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Lp perturbations in delay differential equations ∗

Samuel Castillo & Manuel Pinto

Abstract

We present extensions and new proofs for the asymptotic formulae
and theorems in Cooke [3] for differential equations with variable delay.
Explicit asymptotic formulae, examples and comparisons with the classical
results are given here.

1 Introduction

This paper is motivated by a result given by Cooke [3] for the delay differential
equation

x′(t) = ax(t− r(t)), (1)

where a ∈ C, r : [0,+∞[→ [0, R], r(t) is a continuous and nonnegative for t ≥ σ
such that the following conditions are satisfied

i) r(t)→ 0 and r′ is bounded as t→ +∞;

ii) inft≥σ[t− r(t)] > −∞. Also, for σ sufficiently large assume that: There is
a constant c1 independent of σ such that

|a− a2r(t)− a exp
(∫ t

t−r(t)
[a+ a2r(τ)]dτ

)
| ≤ c1r(t)2, t ≥ σ.

iii) r ∈ Lp for some p : 1 ≤ p ≤ 2;

iv) Let τ1 = τ1(σ) be defined by τ1 − r(τ1) = σ, t− r(t) > σ∀t > τ1.

a. 8|a|
∫ t
τ1
r(s)ds ≤ r(t), τ1 ≤ t, t− r(t) ≤ τ1,

b. 4|c1|
∫ t
τ1
r(s)ds ≤ r(t)−(2−p), t− r(t) ≤ τ1 ≤ t,

c. 8|a|
∫ t
t−r(t) r(s)ds ≤ r(t)

p, t ≥ σ.

Now we state Cooke’s theorem.
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Theorem 1 Under the above assumptions, every solution of (1) satisfies

x(t) = exp
(
at− a2

∫ t

σ

r(τ)dτ
)

(c+ o(1)), (2)

as t→ +∞. Moreover, for each c ∈ C, there exists a solution x of (1) satisfying
(2).

The equation (1) studied by Cooke has several additional hypotheses. For
example, not only r ∈ Lp for 1 ≤ p ≤ 2 and bounded, but also

∫ t
t−r(t) r(s)ds ≤

cr(t)p (see Assumption iv.c above) which implies
∫ t
t−r(t) r(s)ds ∈ L1. Now,

consider a continuous function r(t) such that

r(t)−
+∞∑
n=1

1√
n
kn(t) ∈ L1,

where

kn(t) =
{

1 for n− (1/ 3
√
n) ≤ t ≤ n

0 otherwise.

Here, r ∈ L2, but
∫ t
t−r(t) r(s)ds is not in L1. We will also study (1) under this

hypothesis. In general, we will study the asymptotic behavior of solutions to
the delay-differential equation

x′(t) = λ(t)x(t− r(t)) t ≥ 0, (3)

where r, λ : [0,+∞[→ C are continuous functions such that r(t) ∈ [0, R], R > 0.
These hypotheses will be assumed for the rest of this paper. We will be also
interested in the condition

(H) For some p in [1, 2],

|λ(t)|
[ ∫ t

t−r(t)
|λ(s)| exp

(
− Re

∫ t

s−r(s)
λ(ξ)dξ

)
ds
]
∈ Lp(R,C).

Remark 1. For equation (1), condition (H) takes the form∫ t

t−r(t)
exp

(
− Re(a)(t+ r(s)− s)

)
ds,

which is satisfied when r ∈ Lp and r is bounded. The requirement of condition
(H) is weaker than the conditions of Theorem 1 (see Corollary 1 below).

Remark 2. For the equation

x′(t) = λ(t)x(t− r), (4)

with r a positive constant, condition (H) takes the form

|λ(t)|
∫ t

t−r
|λ(s)| exp

(
− Re

∫ t

s−r
λ(ξ)dξ

)
ds ∈ Lp.

This is satisfied when λ ∈ Lq, for some q in [1, 4]. Note that p ≥ max{1, q/2} is
required.
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Remakr 3. Condition (H) is easily satisfied when λ(t) ≥ 0 is a not decreasing
function and λ(t)2r(t) ∈ Lp, for some p : 1 ≤ p ≤ 2. In fact, for t ≥ R, let

H(t) = λ(t)
[ ∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s) λ(ξ)dξds

]
.

Then

H(t) ≤ λ(t)e−
∫ t
R
λ(ξ)dξ

[ ∫ t

t−r(t)
λ(t)e

∫ s−r(s)
R λ(ξ)dξds

]
≤ λ(t)2r(t).

This paper is organized as follows: in Section 2 we give some preliminaries
and asymptotic results for integral-differential equations. Our main results are
given in Section 3. Some consequences and examples are given in Section 4.
The asymptotic formulae of this paper are explicit and easy to apply. Other
asymptotic studies can be found in [1, 2, 7, 10, 11, 12].

2 Preliminaries

In this section, we consider

z′(t) = c(t)
∫ t

t−r(t)
b(s)[z(t)− z(s− r(s))]ds+ F (z)(t), (5)

for t ≥ 3R, where b, c : [2R,+∞[→ C are continuous complex-valued functions,
and F : L∞([2R,+∞[,C) → L∞([3R,+∞[,C) is a linear function. We will
assume in this paper that the following hypotheses are satisfied:

(H1) for some p in [1, 2], |c(t)|
∫ t
t−r(t) |b(s)|ds ∈ L

p([3R,+∞[,C)

(H2) For t ≥ 3R and h(t) ∈ L1([3R,+∞[,C),

|F (z)(t)| ≤ h(t) sup
t−r(t)≤s≤t

|z(s− r(s))|.

Consider the homogeneous integral-differential equation

u′(t) = c(t)
∫ t

t−r(t)
b(s)[u(t)− u(s− r(s))]ds, t ≥ 3R. (6)

Note that (5) is a perturbation of (6). Also note that given ξ ∈ C, u(t) = ξ is a
solution of (6). Let f(t) = |c(t)|

∫ t
t−r(t) |b(s)|ds for t ≥ 3R, and

α(t) = 2f(t)
∫ t

t−R
f(τ)dτ, (7)

for t ≥ 4R. Since b and c satisfy (H1), f ∈ Lp and
∫ t
t−r(t) f(τ)dτ ∈ L

p
p−1 [6, pp.

17-21]. Thus, α ∈ L1([4R,+∞[,C).
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Lemma 1 Suppose that the continuous complex-valued functions b, c satisfy
(H1). Then, all the solutions of (6) are convergent. Furthermore, they have
the form

u(t) = ξ +O
(∫ +∞

t

α(ξ)dξ
)
,

as t→ +∞ for some ξ ∈ C where α is given by (7).

Proof. We observe that all the solutions of (6) satisfy

u′(t) = c(t)
∫ t

t−r(t)
b(s)

[ ∫ t

s−r(s)
c(τ)

[ ∫ τ

τ−r(τ)

b(ξ)[u(τ)− u(ξ − r(ξ))]dξ
]
dτ
]
ds,

(8)
for t ≥ R. Assume that u : R→ R with ‖u‖t := sups≤t |u(s)| is bounded. Then

|u′(t)| ≤ 2f(t)
[ ∫ t

t−r(t)
f(τ)dτ

]
‖u‖t, (9)

where t ≥ 4R. Integrating this equation [4R, t] we have,

|u(t)| ≤ |u(4R)|+
∫ t

4R

α(ξ)‖u‖ξdξ.

Hence,

|u(t̃)| ≤ |u(4R)|+
∫ t

4R

α(ξ)‖u‖ξdξ,

where 4R ≤ t̃ ≤ t. Thus,

‖u‖t ≤ |u(4R)|+
∫ t

4R

α(ξ)‖u‖ξdξ

and by Gronwall’s inequality,

‖u‖t ≤ |u(4R)| exp
(∫ t

4R

α(ξ)dξ
)
. (10)

Since α ∈ L1 and u is bounded, the right side of equality (9) belongs to L1.
Therefore u is convergent. �

Example 1. Consider the homogeneous integral-differential equation

tu′(t) =
∫ t

t−1

sin(s2)[u(t)− u(s− 1)]ds, (11)

with t ≥ 1. Clearly, given ξ ∈ C, u(t) = ξ is a solution of (11). Moreover, by
the above lemma all the solutions of (11) are convergent and have the form

u(t) = ξ+O
(∫ +∞

t

[1
τ

∫ τ

τ−r(τ)

| sin(s2)|ds
][ ∫ τ

τ−r(τ)

1
ζ

∫ ζ

ζ−r(ζ)
| sin(s2)|ds dζ

]
dτ
)
.
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Lemma 2 Assume that the complex-valued functions b, c, h, k satisfy (H1) and
(H2). Then the solutions of (5) are convergent and satisfy

z(t) = ξ +O
(∫ +∞

t

|h(τ)|
∫ τ

τ−r(τ)

|k(s)|dsdτ
)

(12)

as t → +∞. Conversely, given ξ ∈ C, there is a solution z(t) = zξ(t) of (5),
defined for t ≥ 3R such that it satisfies (12).

Proof: Let u(t) = u(t; 3R,ϕ) be the unique solution of the homogeneous equa-
tion

u′(t) = c(t)
∫ t

t−r(t)
b(s)[u(t)− u(s− r(s))]ds,

for t ≥ 3R such that u(t; 3R,ϕ) = ϕ(t) for t ≤ 3R. Then, by a variation of
constants formula (5), with initial condition z(t) = ϕ(t) for t ≤ 3R, is equivalent
to

z(t) = u(t; 3R,ϕ) +
∫ t

3R

u(t; τ, χτ )F (z)(τ)dτ, (13)

where

χτ (t) =
{

1 if t = τ
0 if t 6= τ.

for t ≥ 3R. From (10), there is c > 0 such that |u(t; 3R,ϕ)| ≤ c|ϕ|∞, for all
t ≥ 3R. Then

|z(t)| ≤ c|ϕ|∞ + c

∫ t

3R

|F (z)(τ)|dτ.

Let C be the set of the functions ϕ : R → C such that ϕ(t) is continuous for
t ≥ 3R and ϕ(t) = 0 for t < 3R. Let β(t) = ch(t). By (H2), β ∈ L1. Let η be a
positive number such that η < 1 and let θ : [3R,+∞[→ R be the function

θ(t) =
+∞∑
n=1

gn(t), with gn(t) =
{

1 for t ∈ [3Rn, 3Rn+ δn],
0 otherwise

and the δn are positive numbers such that for all n ∈ N,

exp
( ∫ 3Rn+δn

3R

β(τ)dτ
)
− 1 <

(
1− 1

2n
)
η . (14)

Let

‖z‖η = sup
t≥3R

exp
(
−
∫ t

3R

β(τ)θ(τ)dτ
)
|z(t)|.

Since the supremum norm | ·|∞ and the norm ‖·‖η are equivalent, C = (C, ‖·‖η)
is a Banach space. Let ‖z‖t = sups≤t |z(s)|. Since |z(t)| ≤ |ϕ|∞ for t ≤ 2R, for
c ≥ 1 and t̃ ≤ t ≤ 3R, we obtain

|z(t̃)| ≤ c|ϕ|∞ +
∫ t

3R

β(τ)‖z‖τdτ .
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By Gronwall’s inequality,

‖z‖t ≤ c|ϕ|∞ exp
(∫ t

3R

β(τ)dτ
)
.

Since β ∈ L1, ‖z‖t is bounded. By (13) we obtain that all the solutions of (5)
are convergent.

To prove the second part of this lemma we define the operator A : C → C
such that

(Az)(t) = ξ −
∫ +∞

t

u(t; τ, χτ )
[
h(τ)

∫ τ

τ−r(τ)

k(s)z(s− r(s))ds
]
dτ for t ≥ 3R,

and (Az)(t) = 0, for t < 3R. By the variation of constants formula we have
that any fixed point of this operator is a solution of (5) for t ∈ [3R,+∞[. Note
that:

i) A(C) ⊆ C,

ii) A has a fixed point z = zξ in C,

iii) (Az)(t)→ ξ as t→ +∞.

By (14), for all z1, z2 ∈ C and t ≥ 3R, we have

exp
(
−
∫ t

3R

β(τ)θ(τ)dτ
)
‖(Az1)(t)− (Az2)(t)‖ ≤ η‖z1 − z2‖η . (15)

Taking the supremum in the left-hand side of this equation,

‖Az1 −Az2‖η ≤ η‖z1 − z2‖η,

for t ≥ 3R and all z1, z2 ∈ C. Since 0 < η < 1, we have that A has a fixed point
zξ ∈ C. So, ii) is proved. Now, by taking z2 = 0 in (15),

(Az)(t)→ ξ (16)

for all z ∈ C as t → +∞. So, i) and iii) are satisfied. Therefore, the second
part of this lemma is proved. �

Example 2. Consider the homogeneous integral-differential equation

tz′(t) =
∫ t

t−1

(sin(s2)[z(t)− z(s− 1)] + [e1/s − 1]z(s− 1))ds, (17)

where t ≥ 1. Then, by the above lemma, all the solutions of (17) are convergent.
Moreover, given ξ ∈ C, there is a solution of z = z(t) of (17) such that z(t)→ ξ
as t→ +∞.
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3 Main Result

Theorem 2 Assume that the functions λ and r satisfy (H). Then for every
solution x of (3), there exists c ∈ C such that

x(t) = exp
(∫ t

3R

[λ(τ)− b̃(τ)]dτ
)(
c+O(

∫ +∞

t

µ(τ)dτ)
)
, (18)

where

µ(t) = |λ(t)|
∫ t

t−r(t)
|λ(s)|

∣∣∣e− ∫ ts−r(s) λ(ξ)dξ
(
e−
∫ t
s−r(s) b̃(ξ)dξ − 1

)∣∣∣ ds
and b̃(t) = λ(t)

∫ t
t−r(t) λ(s)e−

∫ t
s−r(s) λ(ξ)dξds defined for t ≥ 3R as t → +∞.

Conversely, given ξ ∈ C, there is x(t) = xξ(t), solution of (3) defined for t ≥ 3R
which satisfies (18) with c = ξ.

Proof. We write (3) as

x′(t) = λ(t)x(t)− λ(t)(x(t)− x(t− r(t))), t ≥ 0 .

Iterating the above equation and applying the uniqueness theorem for functional
differential equations, we obtain that (3) is equivalent to

x′(t) = λ(t)x(t)− λ(t)
∫ t

t−r(t)
λ(s)x(s− r(s))ds, (19)

for t ≥ 3R. In this equation we make the change of variables

x(t) = exp
(∫ t

3R

[λ(s)− b̃(s)]
)
z(t)

and we obtain

z′(t) = b̃(t)z(t)− λ(t)
∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s)[λ(ξ)−b̃(ξ)]z(s− r(s))ds

which is equivalent to

z′(t) = b̃(t)z(t)− λ(t)
∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s) λ(ξ)dξz(s− r(s))ds

−λ(t)
∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s) λ(ξ)dξ

(
e−
∫ t
s−r(s) b̃(ξ)dξ − 1

)
z(s− r(s))ds.

Then,

z′(t) = c(t)
∫ t

t−r(t)
b(s)[z(t)− z(s− r(s))]ds+ F (z)(t), (20)
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where c(t) = λ(t)e−
∫ t
3R λ(ξ)dξ, b(t) = λ(t)e−

∫ 3R
t−r(t) λ(ξ)dξ and

F (z)(t) = −λ(t)
∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s) λ(ξ)dξ(e−

∫ t
s−r(s) b̃(ξ)dξ − 1)z(s− r(s))ds,

for t ≥ 3R. By (H), exp
(
−
∫ t
t−R b̃(ξ)dξ

)
− 1 ∈ L

p
p−1 . So,

|λ(t)|
∫ t

t−r(t)
|λ(s)|

∣∣∣e− ∫ ts−r(s) λ(ξ)dξ
(
e−
∫ t
s−r(s) b̃(ξ)dξ − 1

)∣∣∣ ds ∈ L1.

Then (20) satisfies the same hypotheses as (5) in Lemma 2. Thus, we obtain
the conclusion of this theorem. �

Example 3. Consider equation (3) with λ(t) = Γ(t) and r(t) = 1
Γ(t) for t ≥ 0,

where

Γ(t) =
∫ +∞

0

st−1e−sds

is the Euler’s Gamma Function. Then (3) takes the form

x′(t) = Γ(t)x(t− 1
Γ(t)

), (21)

for t ≥ 0. By the above theorem, it is not difficult to check that all the solutions
of (21) are of the form

x(t) = (c+ o(1)) exp
( n−1∑
k=1

[k!− k!(k − 1)!e−(k−2)(k−2)!]
)
,

for n ≤ t < n+ 1 as n→ +∞.

4 Consequences

Corollary 1 Assume that r is bounded and r ∈ Lp for some p : 1 ≤ p ≤ 2.
Then for each solution x of (1), there exists c ∈ C such that

x(t) = exp
(
at− a2

∫ t

3R

r(τ)dτ − a3

∫ t

3R

[ ∫ t

τ−r(τ)

r(s)ds
]
dτ
)

(c+ o(1)). (22)

Conversely, given ξ ∈ C there is a solution x(t) = xξ(t) of (1), defined for
t ≥ 3R, satisfying (22) with c = ξ.

Proof. If we take λ(t) = a in Theorem 2, we obtain

|λ(t)|
∫ t

t−r(t)
|λ(s)|e−Re

∫ t
s−r(s) λds = |a|2

∫ t

t−r(t)
e−Re(a)(t−s+r(s))ds ≤ c1r(t),
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for some positive constant c1. Therefore, (1) satisfies (H). By Theorem 1, we
prove this corollary by taking

b(t) = λ(t)
∫ t

t−r(t)
λ(s)e−

∫ t
s−r(s) λ(ξ)dξds

= a2

∫ t

t−r(t)
e−a(t−s+r(s))ds

= a2r(t)− a3

∫ t

t−r(t)
r(τ)dτ − I1(t),

where

I1(t) = a2

∫ t

t−r(t)
[e−a(t−s+r(s)) − 1− r(s)]ds.

Since r is bounded,

|I1(t)| ≤ |a|2
∫ t

t−r(t)
((eRe(a)(s−t) − 1)e−Re(a)r(s) + [e−Re(a)r(s) − 1− r(s)])ds

≤ c1

∫ t

t−r(t)
(t− s)ds+ c3

∫ t

t−r(t)
r(s)2ds

≤ c2
r(t)2

2
+ c3

∫ t

t−r(t)
r(s)2ds

for some positive constants c2 and c3. Since r ∈ Lp with 1 ≤ p ≤ 2 and r is
bounded, we have that r ∈ L2. By the last inequality, I1 ∈ L1 which completes
the present proof. �

Next, we obtain a version of Theorem 1 using weaker hypotheses.

Corollary 2 Suppose that r is bounded and belongs to Lp with 1 ≤ p ≤ 2, and
that

∫ t
t−r(t) r ∈ L1. Then the solutions of (1) satisfy (2). Conversely, given

ξ ∈ C there is a solution x(t) = xξ(t) of (1), defined for t ≥ 3R and satisfying
(2) with c = ξ.

The study of the Lp perturbations has been exhaustively studied; see for
example by Haddock and Sacker [8]. In the next corollary we give an extension
of their conjecture for 2 ≤ p ≤ 4.

Corollary 3 Suppose that in (4), λ ∈ Lp with 1 ≤ p ≤ 4 and r > 0. Then,
given a solution x of equation (3), there exists c ∈ C such that

x(t) = exp
(∫ t

3R

[λ(τ)− λ(τ)
∫ τ

τ−r
λ(s)e−

∫ τ
s−r λ(ξ)dξds]dτ

)(
c+ o(1)|big), (23)

as t→ +∞. Conversely, given c ∈ C there is a solution x of (4) such that (23)
is satisfied.
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Corollary 4 Suppose that λ and r satisfy (H) with p = 1. Then for every
solution x of (3) there exists c ∈ C such that

x(t) = exp
(∫ t

3R

λ(s)ds
)(
c+ o(1)

)
, (24)

as t → +∞. Conversely, given c ∈ C there exists a solution x of (3) such that
satisfies (24).

Example 4. Consider the equation

x′(t) =
t

t2 − 1
x(t− 1

t
), t ≥ 2. (25)

Then (25) satisfies (H) with p = 1. We observe that one of the solutions of
(25) is x(t) = t. By Corollary 1, all the solutions x of (25) have the asymptotic
formula

x(t) = t(c+ o(1))

as t→ +∞, where c ∈ R, i.e, all the solutions of (25) are like x(t) = t.

Example 5. Consider the equation

x′(t) = tαx(t− t−(2α+1)), t ≥ 2, α > 1. (26)

By Corollary 4, all the solutions x of (26) have the asymptotic formula

x(t) = et
α/(α+1)(c+ o(1))

as t→ +∞, where c ∈ C.

Corollary 5 Suppose that in (3), λ(t) ≥ 0 is a not decreasing function and
λ(t)2r(t) ∈ Lp with 1 ≤ p ≤ 2. Then for each solution x of (3) there exists
c ∈ C such that

x(t) = exp
(∫ t

3R

[λ(τ)− λ(τ)
∫ τ

τ−r(τ)

λ(s)e−
∫ τ
s−r(s) λ(ξ)dξds]dτ

)
(c+ o(1)), (27)

as t → +∞. Conversely, for each c ∈ C there exists a solution x of (3) such
that (27) is satisfied.

Example 6. Consider the equation

x′(t) = etx(t− 1
te2t

), t ≥ 1. (28)

By Corollary 5, all of the solutions x of this equation have the asymptotic
formula

x(t) = exp
(

exp
(
t− et−e

t) ∫ t

t− 1
te2t

exp
(
s+ es−

1
se2s
)
ds
)(
c+ o(1)

)
,

where c ∈ R as t→ +∞.
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