorean’s theorem) while 

others appear to be little more than interesting mathematical tidbits. Despite the moniker 

of proof, Nelson himself pointed out that these diagrams were not in fact proofs.  

More often, diagrams act as heuristics in the undergraduate ITP course and have 

minimal sway in the establishing the veracity of a mathematical statement. For this 

research I again default to the classroom community of the Standard ITP course, and as 

Samkoff, Lai, and Weber (2012) pointed out, formal proofs at this level are based on 

sound mathematical statements, and deduction. They state, “The inferences within the 

proof are expected to be based on deductive logic, not the appearance of the diagram” (p. 

50). Furthermore, deductive arguments are the primary form of acceptable proofs 

amongst mathematicians (Dawkins & Weber, 2016). Despite evidence that K-12 students 

and teachers may accept empirical arguments (Healy & Hoyles, 2000; Knuth, 2002), ITP 

students generally see empirical arguments as invalid (Weber, 2010). For this reason, the 

proofs presented in the validating measure are limited to this argument type: deductive 

arguments of general statements. 
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Acceptable Argument Representation 

 I take the position of Dawkins and Weber (2016) as they argued that proofs 

should use established symbolic conventions in their construction. As such, a proof is an 

argument which abides by these conventions as well. According to David and Zazkis 

(2017) one of the many topics discussed in the Standard ITP class is that of symbolic 

logical quantifiers (e.g., universal quantifier ∀, existential quantifier ∃) as well as other 

symbolic notation (e.g., ∧, ~, ∈, ⊆, ≡, ∪). Furthermore, despite students’ apprehension 

about proofs based upon algebraic computation (e.g., Knuth, 2002; Weber, 2010), once in 

an ITP class, it is reasonable to assume a student has spent time in their academic career 

learning the symbolic conventions of basic algebra, trigonometry, and calculus. For 

example, in Figure 4, whether faced with the highly symbolic proof as in Proof A, or the 

less symbolic more linguistic proof as in Proof B, students at the ITP level and above 

should be comfortable with either the heavily symbolic or more linguistically grounded 

conventions and base an evaluation upon the correct use of these conventions as well as 

the previously listed aspects of a proof. Thus, the proof norms about representation are 

that arguments should correctly2 use the conventions of symbolic notation which are 

common3 to the curriculum dealing with basic number systems/theory, sets, relations, 

functions, and cardinality found in the Standard ITP course or any course that could 

reasonably be presumed to precede such a course. 

                                                 
2 This along with line-by-line reasoning implies that computations within proofs should be without mistake. 
3 Once again, common is defined by the texts, Mathematics Proofs: A Transition to Advanced Mathematics 

(Chartrand, Polimeni, & Zhang, 2013), A Transition to Advanced Mathematics (Smith, Eggen, & St. Andre, 

2014), and Book of Proof (Hammack, 2013).  
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Figure 4. Representation conventions, adapted from Smith, Eggen, & St. Andre (2014) 

Conclusion – Proof Norms 

 The understanding of what defines the norms for proof in this research is 

extensive to be sure, but as mentioned previously, by clearly defining this construct, the 

task of creating prompts for the proposed assessment will be direct and less ambiguous in 

terms of what is valid and what is not. Thus, to be clear, the proofs in this research and 

for the proposed assessment are arguments that: 

1. are built upon mathematical statements and conventions of symbolic notation 

which are common to the curriculum dealing with basic number systems/theory, 

sets, relations, functions, and cardinality found in the Standard ITP course or any 

course that could reasonably be presumed to precede such a course, 

2. are deductive in nature and align structurally with the implied logical structure 

of the statement being proven, 
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3. incorporate valid logical connectives from line-to-line where each warrant, 

implied or explicit, is accurate and appropriate for the claim which it supports, 

and whose computations are correct, 

With the norms of proof now set for this research, what is left is to define proof 

validation4. 

Limiting Scope 

 In defining proof, I introduced the idea of logical structure which in turn lead to 

discussing proof frameworks. A part of what is implied by a particular proof framework 

is a particular proof method (e.g., direct proof, proof by contradiction). While the norm 

for the Standard ITP course is to introduce students to a wide variety of proof methods 

(Fagan & Melhuish, 2018), for the purpose of the proposed validating instrument, I focus 

solely on direct proofs5. In the example in Figure 1, the proof framework is indicative of 

a direct proof, where for a conditional statement, 𝑃 → 𝑄, the antecedent, 𝑃, is assumed 

true and the desired conclusion is that the consequent, 𝑄, is also true6. While it would be 

interesting to use this assessment to explore students’ ability to validate multiple proof 

types7, for now, to assure the best possible instrument and reduce the number of variables 

in task creation, proof will be defined in terms of direct proofs only.  

Finally, it should be noted for this study, I am most interested in general 

arguments. The effect of this is to exclude mathematical statements where a single 

                                                 
4 The phrase proof validation seems inappropriate for the task it describes as the name implies the idea of 

innocent until proven guilty, in the sense that an argument is a proof until shown to be otherwise. While I 

dislike this way of thinking and feel that it could be detrimental to students’ own thinking, I stick with it as 

it is the convention in the mathematics education literature. 
5 Admittedly, this is a coarse use of the term direct proof but should suffice and is clearly delineated 

enough for there to be no mistake about what is meant.  
6 Note that this proof method easily supports proofs which have multiple cases or are proofs of 

biconditional statements. 
7 This is certainly a possible source of future research, to expand this effort to other proof types. 
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example or counterexample suffices as a complete argument for or against the veracity of 

the statement in question. For example, Figure 5 presents an existential quandary; does 

such an integer exist? The proof then is a matter of showing that at least one such element 

from the integers exists. This is not the sort of statement – in this case a result to be 

proven – nor argument I wish to include as part of the proposed assessment8. 

 
Figure 5. Existential quandary adapted from Chartrand, Polimeni, and Zhang (2013) 

Validating and Proof Validation 

Generically, proof validation is the act of judgement or evaluation which leads the 

reader to identify the correctness of an argument. In similarly broad strokes, Selden and 

Selden (2003) called proof validation, “the reading of, and reflection on proofs to 

determine their correctness” (p. 5). Although both of these notions are vaguely accurate, 

neither gives a deeper account of what may be involved in the process of proof 

validation.  

While the process of defining proof for this research is a normative procedure as 

what constitutes proof is defined by those who use it, validating is far less visible as it is a 

cognitive process (Selden & Selden, 2003) which takes into account one’s conception of 

what is required of an argument to be a proof. In fact, the process of validating is so 

thoroughly cognitive in nature that it has brought about some novel methodological 

approaches to study how individuals validate (see Inglis & Alcock, 2012). Weber and 

Mejía-Ramos’ (2011) investigated why and how mathematicians read published proofs 

                                                 
8 Also an interesting possible avenue for further exploration. 
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and found that mathematicians may zoom-in and zoom-out in the process of validating 

proofs. This was a pair of processes that the authors conjectured occurred as 

mathematicians, “May (intuitively and implicitly) assign a probability 𝑝𝑖 to his or her 

level of confidence that the 𝑖𝑡ℎ inference of the proof is correct” (p. 339). In zooming-in, 

the mathematician focuses on inferences that were problematic in nature, whereas in 

zooming-out they consider the overall structure of the proof. Similarly, Ko and Knuth 

(2013) found mathematics majors claimed to do two activities which were very similar to 

those from Weber and Mejía-Ramos’ (2011) study; judging the arguments structure and 

evaluating the line-by-line reasoning. 

An additional part of the cognitive process of validating proofs is checking the 

semantic content of the argument. Alcock and Weber (2005) supported this idea as they 

suggested that in order to validate proofs, the individual needs not only check the logical 

aspects of the proof, but also plausibility of the semantic content. As the semantic content 

represents the mathematical meaning held within an argument, checking it requires the 

individual to attend to inferred warrants, calculations, and the meaning of words, phrases, 

axioms, definitions, theorems, symbols, and quantifiers. Anything which belongs to the 

mathematics register – those objects which carry mathematical meaning – becomes a 

focal point for inspection during validation when checking the semantic content. 

Based on this understanding, I assert that checking the logical structure, line-by-

line reasoning, and the semantic content encompass the major aspects of proof validation 

(e.g., Alcock & Weber, 2005; Ko & Knuth, 2013; Selden & Selden, 2003; Weber & 

Alcock, 2005). From this standpoint proof validation involves: 
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1. Checking the alignment of the logical structure of an argument against the 

logical structure of the mathematical statement it claims to prove.  

2. Assuring that each new assertion is supported by any combination of previous 

assertions. 

3. Inferring, identifying, or creating sub-arguments that bridge the gaps that exists 

in the reasoning within a proof. 

4. Scrutinizing the appropriateness of the warrants, implied or explicit, for each 

inference. 

5. Making sure calculations are error free. 

6. Checking that symbols and other representation are used consistently and 

correctly. 

These six aspects directly link back to the definition of proof previously outlined for this 

research.  Aspects 1 through 5 all deal with modes of argumentation as each, to some 

degree, deal with logical structure and line-by-line reasoning employed in an argument.  

Additionally, aspect 4 deals with the set of acceptable statements as it focuses on how 

mathematical statements are used in arguments. Lastly, aspect 6 deals with modes of 

argument representation as they both focus on the symbolic nature of an argument. 

Validating in the Face of Comprehending and Constructing 

Validating and comprehending. Mejía-Ramos et al. (2012), at a rudimentary 

level, define proof comprehension as the ability of an individual to understand a proof. 

Through their framing, Mejía-Ramos et al. (2012) delineate between understanding at a 

local and holistic level. Local comprehension focuses on: (1) the meaning of terms and 

statements, (2) the logical status of statements and proof framework, and (3) justification 
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of claims. On the other hand, holistic comprehension emphases: (1) summarizing via 

high-level ideas, (2) identifying the modular structure, (3) transferring the general ideas 

or methods to another context, and (4) illustrating with examples. 

There is a possibility that validating and comprehension are related in some way, 

but at this point there is no evidence in the literature strong enough to link the two. Mejía-

Ramos et al. (2012) outlined a set of possible aspects of comprehension, and admittedly – 

even prudently – there is overlap with their framework, and the framework presented 

here. For instance, the categories for local comprehension Mejía-Ramos et al. identify are 

shared with my framework, but I claim there are some important differences in how the 

comprehension assessment framework views these categories, and how I have set them 

up here.  

For instance, while ideas about proof frameworks are obvious in the second 

category of the comprehension framework, Mejía-Ramos et al. frame them as an act of 

identifying the proof framework while not asking the individual to make any larger claim. 

For the work of validating, it is not simply enough to identify the proof framework: the 

reader needs to identify this structure, identify the analogous logical structure of the 

mathematical statement the argument is built upon, compare the two, and decide if the 

two align in a sufficient manner as to allow for the argument to prove the statement. Even 

considering the holist idea that Mejía-Ramos et al. outline as summarizing via high-level 

ideas does not ask the student to judge these ideas against the standard of the 

mathematical statement the argument is built upon.  

Comprehension, as Mejía-Ramos et al. defined it, is most interested in having the 

individual identify particular aspects from the argument. But, validation as I have framed 
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it, goes beyond what comprehension is framed as, and asks the individual to: (1) identify 

particular aspects from the argument; (2) identify aspects about the initial mathematical 

statement being proven as well as the other inferred mathematical statements employed in 

the argument, (3) identify how those aspects affect aspects of the argument or the 

argument as a whole, (4) evaluate the appropriateness of each effect, and possibly (5) 

bridge logical gaps through the creation of new arguments. From Mejía-Ramos et al. 

(2012) framing, the cognitive load of comprehension, is mainly concerned with 

identifying features and possibly transferring those features to other settings, whereas 

validating builds upon this and adds the tasks of evaluating and creating. More 

importantly, at no point in Mejía-Ramos et al. (2012; 2017) are students confronted with 

an argument that is a non-proof. This aspect is not even considered in the comprehending 

framework or construction of their assessment but is a key aspect for validating as 

arguments can be invalid. Thus, while it is quite possible that validating is an evaluative 

extension of comprehension, not only is there no evidence to support this claim, there are 

striking differences in what each asks of the individual. 

 Validating and constructing. When compared to validating and comprehending, 

construction would appear to be a much larger set of cognitive processes than either of 

the other two. That being the case, the phrase proof construction seems to be an ill-

defined but commonly used colloquialism in the mathematics education literature. In the 

microcosm, proof construction is writing an argument that proves a mathematical 

statement, though this does nothing to address some of the more complicated and 

nuanced processes involved in creating such an argument. In the macrocosm, proof 

construction encompasses a myriad of processes including conjecturing and generalizing, 
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semantic exploration, instantiating mathematical ideas and objects, applying strategic 

knowledge, intuitive logical exploration and syntactic manipulation, justifying and 

warranting, and perhaps even validating (see Fischbein, 1983; Pedemonte, 2007; Moore, 

1994; Selden & Selden, 2003; Weber, 2001; Weber & Alcock, 2004).  

Regarding validating being an explicit part of constructing, Selden and Selden 

(2003) posited, and I adopt the notion, that:  

One constructs a proof with an eye toward ultimately validating it and may often 

validate parts of it during the construction process. In fact, the final portion of a 

proof construction is likely to be validation of that proof. That is, each process, 

validation and proof construction, entails the other. (p. 6) 

Thus, the claim is laid that there is a circular relation between construction and 

validation. At this point, this is little more than a claim as no study has explored the 

relationship between validating and constructing in any scale large enough to generalize 

this relationship beyond pocket cases. While studies like Powers, et al. (2010) supports 

this claim, as their research indicates that focused attention on validating activities can 

lead to increased proof-constructing ability, their study has limited generalizability due to 

the homogeny of their sample, as well as confounding issues due to unforeseeable 

interference in their study. While I adopt the idea that validating is part of the process of 

constructing proofs, I wish to be careful as more research is needed to establish this 

claim. 
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Figure 6. A possible relationship between comprehension, validation and construction. 

Conclusion. For this research, I adopt something of a hierarchical notion of 

comprehension, validation, and construction in terms of proof (see Figure 6). 

Comprehension entails being able to identify and transfer notions from within an 

argument. Validation builds upon comprehension in that it too requires an individual to 

identify and transfer, but also evaluate and create ideas in the process. Construction is the 

top-level structure which entails validating, and by extension comprehending. As 

validation requires the creation of sub-proofs, there may be instances where validating is 

the top-level structure with constructing existing as a supporting role for validating. More 

research in this area is needed to better understand how these complicated and 

underdefined constructs work. This study is one such undertaking.  

Creating an Objective Instrument to Capture a Subjective Activity 

The literature, and my theoretical orientation, acknowledges validating as a subjective 

activity that is dependent on the context and mathematician validating. At face value, this 

may reflect an inability to declare an argument as valid or invalid.  However, I contend 

there are a set of validity issues too egregious that they will be accepted as universal 

within the ITP setting. From a design perspective, a consensus process was needed to 

identify arguments that are universally deemed valid or invalid to construct the test 
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around. This consensus process – outlined in detail in the methodology for Phase 1 – 

allows for the assessment proposed in this study to meaningfully ask students in the ITP 

setting to make binary validity judgements despite the non-binary nature of validity in 

mathematics more generally. 

Assessment Framing - Common Validity Issues9 

This study leverages the idea of issues in proof writing which focuses on the 

prevalent validity issues amongst undergraduate mathematics major’s own written 

arguments (Hazzan & Leron, 1996; Selden & Selden, 1987, 2003). Though these issues 

arise in the written arguments of students, Selden and Selden (1987) frame them more as 

fundamental issues with student’s mathematical reasoning. Thus, the understanding that 

students have – perhaps more aptly the lack of understanding – is more prevalent than 

simply in constructing arguments but could conceivably extend to reading arguments and 

their ability to validate what they are reading. It is for this reason that these types of 

validity issues are important in the context of this study. 

The validity issues considered for this study fall into one of six categories as 

presented in Table 2. Taken as a whole, this set of issues represent what I refer to as the 

Common Validity Issue (CVI) framework. This framework represents the basis upon 

which argument creation occurred for this study. It is important to note that the 

categorizations for the CVI framework came from observations in studies whose focus, 

with few exceptions (e.g., Selden & Selden, 2003), were not necessarily that of the ITP 

classroom or its students. Rather these studies focused on undergraduate algebra (Hassan 

                                                 
9 Extending the theoretical framing to a usable analytic framing was a large portion of this study but not the 

main goal. This begs the question of whether this is a result or a part of the framing itself. To remove this 

ambiguity, I make note that what is to follow is presented here as part of the discussion on the creation of 

the assessment itself and not, in circular manner, a discussion of the framing of the first part of this study. 
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& Leron, 1996; Selden & Selden, 1987) and real analysis (Alcock & Weber, 2005; 

Weber, 2001), with Alcock and Weber’s (2005) work being that of a theoretical 

contribution encompassing advanced undergraduate mathematics generally. This does 

nothing to lessen the validity of the CVI framing. In fact, it is very safe to assume that the 

issues students have in more advanced courses, like algebra and real analysis, either 

began while they were first being introduced to proofs in an ITP course or are common 

issues that students in such a course might have.  

Table 2 

Common Validity Issues 

Issue (Abbr.) Definition 

Assuming the 

Conclusion (AC) 

An argument assumes the consequent (conclusion) of the 

proposition it is claiming to prove and attempts to show that the 

antecedent is a direct consequence. 

Circular 

Reasoning (CR) 

An argument assumes the consequent (or antecedent) of the 

statement it is claiming to prove and comes to a trivial conclusion, 

namely the consequent (or antecedent) once again. Within an 

argument a claim is made and used to argue to trivial ends, the 

claim itself. (𝑃 → 𝑄 → ⋯ → 𝑃). An argument uses the proposition 

it is trying to prove. 

Logical Gap (LG) An argument omits a portion of reasoning; the argument has a hole. 

This could be thought of as a lack of a data → warranting → claim 

turn, or any individual portion of one where such would seem 

prudent. 

Misuse of 

Notation (MN) 

Within an argument, proper notation or variable naming 

conventions are not adhered to, or notation and variable naming 

conventions are used inconsistently. 

Warranting (W) Within an argument, an error in justification is made either 

explicitly or implicitly. This can take the form of an incorrect 

explicit warrant, or an incorrect implicit warrant which may emerge 

as an arithmetic or computational error. 

Weakening the 

Theorem (WT) 

An argument proves less than what is implied by the statement 

being proven or begins by assuming more than is permissible. 

There might be some question as to the exhaustive nature of this framework from 

an ITP setting. It is possible that by the time students reach algebra or analysis, there are 

fundamental issues in their understanding about the validity of arguments that are 
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overcome, which are still prevalent at the ITP level. To ensure this was not the case, 

when testing the framework in the expert phase of this study, the door was left open for 

new validity issues to be introduced by mathematicians from their observations as 

instructors in the ITP setting. While many suggestions arose from both the mathematician 

survey and the two focus groups that followed, none were novel contributions or 

contributions which could not be encompassed by an existing categorization. 

Additionally, keep in mind this framing is looking at common validity issues, and is not 

completely exhaustive. It is, therefore, safe to assume that the CVI frame is stable for the 

sake of this work. 

In the remainder of this section, I discuss each of the six categories of the CVI 

framework and link them back to the theoretical framing of proof from earlier in the 

chapter. It should be noted that in some form or another, each of these categorizations 

interacts with the framing dealing with both the set of acceptable statements and modes 

or argument representation. What is left is the task of organizing each issue 

categorization according to the concept of acceptable argumentation, specifically the 

ideas of logical structure and line-by-line reasoning. For additional commentary on the 

methods for creating this framework, as well as examples, please refer to the 

methodology and results chapters. The former chapter explicates the process by which 

this framework was created, and the later chapter presents the framework as a result of 

the first half of this study and how it was used in the second half: the creation of the 

assessment. 

Assuming the conclusion (AC). Selden and Selden (1987) outlined the common 

pitfall of beginning an argument with the conclusion of the proposition or statement to be 
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proven and arguing to the ends of an “obvious truth” (p. 460). While this works in the 

case of something like proof by contradiction – though the obvious truth in this case is a 

contradiction and is therefore at odds with the truth – this was not the observation or case 

to which Selden and Selden (1987) were referring. Instead, assuming the conclusion is a 

validity issue which proves the converse of a statement is always equivalent to proving 

the original statement itself; or, more simply, a statement and its converse are always 

equivalent. In terms of writing, when assuming the conclusion, the author of an argument 

constructs a logical connective by beginning with the consequent of the statement to be 

proven and then shows the antecedent is a direct consequence. 

In terms of validity, this issue is apparent in all statements where the converse is 

not equivalent to the original statement. For the reader, identifying this issue in a written 

argument requires a balance of understanding the logical structure of the statement and 

what that implies about the logical structure of the argument. This interplay was later 

commented on by Selden and Selden (2003) as a knowledge about the first-level proof 

framework, and as such this type of validity issue is linked to the overall logical structure 

of the argument. 

Circular reasoning (CR). This issue is exactly as the name implies, as circular 

arguments reason from an initial condition back to said initial condition (Selden & 

Selden, 1987). This can take the form of an entire argument being circular, some portion 

of the argument circling back on itself, or an argument which uses the proposition it is 

proving as a mean to prove said proposition. Selden and Selden (1987) point out this 

sometimes occurs in blatant fashion but is seen in much less obvious ways too. For 
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instance, an argument can sometimes be circular as it argues for some equivalent other 

version of the initial conditions.  

Another common instantiation of circular reasoning, which in some respects feels 

like assuming the conclusion, is when an argument begins with the conclusion of the 

proposition being proven and manages to meander back to itself (Selden & Selden, 

1987). I differentiate this from the former categorization as assuming the conclusion rests 

on the specious understanding that a statement and its converse are equivalent, whereas in 

the situation of circular reasoning, the error rests in the understanding that the conclusion 

warrants itself. Since circular reasoning can encompass an entire argument from 

beginning to end or can be found within a single statement in an argument, this validity 

issue relates to both the logical structure and line-by-line reasoning of an argument. 

Warranting (W). I outlined warranting with considerable depth in the theoretical 

framing for this study. For more on warranting from a theoretical perspective, please 

refer to the earlier sections on acceptable statements and line-by-line reasoning.  By 

extension, such issues hereafter identified as warranting are linked to the framing 

concerning line-by-line reasoning. 

From a validity issue standpoint, the character of warranting in this study is 

multifarious and enjoins not just problematic linguistic inferences (see Figure 3), but also 

issues with arithmetic and calculations. The former classification of warranting issues I 

covered, but the latter needs some justification.  

The reason for these latter classifications, arithmetic and calculation errors, is due 

to their relationship to fundamental divides in understanding of sometimes basic 

mathematical concepts. These concepts are often not the main goal of proof-based, 
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advanced undergraduate courses like ITP, modern algebra, real analysis or topology, but 

are the target content of classes like high school algebra, geometry, trigonometry, and 

calculus. For example, learning to square a binomial expression is certainly not a part of 

the ITP curriculum (Fagan and Melhuish, 2018), but at times is requisite knowledge for 

the topics these classes cover. Squaring a binomial, or even raising a binomial to some 

higher power, follows a set pattern governed by the definition of squaring; specifically, 

multiplying a factor by itself. Any miscalculation of squaring then is based upon a misuse 

of said definition – whether intended or otherwise – and can therefore be best understood 

in terms of a mis-warranting, or more simply a warranting issue. For this reason, 

arithmetic and calculation errors do not have their own classification but serve as a 

subclassification of warranting. 

Logical gap (LG). Issues surrounding logical gaps most exemplify the 

relationship between data and explicit warrants. In proof writing, the issue of logical gap 

arises from the need for expediency in the communicative efforts of proving. Alcock and 

Weber (2005) point out this limitation noting if mathematicians or students explicitly 

stated every data and warrant for a proof, even a single proof would be unreasonably 

protracted. This implies there is a level of implicit proving in written arguments which is 

allowable but walks the line between acceptable and unacceptable. This is an important 

issue for student and mathematician alike to understand 

Logical gaps differ from warranting because warrants and claims are missing in 

this categorization, whereas the category of warranting only focuses on the tacit and overt 

justifications in an argument. Selden and Selden (1987) spoke of holes, or logical gaps, 

where logical deduction does not follow directly from any previous part of the argument, 



 

48 

 

and for consistency, a sub-argument justifies the connection. For instance, a 

characterization of a logical gap could be seen if in Figure 2 the data, warrant and claim, 

“𝐵 implies 𝐶 because 𝑌” were missing. The argument becomes something more trivial as 

an entire chunk of logic is missing where the data 𝐵, along with the warrant 𝑌, connects 

claim 𝐴 with claim 𝐶, a seemingly crucial development for 𝐴 to imply 𝐷 as claimed. This 

sort of validity issues, much like warranting, is an issue of line-by-line reasoning where 

the line-by-line consistency breaks down as logical gaps become more prevalent. 

Misuse of notation (MN). Due to the important role notation plays in 

communicating mathematics, there are numerous ways its misuse could invalidate an 

argument. Selden and Selden (1987) identify no less than six different possible 

incarnations of notational misuse10 which cause issues in proof writing and are ways in 

which arguments can become invalid. For this reason, it is possible an assessment could 

be constructed to look at this singular validity issue; this is not the focus of this study. I 

know there are many types of notational misuse but also recognize in my attempt to make 

a broad assessment of validating abilities at the ITP level, only a few, or even one 

example, makes it into the assessment itself.  

In broad terms, notational misuse is when proper notation or variable naming 

conventions are not adhered to, or when notation and variable naming conventions are 

used inconsistently. This general understanding encapsulates the six ideas presented by 

Selden and Selden (1987) accepting that each is relevant but gives me the option of 

choosing a single or pair of notational issues to be representative in assessing students’ 

                                                 
10 Selden and Selden (1987) identified the following six notational issues: (1) names confer existence; (2) 

apparent differences are real; (3) element set interchanged; (4) overextended symbols; (5) national 

inflexibility; and (6) using information out of context. 
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ability to identify such issues. For this purpose, I let the mathematicians decide which 

issues are most problematic. 

Weakening the Theorem (WT). This categorization is one of the more 

straightforward classes in the CVI framework. Weakening the theorem is akin to running 

a race and stopping before the finish line, or showing up to a triathlon without a bike or 

swimmers cap. In the former case the goal was not accomplished, and in the latter the 

wrong basic assumptions were made about the race. Selden and Selden (1987) outlined 

weakening the theorem as an argument which proves less than what is implied by the 

statement being proven or begins by assuming more than is permissible. In both cases 

this occurs as a structural issue where the first-level proof framework is violated by either 

coming short of the intended summation or assuming too much with regards to the 

statement being proven. 

Valid. Though not a part of the CVI framing, valid items are an important aspect 

of assessing students’ ability to validate arguments. I defined valid items throughout the 

mathematician survey and throughout the process of creating the assessment as items 

which do not include the above CVI framing issues. If there are no valid arguments 

amongst a set of invalid arguments, then only some of a student’s ability is tested. 

Additionally, there is the possibility students learn to recognize there are no valid 

arguments if nothing obvious presents itself. It was therefore important to present 

mathematicians with a set of arguments with none of the CVI issues for these reasons, 

and to test the CVI framing to see if another, unforeseen, issue arose in any of these 

seemingly valid arguments. Therefore, these valid items did indirectly test the CVI 

framing so no other issues arose that were not previously presented. 
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Proof Comprehension 

Though this assessment tests a student’s ability to validate arguments, it is 

possible that in attempting to validate arguments, students might work in a mindset of 

simply trying to understand the arguments. This understanding might act as a 

replacement construct for some students and be the main reason for judging each 

argument. It is important for the means of understanding students’ processes that proof 

comprehension is a consideration throughout the analysis of students’ interactions with 

the assessment. 

Proof comprehension (Mejía-Ramos, et al., 2012) is broken down into two main 

distinctions: local versus holistic understanding. Local understanding deals mostly on the 

line-by-line understanding where terms and individual statements are the main focus. 

Here understanding focuses on ideas concerning; (1) meaning of terms and statement, (2) 

logical status of statements and proof framework, and (3) justification of claims (Mejía-

Ramos, et al., 2012). It is important these three are referenced in terms of understanding 

only, as all three of them qualitatively feel similar to ideas concerning validity. Holistic 

proof comprehension is more concerned with understanding the proof as a whole or 

complete argument. This type of understanding focuses on (1) summarizing via high-

level ideas, (2) identifying modular structure, (3) transferring general ideas or methods to 

another context, and (4) illustrating with examples (Mejía-Ramos, et al., 2012). 

Assessments 

 An educational assessment is a formalized tool for observing, documenting, and 

quantifying a particular phenomenon (see, Pellegrino, Chudowsky, & Glaser, 2001), but 
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so rarely is an assessment a straightforward measure of said phenomenon. To this point 

Mislevy, Steinberg and Almond (2003) said that, 

In assessment, the data are the particular things students say, do, or create in a 

handful of particular situations, such as essays, diagrams, marks on answer sheets, 

oral presentations, and utterances in a conversation. Usually our interest lies not 

so much in these particulars but in the clues they hold about what students know 

or can do as cast in more general terms. (p. 9) 

The implication here is that the data collected from an assessment means more than the 

individual answers and says more about the individual’s knowledge or ability than the 

individual tasks.  

 Test theory. The set of responses which are gathered to evaluate the effectiveness 

of an assessment must be analyzed to determine the veracity of the assessments capability 

to meaningfully make inferences about the test taker on a given subject. Classical test 

theory (CTT) and item response theory (IRT) are the two main forms of analysis which 

inform this evaluative effort for assessment creation.  

 Where CTT assumes a simple linear relationship between tests score and 

measurement of tacit trait, IRT assumes a more dynamic two-parameter logistic 

relationship (see Figure 7) for each item of an assessment. Thus, IRT is a more nuanced 

approach to assessment analysis which looks at the individual items to infer the 

measurement capability of the entire test. With the rise of modern computing in the last 

40-years, IRT became the more common approach as it is often considered the superior 

of the two approaches (Embretson & Reise, 2000). Thus, while CTT would be a simpler 
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approach using linear modeling, IRT is preferred assuming the amount of data needed for 

analysis can be generated. 

 
Figure 7. IRT employs a two-parameter logistic model where for any dichotomous item, 𝑖, the probability 

of a correct response, 𝑃(𝜃), based upon the ability, 𝜃, defined by the item’s discrimination (𝑎𝑖) and 

difficulty (𝑏𝑖). 

 In practice, when analyzing an assessment using IRT, characteristic curves are 

generated for each dichotomous item based upon the item’s difficulty and discrimination. 

These characteristic curves are generated using the probability function in Figure 7 and 

represent the likelihood that an individual with ability 𝜃 will get the correct answer for 

that item. Baker (2001) defines difficulty as a location index for each item on the ability 

spectrum, where items with high difficult – the green curve in Figure 8 – are associated 

with high ability and low difficulty – the blue curve in Figure 8 – with low ability. The 

location index of difficulty is defined in terms of ability where the probability of getting a 

correct response is .5 for any one item (Baker, 2001).  

𝑃(𝜃) =
1

1 + 𝑒−𝑎𝑖(𝜃−𝑏𝑖)
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Figure 8. Three characteristic curves with identical discriminations, but differing difficulties, the blue 

being the least difficult and the green being the most difficult. Adapted from Baker’s (2001) The Basics of 

Items Response Theory. 

 Discrimination is a measure of an item’s capability to distinguish between 

individuals with varying ability. Items with higher discriminations – the green curve in 

Figure 9 – are better at distinguishing between individuals with small differences in 

ability, whereas items with low discrimination – the blue curve in Figure 9 – do not 

indicate as much information about the difference in ability between individuals. 

Discrimination is related to the slope of the characteristic curve at 𝜃 = 𝑏 for an item and 

as the item discriminates more, the slope is steeper (Baker, 2001). As a note, items can 

have a negative discrimination just as items can have negative difficulty. While the latter 

case is acceptable, as 0 is considered the mean ability, the former case of negative 

discriminations is unwanted and infers that something went wrong with that item. Such 

items need to be reviewed and adjustments need to be made to it or the item needs to be 

thrown out altogether. 
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Figure 9. Three characteristic curves with identical difficulties, but differing discrimination, the blue being 

the least discriminatory and the green being the most discriminatory. Adapted from Baker’s (2001) The 

Basics of Items Response Theory. 

 While it is true that IRT is considered the superior method of approach for 

analyzing assessments, the CTT measure of Cronbach’s alpha is considered the standard 

score for test reliability amongst educational assessment (see Carlson et al., 2010; 

Hestenes et al.,1992; Melhuish, 2015). Values for Cronbach’s alpha range from 0 to 1, 

and for an assessment like the one proposed for this study – a non-high-stakes assessment 

– an alpha score between 0.6 and 0.9 is acceptable (George and Mallery, 2003; Streiner, 

2003). While scores outside the range from 0.6 to 0.9 are possible, scores below 0.6 are 

less desirable though between 0.5 and 0.6 are still somewhat acceptable and obviously 

score higher than 0.9 are considered outstanding. 

 Conclusion. Taking IRT and CTT into account as separate but important analysis 

tools in their own rights, I employ IRT as the main process by which the assessment is 

analyzed but use the CTT measure of Cronbach’s alpha as a means of reporting the 
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assessment’s reliability. I take the 0.6 baseline benchmark of Cronbach’s alpha as the aim 

of this study. Additionally, the goal for the IRT analysis is having a diverse set of items 

which measure a range of abilities and internally differentiate between these abilities. The 

implication for the items of this assessment are that they should vary in their difficulty 

and have consistently high, positive discriminations. For the purposes of this study I 

define high discrimination as being greater than or equal to 0.5 as suggested by Baker 

(2001). 

Reliability and Validity 

 Reliability and validity focus on two different but important aspects of an 

assessment. Reliability emphasizes an assessment’s ability to perform consistently under 

repeated uses whereas validity underscores whether the assessment actually measures the 

construct in question. Each is an important aspect to consider in the creation of an 

assessment, for an instrument which is unreliable or invalid fails the measure of its 

creation: to accurately and consistently measure a specific tacit phenomenon. 
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IV. Methodology 

 The process for building a large scale student assessment of mathematical 

competencies for use at the university level has been outlined in the development of three 

distinct assessment (Carlson, Oehrtman, Engelke, 2010; Mejía-Ramos et al., 2018; 

Melhuish, 2015), all of which borrow from the work of Hestenes and colleagues on the 

Force Concept Inventory and Mechanics Baseline Test (Hestenes, Wells, Swackhammer, 

1992; Hestenes, & Wells, 1992). The process that Hestenes and colleagues followed was 

further explicated in Lindell, Peak, and Foster’s (2007) meta-analysis where they identify 

nine steps used in the design of instruments: 

1. Identifying purpose 

2. Determine the concept domain 

3. Prepare test specifications 

4. Construct initial pool of items 

5. Have items reviewed – revise as necessary 

6. Hold preliminary field testing of items – revise as necessary 

7. Field test on large sample representation of the examinee population 

8. Determine statistical properties of item scores – eliminate inappropriate items 

9. Design and conduct reliability and validity studies (p. 15) 

While there is some question about the ordering placed upon the construction of an 

assessment (see, Melhuish, 2015), Lindell et al. (2007) does present a sufficient blueprint 

with which to guide the work. As a clear purpose already exists, and the work of defining 

the concept domains already commenced, what follows is a discussion of the procedures 

observed in creating a multiple-choice instrument. 

 As with the work of Mejía-Ramos et al. (2017), the assessment of students’ proof 

validation ability does not strictly fit the model of being a concept inventory. While 

concept inventories explore students’ understanding of a broad set of concepts, the 

assessment aimed for in this study is, as yet, focused only on students’ ability to validate 
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a subset of proofs – what I coarsely defined as direct proofs11 – from a singular 

mathematical context ITP. While it is conceivable this study will lead to an assessment 

focused on validating many types of proofs from a variety of mathematical contexts (e.g., 

ITP, Algebra, Analysis, and Topology), it is not so at this point. Despite this difference, 

the mapping supplied by these concept inventories are still the most comprehensive and 

sensible solution as the long-term goal beyond this work would be just such an 

instrument. Again, as with the proof comprehension tests (Mejía-Ramos et al., 2017), this 

initial work will be critical in determining if a more comprehensive concept inventory is 

possible or even useful. 

Identifying and Testing the Analytic Framework 

 It was vital to identify a robust analytic framing to guide the creation of the 

proposed instrument. The process taken to identify and test this framework, that of 

determining the concept domain (see Step 2 of Lindell, Peak, & Foster, 2007), was like 

what Messick (1995) referred to as a Domain Analysis.  This effort, as adapted by 

Melhuish (2015), is a triangulation of knowledge. Adapted further for this study, I 

employed both existing literature, and experts’ understanding to build a cohesive framing 

on which to build an instrument. In the end, this domain analysis is the basis for the 

argument for content validity of the assessment. The domain analysis began by 

thoroughly probing the literature followed by consulting mathematicians. 

 Literature. The process of identifying a conceptual framing started by plumbing 

literature focusing on commonly held beliefs or actions of students related to constructing 

proofs. This literature lead to the identification of possible domains for the Common 

                                                 
11 For more on this definition see the write up in the theoretical background. 
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Validity Issues (CVI) framework. This framework focuses on issues in students’ written 

proofs with the belief that these validity issues in written proofs can and do represent the 

understanding students have about argument validity whether they themselves are the 

author or they are reading a novel argument. The issues which arose from students’ 

written proofs are genuine reflections of the cognitive structures which are pervasive in 

their own understanding of what is requisite for an argument to be valid. From the 

literature, general categorizations related to validity issues were identified which 

categorizations represented possible assessment domains. 

 The process for conducting a comprehensive exploration of literature focused on 

common validity issues started with searches employing both Google Scholar and ERIC 

of literature related to errors and misconception in student written proof construction. 

When pertinent literature was found, I employed Google Scholar to explore the set of 

more recent literature where each piece of literature from the original search was cited. 

Additionally, for each piece of literature from the searches, I explored the citations listed 

to gather more appropriate literature. In this way, I cast a web from each found piece 

forward and backward to be thorough in my inclusion of research studies which were 

germane to the topics at hand. This was useful, if not necessary, as the list of related 

literature is brief. 

 Experts. Research active mathematicians were consulted as a final step in 

identifying and testing the conceptual framework. Their efforts amounted to validating 

the conceptual framing and the analytic framing for the assessment, namely the CVI 

framework. This was accomplished in a two-step process of surveys and focus groups as 

outlined in the following section. 
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Creating the Assessment 

 The creation of the assessment itself followed a four-phase process used and 

outlined by Carlson, Oehrtman and Engelke (2010) and later adapted by Melhuish 

(2015). As phases 3 and 4 deal with refining and validating the multiple-choice 

assessment, I will omit any discussion on these and focus only on Phases 1 and 2. This 

choice is due to the scope of this work. Follow-up efforts will be needed to complete the 

assessment including working through refining and validating the assessment.  

 The steps of the process were described by Melhuish (2015), and while an open-

ended survey is part of the phase 1 described here, much more effort has been put into 

this effort to build a set of distractors. To clarify the conversation, I use the term testlet to 

denote a theorem, its argument, and all the open-ended or multiple-choice questions 

dedicated to that theorem/argument pair. I define the terms stem, key, and distractor as 

they are the major parts of any multiple-choice question: the stem is a question, the key is 

the correct choice, and the distractors are the set of plausible but incorrect choices 

(Haladyna, 2004). 

Phase 1 – Open-Ended Survey Development and Analysis 

 The first phase of creating a closed-form multiple-choice assessment was 

constructing an open-ended free-response survey. This process involved multiple steps, 

the first, and most important of which, was validating the framework and arguments, 

which are the focus for each item of the open-ended student survey. This validation 

process involved creating/collecting arguments and expert (i.e., active mathematicians) 

endorsement of said arguments in terms of validity. The process breaks into two stages; 

(1) item creation and mathematician survey; and (2) mathematician focus groups. After 
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completing the validation of the framework and arguments, next I constructed and 

analyzed the open-ended survey which process gave me a set of possible distractors for 

the closed assessment. 

 Item creation and mathematician survey. Qualtrics, an internet survey system, 

was the main resource for collecting and obtaining a large sampling of mathematicians’ 

data. The survey consisted of 30 arguments to 22 different propositions considered 

germane in the ITP setting (David & Zazkis, 2017). The arguments were a collection of: 

(1) altered and unaltered student work collected from a pair of ITP courses offered at a 

large public university in the southern United States; (2) work collected from the internet 

site Mathematics Stack Exchange; or (3) altered and unaltered versions of proofs from 

the texts listed in Table 3, the three most common ITP texts in the US (David & Zazkis, 

2017). Arguments were selected based upon their fit within the greater framing of the 

CVI framework and altered so each argument at most includes a single validity issue. 

Table 3 

Introduction to Proof Textbooks 

Title Publisher Author(s) Year 

Mathematical Proofs: A 

Transition to Advanced 

Mathematics 

Pearson 

Education 

Chartrand, Polimeni, 

& Zhang 
2013 

A Transition to Advanced 

Mathematics 
Brooks/Cole 

Smith, Eggen, & St. 

Andre 
2011 

Book of Proof 
Richard 

Hammack 
Hammack 2013 

For each argument, the participants of the mathematician survey were first asked 

(see Figure 10), “Is the argument for the included proposition a valid proof?” and given 

the binary option of “Yes - valid,” or “No - invalid.” Participants were initially warned 

against grading the proofs as though they were student proofs, but to instead answer for 
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themselves the question, “Does this argument actually prove the proposition in a way that 

I feel is appropriate, based upon what I believe is requisite for an argument to be valid?” 

In this way, it was left to the participant to infer what they felt was requisite for an 

argument to be a valid proof while dually attempting to move them away from practices 

that more closely approximated what Moore (2016) was looking at when he explored 

mathematics instructors’ grading habits. 

 
Figure 10. First question asked for each argument 

If the proof was initially coded as invalid and the participant disagreed (i.e., they 

chose “valid” as their response), the participant was presented (see Figure 11) with the 

proposed validity issue and asked how the presence of said possible issue affected their 

initial response, and then given the chance to change their minds about the validity of the 

argument. If the participant did not change their mind, they were asked to share why they 

felt the possible issue did not invalidate the argument. Additionally, for each argument 

that was initially coded as invalid, if the participant agreed that it was in fact an invalid 

argument, they were also presented with the possible issue and asked if it was the reason 

they choose invalid (see Figure 12). If it was not the reason, participants were asked to 
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state why they thought the argument was invalid. For all arguments which were initially 

coded as valid, if the participant disagreed and chose invalid, they were asked to justify 

their views by stating why they thought the argument was invalid. 

 
Figure 11. If the mathematician chose valid for an argument coded as invalid, they were asked how the 

presence of a validity issue affected their decision. 

 
Figure 12. If the mathematician chose invalid for an argument coded as invalid, they were asked how the 

presence of a validity issue affected their decision. 
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  The arguments themselves were clustered into one of seven groupings based upon 

their initial validity coding and issue. Participants were then randomly presented with an 

argument from each cluster to ensure they saw an argument whose validity issue came 

from each area of the framework. They were also randomly presented with an argument 

which was initially considered to be valid. No participant saw the same argument twice, 

and for propositions which had multiple arguments in the survey, no mathematicians saw 

more than one argument per proposition. In total, 1528 survey invitations were 

distributed via email to research-active mathematicians across the United States, of which 

228 submitted responses to the survey12. Of the 228 participants, 178 completed all 7 

argument sets with which they were presented; all others completed no less than 2 

argument sets. 

Along with the arguments, mathematicians were asked to fill out some basic 

demographic information concerning their backgrounds in mathematics, their experience 

teaching ITP-like courses, as well as a semi-open question focusing on what necessarily 

invalidates an argument. The demographic information included: (1) their current 

institution; (2) the number of years at said institution; (3) their rank (e.g., lecturer, 

assistant-, associate-, full-professor) in their department; (4) the highest level of degree 

they had obtained; (5) the institution they received said degree; (6) how many times they 

taught an ITP course; and (7) their area of expertise within mathematics (e.g., algebra, 

calculus/analysis, etc.). 

For the analysis of this mathematician survey, all free responses were analyzed 

using thematic analysis (Braun & Clarke, 2006). The analysis began with open coding of 

                                                 
12 This represents a 14.9% response rate. 
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the free responses for each of the 30 arguments independently and categorizing responses 

relative to each argument in terms of their appropriateness. All nonsensical free-

responses led to a cycle of analysis of the quantitative data supplied by the author of said 

free-response to ensure the author was not supplying false or unintended data. This sort 

of data was omitted from further analysis. Following open coding, themes were 

identified, categorized and condensed for each argument. No cross-argument analysis 

occurred as the questions for this study do not focus on how responses to one type of 

validity issue are correlated to responses to other validity issues. 

 Each item was quantitatively explored to see if a consensus was reached on the 

point of validity for the arguments. For each invalid argument, three simple statistics 

were calculated (see Table 4): (1) initial percent invalid (IPI), which measures the 

percentage of respondents who initially thought the argument was invalid; (2) final 

percent invalid (FPI), which represents the number of individuals who either initially 

thought the argument was invalid or changed their response to invalid after being 

confronted with a possible flaw; and (3) percent agree (PA) which takes into account both 

the number of respondents who chose invalid – initially or after they were confronted 

with a possible flaw – and their reason for choosing “No-Invalid” or changing their 

minds. This last statistic, PA, was important as it said something about how the CVI 

framework was performing. As each argument had a singular intended validity issue, PA 

said whether the intended validity issue was the main reason, or even a reason at all that 

respondents chose invalid in the end. For valid proofs, the only calculation was akin to 

PA, valid percent agree (VPA). This was a straightforward measure of the percent of 

individual respondents who thought the argument was valid. 
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Table 4 

Quantitative measures of the mathematician survey 

Coded Statistic Definition Calculation 

Invalid 

Initial 

percent 

invalid 

(IPI) 

Percentage of respondents 

that initially thought the 

argument was invalid. 

# 𝑜𝑓 "𝑁𝑜−𝐼𝑛𝑣𝑎𝑙𝑖𝑑" 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
  

Final 

percent 

invalid 

(FPI) 

Percentage of respondents 

that, both initially and in 

the end thought the 

argument was invalid. 

# 𝑜𝑓 "𝑁𝑜−𝐼𝑛𝑣𝑎𝑙𝑖𝑑" 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠+# 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
  

Percent 

agree (PA) 

Percentage of respondents 

whose reason for choosing 

invalid – both initially and 

after seeing the proposed 

flaw – agreed with the 

intended validity issue for 

that argument. 

# 𝑜𝑓 "𝑁𝑜−𝐼𝑛𝑣𝑎𝑙𝑖𝑑" 𝑟𝑒𝑎𝑠𝑜𝑛 𝑎𝑔𝑟𝑒𝑒𝑑+# 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
  

Valid 

Valid 

percent 

agree 

(VPA) 

Percent of individual 

respondents who thought 

the argument was valid. 

# 𝑜𝑓 "𝑌𝑒𝑠−𝑉𝑎𝑙𝑖𝑑" 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑦 # 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
  

 Mathematician focus groups. After the mathematician survey completed, a 

series of two audio recorded focus groups were conducted. These focus group were 

aimed at extending the work started in the survey; that of further clarifying the idea of 

validity. Focus groups were employed as part of this research as they are considered 

appropriate in their ability to “elicit people's understandings, opinions and views, or to 

explore how these are advanced, elaborated and negotiated in a social context” 

(Wilkinson, 1998, p. 187). As proofs are generally accepted as a form of social 

communication defined by specific contexts (e.g., Stylianides, 2007) the use of focus 

groups to determine the opinions and views of mathematicians about what is requisite for 

a proof to be valid is apt according to Wilkinson’s (1998) view. Because the goal of this 

research is to zero in on features common to valid proofs, it is important to identify areas 
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of agreement for mathematicians on these features. Wilkinson (1998) argues that due to 

the interactive nature of focus groups, they lend themselves to clarifying these areas of 

agreement and disagreement far better than individual interviews. 

Two groups of known survey participants were gathered. In order to overcome the 

possibility of what Smithson (2000) referred to as dominant voices, the participants for 

each focus group were selected based upon their experience and establishment in their 

individual fields within mathematics. By design and selection, all participants had taught 

advanced-level undergraduate mathematics at least three times in their careers, with most 

having established a record of at least a decade of teaching these types of courses. 

The first focus group consisted of four participants (see Table 5), all of whom 

were established associate and full professors at a large university in the southern United 

States. These individuals had a variety of ethnic backgrounds as well as mathematical 

backgrounds. From a mathematics standpoint, the participants foci were bifurcation 

theory and differential equations, geometric and algebraic topology, group theory, and 

topology. 

Table 5 

Focus group 1 participants 

Participant Title Mathematical Expertise Years Teaching 

Tyler Professor Differential equations 29 

Jeremy Associate Professor Topology 29 

Jon Professor Group theory 20 

James Professor Topology 40+ 
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The second focus group was a larger group of seven participants from a different 

university in the southern United States (see Table 6). The level of teaching expertise 

varied more in this group. Much like the first group, these individuals had a variety of 

ethnic backgrounds as well as mathematical backgrounds. Their mathematical foci 

included mathematics education, functional analysis, non-associative algebra, geometric 

group theory and analytic number theory. 

Table 6 

Focus group 2 participants 

Participant Title Mathematical Expertise Years Teaching 

Trevor Associate Professor Mathematics education 13 

Taylor Associate Professor Analytic number theory 16 

Travis Associate Professor Mathematics education 32 

Justin Assistant Professor Geometric group theory 8 

Joseph Assistant Professor Functional analysis 12 

Beth Assistant Professor Mathematics education 4 

Tim Professor Non-associative algebra 39 

Prior to the focus groups themselves, a series of general questions and prompts 

were organized into a slideshow to homogenize the two groups and to organize the 

content of the discussions. Because there was a space of nine months between the focus 

groups, I went back to the audio recording of the first focus group and refamiliarized 

myself with the questions and the content in order to help the two groups cover the same 

overall topics. Though this refresh of ideas was conducted prior to the second focus 
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group, no deep analysis of the first focus group was conducted prior to the second focus 

group. 

Each focus group was audio recorded and lasted around an hour. The audio 

recordings were transcribed and underwent an analysis which focused on communal 

consensus. This process involved multiple cycles of reading coding and analysis. I started 

first by reading each transcription through, chunking the conversations according to the 

prevalent topic with respect to the CVI framing. Next I took the chunked portions of each 

transcript and compared them categorically. This process consisted of thoroughly reading 

all chunks of dialogue which were from a singular CVI categorization. I noted portions of 

agreement and disagreement which the participating mathematicians shared about each 

categorization and the effect the mathematicians thought each had on validity. For this 

research, the focus groups were a consensus gathering, and thus the analysis needed to 

allow a focus on what consensus was gained through communal discourse. Despite the 

focus on consensus, it was also important to hear and recognize dissenting opinions. 

Voices of dissent were also captured in the analysis process to give the broadest overall 

understanding with respect to the mathematicians’ thoughts about validity. Even though 

these dissenting voices are part of the analysis, in the end the focus remained on the 

communal consensus as the driving force for the analysis. 

From this focus on communal consensus, the unit of analysis was the group itself 

rather than any distinct individual within the group. In the analysis phase, it is important 

to take into account the possibility of a dominant voice being representative as the group 

voice (Smithson, 2000). In the words of Smithson (2000), it is important that “The 

analytic focus is not on what individuals say in a group context but on the discourses 
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which are constructed within this group context” (p. 110). To overcome this issue, in the 

analysis phase I carefully selected and interpreted important series of discourse as a 

constructed understanding rather than as a stagnant artifact stated by an individual. 

Therefore, the reported data, though at times disjointed from the original transcription, 

are what I felt represented of not only what the group consensus was, but also how the 

group built said consensus. 

 Open-ended student survey. Once the data from the mathematician survey were 

analyzed after the completion of the first focus group, an open-ended student survey was 

constructed. The propositions and arguments for this survey came from the 

mathematician survey and selected based upon the arguments PA or VPA. The twelve 

(12) arguments – ten invalid and two valid arguments – whose PA or VPA were at or 

above 90% were included in the open-ended student survey. 

 The open-ended student survey was a paper and pencil survey distributed to 69 

students enrolled in 12 sections of 9 different advanced undergraduate mathematics 

courses at a large university in the southern United States. All students taking part in the 

open-ended survey were working on their bachelor’s degree. Surveys were distributed in 

these 12 sections with prior permission from the class’s instructor. The instructors could 

choose to give extra credit for completing the survey but needed to offer an alternative 

for students who opted out of participating in the survey. 

 The survey presented students with 12 proposition and argument pairs, asking 

them first if they thought the argument was a valid proof, and then second to explain their 

thinking (see Figure 13). Additionally, students were asked for mathematical 

demographic information including: (1) what advanced undergraduate mathematics 
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classes they were currently enrolled in; (2) what advanced undergraduate mathematics 

courses they had previously taken; (3) what degree they were pursing – done to pull out 

graduate students taking leveling courses from the analysis – and (4) what their degree 

concentration or major was. Just as with the mathematicians, students were advised 

against grading the proofs as though they were student proofs – in case this was a practice 

they were familiar with – but were to answer for themselves the question, “Does this 

argument actually prove the proposition in a way that I feel is appropriate, based upon 

what I believe is requisite for an argument to be valid?” 

 The goal of the open-ended survey was not necessarily to act as a pilot for the 

actual assessment. Rather, the goal was to gather information about students’ reasoning 

about validity. This information was used as a basis for constructing distractors in what 

became the semi-closed assessment later. As this was the case, only rudimentary analysis 

took place on the survey with a major focus placed upon the open responses. 

 
Figure 13. The open-ended student survey consisted of 12 proposition and argument pairs like this one 

where students assessed the validity of the argument and explained their thinking. 

 The open responses were analyzed using thematic analysis (Braun & Clarke, 

2006). This analysis began with open coding of the open responses for each of the 12 

arguments independently and categorizing responses relative to each argument in terms 

of their appropriateness. All nonsensical open-responses led to a cycle of analysis of the 
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respondent’s closed-question responses and other open-question responses to ensure the 

respondent was not supplying inconsistent data. Inconsistent data was omitted from 

further analysis. Following open coding, a set of counts were constructed for each code. 

From these counts and through a review of the individual codes, themes were identified, 

categorized and condensed for each argument. From these condensed categorizations, 

along with the overall counts, distractors for the semi-close assessment were selected and 

constructed. 

Phase 2 - Semi-Closed Assessment Pilot 

 The end product for this study is a closed assessment, but for the pilot I left the 

ability for open data collection to refine the distractors. In order to construct the semi-

closed assessment pilot (SCAP), simple frequencies were computed for each of the 12 

arguments to determine which items students struggled with most. This information, 

along with any non-mathematical comments made about the arguments (e.g., I am not 

sure, I am just guessing, I do not remember/know this concept, etc.) identified candidates 

to cut or adjust before including arguments in the SCAP. Before an argument was cut, its 

representative CVI category was considered. None of the categories which had a single 

representative argument in the open-ended survey were cut, though appropriate small 

adjustments were made to clarify content not directly related to validation.  

 The SCAP included 11 arguments to 10 propositions13, each student seeing 8 

arguments (see Table 7). Of the 11 arguments, two were valid with all others containing a 

validity issue from the CVI framework. Only one argument contained more than one 

                                                 
13 The proposition for Arg4 long concerned showing that a specific relation, 𝑅 was an equivalence relation, 

thus requiring an argument that shows reflexivity, symmetry, and transitivity. The proposition for Arg4 

short only required that the same relation 𝑅 be transitive thus shortening the accompanying argument. 
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validity issue – Arg6 had a pair of validity issues. In total, there were five anchored 

arguments which all students saw. These anchor items included both valid arguments and 

three other invalid arguments. For each of the randomized pairs, Random (1) – Random 

(3), students only saw one argument from each grouping. For instance, if a student was 

randomly assigned Arg4 short, they would not also see Arg4 long, and so on.  

Table 7 

SCAP arguments and validity issue from the CVI 

Item Validity Validity Issue 
Anchor/Random 

(Grouping) 

Arg1 Invalid CR Anchor (1) 

Arg2 Invalid AC Anchor (1) 

Arg3 Valid N/A Anchor (1) 

Arg4 short Invalid MN Random (1) 

Arg4 long Invalid MN Random (1) 

Arg5 Valid N/A Anchor (2) 

Arg6 Invalid LG & W Anchor (2) 

Arg7 Invalid WT Random (2) 

Arg8 Invalid WT Random (2) 

Arg9 Invalid W Random (3) 

Arg10 Invalid W Random (3) 

 The structure of the SCAP was a nontrivial task to tackle as asking if an argument 

is valid or invalid is akin to a coin toss and would not reflect what students actually 

know. To overcome this, each proposition and argument pair asked a set of questions for 

students to answer which set I refer to as a testlet. Each testlet utilized an intricate 
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structure (see Figure 14) affording students the opportunity to validate and say why they 

made a particular validity choice without trivializing the assessment in the process. 

Additionally, the implemented structure tests the hypothesis that students can be led to 

correctly validate an argument through external prompts which lead to personal reflection 

and reconsideration (see Selden & Selden, 2003). The testlets focusing on each argument 

and proposition pair were presented to students in a semi-random order based upon their 

group. Testlets for the grouping Anchor (1) were presented in a random order followed 

by a Random (1) testlet then Anchor (2) testlets were presented in a random order and 

then the Random (2) and (3) testlets. In this way, each student took one of eight possible 

test forms. 

 
Figure 14. The structure of each testlet was designed to make the validating task non-trivial and to allow 

students to change their mind about the validity of an argument. 

 Each testlet had a structure identical to the one in Figure 14 where students were 

led from Level 1 to Level 3 without the ability to go back and change their answers. 
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Level 1 consisted of a single question: is the argument a valid proof for the included 

proposition (see. Figure 15). From there, students advanced depending upon their 

response. If students chose invalid at Level 1, they were presented with a Level 2 

question, and then a Level 3 question. If at Level 1 they chose valid, they would proceed 

directly to Level 3 questions.  

 
Figure 15. Students were first asked Level 1 questions which asked if the argument was a valid proof. 

 The key and distractors for each testlet were consistent throughout the testlet at 

Level 2 and Level 3. This means for Level 2 and Level 3, students were always presented 

with the same set of options in Level 2 and Level 3 regardless of their response in Level 

1. It also meant every student who was presented with a particular testlet, their set of 

possible answers in Level 2 and prompts in Level 3 were the same as every other student, 

thus allowing for sensible analysis afterward. 

 The testlets for Arg2 and Arg6 had two keys (i.e., two correct answers). In the 

case of Arg2 (see Figure 15) the idea of assuming the conclusion meant the argument was 

for the converse of the proposition to be proven. To combat the possibility students 

would learn the test, the idea was broken into the effectual meanings of beginning with 
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the consequent and proving the antecedent, instead of directly presenting students with 

the argument was for the converse.  

 However, Arg6 was a novel instance where two separate and distinct validity 

issues arose, in which a logical gap (LG) led to a warranting (W) issues (see Figure 16). 

Instead of removing one or both validity issues after the mathematician survey, the dual 

issues persisted to see how students handled the dual cases. Because the testlet for Arg2 is 

always prior to the testlet for Arg6, students were already confronted with a testlet with 

two keys making it a smaller assumption that students would willingly signify that two 

validity issues existed within a singular argument. 

 
Figure 16. The argument skips the assertion (LG) that 𝑥 ∈ (𝐴 − 𝐶) which leads to the dual understanding 

that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐶. The latter is important for justifying why 𝑥 ∉ 𝐵 (W).  

 Level 2 consisted of a single-answer, multiple-choice question asking students for 

the main reason they chose invalid in Level 1 (see Figure 17). For each testlet, Level 2 

questions included a set of 3-5 distractors compiled from Phase 1, with the final option 

being “none of the above.” This last option was an important affordance as the SCAP was 

intended as a pilot, so it was entirely possible that new understandings could emerge 

throughout the piloting process (see Melhuish, 2015). For arguments which were valid 

proofs, there was no key in Level 2, thus all options were distractors. 
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Figure 17. A Level 2 question was asked in the case a student selected “No-Invalid” for the Level 1 

question. This question was a single-answer, multiple-choice question including none of the above to allow 

additional input from students on possible reasons for invalidity. 

 Level 3 included a matrix style question (see Figure 18) and in two cases had an 

additional question depending upon which Level 3 block the student was filtered into 

from prior questions (see Figure 19). The example in Figure 18 is the case where the 

student selected valid for the Level 1 question and then Level 3 included a dichotomous 

follow-up question asking if the student still thought that the argument was valid. In the 

case where students initially selected invalid to the Level 1 question and in Level 2 

selected “none of the above,” students were given the open prompt, “In as much detail as 

possible, please explain why you feel the argument is not valid.” This open prompt 

afforded new understanding into student thinking, but also gave students the opportunity 

to change their minds and claim the argument was actually valid. If a student gave a 
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specific reason at Level 2 other than “none of the above,” they were only given a matrix 

question in Level 3 which did not including the option they selected as the main reason 

the argument was invalid in Level 2. 

 
Figure 18. Level 3 always presented students with the opportunity to “grade” the set of distractors where 

(A) meant they thought the claim was false and had no bearing on validity, (B) meant the claim was true 

but had no bearing on validity, and (C) meant the claim was true and necessarily invalidated the argument. 
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Figure 19. In two of the three Level 3 blocks, students were asked both a matrix style question and one 

other question. For those in the “valid” Level 3 they were asked if they still thought the argument was 

valid. For those in the “none of the above” Level 3 they were asked to give the main reason the argument 

was invalid. 

 Beyond the validity testlets, students were asked questions concerning their 

mathematical backgrounds. This information included the number of proof-based 

mathematics courses previously taken and currently enrolled in at the time of the 

assessment. Students were then asked if they had taken a class in number theory, 

analysis/real analysis, abstract algebra/group theory, topology, or an ITP course14. If a 

student answered zero to both of the first two question (i.e., they had not taken nor were 

they currently enrolled in a proof-based course) and they said that they had not taken any 

of the specifically listed courses, they were taken to the end of survey and thanked for 

their time. Information was also collected concerning students’ GPA, the degree they 

                                                 
14 The acronym ITP was not used, instead students were asked, “Have you taken or are you currently 

enrolled in a course where, beyond the mathematical content itself, the main point of the class was to 

introduce you to mathematical proofs? This course may have focused on things like logic; proof techniques 

and types (e.g., direct proof, proof by induction, etc.); and mathematical content including sets, relations, 

functions, and cardinality of sets.” 
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were working toward, and their major and minor concentrations. For students working 

toward their bachelor’s degree, they were given the opportunity to opt into a single, 1-

hour interview about the assessment. Finally, students were asked to estimate the time it 

took them to complete the assessment and thanked for their time. 

 The target audience for the SCAP was any undergraduate student who had 

previously taken or was currently enrolled in an ITP at the time of the assessment. 

Students who indicated they had not taken an ITP course, but had taken some proof-

based undergraduate course were included in the data collection.  

 At the beginning of November 2018, instructors were contacted via email from 

universities across the U.S. Universities were selected for participation based upon their 

inclusion in the AMS, Directory of Institution in the Mathematical Sciences15. Instructors 

were given a brief description of the assessment and asked if they were willing to have 

their students participate in data collection. In exchange for instructors taking part, I 

offered to give a detailed breakdown of how their classes faired on the assessment16 

against the national average. They were additionally told if they offered extra-credit for 

participation, they would need to offer an alternative form of extra credit so students who 

did not want to participate would have an opportunity to earn extra credit.  

 Included in the recruitment email was a PDF printout for their students which 

contained the same basic information given to the instructor as well as a class code which 

would sort their students’ data according to their instructor. Instructors were told not to 

                                                 
15 http://www.ams.org/profession/dirinst/dirinst-index.html 
16 Instructors were informed the data they received would not include individual data but would give them 

an overall picture of their class’s performance. 
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use the class code if they wanted to view the assessment themselves, but instead use the 

code TEST so their data could later be removed from analysis. 

 Analysis of SCAP. All told, 186 students from 23 universities across the U.S. 

took the SCAP. The first step in analyzing the data from the SCAP was to look at the 

open responses for the invalid arguments and compare them against the key for each 

testlet. This process was done by simple comparison of the written responses and the 

actual reason for which the arguments were invalid. Open responses which matched the 

key were given a score of 1 and all other open responses were given a score of 0. 

Similarly, for the valid arguments, the open responses were analyzed, looking for a 

change of mind where they initially thought the argument was valid despite the fact that 

they had chosen invalid at Level 1. Open responses which changed back to valid were 

given a score of 1 and all other open responses were given a score of 0. 

 After scoring the open responses, the next step was to come up with a sensible 

way to score each testlet (see Table 8). For the testlets with valid arguments (i.e., Arg3 

and Arg5) responses were split into three cases; (1) correct, (2) corrected, and (3) 

incorrect. Responses scored as correct answered Level 1 and Level 3 correctly and were 

given a score of one (1). This means they correctly identified the argument was valid 

initially, did not indicated a 𝐶 – meaning they did not think the prompt invalidated the 

argument – for any of the prompts to the matrix question, and did not change their mind 

on the validity in the final question. Valid testlets scored as corrected initially identified 

arguments as invalid in Level 1, but in Level 2 selected “none of the above,” and in the 

open prompt in Level 3 suggested that they changed their mind while not selecting 𝐶 for 
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any of the matrix prompts. Valid corrected testlets were given a score of zero (0). All 

other responses to valid testlets were given a score of negative one (−1). 

Table 8 

Scoring for the SCAP 

Testlet Validity 
Score 

Meaning Practical Meaning Original LTM 

Valid 

1 1 Correct • Level 1 – Valid 

• Level 3 – No “C” in matrix 

and did not change mind. 

0 0 Corrected • Level 1 – Invalid 

• Level 3 – No “C” in matrix 

and in the open prompt stated 

that they changed their mind. 

-1 0 Incorrect • All other responses 

Invalid 

1 1 Correct • Level 1 – Invalid 

• Level 2 – Identify Key 

• Level 3 – Correctly scored 

matrix prompts. 

or 

• Level 1 – Invalid 

• Level 2 – None of the above 

• Level 3 – State equivalent 

reason to the key, and 

correctly scored matric 

prompts. 

0 0 Corrected • Level 1 – Valid 

• Level 3 – Correctly scored 

matrix prompts, and change to 

invalid. 

-1 0 Incorrect • All other responses 

 The testlets with invalid arguments (i.e., Arg1, Arg2, Arg4 short and long, and 

Arg6–Arg10) responses were similarly split into three cases; (1) correct, (2) corrected, 

and (3) incorrect. Reponses scored as a correct did one of two things. If they correctly 

answered the Level 1 question as invalid, identified the key in Level 2, and then correctly 

sorted the prompts for the matrix in Level 3 as not invalidating the argument, except in 
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the case of Arg2 and Arg6 where they needed to correctly identify the second key as a 𝐶, 

then it was marked correct. The other correct scoring response  was if they correctly 

answered the Level 1 question as invalid, but at Level 2 selected “none of the above,” but 

in Level 3 their open answer was equivalent to the correct answer and they correctly 

sorted the prompts for the matrix in Level 3 as not invalidating the argument except in the 

case of Arg2 and Arg6 as previously mentioned. Responses scored as correct were given 

a numeric score of one (1).  

 Responses scored as “corrected” started by stating the argument was valid in 

Level 1, but in Level 3 correctly identified the key as 𝐶 and sorted the other prompts for 

the matrix in Level 3 as not invalidating the argument except in the case of Arg2 and 

Arg6, and then changed their validity evaluation to invalid in the final Level 3 question. 

These individuals were those who were led to correctly validate the argument as was 

suggested by Selden and Selden (2003). These responses were given a numeric score of 

zero (0). All other responses that were not correct or corrected for invalid testlets were 

given a score of incorrect with a numeric score of negative one (−1). This way of 

scoring meant that the overall range for total scores was from negative eight to eight, 

[−8,8]. 

 Once scoring was completed, to get a general understanding of reliability, the 

CTT measure of tau-equivalent reliability estimate, known commonly as Cronbach’s 

Alpha, was calculated for the assessment. As Streiner (2003) pointed out, a large Alpha is 

always better, but as this assessment is not a high-stakes test, it could be better described 

as a research tool in the early stages. As such, Streiner (2003) suggests a score between 

0.7 and 0.9 is acceptable. This does not completely discount scores below 0.7, as George 
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and Mallery (2003) suggest scores between 0.6 and 0.7 are still acceptable. This was just 

a first step into understanding how the assessment was performing and was done without 

considering the anchored aspect of the assessment.  

 Next the set of demographic information was used to see if test scores were 

correlated with known research about undergraduate students in proof-based mathematics 

courses. Ideally, there should be a positive correlation between GPA and assessment 

scores, as well as a positive correlation between the number of courses taken or enrolled 

in and assessment scores. Students who were pure mathematics majors should also have 

outperformed all other students with respect to final scores. Three tests were performed to 

test these hypotheses; (1) two sample t-test were performed on dichotomous data, (2) for 

discrete and categorical data17 a one-way ANOVA was calculated, and (3) the bivariate 

Pearson’ r correlation was calculated for continuous data including GPA. For establishing 

correlation for items like GPA, Pearson’s r is both adequate and the typical approach for 

such instruments (Carlson, Oehrtman, & Engelke, 2010; Stone et al., 2003). 

 Small modifications were made to the scores in order to analyze the data when 

using the LTM package in the statistical software R. As discussed in the previous chapter, 

LTM is an IRT approach to quantitative data analysis which requires dichotomous non-

negative data, typically 1’s and 0’s (Baker, 2001). To account for this, the scoring needed 

condensing and made non-negative for all data. To accomplish this, all scores which were 

not one (1) would be given a score of zero (0) (see Table 8). This transformation was 

only done to calculate the characteristic curves but was not a part of the CTT analysis, 

thus the original scoring has meaning going forward.  

                                                 
17 For categorical data with more than 3 categories the bivariate Pearson correlation was calculated. 



 

84 

 

 Additional analysis occurred at this level to take into account that the assessment 

was an anchored assessment. This was done in order to understand which forms (see 

Table 9) and testlets were preforming optimally and could be kept for subsequent future 

assessing. Once again, the set of condensed, dichotomous, non-negative data was used for 

this analysis which was done in R using the equateIRT package in conjunction with the 

LTM package. The eight forms were compared, and problematic items were closely 

analyzed for testing errors in Quatrics as well as coding and scoring errors in SPSS and R 

to ensure that the analysis was an accurate reflection of the data. 

Table 9 

The set of forms without anchored testlets18 

Form 
Randomized Testlets 

1 2 3 

F1 Arg4 short Arg7 Arg9 

F2 Arg4 short Arg7 Arg10 

F3 Arg4 short Arg7 Arg9 

F4 Arg4 short Arg8 Arg10 

F5 Arg4 long Arg8 Arg9 

F6 Arg4 long Arg7 Arg10 

F7 Arg4 long Arg8 Arg9 

F8 Arg4 long Arg8 Arg10 

 Student interviews. To complete the data collection for phase 2, a series of one-

hour student interviews proceeded the pilot run. The aim of these interviews were three 

fold: (1) to ascertain what students were attending to when they were taking the 

assessment (i.e., were they actually validating or were they doing something else), (2) to 

determine if there were items, distractors, concepts or other ideas which were worded in 

problematic ways or incomprehensible due to a lack of explicit explanation or lack of 

                                                 
18 Anchored testlets were ones which included Arg1-Arg3, Arg5 and Arg6. All forms had these five items 

which items were a part of the anchored analysis be were withheld from the table for brevity. 
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students’ prior knowledge, and (3) to determine if students’ scores could be accounted for 

by their ability to validate as opposed to other possible explanations. 

 Recruitment emails were sent to all students who had opted into participating in 

interviews. Once affirmative replies were received, a list of possible candidates for 

interviews was compiled and the assessment data for each interview candidate was pulled 

and analyzed. Candidates were selected for interview based upon the breadth of total test 

score, mathematical backgrounds, and anomalous responses on the assessment (see Table 

10). A total of six students were asked to participate after reviewing potential candidates. 

Return emails with consent forms were sent to all six participants as well as limited 

access to their assessment with a request to review the assessment prior to the interview. 

Table 10 

Interview participants from the SCAP 

Name Score ITP Major Year 
Taken Enrolled 

Al 8 x  Pure Sophomore 

Brent 1 x  Pure Senior 

Christopher 2  x Applied Freshman 

Gerald 6 x  Pure Senior 

John 6  x Pure Sophomore 

Shannon -2 x  Pure Senior 

 The interviews themselves took place via ZOOM, an online video conferencing 

service. The interviews lasted one hour and were audio recorded. Each interview 

proceeded in identical fashion, with the participant’s survey screened shared and each 

portion of the mathematical content reviewed with the student. For each proposition and 

argument pair the participant was asked what it was they thought about or attended to 

while they were validating each of the eight arguments. While they were discussing this, 

they were not being shown the main reason why they had selected the particular validity 
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judgement they made so their decisions about their process of validating would be as 

genuine as possible, as though they were taking the assessment without seeing the 

reasons the argument might be invalid.  Questions were asked about the clarity and effect 

of individual keys and distractors for each testlet, as well as a set of questions probing 

concepts or language which might have been problematic (e.g., concepts like equivalence 

relations, Cartesian cross-products, and symmetric difference, or language like the phrase 

“double inclusion”).  

 As with the data from the focus groups, the interviews were analyzed using 

thematic analysis (Braun & Clarke, 2006). The interviews were open coded to determine 

the process each student took as they attempted to validate each argument. The processes 

were then analyzed for each student to help determine what the students’ individual 

actions were for validating, with the question of whether students were in fact validating 

or undertaking some other paradigm. The possibility students were doing something other 

than validating was left open while coding. The codes themselves helped determine the 

quality of their process. The two most likely student processes were students validating, 

or students instead grappling with comprehension as a basis for validating cues. Because 

of this, codes were resolved using two different frameworks. First was the CVI 

framework presented in this study and the other was the Proof Comprehension 

framework from Mejía-Ramos et al. (2012). Though these two were the most likely, the 

possibility for other processes was left open. 

 The set of codes represented what I termed the process (see Table 11) by which 

students attempted to validate each argument. I defined the process to be the moment-by-

moment approach students took in verbalizing how they viewed the argument. The 
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process focused on how they spoke about the argument. Were they restating each line of 

the argument and making comments about the veracity of each line? If so, did they also 

make mention of the implications between each line of the argument? Did they spend any 

time considering the proposition itself and how the proposition might affect the argument 

which was to follow? What part or parts of the argument did they identify as being 

meaningful in terms of what they were searching for in the argument? All of these 

questions informed the coding of the process. 

Table 11 

Set of processes from student interviews 

Process Definition 
Indicative 

Action 

Intuition 

driven 

checking 

This process was informed by the students’ 

intuition about how an argument might be formed 

based upon the proposition for the testlet. 

Validating 

Line-by-line 

checking 

This process consisted of a student reading a 

statement from an argument and then making a 

validation judgement about the statement. This 

process might continue through multiple lines of 

the argument and could also include making 

judgments about whether each line or statement 

logically is implied by previous statements. It 

includes checking algebraic manipulations, 

notation and parameters, justifications or warrants, 

and gaps in logic. 

Validating 

Checking 

proof 

frameworks 

This process involves checking the overall logical 

consistency of the proof framework and may 

answer one of these questions: Does the proof 

begin and end as it should? Do the basic 

assumptions of the argument match with what is 

permissible based upon the proposition? This 

includes checking if the argument assumes the 

conclusion or weakens the theorem in any way. 

Validating 

Probing for 

local 

understanding 

This process involved the student trying to resolve 

an initial lack of understanding concerning ideas 

dealing with; (1) meaning of terms and statement, 

Comprehending 
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(2) logical status of statements and proof 

framework, and (3) justification of claims.19 

Probing for 

holistic 

understanding 

This process involved the student trying to resolve 

an initial lack of understanding of ideas dealing 

with: (1) summarizing via high-level ideas, (2) 

identifying modular structure, (3) transferring 

general ideas or methods to another context, and 

(4) illustrating with examples.20 

Comprehending 

 After resolving these processes with the aforementioned frameworks, the 

processes were used to determine what I termed the action (see Table 11) of each 

validating session. The action is representative of the quality of the process the students 

undertook with regards to the frameworks with which they were reconciled, whether they 

were genuinely validating, comprehending, some combination of the two, or possibly 

some other construct. Students took a validating action if their responses fully aligned 

with processes paralleled with the CVI framework. This means they explicitly checked 

for the types of validity issues that mathematicians determined were common in the ITP 

setting. Conversely, students took a comprehending action if their responses most aligned 

with ideas from the Proof Comprehension framework. In these situations, a student’s 

ability to understand the argument was tantamount to the validity of the argument, 

meaning that a lack of understanding often was enough for invalidating an argument.  

As humans are apt to not completely codify into a singular group, crossovers in 

actions were anticipated and accounted for as an action, which meant not all interview 

sessions were wholly validating or wholly comprehending. When this occurred, the 

quantifiers of minimal, some, and considerable were used to clarify the amount of 

comprehension which was made explicit. Minimal meant the student was involved in 

                                                 
19 Mejia-Ramos, et al. (2012) 
20 Mejia-Ramos, et al. (2012) 
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explicit acts of comprehension only on rare occasions and typically to the ends of 

understanding in a local sense. Some meant the student was involved in explicit acts of 

comprehension, with most attempts being local in nature but occasionally holistic in 

nature. Considerably meant the student was regularly engaged in comprehension attempts 

while validating and, in most cases, they were holistic in nature, though local 

comprehension may have also occurred.  

Conclusion 

 Creating a semi-open assessment is not my ultimate goal but is certainly the end 

goal for this study. Each step of this process took careful consideration and attention to 

detail in order to create a meaningful assessment. Starting with creating and validating 

the framework and items for the assessment and continuing on to the creation and 

collection of distractors for each testlet. Each proposition and argument pair were 

selected for inclusion in the SCAP because it met a series of criteria, including their 

inclusion in what might be deemed the typical ITP course, and its alignment with both the 

CVI framing and mathematicians’ own evaluations of the items. While this is not the 

final iteration, the careful efforts to construct a meaningful instrument through the 

assessment’s leveled structure and follow-up interviews with students will be considered 

in the future. It is in these carefully planned and considered steps that the final assessment 

gains strength in terms of validity and meaning. 
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V. Results 

The main goal of this study is to create an assessment of students’ ability to 

validate arguments at the ITP level. The following results are an argument that through 

the process of this study such an instrument has been created, though admittedly, 

refinement can and should be made. The argument this assessment created, at least in a 

first iteration, takes on the following nature; (1) results from building and validating the 

framework, which acted as the undergirding for the assessment’s item creation, which 

results amounts to internal or content validity, (2) results from the open pilot, which 

created distractors for the SCAP, again more content validity, (3) results from the 

statistical analysis of the SCAP itself, which results build the case for test reliability, and 

(4) the results from the student interviews, which results state that while taking the 

assessment, students were actually validating arguments as opposed to other possible 

activities. Therefore, the assessment measuring the desired construct. 

Framework for Assessment Construction and Item Selection 

 Here is an in-depth exploration of each of the individual categorizations from the 

CVI framework from the mathematicians’ perspective. The mathematicians’ survey is the 

main resource for determining the consistency of the categories of the CVI framework 

and for item selection. In each categorization, the goal was to have at least one 

proposition and argument pair garner at least 90% agreement on validity regarding the 

categorization. This signals that a sufficient number of mathematicians reasonably agree 

the argument is invalidated by the CVI issue, and thereby the issue is not only genuine 

but universal from the ITP standpoint. The focus group data presented is to add 

clarification about the effect of each CVI categorization. Certainly, I hoped strict 
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consensus would be found while speaking with the mathematicians, but it was not a 

requirement to move forward with the assessment. The set of data presented here is a 

survey of 228 mathematicians and the two focus group interviews (𝑁 = 4 & 𝑁 = 7) 

which followed the survey. 

Assuming the conclusion. Of all the CVI categorizations, surveyed 

mathematicians were most unified in terms of the affect that AC had on the validity of an 

argument (see Table 12). In seeing a total of 4 proposition and argument pairs containing 

the validity issue of AC, of the 184 occurring argument validations, only 8   

mathematicians disagreed that AC caused the arguments to be invalid. This meant 95.7% 

of mathematicians agreed AC had invalidated the four arguments from the survey. 

Additionally, when asked directly in the survey if AC in the ITP context was enough to 

invalidate an argument alone, 171 of a total 17821 mathematicians – roughly 96.06% of 

respondents – answered affirmatively. 

Table 12 

Mathematicians’ agreement with the CVI categorization of AC 

Item Responses 
Final Response 

– Invalid 

Reason 
% Agree22 

Agree Disagree23 

AC1 47 47 47 0 100% 

AC2 46 46 45 1 97.8% 

AC3 46 46 43 3 93.5% 

AC4 45 41 41 4 91.1% 

Total 184 180 176 8 95.7% 

                                                 
21 Note that, though there is data for 228 mathematicians, as was mentioned in the methods chapter, only 

178 completed the entire survey. This question and others like it were at the end of the survey. 
22 This number can be calculated by dividing the number of respondents (column 4) who agreed by the 

number of responses (column 2). 
23 As a category, disagree represents all respondents who either thought the argument was valid or thought 

the argument was invalid but disagreed with the reason I supplied. 



 

92 

 

 Mathematicians who did not agree with the reasoning of AC, or thought the 

arguments were valid, typically gave responses more akin to grading. These responses 

took the form of comments like, “I would say that this argument is almost correct rather 

than invalid,” or “It could be modified quite quickly for the proof to be correct.” In both 

cases, the mathematicians gave the benefit of the doubt to the author of the argument, 

much like one might do when grading and giving feedback to a student24 (e.g., Moore, 

2016). 

 One interesting comment pointed out an important issue in which a 

mathematician implied the conditional statement, which was to be proven, was equivalent 

to the converse which was proven. This is interesting as there are cases where a 

conditional and its converse are indeed equivalent. In the two focus groups, 

mathematicians had little to say on this matter overall, but when asked about the affect at 

the ITP level, Tyler from focus group one had this to say: 

Tyler: It has to be logically sound. 

Moderator25: Logically sound? 

Tyler: It has to actually answer whatever the question was. 

Here Tyler takes the conversation about AC and broadens it to a conversation on overall 

logical consistency – a common maneuver by both focus groups’ mathematicians – but 

points out that an argument needs to answer the question being asked. This stems from 

the oft repeated fact that the discussion was surrounding students learning proof in an ITP 

setting. Jeremy later commented, “Depends on what level it’s at, too. Like, for a student I 

would like to see a conclusion drawn, so they're indicating to me at least they understand 

                                                 
24 As mentioned in the methods, mathematicians were asked not to grade the proof, but solely determine 

validity instead 
25 In all cases I was the moderator. 
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what the conclusion is.” The mathematicians are not blind to the fact that conditional 

statements are on occasion equivalent to their converses. Instead, it was their opinion that 

validity regarding AC in the ITP setting is defined in relation to the process of learning 

proof more generally, which to them is the goal of the ITP class. 

 The combined understanding from the survey and the focus group indicates that 

AC is a valid categorization for the CVI framework. Mathematicians were nearly 

unanimous in their responses in the survey, the few exceptions focused more on aspects 

of grading student work. The focus groups, though they mostly framed their comments 

with regards to logical consistency, stressed the role that AC plays in invalidating 

arguments at this level. For them, the generality of assuming the conclusion being invalid 

came down to the curricular aim of the ITP course, specifically learning to prove. 

 The process of selecting an item which at least 90% of mathematicians agreed on 

was straightforward as all items met this requirement. Since AC1 was the only 

proposition and argument pair which was unanimous in agreement it was selected for the 

open survey as was AC3. In the case of AC2 and AC3, they represented an instance 

where the arguments were for nearly identical propositions. The only difference between 

the two occurred in the statement of the conditional phrase where AC2 used the more 

traditional if-then structure and AC3 used the non-standard phrasing then-whenever (see 

Figure 20). The choice in this case was to leave the standard language to see if students 

could identify the type of structure needed to undertake a direct proof of the proposition 

for AC3. 
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Figure 20. The first proposition is for AC2 which includes the standard “if-then” structure. The second 

proposition is for AC3 which supplanted the standard structure with the non-standard but equivalent 

“then-whenever.” 

 Misuse of notation. This categorization lead to an interesting result for the CVI 

framing. Mathematicians saw two arguments with the validity issue of MN and were in 

solid agreement with the CVI framing in both instances (see Table 13). The few 

mathematicians who disagreed – all of whom thought the arguments were valid – did so 

under the auspice of grading. Their comments were of the following forms, “If the error 

was pointed out to the student, they could easily fix the argument,” or “This is certainly 

bad, but could be forgiven,” or finally, “I would accept the proof in this case as I would 

regard it as a minor easily fixable slip.” On the other hand, when mathematicians were 

directly asked about the general effect MN has on the validity of an argument, only 40 

mathematicians – less than a quarter of all respondents – thought such an issue would 

invalidate an argument. Thus, despite the two items’ performances, MN had some issues 

with ubiquity in its effect on validity. 

Table 13 

Mathematicians’ agreement with the CVI categorization of MN 

Item Responses 
Final Response 

– Invalid 

Reason 
% Agree 

Agree Disagree 

MN1 51 48 48 3 94.1% 

MN2 54 50 50 4 92.6% 

Total 105 98 98 7 93.3% 



 

95 

 

 While asking about how different constructs from the CVI framework affect 

validity, focus group members were asked how mathematical grammar and notation 

affects validity. Focus group one had this discussion which jumps back and forth between 

two contexts: 

Jon: Yeah, notation is important too. 

Tyler: Yeah. I’m a stickler about that too. It’s gotta be stated precisely. 

Jeremy: Yeah, I grade it but I’ve seen refereed papers that don’t show 

much care. 

Tyler: If you look at old journals from the 20’s and 30’s, comparing it to 

today’s, we’re now much inferior today across the board. 

James: Inferior.  

Tyler: As a purist, I would prefer to see this done well. 

Moderator: Okay. 

Jeremy: I was going to say, sometimes I like to distinguish between 

having a proof and a proof sketch. So, a lot of times, I’ll say, this 

can be a sketch. 

James: I call it book proof. 

Jeremy: Oh, book proof, yeah… 

James: Yeah, I don’t like book proofs. 

Jeremy: …like all the i's doted and the t's crossed. You know, for 

homework I want them to do that, but quizzes and exams, I tell 

them, you don't have time to worry about that. I just want a 

coherent argument. 

The three mathematicians discussing the issue of MN in focus group one started 

commenting on their practice as educators, but then jumped to talking about mathematics 

in journal writing, implying MN as a writing issue persists to some degree in 

contemporary published mathematical works. When refocusing on the ITP level, Jeremy 

further divided the ITP context into that of homework for the ITP class and assessments 

in the ITP class. Each of these sub-contexts appear to have their own distinct set of norms 

about mathematical grammar and notation. From Jeremy’s comment, he states his 

standard is much higher on homework than for assessment due to the requirements and 

aims of each context. For the purposes of understanding MN with regards to validity, this 

is problematic, though consistent, with what mathematicians from the survey implied. 
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The underlying implication is that MN is important in terms of grading much like English 

grammar26 is. Seeing there is no direct link yet between grading and validity, it is hard to 

say what this implies about validity. It is important to note Jeremy’s students are being 

informed about each context and the norms for those contexts, making it easy to believe 

they have an understanding of what is required in terms of MN and validity, or at very 

least grading. 

 In the survey results from the two items, MN1 and MN2 the amount of agreement 

was sufficient to invalidate them. In fact, all the mathematicians who said the arguments 

were invalid did so because notation had been misused.  I learned that though the MN 

classification in the CVI framing is not always recognized as a genuine validity issue, the 

two instances where mathematicians judged, it certainly was ubiquitous as they broke the 

mold in terms of acceptability for validity’s sake. This made including and selecting an 

MN issue reasonable as both items had high agreement, but also a practice of picking 

between two good options. In general, the MN categorization is not universally 

recognized in the ITP setting, but the two items from the survey appear to be universal in 

the broad-spectrum ITP context. In the end, MN1 was selected for use in building the 

assessment though MN2 would have been just as good as the two items performed 

identically. 

 Circular reasoning. When directly asked about the effect that CR has on the 

validity of an argument, 170 of 178 mathematicians (95.5%) said that at the ITP level 

such validity issues are enough to invalidate an argument. The survey itself had two 

examples of CR for mathematicians to validate (see Table 14). As a group, 92.2% of the 

                                                 
26 English grammar as this study was conducted in the United States completely in English. 
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mathematicians agreed that CR invalidated the two arguments, but even more notably, 

the only disagreement occurred with mathematicians who thought the arguments were 

valid. In other words, 100% of the mathematicians who though the arguments were 

invalid indicated that it was because CR had occurred. 

Table 14 

Mathematicians’ agreement with the CVI categorization of CR 

Item Responses 
Final Response 

– Invalid 

Reason 
% Agree 

Agree Disagree 

CR1 36 35 35 1 97.2% 

CR2 54 48 48 11 88.9% 

Total 90 83 83 12 92.2% 

 Circularity lead to almost complete unanimity in response from mathematicians in 

CR1, with the lone dissenter not commenting in the open section of the survey. On the 

other hand, CR2 was less unanimous in outcome with 11 respondents disagreeing that CR 

caused the argument to be invalid. In the argument for CR2, a portion of the original 

proposition was included as part of the argument before that portion had been proven27 

(see Figure 21). A few of the 11 mathematicians brushed aside the issue making 

statements like, “I noticed this, but I think it is sufficiently trivial,” or “It is a meaningless 

question.” Other more poignant comments indicated the mathematicians used a 

contextual paradigm for judging, for instance: 

Invalid is too strong. There is no doubt a lack of detail. But, the student has 

already identified 𝐴 with a bounded subset of the natural numbers and hence 

every subset of 𝐴 with a bounded subset of the natural numbers. At this point, it 

seems the assumption is about the structure of the natural numbers (which 

depending on the course, could or could not invalidate the argument). 

                                                 
27 Using the proposition as part of the argument for said proposition was defined as one type of CR in CVI 

framework in Table 2. 
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This mathematician’s comment, as well as others, points to a question concerning what is 

already known to be true, a contextual question which other studies have shown to be an 

important issue in determining validity (e.g., Weber, 2008). For this survey, the task 

given to the mathematicians was clarified as being the ITP28 setting and all propositions 

should be proven with regards to what is appropriate at that level. This means that the 

context was in fact fixed, and for a strong majority of mathematicians, the inclusion of 

circularity was sufficient for the argument to be considered invalid. 

 
Figure 21. The argument for CR2 uses the statement in red, which is part of what is supposed to be proven, 

in order to prove the proposition. 

 The few comments made by the two focus groups concerning circularity were 

often spoken of in terms of extraneous information. For instance, in response to a 

question both focus groups were asked, the following conversation occurred with focus 

group two: 

Moderator: Are there mistakes that are permissible in a valid proof? 

Justin: I can think of one situation. A student writes an extra step that's 

not even needed for the proof for it to be completely valid, and 

that step contains a mistake. 

Moderator: So just some extraneous thing thrown on there that really didn't 

affect the larger argument? What about in the case of circularity? 

Justin: Well, the standard I'm using is, does that proof establish the 

validity of the fact being proven? So, the student still made a 

mistake and I'm still gonna point out that mistake, but to me that 

doesn't threaten the validity of the proof. It perhaps weakens the 

quality of the proof. 

                                                 
28 The term/phrase ITP was defined to mathematicians as, “the university mathematics course where 

students are first formally introduced to advanced mathematical thinking, logic, and most importantly, 

proof.” 
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Trevor: We can assess the quality of the writing, but if it's 

inconsequential; it does not render proof invalid per se. 

In this selection of discourse, Justin and Trevor state that extraneous statements in an 

argument are generally inconsequential in terms of validity, even in cases where there 

might be mistakes. The focus groups cared about the effect circularity had on the 

argument’s clarity and flow – as in Trevor’s closing comment above – much as was 

suggested by Dawkins and Weber (2016) or Selden and Selden (2003). 

 On the other hand, one conversation with focus group one did present a distinctly 

different understanding on the effect of circularity. This conversation was a result of yet 

another open-ended question asked of both groups meant to elicit input in areas which 

might not be covered by the CVI framing. In the first group, it prompted a conversation 

focusing on CR, 

Moderator: Are there other major validity issues you see often? 

Jeremy: For me, like the circular arguments. There's a degree of 

circularity where sometimes there's really bad circularity but then 

sometimes it goes so far out that it's hard for them to see that 

that's what they’re doing. 

Moderator: Okay, so what’s the effect on validity then? 

Jeremy: So, I don't know. To me, this is like a matter of degree. They're 

not really proofs when they make these mistakes, I would say. I 

wouldn't, in an ITP course. I would still have them fix it up. 

James: But not count off. 

Moderator: Not count off? 

Jeremy: Not count off, they just ... it's all or nothing, but they get 

infinitely many tries, so to speak. 

Jeremy and James’s comments suggest an “all or nothing” approach to validity, 

something both repeated a few times throughout the hour-long focus group. In use here, 

the two are suggesting that though circularity does affect clarity, as was previously 

discussed, for group one it also invalidates the arguments. Jeremy goes so far as to say 
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that these kinds of arguments “are not proofs” because of their circular natures. This 

paints a considerably different picture than what was presented by focus group two. 

 No real consensus exists as to the effect of CR generally in an ITP argument as 

two groups of independent mathematicians came to different conclusions. Conversely, it 

is important to note that focus group two’s discussion focused more on extraneous data 

whereas focus group one talked directly about circularity. This latter understanding along 

with that gained from the survey itself paints a consistent picture that CR is a valid part of 

the CVI framing, and using the 90% benchmark, this meant that CR1 was included in the 

student assessment. 

 Logical gaps. There were a total of four proposition and argument pairs in the 

survey dealing with LG (see Table 15). The categorization of LG had far less agreement 

than the prior categorizations, understandably so given that research shows that even in 

ITP class textbooks details are sometimes glossed over, including even banal matter of 

stating givens at the beginning of a proof and closing proofs by stating what was proven 

(e.g., Fagan & Melhuish, 2018). Because of this, I knew going into the process of 

building the CVI framework and creating items for a student assessment that LG would 

be a matter of preference, which could widely vary. It was, therefore, my goal from the 

survey to understand what LGs were more universally atypical in the ITP setting and test 

the levels of logical gaps until something breaks to better understand the tolerances that 

exist for ITP arguments. To do this, I intentionally put arguments in front of 

mathematicians that had what I felt were minor to major logical gaps to give them the 

ability to set the norm. 

Table 15 
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Mathematicians’ agreement with the CVI categorization of LG 

Item Responses 
Final Response 

– Invalid 

Reason 
% Agree 

Agree Disagree 

LG1 46 42 42 4 97.7% 

LG2 36 26 26 10 72.2% 

LG3 35 17 17 18 48.6% 

LG4 35 13 13 22 37.1% 

Total 152 98 98 54 64.5% 

 First and foremost, LG1 surpassed the necessary 90% benchmark. On the other 

hand, item LG3, represented in Figure 22, offered an interesting insight into the split 

nature of mathematicians on this construct. At a near perfect split, 48.6% of 

mathematicians reported that the argument for LG3 was invalid. Breaking with the 

normal structure of the survey for this item – as well as LG2 and LG4 – mathematicians 

who indicated the argument was invalid, instead of being presented with why I thought 

the argument was invalid, were presented with an open prompt and asked to explain why 

they thought the argument was not a valid proof. This probed the tolerance 

mathematicians had regarding LG on validity. In this open prompt, all 17 mathematicians 

commented about the lack of detail. For instance, one mathematician said: 

It feels like an assertion. In both cases, the author first substituted into the 

definition of 𝐴 △ 𝐵, and then asserted that that expression equaled what we want 

to show. There's no appeal to the underlying reasoning of why (𝐴 − ∅) ∪
(∅ − 𝐴) = 𝐴 . In some contexts, I'd give the author the benefit of the doubt, 

namely if the reader has been making those exact leaps earlier in the text. Absent 

that, it feels like the heart of the proof is missing. 

This comment is  indicative of the other open form comments, and points out two 

important ideas, similar to those about CR; (1) context is an important factor for 

mathematicians with regard to validity (e.g., Weber, 2008), and (2) the lack of detail 
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invalidates this argument at the ITP level as students would not prove using “those exact 

leaps earlier.”  

 
Figure 22. The argument was intentionally trivialized at multiple instances by choosing to not include 

arguments as to why (𝐴 − 𝐴) ∪ (𝐴 − 𝐴) = ∅ and (𝐴 − ∅) ∪ (∅ − 𝐴) = 𝐴. 

 After an in-depth review of all the comments from the open responses to LG2, 

LG3, and LG4, all mathematicians who indicated these items were invalid claimed the 

arguments lacked detail. One mathematician said of LG3, “It does not contain enough 

detail for me to feel confident that a student in an ITP29 course actually understands why 

the [premise is true].” Similarly, for LG4 one mathematician summarized that, “Well it's 

valid, but not from a beginning student” further implying the argument had leaps which 

for an ITP student were not permissible. 

 When talking with mathematicians about LG during the focus groups, the same 

salient theme emerged during the general discussion as did from the survey: details.  The 

focus groups were relatively unified in their feelings about what amount of detail might 

or might not be required in an ITP setting. The following conversation occurred early in 

focus group one, 

Moderator: What aspects does an argument have to have to qualify as valid? 

James: I like details. 

Moderator: Details are necessary? 

James: All the details, yeah. Show me the details. 

Jeremy: [What level student are we talking about?] 

James: Well, is this about the beginning, are they learning to prove or is 

it about- 

                                                 
29 This mathematician’s use of ITP was genuine and not shorthand transcription. 
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Jeremy: Yeah, which level is it? 

James: Is it graduate school? 

Moderator: [The ITP level]. That’s the class that we're talking about. That's 

those very beginning students, the first time they're seeing proof. 

James: There we're getting details. 

Jeremy: Right, there we need details. 

James: That’s our main duty. 

For these mathematicians, they felt it was important to include details, with James stating 

the main emphasis of teaching proof in ITP courses is getting students to fill in the 

details. Additionally, these mathematicians echoed the surveyed mathematians who 

implied context is important in determining validity requirements. James was rather 

forceful in his assertion that details matter and multiple times throughout the focus group 

one discussion started conversations like the following: 

James: Details, man, details, we want details. 

Moderator: You want details? Okay. 

Tyler: Yeah, at that stage, more details. 

Jeremy: …the devil’s in the details. 

The takeaway from the focus groups was that details, or a lack of logical gaps, are a 

highly desired piece of valid proof writing in the ITP setting. This understanding 

combined with the results of the survey certainly place a contextual constraint on the 

categorization of LG, though this categorization is absolutely a key piece of the CVI 

framing and on the assessment. 

 There was not complete unanimity when talking about detail and – by extension 

LG. In focus group one’s conversation, Jon commented about a presented example, 

“What's obvious is relative…It's easy to fill in the little gaps if you think there is one.” 

This comment is noteworthy for a couple of reasons: first, we were exploring argument 

LG4 from the survey, the one most mathematicians thought was valid; and second, 

because Jon said little concerning his feelings about the effect of detail on validity. 
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Looking back, it is hard to determine if he generally felt that details – as a replacement 

construct for LG – was not an issue, or if he felt that the logical gap in LG4 was 

insignificant, as did the rest of the mathematicians. I did not collect personal information 

in the survey itself, so I cannot say if Jon saw this item when taking the survey, and, 

therefore, I cannot say anything conclusively on his feelings generally. In the worst case, 

where Jon does generally think that LG is not a validity issues, he is something of an 

outlier. At best he agrees that LG4 is valid and had no other thoughts to share on the 

matter. In either case, the replacement construct of detail is considered by most 

mathematicians to be a significant validity issue. Thus, it is consistent that LG is a valid 

part of the CVI framing. Once again, using the 90% standard, this means that item LG1 is 

the only item which carried forward to the assessment phase. 

Warranting. Mathematicians were asked about three different ways which 

warranting could affect the validity of an argument (see Table 16). In each instance, the 

mathematicians were asked if the warranting issues would necessarily invalidate an 

argument at the ITP level. The survey indicated mathematicians most consistently felt – 

163 of the total 178 surveyed, or 91.6% of respondents – that an argument is invalidated 

by a warrant incorrectly used to justify a claim30. However, stating an incorrect 

justification31 or including an arithmetic error32 invalidating an argument in the ITP 

setting garnered 71.9% and 69.1% agreement respectively among surveyed 

mathematicians. This implies not all warranting issues affect validity the same at the ITP 

level, with more emphasis placed on using a justification consistent with its intended 

                                                 
30 This group was coded as 𝜔1. 
31 This group was coded as 𝜔2. 
32 This group was coded as 𝜔3. 
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meaning (ω1). It is interesting to note that an arithmetic error could be thought of as 

using a warrant incorrectly – meaning an ω1 warranting issue – in which case the 

divergence of opinion leads to more questions than answers.  

Table 16 

Mathematician’s views about the effect of three types of warranting issues 

Warranting Issue Code Example # Agreed % Agreed 

Using a warrant 

incorrectly 

ω1 Enacting the converse of a 

theorem as a means of 

justification. 

163 91.6% 

Using the wrong 

warrant 

ω2 Stating associativity when 

commutativity was the proper 

warrant. 

128 71.9% 

Arithmetic errors ω3 Incorrectly squaring a binomial. 123 69.1% 

 From the outset, warranting was an area of the CVI framework I strongly desired 

mathematicians’ input to clarify what I felt were inconsistency regarding the practice 

generally.  For this purpose, I included a total of eight (8) warranting items on the survey 

(see Table 17). Of these eight items, there were one ω1, four ω2, and three ω3 warranting 

issues. Items W2 and W3 represented warranting items that superseded the 90% 

threshold for agreement. None of the 𝜔2 items had 90% agreement, though 96.6% of the 

mathematicians – 56 out of 58 respondents – agreed that W1 was invalid. The surveyed 

mathematicians were generally united on the effect  𝜔1 issues have on the validity of 

arguments, which aligns with the CVI framework. Because of this, not only does it seem 

justified that 𝜔1 issues are a valid part of the CVI framework, but item W2 also included 

in the student assessment. What is left is to better understand 𝜔2 and 𝜔3 warranting 

issues. 

Table 17 
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Mathematicians’ agreement with the CVI categorization of W 

Item Code Responses 
Final Response – 

Invalid 

Reason 
% Agree 

Agree Disagree 

W1 ω2 58 56 27 31 46.6% 

W2 ω1 61 56 56 5 91.8% 

W3 ω3 35 32 32 3 91.4% 

W4 ω3 59 51 48 11 81.4% 

W5 ω2 59 47 47 12 79.7% 

W6 ω2 62 46 46 16 74.2% 

W7 ω3 50 34 33 17 66.0% 

W8 ω2 60 36 36 24 60.0% 

Total  444 358 325 119 73.2% 

 At first glance 𝜔2 items, or items where the argument used the wrong warrant or 

lacked a correct warrant, looked like they performed poorly. There was an overall 

agreement of 65.3% that the arguments were invalidated due to 𝜔2 warranting issues (see 

Table 18). Some of this is attributed to item W1, which quizzically accumulated only 

46.6% agreement but was considered invalid by 56 of the 58 mathematicians who saw it. 

No other 𝜔2 item – or warranting item for that matter – did as poorly as W1. Because of 

this I went back and reexamined the item. 

Table 18 

Mathematicians’ agreement with the CVI categorization of 𝜔2 

Item Code Responses 
Final Response – 

Invalid 

Reason 
% Agree 

Agree Disagree 

W1 ω2 58 56 27 31 46.6% 

W5 ω2 59 47 47 12 79.7% 

W6 ω2 62 46 46 16 74.2% 

W8 ω2 60 36 36 24 60.0% 

Total  239 185 156 83 65.3% 
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 It turns out that item W1 performed poorly because, by my own oversight, this 

item had two validity issues. There were supposed to be two versions of this item 

initially, one which had a warranting issue and one that assumed the conclusion. The 

version that mathematicians saw ended up having both issues. As a result, though 27 

mathematicians agreed that there was a warranting issue, of the 58 respondents for this 

item, 44 (75.9%) said that the argument was invalid mainly because the issue of AC. A 

few of the respondents who disagreed concerning the warranting issue made statements 

like, “I saw that it was an attempt to prove the converse and stopped reading at that 

point.” As the warranting issue for the argument occurred a few lines into the argument, 

it was impossible for mathematicians who enacted this sort of behavior to agree that a 

warranting issue existed. With W1 removed from the set of warranting issues, items W2-

W8 garnered 75.9%33 overall agreement concerning the effect of warranting issues on the 

argument’s validity. Furthermore, 𝜔2 are bolstered by the removal of W1, going up to 

71.3%34 agreement. As the data for the 𝜔2 items were discouraging, none carried forward 

to the assessment stage. However, questions were brought up during the focus group to 

better understand this phenomenon. 

 While 𝜔2 warranting issues did not have a single item that performed well 

enough to move on to the assessment, 𝜔3 issues did. Item W3 garnered 91.4% agreement 

from mathematicians (see Table 19). Overall arithmetic errors saw 78.5% agreement, 

with item W7 performing the worst of the three items. For item W3, only 3 

mathematicians disagreed in the end, and the following mathematician aptly sums up the 

thoughts these mathematicians had: 

                                                 
33 Not significantly different from the original proportion. 
34 Not significantly different from the original proportion. 
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I don't know exactly. Technically it's wrong, but if it were another mathematician 

who had written this proof, I'd never doubt that they were actually confused on 

that point. If I were grading this as a student proof, that would come into play, but 

the instructions said explicitly not to. As to its validity, the erroneous distribution 

of (2k+1)^2 doesn't derail the essence of the proof, and it successfully gets 

another mathematician through to the correct proof, and so I put it in the category 

of giving the author the benefit of the doubt. At the same time: if I were 

refereeing a paper with this error, of course I would note and correct it for the 

author, because it's actually not correct. But I'd classify it as a typo and not a 

conceptual proof error, which I suppose is the level I care most about. 

This mathematician was clearly conflicted and recognizes the mistake made. It is also 

clear the mathematician attempted to validate and not grade the proofs, but doing so at a 

level beyond what was asked, as they reference seeing other mathematicians perform 

such an error. Their comment does indicate that the potential validity issue is genuine for 

them, though they do not feel it sufficient enough to invalidate the argument. Despite the 

three who disagree, this item was taken to the next round and included in the open-pilot.  

Table 19 

Mathematicians’ agreement with the CVI categorization of 𝜔3 

Item Code Responses 
Final Response – 

Invalid 

Reason 
% Agree 

Agree Disagree 

W3 ω3 35 32 32 3 91.4% 

W4 ω3 59 51 48 11 81.4% 

W7 ω3 50 34 33 17 66.0% 

Total  144 117 113 31 78.5% 

 Focus groups. As was mentioned from the outset, much of the conversation 

surrounding LG and W were re-framed as details by the mathematicians during the focus 

groups. This meant it is hard to determine which specific construct they might have been 

referring to during the analysis process. This possible dual meaning is understandable as 

the two constructs, LG and W, have intentional overlap, as both are defined with the 

understanding that warranting is part of the argumentative structure (Toulmin, 1964) for 
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which an LG is implicitly missing a series of warranting. For mathematicians who not 

accustomed to the vernacular I adopted, the two ideas may not be distinct in their mind. 

There are clear moments where the conversation was about one or the other construct, 

and in those situations, I was sure to include the contextual clues to which specific 

construct they were discussing. 

 In the focus groups, the conversations about 𝜔1 and 𝜔2 warranting issues in the 

ITP setting revolved around the idea of novelty with respect to specific justifications. 

This first segment begins with focus group two refocusing on warranting requirements: 

Trevor: Let me go back to your last question, which is, “in papers that are 

published, is that the same level of rigor as the classroom or 

classroom expectations?” 

Moderator: Yeah, that was the question. 

Trevor: I don’t think so, but I think that’s a different standard. In a math 

paper the author may say, “well, it’s easy to see that <boom>.” 

We don’t necessarily want that from our students. 

This excerpt begins the conversation on the differing requirements concerning warranting 

in relation to context.  Trevor is discussing the differences between journal writing, 

writing proofs in the classroom, and the expectation of students’ own written proof in the 

ITP setting. His comments set up the idea that, to some degree, the level of rigor is higher 

in the classroom than in journal writing with respect to warranting.  

 From this point, Trevor discussed further his ideas about the juxtaposed nature of 

classroom expectations and journal expectations. Note again, that while this conversation 

began with a discussion on warranting, it could very well support the role which LG 

plays in validity at the ITP level as well: 

Trevor: But I think that's a matter of, what's the audience, and also, how 

far out is your resource? In classes we're seeing very old results, 

in some cases, not all that difficult, so we can afford to ask for all 

the details. But if you're publishing a paper with some brand-new 

theorem, then you may need to get heavy on the details of that 
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new part, but not in the part you need to go through quickly to get 

to what is your actual contribution. I think it's a hard question to 

answer because it depends on what part of the proof you're 

referring to and what's the audience for that proof. So, for the 

student, yeah this stuff we are seeing is old, but to them it is new 

and we need to see that they know, just like in a journal, you 

know, the details need to be there. 

Moderator: So, when justifying for students and in the larger world of 

mathematics, the proximity has a real effect on how explicit you 

need to be and when? Would you guys – I see a lot of nodding 

heads – do we agree with that? That justification itself is 

somewhat dependent upon what thing is novel within a proof? 

Justin: Yeah. 

Here Trevor introduces the idea that novel ideas, whether in the classroom setting or in 

the larger world of published mathematics, are the ideas for which details – details like 

justifications and stronger logical connections – are required for the argument. In fact, 

this idea was an echo of a similar idea presented by focus group one where they discussed 

the effect of a 𝜔2 warranting issue: 

Moderator: 

 

 

 

There is going to be a point where your ITP student might later 

be sitting in an algebra class and they're doing a proof that 

requires them to call upon the first isomorphism theorem. Is it 

enough that they use it correctly or do you want to see that they 

know that they're pulling from the first isomorphism theorem? 

Jon: If I just taught it, then I want them to state it on the problem that 

follows that. But later, no. 

Moderator: Later, no? 

Jon: And it's actually quickly later. Not anymore. 

Moderator: Okay 

Jeremy: I would circle the justification and note that everything's good 

except for that, fix it. But I'd let them turn it in again and try to 

fix the thing, so it'd become a proof. On the other hand, I would 

say technically that what we are looking at here is not a proof 

because if there was a compiler or something like that, it would 

definitely reject it. If you have a theorem prover it would say, 

‘invalid.’ 

Here Jon is indicating, much as was inferred by focus group two, that the effect of 

warranting on the validity of an argument is dependent upon the novelty of said 

justification. Thus, from these two conversations, the implication is that 𝜔2 issues only 
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have any large scale bearing for warrants which are novel in the ITP setting. This means 

that new definitions and theorems are important as explicit justifications so long as they 

are recently learned.  

 This is an interesting point, as in the ITP setting, some of the definitions and 

theorems may not truly be novel for the students, and in some cases are not strictly 

defined as in the case of field properties (Fagan & Melhuish, 2018). Focus group one 

discussed the need for specific justifications which were included in an argument they 

read (see Figure 23) during the focus group: 

Jeremy: You don't need those words at all do you? 

Jon: Exactly. You don't need them at all. So just delete it. 

Moderator: So, when you're teaching an ITP class, or other classes like it, do 

you try to shy away from specific justifications? 

James: No, I like to have exactly accurate justifications. 

Jeremy: You have to have a justification. And I do mine like all or 

nothing at that level. 

Tyler: It's a good point this one. Because in that class, very often I'll tell 

the students that I think I'd be happy with a period after such and 

such a claim, that does not bother me. But I tell the students, ‘but 

you have to understand that when I read the proof, I need to be 

convinced that you know what you're talking about. So maybe 

you should put more information to let me absolutely know for 

sure that you do know.’ Because if you put a period there and I'm 

thinking, well how did they know that. In this case that is fine, 

but there are some gray areas where I tell them, give me more 

information, then I'll know for sure that you knew where it came 

from. 

Jon: Fully agree. 

This conversation, as well as the overall discourse across the two focus groups, gives the 

impression of a moving target where at points more explicit warranting is required and in 

some instances less is better. This understanding supports the previous notions that (1) 

warranting is explicitly dependent upon the novelty of the warrant, and (2) at the ITP 

level, the set of justifications from which one can warrant are somewhat inconsequential 

in nature meaning that at times less explicit warranting is actually preferred. From a 
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validity standpoint, this means that 𝜔2 as a categorization is too problematic and 

inconsistent. All this combined with the results from the survey indicate that such notions 

should not be carried forward to the assessment. 

 
Figure 23. Portion of prompt which included specific justification (red) or “words” as Jeremy called them. 

The argument included an incorrect squaring of the binomial. 

 Unfortunately, dealing with arithmetic errors – meaning 𝜔3 warranting issues – 

the conversations in both focus groups were short. The following came from focus group 

one near the beginning of the general discussion of validity, 

Moderator: What about correct arithmetic manipulation? 

Jeremy: Yes. 

Moderator: Yeah? 

James: Yeah, that better be there. 

Tyler: If it’s a part of the argument. 

Here, the mathematicians, and especially Tyler, imply that arithmetic is important, so 

long as the arithmetic is an important part of the argument. This idea is similar to the idea 

of novelty previously discussed, where new ideas about arithmetic manipulations should 

be done correctly, but things which are not contextually new do not hold as much sway. 

The conversation continued as they looked at item W3: 

Tyler: It’s a trivial mistake, this one. 

Moderator: This one you think is a trivial mistake? 

Tyler: Yeah, I mean it is a mistake… 

James: That’s an arithmetic mistake 

Tyler: …but it’s a silly mistake. 

James: It doesn’t count off that much. 

Tyler: Yeah, it doesn’t count that much. 

Moderator: But is wrong? 

Tyler: It’s a terrible mistake though. 
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Moderator: It’s completely wrong though, right? 

Jeremy: It is completely wrong. That’s right. 

Moderator: There isn’t an ITP world where it’s right? 

Tyler: Yeah, yeah. 

James: Right, right. 

Jeremy: So again, if it was on an exam, I could clear that but if it was 

homework, I would send it back. 

Tyler: That’s the kind of mistake though that would infuriate me, really. 

Jeremy: Once they’re in an ITP course they should be able to square a 

binomial. 

The conversation continued as Tyler presented an anecdote about students who are 

unable to perform basic computations. It became very clear that these mathematicians 

had an amount of vehemence about this subject. Their thoughts, once again, indicated 

that proximity is important, but this did not concur with the outcome of the survey as W3 

was considered almost unanimously to be invalid because of the arithmetic error. 

Additionally, Jeremy brought up the point about the differing context of homework and 

exams and the different requirements of each context. As with before, the homework 

context has a higher level of rigor  than the exam context.  

  In the end, as W3 did surpass the benchmark of 90%, this leaves some questions 

as to the effect of the 𝜔3 warranting issue. The focus groups indicated they would apply 

negative grades and feedback in response to homework with these sorts of mistakes, and 

as has been pointed out, grading to some degree is a surrogate construct for validity. It is 

possible then that students might recognize arithmetic as a genuine validity issue. As 

such, and because W3 did preform as required, it was included as part of the student 

assessment. 

 Weakening the theorem. The final construct from the CVI framework is WT. 

The items from WT were split into two groups: those that performed very well, WT1 and 

WT2, and those which did not (see Table 20). The items which did not perform well were 
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to some degree designed to test the bounds of mathematics, especially from a linguistic 

standpoint.  

Table 20 

Mathematicians’ agreement with the CVI categorization of WT 

Item Responses 
Final Response 

– Invalid 

Reason 
% Agree 

Agree Disagree 

WT1 47 46 46 1 97.9% 

WT2 53 52 52 1 96.2% 

WT3 43 33 11 22 27.9% 

WT4 36 25 23 13 63.9% 

WT5 49 18 15 34 30.6% 

Total 228 174 147 71 64.5% 

Item WT5 (see Figure 24) represents what was perhaps the most interesting of the 

WT items. In designing this item, I intentionally left the nature of the proposition 

ambiguous with regards to the term odd – does this term automatically imply odd natural 

number or odd integers? Additionally, in the argument itself the phrase, “The 𝑥 = 2𝑎 + 1 

for some 𝑎 ∈ ℕ” was included again to probe the often-inconsistent definition of the set 

of natural numbers with regards to the number 0. Clearly, most mathematicians thought 

this meaningless in terms of validity, most commenting that the structure of the argument 

was the most important thing, not the individual pieces. One mathematician commented:  

The heart of the argument is understanding that odd numbers are 1 mod 2 and that 

an odd number squared is 1 mod 2, which remains valid. The error is minor 

because of its consequence. If this was a proof involving absolute values and the 

negative numbers [were] not properly dealt with that would be much more 

damning. 

This is not the consensus of all the comments, as some mathematicians were perturbed by 

this prompt, and a large amount of open comments were made. The implication is that, 
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yes there seems to be some sort of disagreement in terms of implicit language, but overall 

the arguments structure supports the proposition. 

 

 
Figure 24. Item WT5 was designed specifically to test the bounds of WT in regard to implicit language. 

Due to time constraints on the mathematicians, neither focus group had much of a 

conversation concerning WT generally. The conversation associated with WT, though 

interesting, falls outside the consideration of this study and will therefore be reported on 

at some other time. That said, though there were items which performed poorly on the 

survey, it was by design. Therefore, it is understandable that certain of the items did 

poorly. On the other hand, items WT1 and WT2 garnered enough agreement to easily be 

included in the open-pilot. It is easy to exclude certain items which performed poorly and 

accept WT as a legitimate CVI categorization, with the caveat that more focus group data 

would be helpful in further legitimizing this categorization. 

 Valid items. As defined in the framing for this study, valid items were those 

items which did not include a CVI issue. No one of these items were universally judged 

to be valid, but two of the five, items V1 and V2, surpassed the 90% threshold (see Table 

21). Item V3 only missed the threshold by the thinnest of margins – one response. 

Mathematicians who thought item V4 to be invalid grappled with the definition of odd, 

an important fact in the argument, which is interesting considering the difficulty that 

arose from item WT5 in the previous section. This only strengthens the point that implicit 
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mathematical language can be problematic in terms of agreement among mathematicians. 

Finally, mathematicians who thought item V5 was invalid did so under the auspice that 

the conclusion was not expressly stated and was therefore incomplete, as stated by 

several mathematician, “The argument is incomplete,” or “Did not finish the argument,” 

and finally, “Does not finish the proof.” 

Table 21 

Mathematicians’ agreement with items which do not have a CVI issue included 

Item Responses Final Response – Invalid % Agree35 

V1 37 2 94.6% 

V2 37 3 91.9% 

V3 37 4 89.1% 

V4 37 6 83.8% 

V5 41 9 78.0% 

Total 189 24 87.3% 

 Though only two items garnered the requisite 90% agreement, the valid items 

performed admirably. Importantly, as will be discussed more in-depth in the next section, 

no new categorizations arose from the presentation of valid items. Part of presenting 

mathematicians with valid prompts was to account for the possibility that there are other 

categorizations that needed to be accounted for in the CVI framing. and it would be 

possible that other categories might arise. As 87.3% of the mathematician who took the 

survey deemed this group of five items valid, and comments made by mathematicians 

who thought the arguments were invalid aligned with a framework categorization or 

could be accounted for in other ideas like grammar or clarity (e.g., Moore, 2016), it is 

safe to assume this process yielded no new categorizations. For the purpose of building 

                                                 
35 Here % Agree represents the percentage of mathematicians who agreed the arguments were in fact valid. 
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an assessment, items V1 and V2 were carried forward for inclusion in the final 

assessment as both garnered the required agreement. 

 Other possible categorizations. During both the survey and in both focus 

groups, mathematicians had the opportunity to point out some other validity issue or 

issues that I did not take into account when putting together the CVI framework. In the 

survey, I explicitly asked mathematicians if there were other types of validity issues they 

did not see in the survey which they thought were common at the ITP level. In total, 25 

mathematicians responded in the affirmative to this open question, asserting various ideas 

as common validity issues. Of these 25 responses, 15 included comments inferring 

existing categorizations in the CVI framing (see  

 

 

Table 22). For instance, the following comment was coded as a logical gap, “Incomplete 

arguments that leave major steps out and unexplained.” All other codes which were not 

specifically about a CVI issue dealt with comments that mathematicians made either 

about the survey generally, or about specific ideas concerning validity. Responses coded 

as a “comment” were like the following response which was coded as comment on 

severity of error; “What would invalidate a proof is an error that cannot be easily 

recovered from by a small correction.” The mathematician in this comment is not 

submitting a novel categorization, but rather commenting on the general effect of the 

severity of a validity issue. From coding and analyzing these responses, no new 

categorizations for the CVI framing were put forth by mathematicians in the survey. 
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Table 22 

Coding of other possible categorizations for CVI from mathematician survey 

Code Definition Count 

Logical gap As defined by the CVI framing. 5 

Comment on survey The mathematician used the open prompt as an 

opportunity to comment on the survey generally. 

4 

Warranting – 

Justifying generally 

As defined by the CVI framing. 4 

Comment on the 

severity of error 

The mathematician indicates that there is a 

difference the effect of any issue based on severity 

of the error. 

4 

Comment on 

arithmetic or grammar 

The mathematician express ideas about the effect of 

arithmetic errors or flaws in grammar as a direct 

response to what they saw in the survey. 

3 

Weakening the 

theorem 

As defined by the CVI framing. 3 

Comment on 

warranting 

The mathematician express ideas about the effect of 

warranting as a direct response to what they saw in 

the survey. 

2 

Misuse of notation As defined by the CVI framing. 2 

Warranting - 

arithmetic error 

As defined by the CVI framing. 1 

 During both focus groups, mathematicians were also asked if there were validity 

issues they had not seen in the survey or discussed during the focus group that should 

also be considered. The idea most discussed was the idea of details. As has already been 

stated, mathematicians used the term detail extensively and, in all cases, seemed to infer 

the CVI issues of LG or W. Another idea which was voiced in both groups was grammar 

and clarity as was discussed by the mathematicians in Moore’s (2016) study on grading 

practices. While individuals in both groups expressed frustration on this point neither 
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concluded that it was a worthwhile candidate for invalidating an argument. Instead, the 

discussions turned to grading, echoing the conclusions drawn from Moore’s (2016) study. 

No other ideas were presented by either focus group, and thus when combined with the 

results from the survey, the conclusion is drawn that the six categorizations initially 

presented in the CVI framing form a sufficient basis for the subject of validity at the ITP 

level. 

 Conclusion. Though no categorization for the CVI framing had universal 

acceptance from all mathematicians – which was never the goal to begin with – there 

certainly were areas which met the requirements for this study. Not only did the CVI 

framing meet the requirements set for it, each categorization had at least one item with 

90% agreement, with most of the categories generally agreed upon by mathematicians as 

areas which can and do cause invalid arguments at not only the ITP level, but in other 

more general contexts too. From the survey and the two focus groups, it is clear that the 

relationship between a mathematician, context, and expertise play a role in validity 

judgements as has been shown in previous studies (e.g., Inglis & Alcock, 2012; Inglis, et 

al., 2013; Weber, 2008). Because the CVI framing is the basis for the assessment, and it 

performed as expected, there is a strong case for the assessment in terms of validity, as 

each item for the assessment comes from this process. 

Assessment Development and Piloting 

 The open-ended pilot consisted of twelve (12) arguments from the CVI framing 

survey given to mathematicians (see Table 23). A total of 68 students took part in the 

open-ended pilot whose results were analyzed to create a set of distractors for the closed 

multiple-choice assessment that would follow. It is too cumbersome to detail the process 
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for each item, so instead I present a set of results from one item, pilot item P1, and the 

process undertaken to create distractors for said item.  

Table 23 

Items for the close-ended pilot from the CVI framing 

Pilot Item 
CVI 

Name 

CVI 

Validity 
ITP Topic 

% Mathematician 

Agreement 

P1 AC1 Invalid Basic Number Theory 100.0% 

P2 WT1 Invalid Basic Number Theory 97.9% 

P3 LG1 Invalid Set Theory 97.7% 

P4 CR1 Invalid Set Theory 97.2% 

P5 V5 Valid Relations 94.6% 

P6 WT2 Invalid Set Theory 96.2% 

P7 MN1 Invalid Relations 94.1% 

P8 AC3 Invalid Set Theory 93.5% 

P9 MN2 Invalid Basic Number Theory 92.6% 

P10 V4 Valid Set Theory 91.9% 

P11 W2 Invalid Set Theory 91.4% 

P12 W3 Invalid Basic Number Theory 90.3% 

 Example process. Item P1, AC1 from the CVI framing, presented students with 

an argument for the converse of the proposition being proven (see Figure 25). As with all 

items for the open-ended assessment, students were first asked to validate each argument 

and then to describe in detail why they thought the argument was or was not a valid 

proof. It was from this second, open-ended question that the distractors were created. 

Each of the 68 responses were coded multiple times throughout the analysis phase to 

consider new codes that arose in the coding process (see Table 24). Note that the codes in 

Table 24 do not represent all codes from the open-ended assessment, just the set of codes 

which pertained to item P1.  
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Table 24 

List of codes and responses for P1 

Code Definition Responses 

Conclusion The comment alludes to the proof assuming the conclusion. 31 

Def The comment references definitions or concerns the definition 

of a concept used or not used in an argument. 

19 

Produced The comment consisted of a student produced proof, outline, 

examples, diagram, counterexample, non-proof. 

14 

Logic The comment deals with the logic/logical flow of the 

argument. 

13 

Sense The comment includes a phrase similar to "makes sense," or 

the validity is based upon understanding the proof. Often the 

comment is an explanation of what was done in the argument 

but does not restate the entire argument. 

11 

Comprehension The student's claim is based upon their ability to restate the 

argument and understand it. In most cases the comment is a 

copy of the argument, perhaps with some explanation but does 

not necessarily include it. 

7 

Direct The comment references the argument was a direct proof or 

that it should have been a direct proof. 

4 

Algebra The comment makes remarks about the use of algebra - 

computations and manipulations 

3 

Explanation The comment references the inclusion of or lack thereof of a 

sufficient explanation. 

3 

Null No comment was made. 2 

Detail The comment references the inclusion of or lack thereof of 

sufficient detail. Usually including a statement similar to 

“needs more detail.” 

2 

Clarity The comment references the clarity or that it is easy to follow. 2 

\in The comment references elements belonging to sets. 2 

Case The comment references that all cases in a proof by case were 

accounted for or that there were cases that were missed. 

1 

Looks good The comment is a non-mathematical statement about how the 

proof looks, often saying things like, "looks good" or "appears 

to be good." 

1 

End of proof The comment indicates the desire for a “therefore” statements 

at the end of proof or some sort of clear closing remark. 

1 

Prop true The comment references a conviction in the truth of the 

proposition rather than the argument. 

1 

Warrant The comment references the justification and warranting in 

some direct way. "They didn't justify the statement or claim" 

1 

Axioms The comment references basic axioms, and specifically uses 

language including the word axiom. 

1 

Previous The comment refers to something from an earlier argument 

either within the assessment or from prior knowledge, or is a 

comment concerning some other argument in the assessment. 

1 
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Figure 25. Item P1 from the open-ended assessment was AC1 from the CVI framing process. 

 Of the 68 comments from the open survey, 31 grappled with the fact that the 

argument assumed the conclusion. The next largest grouping of comments dealt with 

definitions (19) or contained a student produced argument (14). Open responses were 

often coded using multiple codes as it was entirely possible for students to include 

multiple ideas in their responses. For instance, Table 25 includes a set of three different 

responses and their codes for P1, where each response was coded using two or three 

different codes. 
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Table 25 

Three example open responses for P1 from open-ended pilot with response coding 

Open response Response coding 

 

• Conclusion 

• Produced 

 

• Looks good 

• \in 

• Clarity 

 

• Comprehension 

• End of proof 

• Def 

 Once I completed coding the entire open pilot, I compressed the codes36 to form 

categories where each category included multiple codes which focused on similar themes 

throughout the open pilot. For item P1, the counts for each category are found in Table 

26. Each category listed in Table 26 includes many ideas not present in P1, but which 

arose for other items in the pilot. For instance, no code in Category 8 appeared in item P1 

as students did not make comments for this item on ideas concerning symbols, 

parameters, notation or variables though they did for other items. 

  

                                                 
36 The code Null was excluded from categorization compression. 



 

124 

 

Table 26 

Condensed category responses for open pilot item P1 

Category 

Number 
Category Name Codes in Category Counts 

% responses 

(𝑛 = 68) 

1 Logical / Structural Logic, Conclusion, 

Case, iff, Structure, 

General, Gap, Initial 

Conditions 

45 66.2% 

2 Understanding Sense, U/G, 

Comprehension, Prop 

True 

19 27.9% 

3 Manipulation / Algebra 

/ Set Theory 

Algebra, Element, Set, 

Substitution, \in, \notin, | 

5 7.4% 

4 Conceptual Def, Concept, Axioms 20 29.4% 

5 Presentation / Clarity / 

Conventions in Proof 

Writing 

Clarity, Looks Good, 

End of Proof, Wording 

4 5.9% 

6 Created / Copied / 

Reiterated 

Produced 14 20.6% 

7 Detail / Explanation Detail, Explanation 5 7.4% 

8 Variables / Parameter/ 

Symbols / Notation 

Symbols, Parameter, 

Notation, Variables 

0 0.0% 

9 Proof Type Direct, Induction, 

Contrapositive 

4 5.9% 

10 Justification / 

Warranting 

Warranting 1 1.5% 

11 Holdover Knowledge Previously, Taught 1 1.5% 

 It was precisely these categories in conjunction with the CVI framing that lead to 

the creation of the set of distractors for the SCAP. For item P1, most of the comments 

students made concerned Category 1 dealing with the logical and structural elements of 

the argument, Category 2 a basic understanding of the argument, Category 4 dealing with 

mathematical concepts which were important for the argument, and Category 6 which 

entailed students creating an entirely new argument or reiterating ideas from the 

argument itself. As this assessment is concerned with validity and not comprehension, 

Category 2 was always left out of the distractor creation process. Similarly, Category 6 



 

125 

 

was left out as it aligns with a portion of the framing of the proof comprehension test 

(Mejía-Ramos, et al., 2018). Additionally, as many of the comments for Category 1 were 

correct as the argument does have the CVI issue of AC, this category was partially 

removed as a means for creating distractors.  

 The treatment of the key for P1 was different than most because many of the 

comments in Category 1 separately referenced that the argument first began by assuming 

the conclusion, and then ended by showing the antecedent. Additionally, from the efforts 

to verify the CVI framing, mathematicians often stated that once they realized that the 

argument began with the conclusion, they stopped reading the argument as they knew 

then that it was invalid. From these two pieces of information, it felt consistent to include 

the key idea of AC as two separate responses, specifically, “the argument begins by 

assuming 𝑥 + 4 is odd,” and “the argument concludes by showing 𝑥 is odd.” As this was 

not the common structure for the SCAP, it presented an opportunity to insert a novel 

structure into the test helping to safeguard against students learning to take the test. 

 As it was the desire for students to see only four options for why questions, this 

left the possibility of two distractors. Since the three largest categories from the open 

pilot were eliminated for P1, this meant the lesser categories would have to be used, and 

importantly those categories needed to align with the CVI framing. As such, distractors 

were selected dealing with Category 4 in conjunction with Category 10, and Category 1 

(see Table 27). 
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Table 27 

Distractors, open survey categorization, and CVI framing for P1 

Distractor Open Survey Categorization CVI Framing 

The definition of odd was used 

incorrectly. 
• Category 4 

• Category 10 

W 

The argument both assumes and shows 

that 𝑥 + 4 is odd. 
• Category 1 CR 

 This process was undertaken for the entire set of twelve items from the open-

ended survey except for P8 and P9. In the end, the decision was made to cut these two 

items for several reasons. First, many of the open pilot students commented on the length 

of the time it took to validate and comment on each argument. From this feedback it 

became clear that a few items needed to be removed. To make the truncation easier, I 

designated that the 6 highest performing items from the CVI framing could not be cut, 

thus items P1-P6 were excluded from consideration. This left the bottom half, P7-P12 to 

cut. Items P11 and P12 were both warranting issues, but they were 𝜔1 and 𝜔3 issues 

which made it hard to cut either. I wanted two valid items, thus P10 could not be cut 

which left P7-P9. Since P1 is an AC item I felt comfortable cutting P8, and in similar 

fashion, because P7 had slightly better numbers from the CVI framing, and because item 

P9 dealt with modular arithmetic, a topic which some students said they were unfamiliar 

with in the pilot, I chose to cut this item as well.  

 Additionally, item P7 represented an interesting opportunity to introduce variety 

into the SCAP. This item was an argument for the proposition in Figure 26 about an 

equivalence relation; thus reflexivity, symmetry, and transitivity were shown in the 

argument. This meant the argument was lengthy and therefore time consuming for 

students to read, let alone validate, a problematic issue for a low-stakes assessment. To 
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offer a solution to this, I truncated the proposition as shown in Figure 26 so  the argument 

focused only on reflexivity and transitivity which included the portion the original CVI 

issue. 

 

 
Figure 26. Item P7 was an argument for this proposition which was lengthy and thus on the SCAP two 

version appeared. The first was the full argument, the second for a truncated version of the proposition and 

argument. 

Semi-Closed Assessment Pilot Results – Reliability 

 It is important to note the assessment pilot was an anchored assessment meaning 

that some participants saw one version of the assessment while others saw a different 

version, though all participants saw the same set of five testlets; T1-T3, T6, and T7. 

Though a grounded assessment, I first present the overall results of the IRT analysis 

assuming a non-anchored structure. Below in Figure 27 are the characteristic curves from 

the LTM analysis with the loadings for discrimination and difficult in Table 28 as well as 

percentage breakdowns of performance on each testlet in Table 29. The items as a 

complete grouping accounted for a moderate spread of ability, where difficulty ranged 

from −0.7764 ≤ 𝑑 ≤ 1.6590. Notably, only testlet T7 had a discrimination lower than 

the requisite 0.5 at 0.4874 while testlet T5 had an inflated discrimination of 15.5592. All 

other discriminations were above the required 0.5.  

 Exploring the information curves presented in Figure 27 with testlet T5 present is 

fruitless as information in the two-parameter model of IRT is based on the square of the 

discrimination. This meant that T5 had an extraordinary peak information of 60.52218 at 

an ability of 0.4590. While an over simplification, Figure 28 removes T5 and presents the 

information curves giving a sense of overall reliability that is higher for lower abilities 



 

128 

 

[−2,0) and slightly lower for higher abilities (0,2]. Due to T7’s low discrimination, its 

peak information is nearly sustained for the entire range of abilities. 

 
Figure 27. Item characteristic curves assuming complete data – non-anchored analysis. 

 

Figure 28. Left – Item information curves assuming complete data – non-anchored analysis. Right – Item 

information curves with testlet T5 removed. 
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Table 28 

Testlet difficulty and discrimination loadings 

Testlet Difficulty Discrimination 
Peak 

Information 
Pilot Item Validity 

T1 -0.4803 1.8135 0.822196 P4 Invalid 

T2 0.6435 1.5979 0.638321 P1 Invalid 

T3 -0.6997 2.2218 1.234099 P5 Valid 

T4 0.372 1.3402 0.449034 P7 Invalid 

T5 0.4590 15.5592 60.52218 P7 Invalid 

T6 -0.7764 1.5616 0.609649 P10 Valid 

T7 1.5452 0.4874 0.05939 P3 Invalid 

T8 1.6590 1.0693 0.285851 P6 Invalid 

T9 -0.5783 1.3431 0.450979 P2 Invalid 

T10 0.4080 1.4315 0.512298 P11 Invalid 

T11 0.5799 0.8593 0.184599 P12 Invalid 

Table 29 

Testlets breakdown of percentages by score 

 
CVI Validity 𝑁 

Scores by % 

Testlet -1 0 1 

T1 Invalid 187 24.1% 12.8% 63.1% 

T2 Invalid 187 57.2% 10.7% 32.1% 

T3 Valid 187 27.8% 1.1% 71.1% 

T4 Invalid 94 50.0% 16.0% 34.0% 

T5 Invalid 92 44.6% 20.7% 34.8% 

T6 Valid 183 28.4% 1.1% 70.5% 

T7 Invalid 183 60.1% 7.1% 32.8% 

T8 Invalid 90 62.2% 23.3% 14.4% 

T9 Invalid 93 26.9% 5.4% 67.7% 

T10 Invalid 88 46.6% 15.9% 37.5% 

T11 Invalid 95 37.9% 21.1% 41.1% 

With a discrimination of 𝑑 = 15.5592, it first seemed as though something had 

gone wrong with testlet T5 as such a high discrimination is not expected on human 

testing. This prompted further investigation, including an analysis of T5 scores against 
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overall scores, as reported in Table 30. The result of this analysis suggests that testlet T5 

is performing very well, and that the calculated discrimination is a fair understanding of 

this testlet’s performance in relation to the other testlets from the assessment. Students 

who received a -1 (i.e., 100% incorrect) for this testlet overall did poorly on the 

assessment whereas students who received a 1 (i.e., 100% correct) did well on the 

assessment, and those students who received a 0 (i.e., corrected) on the testlet were 

somewhere between. This implies that testlet T5 is an item that should be carried forward 

into future data collection for this instrument. 

Table 30 

Testlet T5 performance against overall performance37 
 Total Score 

T5 Score -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

-1 4 3  1 5 4 8 4 5 5 2       

0   1 2  1 5 1 3 1  1 1 2 1   

1           4 2 7 1 14 1 3 

 The baseline reliability for the SCAP is not a straightforward calculation from a 

CTT standpoint as there is a large amount of missing data when not accounting for the 

anchored nature of the assessment. In order to get a general understanding, scores for 

testlets which were paired and presented at random to students were merged into a single 

variable in SPSS so that the calculation for Cronbach’s alpha could be performed (see 

Table 31). This process meant taking testlets T4 and T5 – testlets which students 

randomly took exactly one of during the assessment – and merging their scores into a 

single variable R1, and similarly for the testlet pairs T8 and T9 into R2, as well as T10 

and T11 into R3 as described in Table 31. Having done this merging, the score for 

reliability for the assessment was 𝛼 = .723 as presented in Table 32. This statistic is only 

                                                 
37 To clarify the pattern of responses, cells that are left blank have a value of zero (0). 
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bolstered by the removal of testlet T7 to 𝛼 = .744 (see Table 33), though in either case 

these reliability scores are both in the desired range. From this rudimentary analysis it 

seems possible that the assessment is reliable in its measurement. 

Table 31 

Testlet randomized pairs 

Merged Variable Testlets Split Responses 

R1 
T4 94 

T5 92 

 Total 186 

R2 
T8 90 

T9 93 

 Total 183 

R3 
T10 88 

T11 95 

 Total 183 

 

Table 32 

Reliability Statistics 

Cronbach's 

Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

0.723 0.725 8 
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Table 33 

Item-Total Statistics 

  
Scale Mean 

if Item 

Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

T1 0.16 14.050 0.473 0.268 0.685 

T2 0.80 13.884 0.445 0.217 0.689 

T3 0.14 13.668 0.495 0.299 0.679 

T6 0.15 14.236 0.397 0.194 0.699 

T7 0.84 15.629 0.174 0.042 0.744 

R1 0.69 13.367 0.548 0.308 0.668 

R2 0.60 13.792 0.451 0.223 0.688 

R3 0.60 14.473 0.359 0.156 0.707 

Predictive validity. From a predictive standpoint, there are several factors that point to 

the assessment working in a desirable way. First, the number of proof-based courses both 

taken previously and enrolled in at the time of taking the assessment are positively 

correlated with better scores on the assessment (see Table 34). Thus, the more proof-

based classes a student took or was taking the better they performed on the assessment. 

This outcome is reassuring as it seems possible that the more a student encounters proof 

and proving generally, the better they are at identifying arguments which meet the 

standards they have incorporated in their proof schemas. Also, this group of students 

most likely have better defined proof schemas, giving them a better understanding of 

validity in general. Similarly, student’s GPA, though self-reported, were positively 

correlated with scores on the assessment. 
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Table 34 

Item Pearson correlation with assessment scores 

Item 
Pearson 

Correlation 
Effect Size38 

Number of Proof Courses Taken .235** 0.0585 

Number of Proof Courses Currently Enrolled .215** 0.0485 

University GPA .200** 0.0416 

** Correlation is significant at the 0.01 level (2-tailed). 

 When grouping students by their majors, two groups had significantly different 

results from their counterparts as show in Table 35. Students who indicated they were 

pure mathematics majors (𝑀 = .88, 𝑆𝐷 = 3.415) did significantly better than those who 

did not indicate they were pure mathematics majors (𝑀 = −1.02, 𝑆𝐷 = 3.879), 𝑝 =

.001. Conversely, students who identified as mathematics education majors (𝑀 = −2.31, 

𝑆𝐷 = 2.706) did scientifically worse than those who did not identify as mathematics 

education majors (𝑀 = −.13, 𝑆𝐷 = 3.784), 𝑝 = 0.46. Finally, students who identified as 

applied mathematics majors had no significant different from their compliment group. 

Table 35 

T-test – Mathematics majors mean assessment scores39 

Major – 

Mathematics  
Specification N Mean SD E.S.40 

Sig.  

(2-

tailed) 

95% 

Confidence 

Interval 

Lower Upper 

Pure Major 73 .88 3.415 .519 .001 .798 2.990 

 Not Major 114 -1.02 3.879     

Applied Major 65 -.80 3.576 .213 .172 -1.951 .351 

 Not Major 122 .00 3.914     

Education Major 13 -2.31 3.706 -.582 .046 -4.325 -.038 

 Not Major 174 -.13 3.784     

                                                 
38 Cohen’s 𝑓2 effect size – ≥ 0.35 Large; ≥ 0.15 Moderate; ≥ 0.015 Small. 
39 Keep in mind that mean scores reflect an overall possible range from -8 to 8. Mean values close to 0 are 

both possible and likely. 
40 Cohen’s d effect size – ≥ 0.8 Large; ≥ 0.5 Moderate; ≥ 0.2 small 
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 The differences in sample clustering based upon classes is reported in Table 36. 

Students enrolled in abstract algebra (𝑀 = 0.5, 𝑆𝐷 = 3.907) performed better than 

students in the compliment group (𝑀 = −0.77, 𝑆𝐷 = 3.681), 𝑝 = .027. Similarly, 

results indicate a significant outperformance by students enrolled in abstract algebra 

(𝑀 = 0.98, 𝑆𝐷 = 3.683) over those not enrolled in abstract algebra (𝑀 = −0.84, 𝑆𝐷 =

3.743), 𝑝 = .002.  Students enrolled in topology (𝑀 = 1.71, 𝑆𝐷 = 3.869) outperformed 

those who were not enrolled in a topology course (𝑀 = −0.48, 𝑆𝐷 = 3.758), 𝑝 = .024, 

and interestingly, having previously taken topology (𝑀 = 0.5, 𝑆𝐷 = 3.907) had a 

moderate effect size (𝐸𝑆 = 652), but the group did not outperform their counterparts 

(𝑀 = 0.5, 𝑆𝐷 = 3.907) in a significant way, 𝑝 = .054. This last outcome is most likely 

the results of a small sample size (𝑁 = 9) of students who previously took topology. On 

the other hand, students who were enrolled in an ITP course (𝑀 = −0.95, 𝑆𝐷 = 4.136) 

did significantly worse than students who were not (𝑀 = 0.89, 𝑆𝐷 = 4.121), 𝑝 = 014. 

This implies that students who were newest to proof scored lower on the assessment than 

established students. No other class had a significant difference in mean scores from their 

counterparts including former or current number theory and analysis/real analysis 

students. This analysis implies that students who had taken part in more – as well as more 

rigorous and/or difficult – proof classes performed better on the assessment while 

students who were truly novice with regards to proofs performed worse. These outcomes 

are consistent with what would be expected and only add to the case that the assessment 

is a reliable measure. 
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Table 36 

T-test - Classes mean assessment scores 

Class Specification N Mean SD E.S. 
Sig. 

(2-tailed) 

95% Confidence 

Interval 

Lower Upper 

Algebra Taken 72 .50 3.907 .335 .027 .148 2.383 

 Not Taken 115 -.77 3.681     

Algebra Enrolled 58 .98 3.683 .490 .002 .666 2.989 

 Not Enrolled 129 -.84 3.743     

Analysis Taken 72 .32 3.801 .256 .090 -.152 2.095 

 Not Taken 115 -.65 3.784     

Analysis Enrolled 117 .05 3.859 .233 .127 -.252 2.011 

 Not Enrolled 70 -.83 3.687     

Num. 

Theory 
Taken 25 .52 4.073 .234 .262 -.693 .2535 

 Not Taken 162 -.40 3.766     

Num. 

Theory 
Enrolled 6 -.83 4.579 .136 .718 -3.700 2.552 

 Not Enrolled 181 -.26 3.795     

Topology Taken 9 2.11 3.919 .652 .054 -.039 5.059 

 Not Taken 178 -.40 3.775     

Topology Enrolled 17 1.71 3.869 .574 .024 .292 4.073 

 Not Enrolled 170 -.48 3.758     

ITP Taken 117 .45 4.201 .033 .834 -1.382 1.117 

 Not Taken 70 .59 4.175     

ITP Enrolled 39 -.95 4.136 .446 .014 -3.298 -.369 

 Not Enrolled 148 .89 4.121     

 Conclusion. While this analysis represents an incomplete analysis, it does 

indicate that overall the testlets performed well together to assess a variety of ability 

levels and in a reliable manner, save for testlet T7. To complete the statistical analysis, it 

is important to look at the various forms that arise from the anchored structure of the 
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assessment. As was mentioned in the framing, since there are three pairs of random 

testlets this means there are a total of 8 different assessment forms (see Table 9).  

 Before presenting the analysis of each form, it should be noted that because there 

are 8 forms, this means each form on average has a sample size of around 23, with one as 

low as 17. This coupled with the fact that there are only what amounts to 8 items in each 

form means each form is well below what is required for accurate parameter estimation in 

IRT-based test development (Şahin & Anil, 2016). Thus, it is important to take the 

following analysis in context as more data is required to better understand the behavior of 

the assessment in its anchored arrangement. 

Anchored Analysis in Brief 

 Due to the fact that the sample size and test length requirements have not been 

met for any of the 8 forms, I will not present the individual loadings for all testlets in all 

forms but will instead present the characteristic curves for each form and point out any 

abnormalities from the analysis (see Figure 29). Employing the eye test on the 

characteristic curves, there is no one form that looks perfect, though there are forms 

which look better than others as well as those that look much worse. Forms 3 and 5 are 

perhaps two of the worst looking as testlets T7 and T10 in Form 3 and T7 and T8 in Form 

5 had negative discriminations. Once again this raises a question about the effectiveness 

of T7. This anchored testlet appeared in all 8 forms but in only 4 forms had a 

discrimination above the required 0.5, twice by the slightest of margins – Form 4 with a 

discrimination of 0.55939514 and Form 8 with a discrimination of 0.51207391. 

Additionally, though there are no testlets in Form 8 which have negative discrimination, 

three testlets, T2, T3 and Q6 all had lower than desired discriminations. As half of the 
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items in Form 8 were performing at or near suboptimal levels, it is no surprise then that 

this form also had the lowest alpha score at 𝛼 = 0.522 (see Table 37), which is outside 

the desired range of 0.6 ≤ 𝛼 ≤ 0.9. 

 On the other hand, there were at least two promising forms as Form 4 and Form 6 

performed well with all 8 testlets in each item having positive discriminations and 

reasonable coverage of ability. Form 4’s difficulty range was −0.47796278 ≤ 𝑑 ≤

1.19052788 and Form 6’s difficulty range was −1.52922547 ≤ 𝑑 ≤ 1.17473058. 

These two forms also had the highest alpha scores, with 𝛼4 = 0.847 and 𝛼6 = .804 

respectivly. 

Table 37 

Form reliability 

Form 
Cronbach's Alpha N of Items 

Name {𝑇4, 𝑇5, 𝑇8, 𝑇9, 𝑇10, 𝑇11} 

Form 1 {1,0,1,0,1,0} 0.672 8 

Form 2 {1,0,1,0,0,1} 0.707 8 

Form 3 {1,0,0,1,1,0} 0.624 8 

Form 4 {1,0,0,1,0,1} 0.847 8 

Form 5 {0,1,1,0,1,0} 0.666 8 

Form 6 {0,1,1,0,0,1} 0.804 8 

Form 7 {0,1,0,1,1,0} 0.668 8 

Form 8 {0,1,0,1,0,1} 0.522 8 
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Figure 29. The characteristic curves for all 8 forms of the anchored assessment. 

 Conclusion. While more data would help identify a specific form, between the 

overall analysis, the predictive analysis, and some of the form analysis, the case begins to 
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build that in pilot form, the assessment is a reliable measure. It should be noted that 

considering the complicated structure of the assessment, having an overall reliability of 

𝛼 = .723 is a major feat and strongly hints at an assessment which is consistent in its 

measurement. Adding to the reliability argument, when compared to the validating 

process for the Proof Comprehension Test by Mejía-Ramos, et. al (2017), they were able 

to generate reliability scores for their three versions of 𝛼 = .71, 𝛼 = .74, and 𝛼 = .72, all 

of which are close to the scores obtained in this study. Considering that their sample size 

was similar, but their assessment had significantly more items, this only bolsters the 

results concerning reliability for this instrument even in its incomplete form. What is left 

next is to determine if the assessment is measuring validity as is the original claim. 

Measurement Validity – Student Interviews 

 The student interviews which proceeded the assessment piloting helped identify 

the process by which students went about validating from moment to moment as they 

proceeded through the assessment (see Table 11). Again, the process is the moment-by-

moment approach that the students took in verbalizing how they viewed the argument. 

The process could take on many different colors, from performing line-by-line checks of 

the argument to simply reading or restating the argument. The latter process might 

indicate the student was doing something more akin to the action of proof comprehension 

as restating is comparable to what Mejía-Ramos et al. (2012) called summarizing via 

high-level ideas. However, line-by-line checking aligns more with the action of 

validating (Inglis & Alcock 2012; Selden & Selden, 2003). By identifying what processes 

students took, it should be clear whether they were in fact genuinely validating the 

arguments, and thus the data would corroborate that the instrument itself is valid. It is 
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possible students were doing some other activity like, for instance, comprehending the 

arguments41, though this is not necessarily problematic so long as they did in fact 

genuinely validate the arguments throughout the course of the interview. Additionally, 

the data presented helps clarify why students might have received the scores they got 

from the assessment. 

 In order to simplify the process of understanding the results of the interview, I 

present the findings with regard to testlets T1 and T7 (see Figure 30 and Figure 31). To 

be clear, this does not mean the analysis is wholly about these items, but rather that each 

example will be taken from the interview where it concerned the arguments for these 

testlets. I do this because, (1) these both were anchored testlets meaning that all students 

responded to these testlets while taking the assessment, and most importantly (2) the 

diverse yet characteristic responses that occurred to these prompts paint a clear and 

representative picture about the ways students went about taking the assessment. The 

results generally follow the patterns set out by these dual examples, so it does not feel 

artificial to present the results in this fashion. 

 
Figure 30. The proposition and argument for testlet T1. 

                                                 
41 Not only is it possible, but it is also highly likely that students were involved in comprehending activities 

throughout the assessment process. It only makes sense that students might first try to understand the 

argument before validating them. Thus, the larger question should therefore be focusing on whether 

students eventually engaged in genuine validating activities or not. 
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Figure 31. The proposition and argument for testlet T7. 

 As I read through the interviews and the coding of the interviews, there are 

distinct groups of interviewees regarding what they were reporting on during their 

validating process. In sections to follow, I present these groups, their actions, processes, 

and my analysis of each. For brevity I will not present all six-validating processes for T1, 

and T7 – twelve total validating processes – but instead will pick those which are 

representative of the individuals and their groups. 

 Group 1. First there were students like Al, Gerald and John (see Table 38). These 

three individuals all had an intuitive understanding of the how a proposition affects the 

consistency of an argument and were able to rectify that understanding with the argument 

they were seeing. Al, Gerald and John’s process most typically stemmed from their 

intuition which lead them to check things like the proof framework or do a line-by-line 

check of the argument, though on a few rare occasions, verbalized their understanding 

was a part of their process as well. In those instances where their processes were that of 

comprehending, they typically would quickly resolve their comprehension issues and 

return to a process of intuition-led checking of the argument. This meant most often these 

students were in the action of authentically validating the arguments. For instance, Al had 

the following to say when validating the argument for T1, 

Okay. Let's see. Yeah, so the first thing I see is that we're trying to prove a set is a 

subset of another set. In my head, I'm looking for things like, are they taking an 

arbitrary element from the first set and showing that that arbitrary element's going 

to be in the second set? Other things I might be looking for is whether or not 
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they're applying the properties of being in that first step properly. So when I was 

reading this argument, they started out the way I would want and I'm thinking, 

okay, this is looking good so far, they're taking that arbitrary element from the 

first set, but I think then they kind of veer off course a little by showing that it's an 

element of the same set that they're taking the element from. They’re not showing 

it’s in the second set. 

In this excerpt, Al started by stating what he was looking for based upon what he knew 

about arguments that dealt with set containment, a key feature of the argument in this T1. 

This understanding was instrumental in his analysis of the argument and lead him to 

conclude that the issue with the argument had been because of its circular nature, the 

correct option for this testlet. This was a common practice for Al, Gerald and John, where 

they would make a statement of what they were generally looking for and then present an 

analysis of the argument based upon this understanding. 

Table 38 

Group 1 assessment interview results 

Student Form Process Action Score 

Al 4 Intuitive proof framework and line-by-

line check 

Validating 8 

Gerald 4 Intuitive proof framework and line-by-

line check 

Validating 6 

John 4 Intuitive proof framework and line-by-

line check 

Validating 6 

 These students had specific things they expected to see within the argument, 

based upon what they thought the proposition implied about any argument for said 

proposition. Then during validation, they went about checking for these things. The 

quality of these checks might be thought of in terms of checking the logical structure and 

flow of the argument, or as Selden and Selden (2003) referred to as checking the various 

proof frameworks. If they found what they were seeing in the argument aligned with 

what they felt the proposition required, they would then move on to check other aspects 
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via a line-by-line check, or they might have attempted to do this all simultaneously. For 

instance, in checking the proof frameworks, they might also check the consistency of the 

algebraic manipulations or the quality of the justifications for claims, or, as in the 

previous example with Al, check that the overall logical structure supported showing one 

set is a subset of another, or called  “element chasing” by the students. Al checked that 

the element which was selected for the element chasing process was an arbitrary element, 

thus part of his procedure for checking was somewhat simultaneous, or at the very least, 

could not be broken apart from the interview. This line-by-line checking was described 

by Inglis and Alcock (2012) as a common approach by both the mathematicians and 

students in their study, but it was the mathematicians who seemed to have more between 

line checks than their novice counterparts. 

 From the analysis of their verbalized processes coupled with their scores, Al, 

Gerald, and John were mostly going about the process of validating the arguments as 

opposed to some other process. Without even being introduced overtly to the CVI 

framework, they were authentically checking ideas of comparable nature to the categories 

from this framing. Within this group of three, there were examples of deviation, as all 

three individuals had instances where they were not fully engaged in validating. For 

instance, Al and John on T7 and Gerald on T10 demonstrated a pattern of validating 

mingled with that of argument comprehension. This can be clearly seen as Al describes 

his process for T7, saying,  

They start off all right by assuming ... By taking the arbitrary element from the 

first. Then they get a bit confused. So they say 𝑥 is not an element of 𝐵 − 𝐶. 

That's true. That's what... That's true. But then they say that implies 𝑥 is not ... 

What now? ... 𝑥 is not an element of 𝐵? ... What went wrong here? There's a lot of 

double negations. What went wrong here? So, 𝑥 is an element of 𝐴 ... so 𝑥 is an 
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element of 𝐴 subtracted by 𝐶, and 𝑥 is not an element of 𝐵 ... 𝐶? Well, if 𝑥 is not 

an element of this, that means 𝑥 is ... Yeah. Give me one second here, I'm just… 

In this first portion, Al grappled with the argument for some time as he both attempted to 

validate and to understand the argument. He certainly makes the statement, “What went 

wrong here?” indicating he is working toward validating the argument, but what follows 

is more along the lines of Mejía-Ramos et al. (2012) called “Meaning of terms and 

statements” where Al is restating portions of the argument in a “different but equivalent 

manner” (p. 8).  During the interview he struggled at first to narrow in on any one reason 

he felt caused the argument to be invalid42 without first taking some time to further 

comprehend the argument. He continued his validating attempt after a lengthy pause, 

Oh okay. All right. Yeah, so okay, so that means 𝑥 ... 𝑥 is not an element of 𝐵 or 

𝑥 is an element of 𝐶 ... Yeah, this is where it went wrong. Okay. So, when we say 

... So if I haven't gone off, or if I remember correctly, 𝑥 being an element of 
(𝐴 − 𝐶) − (𝐵 − 𝐶) means that 𝑥 is an element of 𝐴 − 𝐶 and 𝑥 is not an element 

of 𝐵 − 𝐶. So they're okay there. But when we say 𝑥 is not an element of 𝐵 − 𝐶, 

that means 𝑥 is not an element of 𝐵 or 𝑥 is an element of 𝐶. So that's where 

they're not ... That's where I said it's invalid. They're not considering both cases. 

In the end, Al’s analysis was spot on, but it took him some time to better understand the 

argument. His cycle of argument comprehension seemed to lead him to make a correct 

validation judgment. This process was similar for Gerald and John. During the interview 

as they were able to identify correctly what validity issues had occurred in T7 and T10 

respectively, even though in some instances, they were not able to do so on the 

assessment itself43. 

                                                 
42 During a portion of the interview, students were asked what they were attending to and thinking about 

while validating. They were only seeing the argument and not the possible reasons why the argument might 

be invalid. 
43 As was noted in the methods, all interviewees were given access to their completed assessments prior to 

the interviews and asked to review them. This means it is possible students could have found new meanings 

while reviewing and those new meanings became the “facts” they presented in the interviews. Though this 

may be the case, Al, Gerald, and John seemed to be the group that most gained from this as the other 

groups still had difficulties identifying validity issues during the interviews. 
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  Al, Gerald, and John not only went through a phase of argument comprehension 

a few times, but, in most cases, they did not verbalize this process; this is true of most of 

the interviewees. Typically, these three participants thought to look for and tackle the 

validation process by orally referencing that they were checking the proof frameworks, 

logical flow, justifications, algebraic manipulations, use of parameters and notation, and 

other issues typically tied to validity. They characteristically did so without making 

statements about their manifest understanding of each step of the argument or the 

argument as a whole. This is in sharp contrast with some of the other students 

interviewed for this study, especially Shannon. Only in a few rare cases did these three 

deviate by verbalizing their process of understanding the arguments. As it turns out, for 

Gerald and John, two out of the three arguments they lost points on during the assessment 

were also arguments they made explicit verbalized attempts to comprehend during the 

interviews. Comprehension is not a bad process to undertake during validating, in fact, it 

seems almost impossible to validate something one does not understand. What this might 

suggest is that when students struggle to comprehend, they might be using 

comprehension – or even lack of comprehension – as a que for their validation 

judgments. While comprehension is not the worst replacement construct for validating, it 

certainly is not an exact replacement and can lead to incorrect judgements. 

  Group 2. Brent (see  

Table 39) was similar to the first group in that he had an idea of what the proposition 

implied about an argument, but, unlike the first group, he often had difficulty reconciling 

his own idealized approach with the approach taken in any given argument. His ability – 

or indeed lack of ability – to transfer his intuition to the process of validating hampered 
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his ability to correctly validate the arguments in this assessment. Many of his validating 

attempts included statements about what he would have done but those statements rarely 

connected to the task of actually validating the argument. His process was at times a little 

messy and can best be described as non-resolved intuition often followed by line-by-line 

checking of the argument. Most often the action Brent undertook was that of validating 

the argument, though he made overt attempts at proof comprehension as well. For 

instance, when validating the argument for T1, he went through the following process: 

Interviewer: So yeah, what were you looking at? What were you thinking 

about? 

Brent: Well, I mean, basically, whatever we call that quotient, three times 

that quotient is also an integer, and that's what you would get from 

doing it with six. So ... 

Interviewer: Okay. 

Brent: If you were doing it like, constructively, for each 𝑎 that's how you 

would do it. But I think there's something where it was true, but 

one of the steps is wrong? 

Interviewer: Okay. 

Brent: 𝑎 is an integer [inaudible] divisible by ... solve for, okay... [long 

pause] No, no, this ... should it go the other way? Okay, I could 

have misread it such that it was 18 going into 𝑥 rather than vice 

versa. But ... No. 'Cause that would be valid. So, yeah, I think it's 

just what I said earlier. 

Here Brent starts with an explanation of his understanding of what he would do, though 

he does state it would be a laborious construction, implying it was not fully constructed in 

his mind, and he was unwilling to share more than he did in the exchange presented 

above. Interestingly, it seems as though he did not actually look at the argument until his 

final line of dialog in this exchange where he grapples with what 18|𝑥 means, but then 

hastily concludes something he previously reported is why the argument is invalid, 

though it is unclear what that thing is.  
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Table 39 

Group 2 assessment interview results 

Student Form Process Action Score 

Brent 4 Non-resolved intuition often 

followed by line-by-line 

checking. 

Validating –  
w/ minimal amounts of 

comprehension 
 

1 

 

 In the end, Brent was unable to tell why the argument was invalid without being 

allowed to see the set of options, at which point he said, “Oh, right, that's right, so our 

desideratum would be 𝑥 is congruent to six, so that's the wrong line, because ... yeah, we 

just did a circular thing.” Whether his original rational about the argument’s validity was 

an intuition or a guess is unclear, but during the assessment, he was able to select the 

correct answer for why the argument was invalid. His statement here was partially 

nonsensical as the argument had nothing to do with being congruent to six – this could 

stem from his difficulty with the expression 18|𝑥 – but certainly there was circularity in 

the argument. Ultimately, Brent had a difficult time conveying his rationale and even had 

difficulties grasping meaning in a few key situations. However, he had no shortage of 

intuition about how an argument should be accomplished.  

 A similar idealized exchanged happened when he commented on T7. Comparable 

to his process for T1, Brent makes a statement about the proposition – it being true – and 

stating how he would have gone about the proof: 

I'm pretty sure this is, in fact, true, but it might not be … how I would have done 

it. But yeah, basically the thought process is, the points in 𝐶 are irrelevant because 

it's excluded from both, so those are just out of our consideration. To prove that 

you're a subset of 𝐴 − 𝐵, you just have to prove that, you know, your arbitrary 

element is in 𝐴, 'cause it's not in 𝐵, so that should follow. I don't know ... 

Once again, Brent’s first process was that of an idealized and ultimately unfulfilled 

argument. In some ways his intuition about the process was correct as the set 𝐶 becomes 
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the lynch pin for the argument in T7, but it does not seem like his comments are even part 

of exploring the argument so much as exploring his own mental image. In short, Brent 

seemed to have a disjoint union between his idealized argument and the argument he was 

validating. He often had ideas or intuition about how he would go about proving a 

proposition, some of which were very different – though insightful – from what was 

being presented, but in the interview, he was never able to reconcile his image with the 

argument he was validating. Ultimately, this disjoint union of idealized and actual 

argument was the cause for Brent’s score of 1 on the assessment. 

 Group 3. The final students, Christopher and Shannon (see Table 40) differed 

from this first two groups in that they never verbalized any sort of intuition, insight, or 

expectation that they might have had about the argument they were about to validate. 

Instead, they simply dove into the procedure of validating each argument. Their actions 

for each argument was that of validating, but Shannon’s process consisted of spending a 

considerable amount of time during the interview in verbalized comprehension as she 

restated the entire argument – emblematic of summarizing via high-level ideas (Mejía-

Ramos et al. 2012) – before making any sort of validity judgement.  Christopher’s 

process for validating consisted of strict line-by-line checking where he started at the 

beginning of the argument and checked that it “made sense” and then continued through 

each portion one line and validity judgement at a time. For instance, Christopher’s 

verbalized process for T1 went like this: 

When I was looking at this, I saw that it said, "Suppose 𝑎 is in set of 𝑥 such that 𝑥 

is in the integers and that 18 divides 𝑥” and I was like, that's good. And from this, 

we have the “𝑎 is an integer, and 18 divides 𝑎;” I was like, that's also good. And 

then when we got to this part, when it says that, “this implies that 𝑎 is in the set of 

𝑥 such that 𝑥 is in the integers and that 18 divides 𝑥,” that wasn't the conclusion 

that we wanted to get to. And so, that's kind of a problem. 
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As was indicated before, Christopher’s and Shannon’s processes were a methodical line-

by-line checking of the argument. He began with the first statement and identified it was 

a reasonable start, and then moved on to the first implication stating it was reasonable, 

and, in characteristic fashion, walked through each instance until he reached something 

he did not agree with. In this case it was precisely the circularity which existed within the 

argument. 

Table 40 

Group 3 assessment interview results 

Student Form Process Action Score 

Christopher 4 Line-by-line checking Validating 2 

Shannon 1 Line-by-line checking 

and probing for local and 

holistic understanding 

Validating – 
w/ a considerable amount of proof 

comprehension 

-2 

 The only real difference between Christopher and Shannon on T1 was that 

Shannon, like Brent before her, had a difficult time recalling the exact meaning of the 

expression 18|𝑥. In her process of line-by-line checking, Shannon stated that, “I thought 

this meant 18 is divisible by 𝑥, and there's no remainder left over.” This misconception 

led her off course for a portion of the validating, and then after a brief discussion, she was 

able to get back on track and complete the validation. 

 Both Shannon and Christopher had issues validating T7 where they both took 

time to make diagrams to help them understand the argument better44. For example, here 

is Shannon’s verbalized process, 

Shannon: Okay. Let 𝑥 be contained in (𝐴 − 𝐶) − (𝐵 − 𝐶). That means that 

𝑥 is contained in 𝐴, so definitely agree with that, and then 𝑥 is not 

contained in 𝐵 − 𝐶. Let's do … why do I agree with that? I agree 

                                                 
44 Unfortunately, because the interviews were not done face-to-face, but over an internet communication 

system, I was unable to get copies of either diagram even though I repeatedly ask both participants to send 

me a picture of their drawings. 
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with that because, well, definitely we factor out 𝐵 − 𝐶, and there's 

no, I guess risk that it would be contained in there at all, because 

it's factored out entirely, which implies that 𝑥 is not contained in 

𝐵. So, why does it imply that? Because ... [long pause] 𝑥 not 

contained in 𝐵? I wonder if I drew a picture for this, or if I did that 

again? 

Interviewer: Yeah, go ahead and draw a picture, please. 

Shannon: Okay. 

Interviewer: If you do draw a picture, I'm going to ask you to take a picture of 

it and send it to me, just so I have reference of it. 

Shannon: Sure, let me just grab a pencil here. All right. So, I have sets 𝐴, 𝐶 

and 𝐵. [inaudible] 𝐴, 𝐶. So, 𝑥 is in 𝐴 excluding 𝐶, excluding ... 

So, it's definitely in this area. Also excluding 𝐵. Then if this was 

the ... I'm just talking to myself at this point. 

Interviewer: You're fine. 

Shannon: Okay, cool. Yeah, here's some pictures. Now I disagree that it 

implies that 𝑥 is not contained in 𝐵, because I believe that I drew a 

picture where there's some non-empty intersection between 𝐴 and 

𝐵, but 𝐵 doesn't share anything with 𝐴 and 𝐵. Is it okay to be 

thinking about intersections in this case? 

Interviewer: For sure. 

Shannon: So, if it was the case that 𝐴 and 𝐵 shared a non-empty 

intersection, then I would definitely; 𝑥 is in 𝐴, 𝑥 is not in 𝐵 − 𝐶 

because that set is empty, but then it's 𝑥 is in 𝐴 − 𝐶 minus … 

Then that would be the empty set minus the empty set, so that 

would also not let 𝑥 be in 𝐴? … Okay, actually, maybe it does 

imply that 𝑥 is not in 𝐵. I'm struggling with this one. But if that 

was correct, it implies that 𝑥 is not in 𝐵… 𝑥 is in (𝐴 − 𝐶) −
(𝐵 − 𝐶). I would think it implies that that's included in 𝐴 − 𝐵 

because it's in 𝐴, and it's not in 𝐵. 

Shannon’s process commences in an emblematic fashion for this third group where she 

begins a process of line-by-line checking. This process deviates when Shannon begins to 

struggle with the direct implication of 𝑥 ∉ (𝐵 − 𝐶) – this was the same case for 

Christopher. Shannon grappled with this until she concluded that she is fine with the 

implication that 𝑥 ∉ 𝐵 and that overall the argument is fine.  

 Shannon’s typical approach to validating – her process – involved restating the 

argument, what Mejía-Ramos et. al (2012) called summarizing via high-level ideas, 

followed by some amount of validity judgments about parts of the argument. In the 
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argument for T7, her process more closely approached line-by-line checking which she 

also did, but again, she went through a process of comprehension which could be 

construed as “identifying examples that illustrate a given statement” (Mejía-Ramos et al., 

2012 p. 8). 

 In some ways Christopher is an anomaly as it is difficult to reconcile his 

performance on the assessment with his interview. He struggled at multiple points on the 

assessment, ending with an overall score of just 2, but in every case during the interview 

he was able to correctly validate and justify his validations. One possible reason his 

interview was better than his performance on the assessment is because he took time to 

go over his assessment before the interview, as he stated many times during the 

interview. Despite making them available, most students did not review their assessments 

before the interview, but Christopher explicitly stated he did. I am not saying Christopher 

was knowingly or willfully misleading me, but was perhaps giving me something more 

approaching a Hegelian notion of synthesis (Corbett & Connors, 1999), accounting for 

his thoughts about each argument after having further reconsidered each argument rather 

than giving an insight into his process from his time taking the assessment. This is 

completely understandable, as a few months had passed since the students had taken the 

assessments. Most students were doing a mixture of giving an accurate account of their 

assessment validating process, while also giving a synthetic account of their validating 

processes during the interview. 

 Conclusion. Ultimately, all three groups were validating as an action, but often 

did so in very different ways. The first group typically went into validating by first 

understanding the implications of the proposition and then checking to see if those 
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implications were met within the argument. The second group also understood the 

implications of the proposition, but Brent often had difficulty reconciling his 

understanding with the argument he was validating, forcing him to either take a different 

approach or to abandon the validating process altogether. Finally, the third group 

validated by line-by-line checks with periods of construct or argument comprehension 

included. 

 As far as the effectiveness of each approach, the first group’s approach is the 

strongest. The first group was able to not only complete the task of validating during the 

interviews, but they were able do so effectively both on the assessment and in the 

interviews. Brent in the second group was not yet at the ability of the first and it affected 

his ability to validate arguments both on the assessment and in the interview, though he 

did have the intuition which will eventually support the approach the first group took. 

Finally, the third group never made any clear statement about expectation or their 

intuition concerning the argument, but went about validating in a very methodical line-

by-line process, which in Shannon’s case, was accompanied by attempts to comprehend 

the argument moment-to-moment. This sometimes left them want for what to do next.  

  



 

153 

 

VI. Discussion 

The main goal of this study was to develop an instrument for measuring ITP 

students’ ability to validate deductive mathematical arguments. This process involved 

developing a cohesive analytic framework which would act as a basis for constructing 

said instrument in the form of a multiple-choice, closed-form assessment. The process of 

developing this framework involved surveys and focus groups of mathematicians to 

define specific categorizations of common validity issues in the ITP setting. In the 

sections to follow, I discuss some implications of the findings from this study, any 

limitations the study or assessment may have, and the implications for future research this 

study supports. 

Implications of Findings, Future Work and Limitations 

While the CVI framework is not perfect, as no one categorization had 100% 

agreement, it is certainly a considerable achievement in understanding what 

mathematicians count as important factors in determining the validity of an argument. 

Certainly, the framing is aimed at the ITP level, but so often the mathematicians in the 

focus groups would take these ideas and apply them in other contexts where the framing 

seemed to hold up in their estimations. More work would need to be done to make sure 

the framing is robust enough to be useful in other contexts, but it seems that in its current 

form, it certainly could be applied to other undergraduate settings, like algebra or 

analysis. As a research tool, the CVI framing could have practical implications in 

understanding students’ produced proofs in a verity of contexts from interview analysis 

where producing arguments is the focus, to analysis of work from students in an 

academic setting. 
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Universal and contextual features of validity. One of the most striking results 

of the CVI framing is the modality of each of the categorizations with respect to universal 

effect versus contextual effect. From the results of both the survey and the focus groups, 

it seems that the categories of AC and CR have a universal effect on the validity of an 

argument; these issues always invalidate arguments. The other categorizations, LG, MN, 

W and WT, have a more social or contextually defined effect, where each instance or 

circumstance is considered individually with regards to effect on validity. This 

dichotomization leads to an important takeaway: validity issues are not viewed equally. 

The view mathematicians have about validity issues came through very clearly in 

this study. Most mathematicians agreed that assuming the conclusion and circular 

reasoning invalidate an argument. Because mathematicians have no tolerance for these 

types of validity issues, students should be aware of these issues early in their studies and 

be wary of them in their own writing or in arguments that they read – this should be come 

through very clearly in instruction to the students throughout an ITP course. During the 

closed pilot, this appeared to be the case for CR as 63.1% of students got a 1 on T1, and 

slightly more than three-quarters (75.9%)  of all students received a 0 or 1. This means 

students did relatively well at identifying that an argument with CR in it was invalid, or, 

at very least, they knew CR had occurred in the argument meaning it was invalid. 

However, students had a difficult time recognizing the argument for T2 was invalid 

though it had the issue of AC. Less than half (42.8%) of students scored a 0 or 1 with less 

than a third (32.1%) scoring a 1. This latter result suggests that Selden and Selden’s 

(2003) estimation that students are no better than chance at validating is an overestimate 

for something that mathematicians indicate is a universal flaw in mathematical proofs. 
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This is a troubling result as the students who took this assessment were not just 

ITP students. Some were students in their final undergraduate mathematics courses. This 

implies students are either not being taught properly or failing to learn what to 

mathematicians is a basic tenant of sound proving. Whichever case it is, it seems prudent 

to right this trend. Future research should look for curriculum and instruction which 

support students in learning basic and fundamental features of sound argumentation in the 

mathematical setting, and how to recognize these ideas in their own proof writing and in 

the arguments that they read.  

Because not all categorizations are universal in effect, but instead are contextual 

or case-by-case examples, the case could be made that these categorizations are less 

important. On the contrary, I would argue that due to their ambiguous natures LG, MN, 

W and WT are no less important than their more universal partners – AC and CR. For 

instance, Alcock and Weber (2005) suggested that inferring and checking warrants as a 

classroom taught concept is important in validating for real analysis if for no other reason 

than it enhances students’ understanding of proofs, a major goal of undergraduate 

mathematical instruction. I would further argue that these other three, LG, MN, and WT, 

as socially defined features of proof, are important in the same regard. It is important for 

students to have a grasp on what makes a mathematical proof different from arguments in 

other settings and to delineate what features of arguments are important to the viability of 

an argument as a proof. This knowledge will also aid students in their quests to 

understand proof and proving to a greater degree. 

Though there is certainly an amount of subjectivity in validating arguments, I feel 

that this does not take away from the assessment from this study which askes students to 
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definitively validate arguments. This misalignment was overcome through the consensus 

process. While not all categorizations are universal in affect, all arguments which were 

carried forward to the assessment process were agreed to be invalid for the defined 

reasons by at least 90% of the mathematicians who saw them on the survey. Therefore, 

even though validity has normative characteristics, the arguments students were being 

asked to validate were either universally valid or invalid. 

Proximity and warranting. Another interesting takeaway is the idea of 

proximity and warranting in mathematical argumentation. While Alcock and Weber 

(2005) point out that warranting is an important practice in mathematics and moreover an 

important part of the validating process, it was a point of consternation as explicit and 

over warranting was found to be of little use generally to the mathematicians in the focus 

groups. Their comments imply that explicit justifications were only needed in cases 

where the argument was dealing with novel ideas. This adjacency to novelty was 

expressed as a consistent factor of mathematical proof writing whether the context was an 

ITP class or a peer-reviewed journal article. This idea makes it feel artificial to attempt to 

assess students’ warranting in some ways, especially with regards to 𝜔2 warrants. But it 

is precisely these sort of validating checks which Alcock and Weber (2005) say are 

important. This means because no arguments were included of the 𝜔2 variety, in future 

instance of the assessment, it might be an important addendum to include some sort of 

question that probes at student’s ability to identify warrants which justify claims being 

made. 

Dual measure of validity. Brent’s response and need for cues in the form of 

options on the level 2 and 3 questions poses the reality that the assessment in this study is 
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in fact looking at validity from two distinct angles. The first measure, which appears in 

the level 1 questions (see Figure 14), is of students’ ability to validate in a very pure and 

simple way, “is the argument valid or not?” It is a traditional validity judgment. But, from 

an assessment and deeper cognitive point of view, this first question answers little about 

what criteria students are using to make said judgement and if those criteria are valid in 

the context of the ITP setting. This lack of criteria for validity meant a second measure 

was needed to better understand students’ true ability. This second measure appears in the 

level 2 and 3 questions and is a measure of students’ ability to identify or recognize 

validity issues when presented with such options, in effect forcing student to 

contextualize their initial judgments. In this way, the assessment is always measuring 

validating ability, but in different ways.  

In future iterations of this instrument, the scoring of the assessment needs to 

reflect this dual nature. One possible way to accomplish this would be to give individual 

scoring for the two judgment types, and then include a composite score. By breaking 

apart the scoring in this way, the assessment would give more information about what 

strengths a student has in validating arguments. If this scoring system was put into place, 

a means for overcoming the imbalance of a 50-50 decision (i.e., valid or invalid) and 3:1 

odds  on the latter questions (i.e., which one of these four invalidates this argument?) 

would need to be derived to increase the true meaning of the scores. 

Leading students to correct judgements. Selden and Selden (2003) posited that 

students could be led to validate arguments through prompting and questioning, and in a 

like manner, this assessment is accomplishing a similar feat by utilizing the level 2 and 

level 3 questions. While the analysis undertaken to determine the reliability of this 
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assessment does not clearly answer, on a larger scale, whether students can be led to 

make correct validation judgments, it does hint at a deeper understanding. Of note, for 7 

of the 9 invalid arguments at least 10% of the students changed from an incorrect 

validation to a correct one through the course of each testlet, with three testlets having 

more than 20% making the change (see Table 29). Future efforts are needed to determine 

what this means, and if there is significance in these findings. At the very least, it seems 

to indicate that at least some of the students utilized the distractors and keys as a means to 

further analyze each of the arguments and did so with a degree of success. 

Validating through comprehension. During the assessment, there were students 

like Shannon, trying to understand the arguments and at times using comprehension in 

place of a more appropriate action for validating. In this study, I argue that although they 

were not necessarily doing what I, as a researcher would term validating, they were doing 

what they knew how to do in order to determine if an argument was valid or not. While 

this is imperfect, it is not unexpected as validity and proof validation are not overt parts 

of the curriculum. Moreover, this understanding corroborates Selden and Selden’s (2003) 

findings that making sense was sometimes an important criterion for student in making 

these sorts of judgements.  

In the open pilot of this study, students often made comments that suggested they 

were using their understanding as a means of validating, often suggesting that if they did 

not understand the argument, it was because it was above them, and was probably valid. 

On the other hand, during the interviews group 1 and 2, students used a lack of 

comprehension as a que that something might be wrong with the argument and in the 
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case of the group 3 students, this often was sufficient to invalidate the argument. This 

says something considerable as the average score on the assessment was 0.5.  

All three groups of students from the interviews saw differing levels of success. 

Each attempted to validate the arguments in their own way in most every case. There 

were moments where  we see some of the students struggled during the interview with 

comprehending portions of the arguments – though most often local comprehension (see 

Mejía-Ramos et al., 2012) was the issue – but at no point were any of the explanations 

wholly focused on understanding the argument as a means of explaining their validating 

process. Moreover, the students which scored higher on the assessment were active in a 

process of validating that included a mature sense of the relationship between the 

proposition and the argument, whereas those who scored lower did not. From an 

assessment validity standpoint, the assessment from this study genuinely measured 

students’ ability to validate arguments.  

In the end, the questions remain: how many students used struggling to 

understand as a placeholder for validating? How many students in our mathematics 

departments are in the same situation, where they are struggling to understand proof from 

day to day, never getting to the point of recognizing arguments as proofs? While neither 

of these questions have good answers, it does point to the need for better instruction 

concerning proof in terms of validity, as well as future studies to probe at students’ self-

narratives throughout their validating attempts. 

Other limiting factors. I feel the results from the reliability analysis suggest that 

more work is required to have a working tool. At this point, the product of this study is an 

assessment with considerable potential, but which requires further refinement. As was 
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stated in the results section, each form was well below what is required for accurate 

parameter estimation in an IRT-based test development (Şahin & Anil, 2016). IRT was 

the process selected for analysis of this small pilot, because it is the process I plan to use 

to analyze a larger scale trial. 

Before such a trial can be performed, it is important to make adjustments not only 

to the testlets as needed, but to select the best set of testlets as possible. One unforeseen 

issue which arose in the piloting of the assessment was the effect that having two issues 

in a single argument had on validating. As students, and even as mathematicians, once 

one finds a validity issue, they typically do not go looking for another. Once students saw 

one issue existed in testlet T2 and T7, they were likely disincentivized to list a second 

issue had occurred. While this did not seem to be as much the case for T2, it certainly 

seemed to cause issues with T7. I hoped the structure of the assessment, and the way I 

chose to grade, would help overcome this tendency, but it didn’t seem to work with T7. 

Therefore, before including this item in any further versions, this issue needs to be 

considered and rectified, whether by adjusting the scoring or changing the argument. 

The future. While the assessment is imperfect and requires some refinement, in 

its current state, it is sufficiently strong enough to point to a deficiency in students’ 

validating abilities. Afterall, I complied eleven arguments with more than 90% agreeance 

on their validity and the students only identified slightly more than 50% of these 

arguments’ validity correctly. From a teaching standpoint, this means instructors in all 

university proof-based courses would do well to overtly include ideas like the CVI 

framework into their courses. It is important students know how to identify genuine 

proofs from faulty arguments, and, more importantly, use that knowledge to analyze their 
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own proofs as they create them and after they have written them. If we accept that 

comprehension and validation are in fact related, then as students learn this, in the 

classroom will more readily comprehend the arguments their teachers present. This is an 

important step, as fighting to comprehend an argument within the classroom might limit a 

students’ time to actually gain conviction in the proofs they are presented in class (see 

Mejía-Ramos & Tall, 2005; Segal 2000; Raman 2002; Weber & Mejía-Ramos, 2015). 

Some notational issues existed where a few students struggled with expression 

like 18|𝑥, and some of the variations could be attributed to these issues. Of the 6 students 

that were interviewed, this was the only notational or linguistic issue students had. While 

the assessment did include some difficult or obscure mathematical ideas novel to the ITP 

setting, like equivalence classes and symmetric differences, in almost all these cases, 

clear definitions were included in the assessment, which students reported, they 

understood well enough from the included definitions. 

The assessment needs to undergo some refinement and another process of testing. 

The next round will include a more simplified assessment with fewer arguments, but still 

employ the testlet structure. I felt the time required to complete the assessment, between 

20 and 45 minutes, was acceptable to most students. If another anchored version of the 

assessment is run, the aim is to include only two forms, where seven of the eight items 

are anchored and only two items are interchanged. After this trial, an additional set of 

interviews will be held and done so in greater number, and face to face when possible. 

  



 

162 

 

References 

Alcock, L., Bailey, T., Inglis, M., & Docherty, P. (2014). The ability to reject invalid 

logical inferences predicts proof comprehension and mathematics performance. In 

Proceedings of the 17th Conference on Research in Undergraduate Mathematics 

Education, Denver, CO: SIGMAA on RUME. 

 

Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking 

warrants. The Journal of Mathematical Behavior, 24(2), 125-134. 

 

Baker, F. B. (2001). The Basics of item response theory, second edition. College Park, 

Maryland: ERIC Clearinghouse on Assessment and Evaluation. 

 

Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. 

Pimm (Ed.), Mathematics, teachers and children (pp. 216-230). London: Hodder 

& Stoughton. 

 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative 

Research in Psychology, 3(2), 77–101. 

 

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: 

A tool for assessing students’ reasoning abilities and understandings. Cognition 

and Instruction, 28(2), 113–145. doi:10.1080/07370001003676587 

 

Chartrand, G., Polimeni, A. D., & Zhang, P. (2008). Mathematical Proofs: A transition to 

advanced mathematics. Boston. 

 

Conradie, J., & Frith, J. (2000). Comprehension tests in mathematics. Educational 

Studies in Mathematics, 42(3), 225-235.  

 

Corbett, E. P., & Connors, R. J. (1999). A survey of rhetoric. Classical rhetoric for the 

modern student, 3, 539-578. 

 

David and Zazkis (2017). Characterizing the nature of introduction to proof courses: A 

survey of R1 and R2 institutions across the US. In Proceedings of the 20th 

Conference on Research in Undergraduate Mathematics Education, San Diego, 

CA: SIGMAA on RUME 

 

Davis, P. J., & Hersh, R. (1981). The mathematical experience. New York: Viking 

Penguin. 

 

Dawkins, P. C., & Weber, K. (2017). Values and norms of proof for mathematicians and 

students. Educational Studies in Mathematics, 95(2), 123-142. 

 

de Villiers, M. D. (1990). The role and function of proof in mathematics. Pythagoras, 24, 

7  



 

163 

 

 

Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), 

Advanced mathematical thinking (pp. 25-41). Dordrecht, The Netherlands: 

Kluwer.  

 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, 

NJ: Lawrence Erlbaum Associates. 

 

Fagan, J. B., & Melhuish, K. (2018). Proof norms in introduction to proof textbooks. In 

Proceedings of the 21st Conference on Research in Undergraduate Mathematics 

Education, San Diego, CA: SIGMAA on RUME. 

 

Fischbein, E. (1983). Intuition and Analytical Thinking in Mathematics 

Education. International Reviews on Mathematical Education, 15(2), 68-74. 

 

Mallery, P., & George, D. (2003). SPSS for Windows step by step: a simple guide and 

reference. Allyn, Bacon, Boston. 

 

Halliday, M. (1978). Language as social semiotic: The social interpretation of language 

and meaning. Baltimore, MD: University Press 

 

Hammack, R. H. (2013). Book of proof. Richard Hammack. 

 

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13  

 

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational studies 

in mathematics, 44(1), 5-23. 

 

Harel, G., & Sowder, L. (1998). Students' proof schemes. Research on Collegiate 

Mathematics Education, Vol. III. In E. Dubinsky, A. Schoenfeld, & J. Kaput 

(Eds.), AMS, 234-283.  

 

Harel, G., & Sowder, L (2007). Toward a comprehensive perspective on proof, In F. 

Lester (Ed.), Second Handbook of Research on Mathematics Teaching and 

Learning, National Council of Teachers of Mathematics. 

 

Hazzan, O., & Leron, U. (1996). Students' use and misuse of mathematical theorems: The 

case of Lagrange's theorem. For the Learning of Mathematics, 16(1), 23-26. 

 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for 

Research in Mathematics Education, 31, 396-428.   

 

Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems as proofs: 

An empirical approach. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), 

Explanation and proof in mathematics: Philosophical and educational 

perspectives (pp. 101–111). New York: Springer. 



 

164 

 

 

Herbst, P. G. (2002). Engaging students in proving: A double bind on the teacher. 

Journal for Research in Mathematics Education, 33(3), 176-203. 

 

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in 

Mathematics, 24, 389-399.   

 

Hestenes, D., & Wells, M. (1992). A mechanics baseline test. The Physics Teacher, 

30(3), 159–166. doi:10.1119/1.2343498 

 

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The 

Physics Teacher, 30, 141. 

 

Hill, H., Ball, D., & Schilling, S. (2008). Unpacking pedagogical content knowledge: 

Conceptualizing and measuring teachers’ topic-specific knowledge of students. 

Journal for Research in Mathematics Education, 39(4), 372-400. 

 

Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical 

proofs. Journal for Research in Mathematics Education, 43(4), 358-390.  

 

Inglis, M., Mejia‐Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians' 

different standards when evaluating elementary proofs. Topics in cognitive 

science, 5(2), 270-282. 

 

Knuth, E. J. (2002). School mathematics teachers’ conceptions of proof. Journal for 

Research in Mathematics Education, 33(5) 379-405. 

 

Ko, Y. Y., & Knuth, E. J. (2013). Validating proofs and counterexamples across content 

domains: Practices of importance for mathematics majors. The Journal of 

Mathematical Behavior, 32(1), 20-35. 

 

Lai, Y., & Weber, K. (2014). Factors mathematicians profess to consider when presenting 

pedagogical proofs. Educational Studies in Mathematics, 85(1), 93-108.  

 

Lai, Y., Weber, K., & Mejía-Ramos, J. P. (2012). Mathematicians’ perspectives on 

features of a good pedagogical proof. Cognition and Instruction, 30(2), 146-169. 

 

Learning Mathematics for Teaching Project. (2011). Measuring the mathematical quality 

of instruction. Journal of Mathematics Teacher Education, 14, 25-47. 

 

Lew, K., Fukawa-Connelly, T. P., Mejia-Ramos, J. P., & Weber, K. (2016). Lectures in 

advanced mathematics: Why students might not understand what the mathematics 

professor is trying to convey. Journal for Research in Mathematics 

Education, 47(2), 162-198.  

 



 

165 

 

Lindell, R. S., Peak, E., & Foster, T. M. (2007). Are they all created equal? A comparison 

of different concept inventory development methodologies. AIP Conference 

Proceedings, 883(1), 14–17. doi:10.1063/1.2508680 

 

Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software 

environment. Educational studies in mathematics, 44(1), 25-53. 

 

Martin, G.W. and Harel, G. (1989). Proof frames of preservice elementary teachers. 

Journal for Research in Mathematics Education, 20, 41–51.  

 

Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in 

mathematics education research. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de 

Villiers (Eds.), Proceedings of the ICMI Study 19 conference: Proof and Proving 

in Mathematics Education (Vol. 2, pp. 88–93). Taipei, Taiwan. 

 

Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An 

assessment model for proof comprehension in undergraduate 

mathematics. Educational Studies in Mathematics, 79(1), 3-18.  

 

Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (in press). Developing and 

validating proof comprehension tests in undergraduate mathematics. To appear in 

Research in Mathematics Education. 

 

Mejia-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: 

Further evidence from a survey study. Educational Studies in Mathematics, 85(2), 

161-173.  

 

Melhuish, K. M. (2015). The Design and Validation of a Group Theory Concept 

Inventory (Doctoral dissertation). 

 

Messick, S. (1995). Validity of psychological assessment: validation of inferences from 

persons’ responses and performances as scientific inquiry into score meaning. 

American Psychologist, 50(9), 741. 

 

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003). Focus article: On the structure 

of educational assessments. Measurement: Interdisciplinary research and 

perspectives, 1(1), 3-62. 

 

Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure of 

deductive proof. Educational Studies in Mathematics, 94(2), 223-239. 

 

Morgan D. L. (1988). Focus groups as qualitative research. London: Sage. 

 

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in 

mathematics, 27(3), 249-266.  

 



 

166 

 

Moore, R. C. (2016). Mathematics Professors’ Evaluation of Students’ Proofs: A 

Complex Teaching Practice. International Journal of Research in Undergraduate 

Mathematics Education, 2(2), 246-278. 

 

Morris, A. K. (2007). Factors affecting pre-service teachers' evaluations of the validity of 

students' mathematical arguments in classroom contexts. Cognition and 

Instruction, 25(4), 479-522.  

 

Powers, R. A., Craviotto, C., & Grassl, R. M. (2010). Impact of proof validation on proof 

writing in abstract algebra. International Journal of Mathematical Education in 

Science and Technology, 41(4), 501-514.  

 

Pedemonte, B. (2007). How can the relationship between argumentation and proof be 

analyzed? Educational Studies in Mathematics, 66(1), 23-42. 

 

Pellegrino, J. W., Chudowsky, N., & Glaser, R. (2001). Knowing what students know: 

The science and design of educational assessment. National Academy Press, 2102 

Constitutions Avenue, NW, Lockbox 285, Washington, DC 20055. 

 

Raman, M. (2002). Coordinating informal and formal aspects of mathematics: Student 

behavior and textbook messages. The Journal of Mathematical Behavior, 21(2), 

135-150. 

 

Rav, Y. (1999). Why do we prove theorems?. Philosophia mathematica, 7(1), 5-41. 

 

Rowland, T. (2002). Generic proofs in number theory. In S. R. Campbell & R. Zazkis 

(Eds.), Learning and teaching number theory: Research in cognition and 

instruction (pp. 157-183). Westport, CT: Ablex Publishing. 

 

Şahin, A., & Anil, D. (2016). The Effects of test length and sample size on item 

parameters in item response theory. Educational Sciences: Theory and Practice, 

17(1n), 321-335. 

 

Samkoff, A., Lai, Y., & Weber, K. (2012). On the different ways that mathematicians use 

diagrams in proof construction. Research in Mathematics Education, 14(1), 49-

67. 

 

Segal, J. (1999). Learning about mathematical proof: Conviction and validity. The 

Journal of Mathematical Behavior, 18(2), 191-210.  

 

Selden, A., & Selden, J. (1987). Errors and misconceptions in college level theorem 

proving. In Proceedings of the second international seminar on misconceptions 

and educational strategies in science and mathematics (Vol. 3, pp. 457-470). 

Cornell University New York. 

 



 

167 

 

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical 

statements. Educational Studies in Mathematics, 29(2), 123-151. 

 

Selden, Α., & Selden, J. (2003). Validations of proofs written as texts: Can 

undergraduates tell whether an argument proves a theorem? Journal for Research 

in Mathematics Education, 36, 4-36. 

 

Smith, D., Eggen, M., & Andre, R. S. (2014). A transition to advanced mathematics. 

Nelson Education. 

 

Smithson, J. (2000). Using and analyzing focus groups: limitations and 

possibilities. International journal of social research methodology, 3(2), 103-119. 

 

Streiner, D. L. (2003). Being inconsistent about consistency: When coefficient alpha does 

and doesn't matter. Journal of personality assessment, 80(3), 217-222. 

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research 

in Mathematics Education, 38, 289-321. 

 

Stylianides, A. J., & Stylianides, G. J. (2009). Proof constructions and evaluations. 

Educational Studies in Mathematics, 72(2), 237–253. 

 

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017) Research on the teaching and 

learning of proof: Taking stock and moving forward. In J. Cai (Eds.), 

Compendium for Research in Mathematics Education. National Council of 

Teachers of Mathematics: Reston, VA.  

 

Thompson, D. R. (2014). Reasoning-and-proving in the written curriculum: Lessons and 

implications for teachers, curriculum designers, and researchers. International 

Journal of Educational Research, 64, 141-148. 

 

Toulmin, S. (1964) The uses of argument, Cambridge, UK, Cambridge University Press. 

 

Vogt, W. P. (2007). Quantitative research methods for professionals. Boston, MA, 

Pearson. 

 

Weber, K., & Mejia-Ramos, J. P. (2011). Why and how mathematicians read proofs: An 

exploratory study. Educational Studies in Mathematics, 76(3), 329-344. 

 

Weber, K., & Mejia-Ramos, J. P. (2014). Mathematics majors’ beliefs about proof 

reading. International Journal of Mathematical Education in Science and 

Technology, 45(1), 89-103. 

 

Weber, K., & Mejia-Ramos, J. P. (2015). On relative and absolute conviction in 

mathematics. For the Learning of Mathematics, 35(2), 15-21. 

 



 

168 

 

Weber, K., Inglis, M., & Mejia-Ramos, J. P. (2014). How mathematicians obtain 

conviction: Implications for mathematics instruction and research on epistemic 

cognition. Educational Psychologist, 49(1), 36-58. 

 

Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic 

knowledge. Educational Studies in Mathematics, 48(1), 101–119.  

 

Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study 

of one professor’s lectures and proofs in an introductory real analysis course. The 

Journal of Mathematical Behavior, 23(2), 115–133.  

 

Weber, K. (2008). How mathematicians determine if an argument is a valid proof. 

Journal for Research in Mathematics Education, 39, 431–459.  

 

Weber, K. (2010). Mathematics majors’ perceptions of conviction, validity, and proof. 

Mathematical Thinking and Learning, 12(4), 306–336. 

 

Weber, K. (2015). Effective proof reading strategies for comprehending mathematical 

proofs. International Journal of Research in Undergraduate Mathematics 

Education, 1(3), 289-314. 

 

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational 

Studies in Mathematics, 56(2–3), 209–234. 

 

Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate 

proofs. For the Learning of Mathematics, 25(1), 34–38. 

 

Wilkinson, S. (1998). Focus group methodology: a review. International journal of social 

research methodology, 1(3), 181-203. 


