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QUASILINEAR ASYMPTOTICALLY LINEAR SCHRÖDINGER
PROBLEM IN RN WITHOUT MONOTONICITY
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Communicated by Pavel Drabek

Abstract. We establish existence and non-existence results for a quasilinear

asymptotically linear Schrödinger problem. In the first result, we prove that a

minimization problem constrained to the Pohozaev manifold is not achieved.
In the second, the main argument consists in a splitting lemma for a functional

constrained to the Pohozaev manifold. Because of the lack of the monotonicity

we are not able to project to the usual Nehari manifold any longer, and this
approach is crucial in order to compare the critical level to reach a contradic-

tion. This argument was used in [21, 24, 32] for semilinear equations and in

[11] for quasilinear equations.

1. Introduction

Consider the quasilinear Schrödinger problem

izt = −∆z +W (x)z − a(x)h(|z|2)z − k∆l(|z|2)l′(|z|2)z, x ∈ RN , (1.1)

where z:R × RN → C, a,W :RN → R is a given potential, k is real constant, and
l and h are real functions. The above quasilinear equations have been accepted
as models of several physical phenomena corresponding to various types of l; we
refer to [14] and references given there for for physical applications of this problems.
Specifically, we would like to mention, the superfluid film equation in plasma physics
has this structure for l(s) = s (see e.g. [22]), while in the case l(s) = (1 + s)1/2,
(1.1) models the self-channeling of a high-power ultrashort laser in matter (see e.g.
[23]).

The standing waves solutions of (1.1); that is, solutions of the type z(t, x) =
exp(−iEt)u(x) where E ∈ R and u > 0 is a real function. Inserting z into (1.1),
with l(s) = s and l(s) = (1 + s2)1/2, turns, respectively, the following equations:

−∆u+ V∞u− k∆(u2))u = a(x)h(u), x ∈ RN , (1.2)

−∆u+ V∞u− k∆((1 + u2)1/2)
u

(1 + u2)1/2
= a(x)h(u), x ∈ RN , (1.3)

where V∞ = W − E.
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For (1.2), semilinear case corresponding to k = 0 has been studied extensively
in recent years, see e.g. [35, 46] for a review. Suppose k > 0 and h(s) behaves
like a polynomial function |s|r−1s, with r + 1 < 2 · 2∗ (subcritical) and r + 1 =
2 · 2∗ (critical), where 2 · 2∗ = 4N/(N − 2), with N ≥ 3. The number 2 · 2∗ is
called the critical exponent for the equation (1.2), see [30, Remark 3.13]. For the
subcritical case, which was started, up to our knowledge, in [34] and extended
in [29], variational methods and constrained minimization arguments were used to
provide existence of positive solutions results with an unknown Lagrange multiplier
λ in front of the nonlinear term. The second method, due to the authors in [30], used
a change of variables which allowed to rewrite the functional in semilinear form.
Then, they were able to work with a functional well defined in a usual Sobolev
space. In this framework, the new problem becomes a nonhomogeneous problem
bringing a new difficulty to handle this equation. See also [15]. The critical case
was studied, among others, by [20, 28, 33, 40, 44, 45, 31] and in the references
therein.

For (1.3), still with k > 0, few results are known. In [18] the authors treated
existence and uniqueness, but did not study the existence of standing waves. For
this class of the solutions, for superlinear perturbation with subcrtical or critical
growth, we refer to [14, 13, 38, 19, 43] and references therein. In this situation, we
recall that the change of variables as in (1.2), in general, cannot be generalized to
this case. In [38] a change of known variable is made and the existence of nontrivial
solution is proved.

The purpose of this article is to investigate the existence of positive solutions
for an asymptotically linear quasilinear elliptic problem; that is, when h behalves
at infinity like s2. When k = 0, the autonomous and quasilinear asymptotically
linear problem (1.2) was treated in a pioneering work [8]. In [6, 16, 26, 42] the
nonautonomous case was considered. In [1, 17] the problems were studied imposing
periodicity conditions on the nonlinearities. In the situation where the involved
nonlinearities are homogeneous or preserve some monotonicity conditions, many
authors, in order to search for critical points, studied the Euler-Lagrange functional
restricted to the Nehari manifold (see [46]). But, it was remarked in [16] that
not all functions can be projected on the Nehari manifold, if the nonlinearity is
nonhomogeneous and quasilinear asymptotically linear. This projection is very
important to compare the critical level of the associated functional. In [5, 21, 32]
were studied minimization problems restricted to the Pohozaev manifold. This
argument was used, firstly, in [37]. Using this idea in [24] was obtained existence
results without monotonicity condition. The main argument is to apply a splitting
lemma due to [41], with Cerami condition, see [12], in a functional restricted to the
Pohozaev manifold. In this paper, we extend former result in [24], with k = 0, for
more general quasilinear equations. For a similar argument with Nehari manifold,
see [3]. Recently, in [2] and [11] are treated a class of quasilinear asymptotically
linear problem slightly different from that studied by us, which are associated to
the first problem (1.2).

We will consider the following assumptions on the functions a and h:

(A1) a ∈ C2(RN ,R+), with infx∈RN a(x) > 0;
(A2) lim|x|→∞ a(x) = a∞ > V∞ > 0, important condition to ensure the existence

and non-existence of solution;
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(A3) ∇a(x) ·x ≥ 0, for all x ∈ RN , with the strict inequality holding on a subset
of positive Lebesgue measure of RN ;

(A4) a(x) + ∇a(x)·x
N < a∞, for all x ∈ RN ;

(A5) ∇a(x) ·x+ x·H·x
N ≥ 0, for all x ∈ RN , where H represents the hessian matrix

of the function a.
(A6) h ∈ C1(R+,R+) and lims→0

h(s)
s = 0;

(A7) lims→∞
h(s)
s2 = 1;

(A8) If H(s) =
∫ s

0
h(t) dt and Q(s) = 1

2
√

2
h(s)s − H(s), then there exists a

constant D ≥ 1, such that 0 < Q(s) ≤ DQ(t), for all 0 < s ≤ t, and
lims→∞Q(s) = +∞.

Next we establish a nonexistence result on the Pohozaev manifold which is de-
fined in (2.7).

Theorem 1.1. Under assumptions (A1)–(A8), p = infu∈P I(u) is not a critical
level for the functional I. In particular, the infimum p is not achieved.

For stating our existence result, we assume that |a− a∞| is not too large.
(A9) Assume that a satisfies

‖a∞ − a‖L∞ <
min{c], 2c∞} − c∞

θ
N‖ω‖22C

,

where θ = supy∈RN θy.

Theorem 1.2. Assume (A1)-(A9) and that

(1) h ∈ C1(R)∩Lip(R,R+) and there exists τ > 0 such that lims→0+
h′(s)
sτ = 0;

(2) the least energy level c∞ of (3.1) is an isolated radial critical level for I∞
or, equivalently, equation (3.1) admits a unique positive solution which is
radially symmetric about some point.

Then the non-autonomous problem (2.4) admits a positive solution v ∈ H1(RN ).

Remark 1.3. As an example of a function h such that h(s)/s2 is not increasing
and satisfies (A6)–(A8) we have

h(s) =

{
s8−1,5s6+2s4

1+s6 for s ≥ 0,
0 for s ≤ 0.

As an example for a(x), we have a(x) = a∞−1/(|x|+k), k > (1/a∞) with a∞ > V∞
positive constants.

2. Preliminaries

We note that the solutions of (1.3) with k = 1 are the critical points of the
functional

I(u) =
1
2

∫
RN

(
1 +

u2

1 + u2

)
|∇u|2 dx+

1
2

∫
RN

V∞u
2 dx−

∫
RN

a(x)H(u) dx.

Since the functional I(u) may not be well defined in the usual Sobolev spaces
H1(RN ), we make the change of variables

v = G(u) =
∫ u

0

g(t) dt, where g(t) =
√

1 + t2/(1 + t2). (2.1)
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Since g(t) is bounded and increasing with respect to |t|, the inverse function G−1(t)
exists. Next we give some properties of the change of variables.

Lemma 2.1 (See [14]).
(1)

√
1/2 t ≤ |G−1(t)| ≤ t for all t ≥ 0;

(2) |(G−1(t))′| ≤ 1 for all t ∈ R;
(3) limt→0 |G−1(t)|/t = 1;
(4) limt→∞ |G−1(t)|/t =

√
1/2;

(5) tg′(t)/g(t) ≤ 3−
√

8 for all t ∈ R;

(6)
√

1
2G
−1(t) ≤ t(G−1(t))′ ≤ G−1(t) for all t ≥ 0.

Then after the change of variables, I(u) can be written as

I(v) =
1
2

∫
RN
|∇v|2 dx+

1
2

∫
RN

V∞|G−1(v)|2 dx−
∫

RN
a(x)H(G−1(v)) dx,

for v ∈ H1(RN ). By Lemma 2.1, I(v) is well defined in H1(RN ) and I(v) ∈
C1(H1(RN ),R). If u is a nontrivial solution of (1.3), then for all ϕ ∈ C∞0 (RN ) it
should satisfy∫

RN

(
g2(u)∇u∇ϕ+ g(u)g′(u)|∇u|2ϕ+ V∞uϕ− a(x)h(u)ϕ

)
dx = 0. (2.2)

We show that (2.2) is equivalent to

I
′
(v)ψ =

∫
RN

(
∇u∇ψ +

V∞G
−1(v)

g(G−1(v))
ψ − a(x)h(G−1(v))

g(G−1(v))
ψ

)
dx = 0, (2.3)

for all ψ ∈ C∞0 (RN ). Indeed, if we choose ϕ =
(

1
g(u)

)
ψ in (2.2), then we obtain

(2.3), since g(t) is bounded, increasing function and positive. On the other hand,
since u = G−1(v), if we let ψ = g(u)ϕ in (2.3), we obtain (2.2). Therefore, to find
the nontrivivial solutions of (1.3), it suffices to study the existence of the nontrivial
solutions to the equation

−∆v = −V∞G
−1(v)

g(G−1(v))
+
a(x)h(G−1(v))
g(G−1(v))

, x ∈ RN , v ∈ H1(RN ). (2.4)

This means, the critical points of functional I(v), associated to equation (2.4), are
weak solutions of (2.4).

Conditions (A6) and (A7) imply that given ε > 0 and 3 ≤ p ≤ 2∗, there exists a
positive constant C = C(ε, p) such that for all s in R,

|H(s)| ≤ ε

2
|s|2 + C|s|p, ∀s ∈ R . (2.5)

We also obtain the estimate

|h(s)| ≤ ε|s|+ C|s|p−1, ∀s ∈ R.
In what follows we denote by ‖v‖2 =

∫
RN (|∇v|2 + V∞v

2) dx the norm in H1(RN ).
Now we consider the Pohozaev identity
N − 2

2

∫
RN
|∇v|2 dx = N

∫
RN

(
a(x)H(G−1(v))− V∞

2
(G−1(v))2

)
dx

+
∫

RN
∇a(x) · x ·H(G−1(v)) dx,

(2.6)

whereH(s) =
∫ s

0
h(t) dt and defineG(x,G−1(v)) = a(x)H(G−1(v))−V∞2 (G−1(v))2.
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We also define the Pohozaev manifold associated to (2.4) by

P := {u ∈ H1(RN ) \ {0} : u satisfies (2.6)}. (2.7)

Lemma 2.2. Let the functional J :H1(RN )→ R be

J(v) =
N − 2

2

∫
RN
|∇v|2 dx−N

∫
RN

G(x,G−1(v)) dx−
∫

RN
∇a(x).x.H(G−1(v)) dx.

Then:
(a) {v ≡ 0} is an isolated point of J−1({0});
(b) P := {v ∈ H1(RN ) \ {0} : J(v) = 0} is a closed set;
(c) P is a C1 manifold;
(d) there exists σ > 0 such that ‖v‖ > σ, for all v ∈ P.

Proof. (a) Using condition (A4), we have

J(v) >
N − 2

2

∫
RN
|∇v|2 dx−Na∞

∫
RN

H(G−1(v)) dx+N

∫
RN

V∞(G−1(v))2

2
dx.

By the Sobolev embedding, condition (2.5) and Lemma 2.1(1), we obtain

J(v) ≥
(N − 2

4
) ∫

RN
(|∇v|2 + V∞v

2) dx

−Na∞
∫

RN

(ε
2
|G−1(v)|2 + C|G−1(v)|p

)
dx

≥ N − 2
4
‖v‖2 − Na∞

V∞

∫
RN

(V∞ε|v|2
2

+ C|v|p
)

dx

≥ 1
2
(N − 2

2
− Na∞ε

V∞

)
‖v‖2 −Na∞C‖v‖p.

If ε > 0 is sufficiently small, there exists ρ ∈ (0, 1) such that J(v) > 0 if 0 < ‖u‖ < ρ.
(b) Since J(v) is a C1 functional, P ∪ {0} = J−1({0}) is a closed subset. More-

over, {u ≡ 0} is an isolated point in J−1({0}) and claim in (b) follows.
(c) Consider the derivative of J at v and applied to v, thus obtain

J ′(v)v

= (N − 2)
∫

RN
|∇v|2 dx−N

∫
RN

(
a(x) +

∇a(x).x
N

)
h(G−1(v))(G−1(v))′v dx

+N

∫
RN

V∞G
−1(v)(G−1(v))′v dx.

(2.8)
Since v ∈ P, inserting (2.6) into (2.8) with Lemma 2.1(1-6) and (A8) we obtain

J ′(v)v ≤ 2N
∫

RN

(
a(x) +

∇a(x).x
N

)(
H(G−1(v))− h(G−1(v))(G−1)′v

2

)
dx

≤ 2N
∫

RN

(
a(x) +

∇a(x).x
N

)(
H(G−1(v))− h(G−1(v))(G−1(v))

2
√

2

)
dx < 0.

This shows that P is a C1 manifold.
(d) Since v ∈ P, by condition (A4), (2.5) and Lemma 2.1(1), we obtain

(N − 2)
∫

RN
|∇v|2 dx+N

∫
RN

V∞(G−1(v))2 dx
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= 2N
∫

RN

(
a(x) +

∇a(x).x
N

)
H(G−1(v)) dx

< 2N
∫

RN
a∞H(G−1(v)) dx

≤ 2Na∞
∫

RN

(ε
2
|G−1(v)|2 + C|G−1(v)|p

)
dx

≤ 2Na∞
V∞

∫
RN

V∞ε

2
|v|2 dx+ 2Na∞C

∫
RN
|v|p dx.

Thus, using again Lemma 2.1(1), we obtain

(N − 2)
∫

RN
|∇v|2 dx+NV∞

(1
2
− a∞ε

V∞

) ∫
RN
|v|2 dx ≤ 2Na∞C

∫
RN
|v|p dx.

Therefore, by the Sobolev embedding, we obtain 0 < σp−2 = C‖v‖p−2 for all v. �

3. Nonexistence result

We begin by presenting the main relations between the Pohozaev manifold P
associated with the non-autonomous problem (2.4), and the Pohozaev manifold
P∞ associated with the autonomous problem at infinity

−∆v = (G−1(v))′[a∞h(G−1(v))− V∞G−1(v)], x ∈ RN , v ∈ H1(RN ). (3.1)

We have the Pohozaev manifold

P∞ := {v ∈ H1(RN ) \ {0} : J∞(v) = 0},
with

J∞(v) =
N − 2

2

∫
RN
|∇v|2 dx−N

∫
RN

G∞(v) dx,

where

G∞(G−1(v)) = a∞H(G−1(v))− V∞(G−1(v))2

2
.

For our purposes, we need to consider the functional I∞ associated with (P∞) and
given by

I∞(v) =
1
2

∫
RN

(|∇v|2 + V∞(G−1(v))2) dx−
∫

RN
a∞H(G−1(v)) dx, v ∈ H1(RN ).

We set of paths

Γ∞ = {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, I∞(γ(1)) < 0 },
and define the mini-max mountain pass level

c∞ := min
γ∈Γ∞

max
0≤t≤1

I∞(γ(t)).

Note that (A3) and (A4) imply that I∞(u) < I(u) for all u in H1(RN ) \ {0}. We
will show at the end of this section that

p := inf
u∈P

I(u) = c∞,

and that this is not achieved, which means that this is not a critical level for the
functional I.

Lemma 3.1. Suppose that
∫

RN G∞(G−1(v)) dx > 0. Then there exist unique
θ1 > 0 and θ2 > 0 such that v(·/θ1) ∈ P and v(·/θ2) ∈ P∞.
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Proof. The case of projecting on P∞ is already known [32]. We will verify the case
of P. First we define the function

ψ(θ) := I
(
v
(x
θ

))
=
θN−2

2

∫
RN
|∇v|2 dx−

∫
RN

a(x)H
(
G−1

(
v
(x
θ

)))
dx

+
1
2

∫
RN

V∞

(
G−1

(
v
(x
θ

)))2

dx

=
θN−2

2

∫
RN
|∇v|2 dx− θN

∫
RN

a(θx)H(G−1(v(x))) dx

+
θN

2

∫
RN

V∞(G−1(v(x)))2 dx.

Taking the derivative of ψ(θ) and recalling that we are considering N ≥ 3, we
obtain

ψ′(θ) = θN−3
[(N − 2

2
) ∫

RN
|∇v|2 dx−Nθ2

∫
RN

a(θx)H(G−1(v(x)) dx

− θ2

∫
RN
∇a(θx) · θx ·H(G−1(v(x))) dx+

Nθ2

2

∫
RN

V∞(G−1(v(x)))2 dx
]
.

Hence, v(·/θ) ∈ P if and only if ψ′(θ) = 0, for some θ > 0. Note that, by condition
(A2) and the Lebesgue Dominated Convergence Theorem, we obtain

lim
θ→∞

∫
RN

(
a(θx)H(G−1(v(x)))− V∞

(G−1(v(x)))2

2

)
dx

=
∫

RN

(
a∞H(G−1(v(x)))− V∞(G−1(v(x)))2

2

)
dx

=
∫

RN
G∞(G−1(v)) dx.

By (A2)–(A4), we obtain ∇a(x)x→ 0 if |x| → +∞. Thus

lim
θ→∞

∫
RN
∇a(θx) · θx ·H(G−1(v)) dx = 0.

Therefore, if θ > 0 is sufficiently large, then

ψ′(θ) = θN−3
{N − 2

2

∫
RN
|∇u|2 dx−Nθ2

(∫
RN

G∞(G−1(v)) dx+ oθ(1)
)}
.

Since
∫

RN G∞(G−1(v)) dx > 0, it follows that ψ′(θ) < 0, for θ > 0 sufficiently large.
On the other hand, by condition (A4), conditions (A2) and (A3) yield

−V∞
2

∫
RN

(G−1(v))2 dx ≤
∫

RN

(
a(θx) +

∇a(θx)(θx)
N

)
H(G−1(v)) dx

− V∞
2

∫
RN

(G−1(v))2 dx.

By (2.5) Lemma 2.1(1), and taking θ > 0 sufficiently small we have

−V∞
2

∫
RN

(G−1(v))2 dx ≤
∫

RN

(
a∞H(G−1v)− V∞(G−1(v))2

2

)
dx ≤ C‖v‖22.



8 O. H. MIYAGAKI, S. I. MOREIRA, R. RUVIARO EJDE-2018/164

The previous inequalities imply that there exist positive constants A and B,
independent of θ, such that

−A ≤
∫

RN

[(
a(θx) +

∇a(θx) · θx
N

)
H(G−1(v))− V∞(G−1(v))2

2

]
dx ≤ B.

Thus, taking θ > 0 sufficiently small in the expression of ψ′(θ), we obtain ψ′(θ) > 0.
Since ψ′ is continuous, there exists at least one θ1 = θ1(v), θ1 > 0, such that
ψ′(θ1) = 0, which means that v(·/θ1) ∈ P.

To show the uniqueness of θ1, note that ψ′(θ) = 0 implies

N − 2
2

∫
RN
|∇v|2 dx = Nθ2

∫
RN

(
a(θx) +

∇a(θx)(θx)
N

)
H(G−1(v)) dx

− Nθ2V∞
2

∫
RN

(G−1(v))2 dx,

with θ > 0, or equivalently
N − 2

2

∫
RN
|∇v|2 dx = Nθ2ϕ(θ),

giving

ϕ(θ) =
∫

RN

[
a(θx) +

∇a(θx) · (θx)
N

]
H(G−1(v)) dx− V∞

∫
RN

(G−1(v))2

2
dx.

Taking the derivative of ϕ and using the properties of the functions involved,

ϕ′(θ) =
1
θ

∫
RN

(
∇a(θx) · (θx) +

(θx) · H · (θx)
N

+
∇a(θx).(θx)

N

)
H(G−1(v)) dx.

Hypotheses (A3) and (A5), with the conditions on function H, imply that
ϕ′(θ) > 0. Therefore, ϕ(θ) is an increasing of θ and hence there exists a unique
θ > 0 such that

N − 2
2

∫
RN
|∇v|2 dx = Nθ2ϕ(θ).

�

Lemma 3.2. Let O = {v ∈ H1(RN ) \ {0} :
∫

RN G∞(G−1(v)) dx > 0} be an
open subset of H1(RN ). The function θ1:O → R+ defined by v 7→ θ1(v), such that
v(·/θ1(v)) ∈ P, is continuous.

Proof. Consider (vn) ⊂ O such that vn → v, as n → ∞. We will show that
θ1(vn)→ θ1(v), as n→∞. First note that θ1(vn) is bounded. Indeed, consider the
expression ψ′(θ) = 0 in the proof of the previous lemma applied to vn and θ1(vn)

N − 2
2

∫
RN
|∇vn|2 dx

= Nθ2
1(vn)

∫
RN

a(θ1(vn)x)H(G−1(vn)) dx− Nθ2
1(vn)
2

∫
RN

V∞(G−1(vn))2 dx

+Nθ2
1(vn)

∫
RN

∇a(θ1(vn)x) · (θ1(vn)x).H(G−1(vn))
N

dx.

Since θ1(vn) > 0, we suppose by contradiction that θ1(vn) → +∞, as n →
∞. Thus the right-hand side of the equation above goes to infinity while the left
hand side tends to N−2

2

∫
RN |∇v|

2 dx < ∞. Therefore, we conclude that θ1(vn) is
bounded sequence and thus has a convergent subsequence, let us say θ1(vn)→ θ1,
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as n → ∞. Again using Lebesgue Dominated Convergence Theorem, as n → ∞,
we have ∫

RN
a(θ1(vn)x)H(G−1(vn)) dx→

∫
RN

a(θ1x)H(G−1(v)) dx,∫
RN

∇a(θ1(vn)x) · (θ1(vn)x)
N

H(G−1(vn)) dx→
∫

RN

∇a(θ1x)(θ1x)
N

H(G−1(v)) dx,∫
RN
|∇vn|2 dx→

∫
RN
|∇v|2 dx,∫

RN
v2
n dx→

∫
RN

v2 dx,

since vn → v in H1(RN ), as n→∞. Thus, we obtain
N − 2

2

∫
RN
|∇v|2 dx

= Nθ
2

1

∫
RN

[(
a(θ1x) +

∇a(θ1x)(θ1x)
N

)
H(G−1(v))− V∞

2
(G−1(v))2

]
dx .

It follows that θ1 is such that v(·/θ1) ∈ P. The uniqueness of the projection in P
implies that θ1 = θ1(v). Hence, θ1(vn)→ θ1(v) in R, as n→∞. �

Lemma 3.3. If v ∈ P∞, then there exists θ > 0 such that v(·/θ) ∈ P and θ > 1.

Proof. Let v ∈ P∞, then
∫

RN G∞(G−1(v)) dx > 0 and Lemma 3.1 asserts the
existence of a unique θ such that v(·/θ) ∈ P. Now we obtain

0 = θN−2
[N − 2

2

∫
RN
|∇v|2 dx−Nθ2

(∫
RN

a(θx)H(G−1(v)− V∞(G−1(v))2

2
dx

+
∫

RN

∇a(θx) · θx
N

H(G−1(v)) dx
)]

and since θ > 0, by (A4), it follows that
N − 2

2

∫
RN
|∇v|2 dx < Nθ2

∫
RN

G∞(G−1(v)) dx,

or equivalently

(2∗)−1

∫
RN
|∇v|2 dx < θ2

∫
RN

G∞(G−1(v)) dx.

But since v ∈ P∞, we have

(2∗)−1

∫
RN
|∇v|2 dx =

∫
RN

G∞(G−1(v)) dx.

Therefore, the inequality above is true if and only if θ > 1. �

Lemma 3.4. If v ∈ P, then there exists θ > 0 such that v(·/θ) ∈ P∞ and θ < 1.

Proof. First, we must verify that if v ∈ P, then
∫

RN G∞(G−1(v)) dx > 0. In fact,
using condition (A4), if v ∈ P, then v satisfies

N − 2
2

∫
RN
|∇v|2 dx < N

∫
RN

(
a∞H(G−1(v)− V∞(G−1(v))2

2

)
dx

= N

∫
RN

G∞(G−1(v)) dx.
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Since v 6≡ 0 and v ∈ H1(RN ), we have
∫

RN |∇v|
2 dx > 0; therefore we also have∫

RN G∞(G−1(v)) dx > 0. The existence of an unique θ > 0 such that v(·/θ) ∈ P∞
is guaranteed by Lemma 3.1. In order to show that θ < 1, we note that

N − 2
2N

∫
RN
|∇v|2 dx <

∫
RN

G∞(G−1(v)) dx.

However, if v(·/θ) ∈ P∞, then θ satisfies

θ2 =
(2∗)−1

∫
RN |∇v|

2 dx∫
RN G∞(G−1(v)) dx

<

∫
RN G∞(G−1(v)) dx∫
RN G∞(G−1(v)) dx

= 1.

Therefore θ < 1. �

Remark 3.5. An immediate consequence of the previous lemmas is that v ∈
H1(RN )\{0} can be projected on P and on P∞ if and only if

∫
RN G∞(G−1(v)) dx >

0.

Lemma 3.6. If v ∈ P∞, then v(· − y) ∈ P∞, for all y ∈ RN . Moreover, there
exists θy > 1 such that v( ·−yθy ) ∈ P and lim|y|→+∞ θy = 1.

Proof. If v ∈ P∞, then it follows from the translation invariance of I∞ that v(·−y) ∈
P∞, for all y ∈ RN . Furthermore, from Lemma 3.1 there exists θy > 1 such that
v( ·−yθy ) ∈ P. Suppose now, by contradiction, that there exists a sequence yn ∈ RN

such that |yn| → +∞ and θyn → A > 1 or +∞, as n→∞. Let us define

K(θynx+ yn) := a(θynx+ yn) +
∇a(θynx+ yn) · (θynx+ yn)

N
.

From (2.5) and (A4) we have that

K(θynx+ yn)H(G−1(v))− V∞(G−1(v))2

2
< a∞H(G−1(v))− V∞(G−1(v))2

2
≤ a∞(1 + C)|G−1(v)|2 ∈ L1(RN ).

Hence, using the Lebesgue Dominated Convergence Theorem, we obtain

lim
yn→∞

∫
RN

K(θynx+ yn)H(G−1(v)) dx− V∞
∫

RN

(G−1(v))2

2
dx

=
∫

RN
G∞(G−1(v)) dx.

But for each yn it follows that v( ·−ynθyn
) ∈ P with θyn > 1, which implies

N − 2
2

∫
RN
|∇v|2 dx

= Nθ2
yn

∫
RN

[
K(θynx+ yn)H(G−1(v))− V∞(G−1(v))2

2

]
dx.

(3.2)

The right-hand side of (3.2) approaches infinity or NA2
∫

RN G∞(G−1(v)) dx, how-
ever the left-hand side is fixed on N−2

2

∫
RN |∇v|

2 dx. Since v ∈ P∞ and A > 1 or
+∞, we arrive at a contradiction. �

Lemma 3.7. supy∈RN θy = θ <∞ and θ > 1.
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Proof. From Lemma 3.6, given ε = 1 there exists R > 0 such that |θy| ≤ 2 if |y| > R.
We will show that there exists M > 0 such that sup0≤|y|≤R θy ≤M . Suppose that
this supremum is not finite, or equivalently, that there exists a sequence yn ∈ RN
with |yn| ∈ [0, R] such that θyn → ∞, as n → ∞. As in the previous lemma, but
now with θyn →∞,as n→∞, we can prove that

lim
θyn→∞

∫
RN

[
K(θynx+ yn)H(G−1(v))− V∞G

−1(v)
2

]
dx =

∫
RN

G∞(G−1(v)) dx.

Therefore, it follows from (3.2) that
N − 2

2

∫
RN
|∇v|2 dx = Nθ2

yn

(∫
RN

G∞(G−1(v)) + oyn(1)
)

dx.

But, since θyn →∞, as n→∞, and the left-hand side is a fixed number, this is an
absurd, unless the supremum exists. �

Lemma 3.8. There exists a real number σ̂ > 0 such that infu∈P ‖∇v‖2 ≥ σ̂.

Proof. Let v ∈ P, then v satisfies Pohozaev identity and by condition (A4) we have

N − 2
2

∫
RN
|∇v|2 dx < N

∫
RN

[
a∞H(G−1(v))− V∞(G−1(v))2

2

]
dx.

On the other hand, from condition (2.5), with p = 2∗, by Lemma 2.1(1), and a
given V∞

a∞
> ε > 0, we obtain

1
2∗

∫
RN
|∇v|2 dx < a∞C

∫
RN
|G−1(v)|2

∗
dx < a∞C

∫
RN
|v|2

∗
dx

and using Sobolev-Gagliardo-Nirenberg Theorem (see [10]) in the above inequality,
we obtain

0 <
1

2∗a∞C
< ‖∇v‖2

∗−2
2 .

Hence, infv∈P ‖∇v‖2 ≥ σ̂, with σ̂ >
(

1
2∗a∞C

) 1
2∗−2 > 0. �

Lemma 3.9. p := infv∈P I(v) > 0.

Proof. Let v ∈ P, with (A3) and Lemma 3.8, then I(v) satisfies

I(v) =
1
N

(∫
RN
∇a(x)xH(G−1(v)) dx+

∫
RN
|∇v|2 dx

)
≥ 1
N

∫
RN
|∇v|2 dx

≥ 1
N
σ̂2 > 0.

Thus we obtain that p > 0. �

Using g(t) is bounded and increasing function in relation to |t|, the inverse func-
tion G−1(t) and some algebraic manipulations, we obtain the following result.

Remark 3.10. In [21] is proved that infv∈P∞ I∞(v) = c∞.

Remark 3.11. If v ∈ H1(RN ), with
∫

RN G∞(G−1(v)) dx > 0 and θ > 0 is such
that v(·/θ) ∈ P∞, then we can write

I∞(v(x/θ)) =
θN−2

N

∫
RN
|∇v|2 dx. (3.3)
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Lemma 3.12. With the above notation p = c∞.

Proof. Let ω ∈ H1(RN ) be the ground state solution of the problem at infinity,
ω ∈ P∞ and I∞(ω) = c∞. Given any y ∈ RN , we define ωy := ω(x− y). From the
translation invariance of the integrals, we obtain ωy ∈ P∞ and I∞(ωy) = c∞. From
Lemma 3.3, for any y ∈ RN , there exists a θy > 1 such that ωy = ωy(·/θy) ∈ P.
Therefore,

|I(ωy)− c∞| = |I(ωy)− I∞(ωy)|

≤
|θN−2
y − 1|

2

∫
RN
|∇ω|2 dx+ |θNy − 1|

∫
RN

V∞(G−1(ω))2

2
dx

+
∫

RN
|H(G−1(ω))||a∞ − θNy a(xθy + y)| dx.

Since θy → 1, if |y| → ∞, it follows that

|I(ωy)− c∞| ≤ oy(1) + oy(1) +
∫

RN
|H(G−1(ω))||a∞ − a(x+ y)| dx,

and since a(x+ y)→ a∞, as |y| → ∞, it follows that

lim
|y|→∞

I(ωy) = c∞.

Therefore, p = infv∈P I(v) ≤ c∞.
On the other hand, consider v ∈ P and 0 < θ < 1 such that v(·/θ) ∈ P∞. Since

v ∈ P, then using (3.3) and (A3) we obtain

Ī(v) >
1
N

∫
RN
|∇v|2 dx ≥ θN−2

N

∫
RN
|∇v|2 dx = I∞(v(x/θ)) ≥ c∞.

�

Thus, for any v ∈ P, I(v) > c∞ and hence infv∈P I(v) ≥ c∞. We conclude that
p = c∞.

Now we are ready to prove Theorem 1.1, which is the main result in this section.

Proof of Theorem 1.1. Suppose, by contradiction, that there exists ς ∈ H1(RN ), a
critical point of the functional I at level p. In particular, that ς ∈ P and I(ς) = p.
Let θ ∈ (0, 1) be such that ς(x/θ) ∈ P∞. Then using (A3) and (3.3), we obtain

p = I(ς) =
1
N

∫
RN
|∇ς|2 dx+

1
N

∫
RN
∇a(x).x.H(G−1(ς)) dx

>
1
N

∫
RN
|∇ς|2 dx >

θN−2

N

∫
RN
|∇ς|2 dx

= I∞(ς(x/θ)) ≥ c∞.
Therefore p > c∞, which contradicts the previous lemma. �

4. Existence of a positive solution

This section we will show the existence of a positive solution for the equation
(1.3) by showing the existence of a positive solution for the dual equation (2.4). By
the previous theorem, we should look for solutions which have energy levels above
of c∞. We start by showing that the min-max levels of Mountain Pass Theorem,
see [4], for the functional I and I∞ are equal. It is easy to verify that the functional
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I satisfies the geometrical hypotheses of the Mountain Pass Theorem. For instance,
the condition (2.5) give us a local minimun at the origin, while if we take ω the
ground state solution of the problem at infinity, then z1 = ω( ·−yt ), for |y| and t

sufficiently large, by (A2) we obtain I(z1) < 0.
Let c be the min-max mountain pass level for the functional I given by

c := min
γ∈Γ

max
0≤t≤1

I(γ(t)), (4.1)

where
Γ := {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, I(γ(1)) < 0}.

Lemma 4.1. For the above quantities, p = c = c∞

The proof of the above lemma is analogous to [24, Lemmas 4.1 and 4.2]. Now
we observe the following property of the Pohozaev manifold P with respect to the
paths in the Mountain Pass Theorem.

Lemma 4.2. If γ ∈ Γ, then there exists s ∈ (0, 1) such that γ(s) intersects P.

Proof. From Lemma 2.2(a) there exists ρ > 0 such that, if 0 < ‖v‖ < ρ, then
J(v) > 0. Furthermore, observe that

J(v) = NI(v)−
∫

RN
|∇v|2 dx−

∫
RN
∇a(x).x.H(G−1(v)) dx.

From condition (A3) it follows that J(v) < NI(v). Therefore, if γ ∈ Γ, on the one
hand we have J(γ(0)) = 0, and on the other hand J(γ(1)) < NI(γ(1)) < 0, since
I(γ(1)) < 0, and we conclude that there exists s ∈ (0, 1), for which ‖γ(s)‖ > ρ
and such that J(γ(s)) = 0. The function γ(s) satisfies γ(s) ∈ P, which shows that
every path γ ∈ Γ intersects P. �

We recall that a sequence (vn) is said to be a Cerami sequence for the functional
I at level d in R, denote by (Ce)d, if

I(vn)→ d and ‖I ′(vn)‖(1 + ‖vn‖)→ 0, as n→∞. (4.2)

Now we show that, if d > 0, then any (Ce)d sequence for the functional I is bounded,
up to a sequence.

Lemma 4.3. If (vn) is a (Ce)d sequence with d > 0, then it has a bounded subse-
quence.

Proof. For any v ∈ H1(RN ),

I(v) =
1
2

∫
RN
|∇v|2 dx+

1
2

∫
RN

V∞|G−1(v)|2 dx−
∫

RN
a(x)H(G−1(v)) dx (4.3)

and
I ′(v)G−1(v)g(G−1(v))

=
∫

RN

[
1 +

G−1(v)
g(G−1(v))

g′(G−1(v))
]
|∇v|2 dx+

∫
RN

V∞|G−1(v)|2 dx

−
∫

RN
a(x)h(G−1(v))G−1(v) dx.

(4.4)

Now, by the previous arguments, we know that there is C > 0 such that

‖G−1(vn)g(G−1(vn))‖ ≤ C‖vn‖, ∀ n ∈ N.
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Thus, the above inequality combined with (4.2), (4.3) and (4.4) implies that

2
√

2 d+ on(1)

= 2
√

2 I(vn)− I ′(vn)G−1(vn)g(G−1(vn))

=
∫

RN

[2
√

2− 2
2

− G−1(vn)
g(G−1(vn))

g′(G−1(vn))
]
|∇vn|2 dx

+
∫

RN

(
a(x)h(G−1(vn))G−1(vn)− 2

√
2 a(x)H(G−1(vn))

)
dx

+
2
√

2− 2
2

∫
RN

V∞(G−1(vn))2 dx.

(4.5)

Now, using the hypothesis (A8) and Lemma 2.1(5) in (4.5), we obtain

2
√

2 d+ on(1) ≥
∫

RN

[2
√

2− 2
2

− G−1(vn)
g(G−1(vn))

g′(G−1(vn))
]
|∇vn|2 dx

=
(6
√

2− 8
2

) ∫
RN
|∇vn|2 dx.

It follows that

lim
n→∞

sup ‖∇vn‖22 ≤
2
√

2 d
3
√

2− 4
. (4.6)

By the Sobolev embedding, we derive that

lim
n→∞

sup
∫

RN
|vn|2

∗
dx ≤

( 2
√

2 d
3
√

2− 4

)2∗

, ∀n ∈ N. (4.7)

From 2.5, with p = 2∗ − 1, as n→∞, I ′(vn)vn = on(1) gives∫
RN

[
|∇vn|2 + V∞

G−1(vn)
g(G−1(vn))

vn

]
dx

≤ a∞
∫

RN

( ε
2 |G
−1(vn)|+ C|G−1(vn)|2∗−1

g(G−1(vn))

)
vn dx.

Using Lemma 2.1(1) and that 1 ≤ g(t) ≤ 2 for all t ∈ R, we obtain

C1

∫
RN
|vn|2 dx ≤ C2

∫
RN
|vn|2

∗
dx.

Then, by (4.7),

lim
n→∞

sup
∫

RN
|vn|2 dx ≤ C2

C1

( 2
√

2 d
3
√

2− 4

)2∗

, ∀n ∈ N.

From (4.6) and (4.7), it follows that (vn) is bounded in H1(R). �

The next step is to show the existence of a Cerami sequence for the functional I
at level c.

Lemma 4.4. Let c be as in (4.1), then there exists a (Ce)c sequence (vn) ⊂
H1(RN ).

The proof of the above lemma can be found in [24, Lemma 4.5]. Next we present
a splitting lemma on I.
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Lemma 4.5. Let (vn) ∈ H1(RN ) be a bounded sequence such that

I(vn)→ d > 0 and ‖I ′(vn)‖(1 + ‖vn‖)→ 0.

Replacing (vn) by a subsequence, if necessary, there exists a solution v of (2.4), a
number k ∈ N∪{0}, k functions v1, v2, . . . , vk and k sequences of points (yjn) ∈ RN ,
1 ≤ j ≤ k, such that as n→∞, they satisfy:

(a) vn → v in H1(RN ) or
(b) vj are nontrivial solutions of (3.1);
(c) |yjn| → ∞ and |yjn − yin| → ∞, i 6= j;
(d) vn −

∑k
i=1 v

i(x− yin)→ v;
(e) I(vn)→ I(v) +

∑k
i=1 I∞(vi).

Remark 4.6. One can also mimic the proof of [46, Theorem 8.4]. Nowadays the
proof of this lemma is standard and is a version of the concentration compactness of
Lions [27] and found in [41]. The main ingredients are Lions lemma and Brezis-Lieb
Lemma [9].

Corollary 4.7. If I(vn) → c∞ and ‖I ′(vn)‖(1 + ‖vn‖) → 0, then either (vn) is
relatively compact or the splitting lemma holds with k = 1 and v = 0.

Let us set

c] := inf{c > c∞ : c is a radial critical value of I∞}.

Lemma 4.8. Assume that c∞ is an isolated radial critical level for I∞. Then
c] > c∞ and I satisfies condition (Ce)d at level d ∈ (c∞,min{c], 2m∞}). Assume
now that the limiting problem (3.1) admits a unique positive radial solution. Then
I satisfies condition (Ce)d at level d ∈ (c∞, 2c∞).

The proof of the above lemma can be found in [25, Lemma 5.9].

Lemma 4.9. If I(vn)→ d > 0, as n→∞, and (vn) ⊂ P, then the sequence (vn)
is bounded.

Proof. The convergence I(vn)→ d > 0, as n→∞, implies I(vn) is bounded in R.
If vn ∈ P then

d+ 1 ≥ I(vn) =
1
N

∫
RN
|∇vn|2 dx+

1
N

∫
RN
∇a(x).x.H(G−1(vn)) dx

>
1
N

∫
RN
|∇vn|2 dx,

hence ‖∇vn‖2 is bounded. By Sobolev-Gagliardo-Nirenberg inequality, it follows
that ‖vn‖2∗ is also bounded. Now using (2.5), Lemma 2.1(1) with ‖a‖∞ε < V∞

2 ,
we obtain∫

RN
a(x)H(G−1(vn)) dx ≤

∫
RN

a(x)
(ε

2
|G−1(vn)|2 + C|G−1(vn)|2

∗
)

dx

≤ ‖a‖∞ε
2
‖vn‖22 + C‖vn‖2

∗

2∗ .

Replacing this in the expression of I and using Lemma 2.1(1), we have

d+ 1 ≥ I(vn) ≥ 1
2
‖∇vn‖22 +

(1
4
V∞ −

‖a‖∞ε
2

)
‖vn‖22 − C‖vn‖2

∗

2∗
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since
(

1
4V∞ −

‖a‖∞ε
2

)
> 0, if ‖vn‖2 → ∞, as n → ∞, this would gives us a

contradiction. �

Next we introduce the barycenter function, see [3, 41] which is going to be critical
for proving the existence of a solution of problem (2.4).

Definition 4.10. For a given function u 6= 0 ∈ H1(RN ), let

µ(u)(x) =
1
|B1|

∫
B1(x)

|u(y)|dy,

with µ(u) ∈ L∞(RN ) a continuous function. Subsequently, take

û(x) =
[
µ(u)(x)− 1

2
maxµ(u)

]+
.

It follows that û ∈ C0(RN ). Now define the barycenter of u by

β(u) =
1
|û|L1

∫
xû(x) dx ∈ RN .

Since û has compact support, by definition, β(u) is well defined. The function
β satisfies the following properties:

(a) β is a continuous function in H1(RN ) \ {0};
(b) If u is radial, then β(u) = 0;
(c) Given y ∈ RN and defining uy := u(x− y), then β(uy) = β(u) + y.

We also need the following lemma.

Lemma 4.11. Assume that (un), (vn) ⊂ H1(RN ) are sequences such that ‖un −
vn‖ → 0 and I ′(vn) → 0, as n → ∞, with (vn) bounded. Then I ′(un) → 0 as
n→∞.

Proof. For any test function ϕ ∈ H1(RN ) we have

[I ′(un)− I ′(vn)]ϕ

=
∫

RN
∇(un − vn)∇ϕ dx+ V∞

∫
RN

( G−1(un)
g(G−1(un))

− G−1(vn)
g(G−1(vn))

)
ϕ dx

−
∫

RN
a(x)

(h(G−1(un))
g(G−1(un))

− h(G−1(vn))
g(G−1(vn))

)
ϕ dx.

We first observe that the term
∫

RN ∇(un − vn)∇ϕ dx = on(1), as n → ∞, since
‖un − vn‖ → 0, as n→∞.

Now we verify that

(i)
∫

RN

(
G−1(un)
g(G−1(un)) −

G−1(vn)
g(G−1(vn))

)
ϕ dx = o(1), as n→∞;

(ii)
∫

RN a(x)
(
h(G−1(un))
g(G−1(un)) −

h(G−1(vn))
g(G−1(vn))

)
ϕ dx = o(1), as n→∞.

(i) Note that s = G(t) if, and only if t = G−1(s). By Lemma 2.1(2), we have

(G−1)′(s) =
1

G′(t)
=

1
g(t)

≤ 1, ∀t ∈ R. (4.8)

On the other hand, as (vn) is bounded and ‖un− vn‖ = o(1), as n→∞, then (un)
is bounded. Up to a subsequence, we can assume, as n→∞, that

un, vn → u a.e. weakly and un, vn → u strongly in suppϕ.
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Also, there exists ψ ∈ Lr, r < 2∗, such that |un|, |vn| ≤ ψ(x) for all x ∈ RN . Notice
that, as n→∞,

G−1(un)
g(G−1(un))

ϕ→ G−1(u)
g(G−1(u))

ϕ and
G−1(vn)
g(G−1(vn))

ϕ→ G−1(u)
g(G−1(u))

ϕ.

By (4.8) and Lemma 2.1(2), we have∣∣ G−1(un)
g(G−1(un))

∣∣ ≤ 1, ∀n ∈ N.

So that
∣∣ G−1(un)
g(G−1(un))ϕ

∣∣ ≤ ϕ ∈ Lr, r < 2∗. Therefore, by Lebesgue Dominated
Convergence Theorem, we have (i).

(ii) First, note that a(x) is bounded. We can assume there exists q ∈ [3, 2∗) such
that |h(s)| ≤ ε|s|+C|s|q−1, for all s ∈ R. Now using the Lemma 2.1(1), we obtain

|h(G−1(un))| ≤ ε|un|+ C|un|q−1 ≤ ε|ψ|+ C|ψ|q−1, (4.9)

where ψ ∈ Lq−1 is obtained in the above convergence of un, vn such that |un|, |vn| ≤
ψ.

So that, as n→∞,

h(G−1(un))
g(G−1(un))

ϕ→ h(G−1(u))
g(G−1(u))

ϕ and
h(G−1(vn))
g(G−1(vn))

ϕ→ h(G−1(u))
g(G−1(u))

ϕ,

using (4.8) and (4.9), we obtain∣∣h(G−1(un))
g(G−1(un))

ϕ
∣∣ ≤ |h(G−1(un))ϕ| ≤ C(ε|ψ|+ C|ψ|q−1) ∈ L1.

Therefore, by Lebesgue Dominated Convergence Theorem, we have (ii). �

Now we define
b := inf{I(v) : v ∈ P and β(v) = 0}. (4.10)

It is clear that b ≥ c∞, and the following result holds.

Lemma 4.12. b > c∞.

The proof of the above lemma is analogous to [25, Lemma 5.13]. Let us consider a
positive, radially symmetric, ground state solution ω ∈ H1(RN ) of the autonomous
problem at infinity. We define the operator Π : RN → P by

Π[y](x) = ω
(x− y
θy

)
,

where θy is exactly the real number θ which projects ω(· − y) onto the Pohozaev
manifold P. Π is a continuous function of y because θy is unique and θy(ω(· − y))
is a continuous function of ω(· − y). We will verify some properties of this operator
Π:

Lemma 4.13. β(Π[y](x)) = y and I(Π[y])→ c∞, if |y| → ∞.

The proof of the above lemma can be found in [24, Lemmas 4.13 and 4.14].

Lemma 4.14. Let C be a positive constant such that |H(G−1(s))| ≤ C|s|2, and
assume (A9). Then I(Π[y]) < min{c], 2c∞}.
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Proof. Noting that I∞ is translation invariant, the maximum of t 7→ I∞(ω(·/t)) is
attained at t = 1 and that θy > 1 and using (A9), we obtain

I(Π[y]) = I∞(Π[y]) + I(Π[y])− I∞(Π[y])

≤ I∞(ω) +
∫

RN
(a∞ − a(x))H(G−1(Π[y])) dx

< c∞ +
min{c], 2c∞} − c∞

θ
N‖ω‖22C

θNy C‖ω‖22

< min{c], 2c∞}.
�

We will need a version of the Linking Theorem with Cerami condition [7, Theo-
rem 2.3], which we state here for the sake of completeness.

Definition 4.15. Let S be a closed subset of a Banach space X, and Q a sub
manifold of X with relative boundary ∂Q. We say that S and ∂Q link if:

(1) S ∩ ∂Q = ∅;
(2) for any h ∈ C0(X,X) such that h|∂Q = id, we have h(Q) ∩ S 6= ∅.

If S and Q are as above and B is a subset of C0(X,X), then S and ∂Q with respect
to B if (1) and (2) hold for any h ∈ B.

Theorem 4.16 (Linking). Suppose that I ∈ C1(X,R) is a functional satisfying
(Ce) condition. Consider a closed subset S ⊂ X and a submanifold Q ⊂ X with
relative boundary ∂Q; suppose also that:

(a) S and ∂Q “link”;
(b) α = infu∈S I(v) > supv∈∂Q I(v) = α0;
(c) supv∈Q I(v) < +∞.

If B = {h ∈ C0(X,X);h|∂Q = id}, then the real number τ = infh∈B supv∈Q I(h(v))
defines a critical value of I, with τ ≥ α.

We refer the reader to [39, 36] for similar versions of the Linking Theorem with
Cerami condition.

Proof of Theorem1.2. Condition (A4) implies I∞(v) < I(v) for all v ∈ H1(RN ) \
{0}. In particular, I∞(Π[y]) < I(Π[y]), for any y ∈ RN . Since b > c∞, from Lemma
4.12, and I(Π[y])→∞ if |y| → ∞, from Lemma 4.13, then there exists ρ > 0 such
that for every ρ ≥ ρ,

c∞ < max
|y|=ρ

I(Π[y]) < b. (4.11)

To apply the Linking Theorem 4.16, we set

Q := Π(Bρ(0)) and S := {v ∈ H1(RN ) : v ∈ P, β(v) = 0},
and will show that ∂Q and S “link”. Since β(Π[y]) = y, from Lemma 4.13, we have
that ∂Q ∩ S = ∅, because if v ∈ S, then β(v) = 0, and if v∂Q, then β(v) = y 6= 0,
due to the equality |y| = ρ. Now we need to show that h(Q)∩S 6= ∅, for any h ∈ H,
where

H = {h ∈ C(Q,P) : h|∂Q = id}.
Given h ∈ H, let us define T :Bρ(0)→ RN for T (y) = β ◦ h ◦Π[y]. The function

T is continuous, because it is the composition of continuous functions. Moreover,
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for any |y| = ρ, we have that Π[y] ∈ ∂Q, thus h ◦ Π[y] = Π[y], because h|∂Q = id,
and hence from Lemma 4.13 we obtain T (y) = y. By the Fixed Point Theorem
of Brouwer, we conclude that there exists ỹ ∈ Bρ(0) such that T (ỹ) = 0, which
implies h(Π[ỹ]) ∈ S. Therefore h(Q) ∩ S 6= ∅ and S and ∂Q “link”.

Furthermore, from the definitions of b and Q and the inequalities (4.11), we may
write

b = inf
S
I > max

∂Q
I.

Let us define
d = inf

h∈H
max
v∈Q

I(h(v)).

Then we have d ≥ b. Indeed, we have already proved that h(Q) ∩ S 6= ∅, for all
h ∈ H. If h is fixed, then there exists ω ∈ S such that ω also belongs to h(Q),
which means that ω = h(u) for some u ∈ Π(Bρ(0)). Therefore,

I(ω) ≥ inf
v∈S

I(v) and max
v∈Q

I(h(v)) ≥ I(h(u)).

This gives
max
v∈Q

I(h(v)) ≥ I(h(u)) = I(ω) ≥ inf
v∈S

I(v) = b,

and hence
inf
h∈H

max
v∈Q

I(h(v)) ≥ b.

In particular, it follows that d > c∞, because from Lemma 4.12 we know that
b > c∞. Furthermore, if we take h = id, then

inf
h∈H

max
v∈Q

I(h(v)) < max
v∈Q

I(v) < min{c], 2c∞},

by Lemma 4.14. This implies d < min{c], 2c∞}. The two inequalities give d ∈
(c∞,min{c], 2c∞}), thus from Lemma 4.5 (Ce) condition is satisfied at level d.
Therefore, we can apply the Linking Theorem and conclude that d is a critical
level for the functional I. This guarantees the existence of a nontrivial solution
v ∈ H1(RN ) of the equation (2.4). Reasoning as usual, because of the hypotheses
on h and G−1, and using the maximum principle we may conclude that v is positive,
which implies the proof of the theorem. �
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[37] J. Shatah; Unstable Ground State of Nonlinear Klein-Gordon Equations, Trans. Amer. Math.

Soc. 290 (2) (1985), 701-710.
[38] Y. Shen, Y. Wang; Soliton solutions for generalized quasilinear Schrödinger equations, Non-

linear Analysis, 80 (2013), 194-201.

[39] E. A. B. Silva; Subharmonic solutions for subquadratic Hamiltonian systems, J. Differential
Equations, 115 (1995), 120-145.

[40] E. A. B. Silva, G. F. Vieira; Quasilinear asymptotically periodic Schrödinger equations with

critical growth, Calc. Var. Partial Dif. Equations, 39 (2010), 1-33.
[41] M. Struwe; A global compactness result for elliptic boundary value problems involving limiting

nonliarities, Math. Z., 187(4) (1984), 511-517.

[42] C. A. Stuart, H. S. Zhou; Applying the Mountain Pass Theorem to an asymptotically linear
elliptic equation on RN , Commum. Partial Diff. Eq., 9-10 (1999), 1731-1758.

[43] J. Yang, Y. Wang, A. A. Abdelgadir; Soliton solutions for quasilinear Schrödinger equations
Journal Mat. Phy, 54 (2013), 071502, 19pp.

[44] Y. Wang; Multiple solutions for quasilinear elliptic equations with critical growth, J. Korean

Math. Soc., 48 (2011), 1269-1283.
[45] Y. J. Wang, Y. M. Zhang, Y.T. Shen; Multiple solutions for quasilinear Schrödinger equations

involving critical exponent, Appl. Math. Comp., 216 (2010), 849-856.

[46] M. Willem; Minimax Theorems, Volume 24, Birkhauser, Boston, 1996.

Olimpio Hiroshi Miyagaki
Universidade Federal de Juiz de Fora, Departamento de Matemática, 36036-330 Juiz de
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65055-900 São Lúıs-MA, Brazil
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