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NUMERICAL CALCULATION OF SINGULARITIES FOR

GINZBURG-LANDAU FUNCTIONALS

J.W. NEUBERGER & R.J. RENKA

Abstract. We give results of numerical calculations of asymptotic behavior
of critical points of a Ginzburg-Landau functional. We use both continuous
and discrete steepest descent in connection with Sobolev gradients in order to

study configurations of singularities.

1. Location of Singularities

Suppose ε > 0 and d is a positive integer. Consider the problem of determining
critical points of the functional φε:

φε(u) =

∫
Ω

(‖∇u‖2/2 + (|u|2 − 1)2/(4ε2)), u ∈ H1,2(Ω, C), u(z) = zd, z ∈ ∂Ω,
(1.1)

where Ω is the unit closed disk in C, the complex numbers. For each such ε > 0,
denote by uε,d a minimizer of (1.1).

In [1] it is indicated that for various sequences {εn}∞n=1 of positive numbers
converging to 0, precisely d singularities develop for uεn,d as n → ∞. The open
problem is raised (Problem 12, page 139 of [1]) concerning possible orientation of
such singularities. Our calculations suggest that for a given d there are (at least)
two resulting families of singularity configurations. Each configuration is formed
by vertices of a regular d−gon centered at the origin of C, with each corresponding
member of one configuration being about .6 times as large as a member of the other.
A family of which we speak is obtained by rotating a configuration through some
angle α. That this results in another possible configuration follows from the fact
(page 88 of [1]) that if

vε,d(z) = e−idαuε,d(e
iαz), z ∈ Ω,

then φε(vε,d) = φε(uε,d) and vε,d(z) = zd, z ∈ ∂Ω.

That there should be singularity patterns formed by vertices of regular d−gons
has certainly been anticipated although it seems that no proof has been put forward.
What we offer here is some numerical support for this proposition. What surprised
us in this work is the indication of two families for each positive integer d.
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We explain how these two families were encountered. Our calculations use steep-
est descent with numerical Sobolev gradients ([3], [2]). One family appears using
discrete steepest descent and the other appears when continuous steepest descent is
closely tracked numerically. We can offer no explanation for this phenomenon but
simply report it. For a given d, the family of singularities obtained with discrete
steepest descent is closer to the origin (by about a factor of .6) than the correspond-
ing family for continuous steepest descent. In either case, the singularities are closer
to the boundary of Ω for larger d. It is emphasized that more than the usual caveats
concerning the deduction of analytical facts from numerical calculations certainly
apply here. We are using a descent method to calculate critical points of a highly
singular object (for small ε, a graph of |uε,d|2 would appear as a plate of height
one above Ω with d slim tornadoes coming down to zero). Moreover for each d as
indicated above, one expects a continuum of critical points (one obtained from an-
other by rotation) from which to ‘choose’. A feature of continuous steepest descent
method with Sobolev gradients is that it tends to pick out the nearest (in perhaps
some non-Euclidean sense) critical point to the starting estimate. Such methods
are suited to problems in which there are many critical points. In addition, the
topography of φε over all competing functions seems rather severe with critical
points having rather small support. This all makes for a fairly difficult calculation
which calls for more computing power than is available to us at the moment. This
is particularly true if one seeks evidence that as d→∞, then points of developing
singularities approach ∂Ω. In our opinion, owing to the importance of this problem,
independent and more extensive calculations should be made.

Some questions. Are there more than two (even infinitely many) families of
singularities for each d? Does some other descent method (or some other method
entirely) lead one to new configurations? Are there in fact configurations which are
not symmetric about the origin?

2. Description of Method

We indicate how to construct a Sobolev gradient for (1.1). We use an equivalent
real formulation of (1.1) and regard φε as a function from H = H1,2(Ω, R)2 to R.
For u ∈ H, φ′ε(u) is a continuous linear functional on H. Thus there is a unique
member of H, called (∇φε)(u), such that

φ′ε(u)h = 〈h, (∇φε)(u)〉H , u ∈ H, h ∈ H0, (2.1)

where H0 is the subspace of H consisting of those members of H which are zero on
∂Ω. The reader might refer to [3] or [2] for more details on an explicit construction
of this gradient.

Once a gradient function for φε is available there are two corresponding steepest
descent processes, continuous steepest descent and discrete steepest descent.

Continuous steepest descent consists of picking x ∈ H and determining z :
[0,∞)→ H such that

z(0) = x, z′(t) = −(∇φε)(z(t)), t ≥ 0. (2.2)

For each ε > 0, critical points uε,d ∈ H are sought so that

uε,d = lim
t→∞

z(t),



EJDE–1997/10 SINGULARITIES FOR GINZBURG-LANDAU 3

or at least so that

uε,d = lim
n→∞

z(tn)

for some unbounded increasing sequence {tn}∞n=1 of positive numbers.

For fixed ε > 0 discrete steepest descent, on the other hand, consists of picking
x ∈ H and determining {zn}∞n=1 so that

zn+1 = zn − δn(∇φε)(zn), n = 1, 2, . . . , (2.3)

where δn is chosen to be the smallest positive local minimum δ of

φε(zn − δ(∇φε)(zn)), δ ≥ 0.

Critical points uε,d of φε are sought as a limit of a subsequence of {zn}∞n=1.

In the case of either continuous steepest descent or discrete steepest descent we
are interested in asymptotic behavior of uε,d as ε→ 0. For computations we seek a
critical point of φε,d for ‘small’ ε as indicated in the following section. As explained
in [1], there is not a limit in H1,2(Ω) of uε,d as ε → 0 but that uε,d becomes more
nearly singular as ε→ 0.

For calculations we use a finite dimensional version of the above. The region Ω is
broken into pieces using some number (180 to 400, depending on d) of evenly spaced
radii together with 40 to 80 concentric circles. References [2],[3] contain details of
Sobolev gradient construction in these finite dimensional settings. We mention that
in our results, u = limt→∞ z(t) appears to exist in the case of continuous steepest
descent and u = limn→∞ zn appears to exist in the case of discrete steepest descent.
Thus no ‘taking of subsequences’ seems to be necessary.

3. Results

For continuous steepest descent, using d = 2, . . . , 10 we started each steepest
descent iteration with a finite dimensional version of uε,d(z) = zd. To emulate
continuous steepest descent, we used discrete steepest descent with small step size
(on the order of .0001) instead of the optimal step size of (2.3). In all runs reported
on here we used ε = 1/40 except for the discrete steepest descent run with d = 2.
In that case ε = 1/100 was used (for ε = 1/40 convergence seemed not to be
forthcoming in the single precision code used - the value .063 given is likely smaller
than a successful run with ε = 1/40 would give). Runs with somewhat larger ε
yielded a similar pattern except the corresponding singularities were a little farther
from the origin. In all cases we found d singularities arranged on a regular d-gon
centered at the origin.

Results for continuous steepest descent are indicated by the following pairs:

(2, .15), (3, .25), (4, .4), (5, .56), (6, .63), (7, .65), (8, .7), (9, .75), (10, .775)

where a pair (d, r) above indicates that a (near) singularity of uε,d was found at a
distance r from the origin with ε = 1/40. In each case the other d− 1 singularities
are located by rotating the first one through an angle that is an integral multiple
of 2π/d.

Results for discrete steepest descent are indicated by the following pairs:

(2, .063), (3, .13), (4, .18), (5, .29), (6, .34), (7, .39), (8, .44), (9, .48), (10, .5)
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using the same conventions as for continuous steepest descent. Computations with
a finer mesh would surely yield more precise results.
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